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Abstract Canonical Correlation Analysis is a technique for finding pairs of basis vectors
that maximise the correlation of a set of paired variables, these pairs can be considered as
two views of the same object. This paper provides a convergence analysis of Canonical Cor-
relation Analysis by defining a pattern function that captures the degree to which the features
from the two views are similar. We analyse the convergence using Rademacher complexity,
hence deriving the error bound for new data. The analysis provides further justification for
the regularisation of kernel Canonical Correlation Analysis and is corroborated by experi-
ments on real world data.

Keywords Canonical Correlation Analysis · Rademacher complexity · Kernel methods

1 Introduction

Proposed by H. Hotelling in 1936, Canonical Correlation Analysis (CCA) is a technique for
finding pairs of basis vectors that maximise the correlation between the projections of the
paired variables onto the corresponding basis vectors. Correlation is dependent on the cho-
sen coordinate system, therefore even if there is a very strong linear relationship between
two sets of multidimensional variables this relationship might not be visible as a correla-
tion. CCA seeks a pair of linear transformations one for each of the pairs of variables such
that when the variables are transformed the corresponding coordinates are maximally cor-
related. Kernel Canonical Correlation Analysis (KCCA) performs this analysis in a kernel
defined feature space. First introduced by Fyfe and Lai (2000) and later by Akaho (2001)
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and Bach and Jordan (2002). KCCA has shown its potential usage in multimedia applica-
tions with emphasis on information retrieval. These applications include cross-language text
retrieval (Vinokourov et al. 2002) where documents in one language are retrieved via a query
from another language, as well as webpage classification (Vinokourov et al. 2003), in which
different elements of webpage are used as a complex label structure. More recently content-
based image retrieval (Hardoon et al. 2006) has retrieved images from a text query without
reference to their original labelling. One can find further studies applying this technique such
as those by Friman et al. (2003) where CCA was applied to functional magnetic resonance
imaging analysis, and the more recent Hardoon et al. (2007). It has also been applied in
independent component analysis (Bach and Jordan 2002) and blind signal separation (Fyfe
and Lai 2000). A review of the method is given by Ketterling (1971).

CCA and KCCA solve the problem of finding a canonical correlation between two sets
of variables. In this paper we consider the paired variables as two views of the same object,
as the technique is applicable in cases where we hypothesise that both views individually
contain all the relevant information. In such situations KCCA can identify the relevant sub-
spaces in both views, projecting out irrelevant specifics from both views. For this reason we
also refer to the projection space as the semantic space. We show that the empirical estimate
of the correlation coefficient is a good estimate of the population correlation by using large
deviation bounds.

In previous work (Hardoon et al. 2004) we show that using kernel CCA with no regular-
isation will be likely to produce perfect correlations between the two views. These correla-
tions can therefore fail to distinguish between spurious features and those that capture the
underlying semantics. Similarly, other studies have also dealt with these issues providing
justification for regularisation (Bach and Jordan 2002; Kuss and Graepel 2002). Recently,
Fukumizu et al. (2006) investigated the general problem of establishing a consistency of
KCCA by providing rates for the regularisation parameter. However, as highlighted in the
concluding remarks of Fukumizu et al. (2006), the practical problem of choosing the regu-
larisation coefficient in practice remains largely unsolved.

Despite CCA’s long history we have found no finite sample statistical analysis of the tech-
nique. An initial analysis and theoretical bound was given in Shawe-Taylor and Cristianini
(2004), which was later corrected in Hardoon (2006). In this paper we provide a detailed
theoretical analysis of KCCA and propose a finite sample statistical analysis of KCCA by
using a regression formulation similar to the Alternating Conditional Expectations (ACE)
method (Breiman and Friedman 1985). We show this to be tighter than the previously com-
puted bound in Hardoon (2006) and show, through a feasibility experiment, that the derived
bound can be used in practice to select the regularisation coefficient. This analysis aims to
provide a better understanding of the technique’s convergence by using Rademacher com-
plexity to obtain an error bound for a new data sample. We find that the theoretical analysis
provides a further justification for the regularisation of kernel CCA as previously proposed
by Bach and Jordan (2002) but indicates that an a-posteriori normalisation of the features
should be used (detailed in Sect. 4).

The paper is divided as follows, in Sect. 2 we give some background results and in Sect. 3
we briefly review the Canonical Correlation Analysis method. The crux of the matter and
novelty of the paper is given in Sect. 4 where we develop the required mathematical machin-
ery and derive the CCA generalisation bound. In Sect. 5 we describe a real-world feasibility
experiment verifying the developed theory. Finally, we bring forward our concluding re-
marks in Sect. 6.
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2 Background results

We begin by giving the definition of Rademacher complexity. Assume an underlying distri-
bution D generating random vectors. We will frequently be considering estimating aspects
of this distribution from a random sample S generated identically and independently (i.i.d.)
by D.

If D generates a random object x and

S = {x1, . . . , x�}

is a sample generated i.i.d. according to D, we denote with E[f (x)] = ED[f (x)] the true
expectation of the function f (x) and with Ê[f (x)] we denote the empirical expectation of
f (x), where

Ê[f (x)] = 1

�

�∑

i=1

f (xi).

Similarly we will use Eσ to denote expectation w.r.t. a random vector σ and ES to denote
expectation over the generation of the random i.i.d. sample S.

Definition 1 (Rademacher complexity) For a sample S = {x1, . . . , x�} generated by a dis-
tribution D on a set X and a real-valued function class F with domain X, the empirical
Rademacher complexity of F is the random variable

R̂�(F ) = Eσ

[
sup
f ∈F

⏐⏐⏐⏐⏐
2

l

�∑

i=1

σif (xi)

⏐⏐⏐⏐⏐ : x1, . . . , x�

]
,

where σ = (σ1, . . . , σ�) are independent uniform {±1}-valued (Rademacher) random vari-
ables. The Rademacher complexity of F is

R�(F ) = ES[R̂�(F )] = ESσ

[
sup
f ∈F

∣∣∣∣∣
2

�

�∑

i=1

σif (xi)

∣∣∣∣∣

]
.

The main application of Rademacher complexity is given in the following theorem
(Bartlett and Mendelson 2002) quoted in the form given in Shawe-Taylor and Cristianini
(2004).

Theorem 2 Fix δ ∈ (0,1) and let F be a class of functions mapping from Z to [0,1].
Let (zi)

�
i=1 be drawn independently according to a probability distribution D. Then with

probability at least 1 − δ over random draws of samples of size �, every f ∈ F satisfies

ED[f (z)] ≤ Ê[f (z)] + R�(F ) +
√

ln( 2
δ
)

2�

≤ Ê[f (z)] + R̂�(F ) + 3

√
ln( 2

δ
)

2�
.
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Definition 3 〈x,y〉 denotes the Euclidean inner product of the vectors x, y also writ-
ten x′y.

A kernel is a function κ , such that for all x, z ∈ X

κ(x, z) = 〈φ(x),φ(z)〉 (1)

where φ is a mapping from X to a feature space F

φ : X → F.

The application of Rademacher complexity bounds to kernel defined function classes is
well documented (Bartlett and Mendelson 2002). The function class considered is

FB = {
x �→ 〈w, φ(x)〉 : ‖w‖ ≤ B

}
,

where φ : x �→ φ(x) is the feature space mapping corresponding to the kernel function in (1);
We quote the relevant theorem.

Theorem 4 (Bartlett and Mendelson 2002) If κ : X × X → R is a kernel, and S =
{x1, . . . , x�} is a sample of points from X, then the empirical Rademacher complexity of
the class FB satisfies

R̂�(FB) ≤ 2B

�

√√√√
�∑

i=1

κ(xi, xi) = 2B

�

√
tr(K),

where K is the kernel matrix of the sample S.

Finally, we will need the following result again given in Bartlett and Mendelson (2002),
see also Ambroladze and Shawe-Taylor (2004) for a direct proof.

Theorem 5 Let A be a Lipschitz function with Lipschitz constant L mapping the reals to
the reals satisfying A(0) = 0. The Rademacher complexity of the class A ◦ F satisfies

R̂�(A ◦ F ) ≤ 2LR̂�(F ).

Furthermore for any classes F and G

R̂�(F + G) ≤ R̂�(F ) + R̂�(G).

3 Canonical Correlation Analysis

Consider two multivariate projections φa(x) and φb(x) of a random object. These will be
the two views of the object x. We seek to maximise the empirical correlation between
xa = w′

aφa(x) and xb = w′
bφb(x) over the projection directions wa and wb . Without loss

of generality, we assume the mean in the feature space to be zero. The empirical correlation
expression can be written as
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maxρ = Ê[xaxb]√
Ê[x2

a ]Ê[x2
b ]

= Ê[w′
aφa(x)φb(x)′wb]√

Ê[w′
aφa(x)φa(x)′wa]Ê[w′

bφb(x)φb(x)′wb]

= w′
aCabwb√

w′
aCaawaw′

bCbbwb

,

where

Cst = 1

�

�∑

i=1

φs(xi)φt (xi)
′, for s, t ∈ {a, b}.

Since the quotient is invariant to rescaling of wa and wb we can impose the constraints
w′

aCaawa = 1 and w′
bCbbwb = 1.

Following (Bach and Jordan 2002; Hardoon et al. 2004) the dual form of CCA will be
given by solving

max
α,β

ρ = α′KaKbβ

subject to α′KaKaα = 1 and β ′KbKbβ = 1, where Ka and Kb are the kernel matrices for
the first and second view respectively. Although we present only the first direction, further
directions are computed similarly where α′

iKaKaαj = 0 for i �= j .
The corresponding Lagrangian is

L(λ,α,β) = α′KaKbβ − λα

2

(
α′K2

aα − 1
)

− λβ

2

(
β ′K2

bβ − 1
)
.

Taking derivatives with respect to α and β we obtain

∂L
∂α

= KaKbβ − λαK
2
aα = 0, (2)

∂L
∂β

= KbKaα − λβK2
bβ = 0. (3)

Subtracting β ′ times equation (3) from α′ times equation (2) we have

0 = α′KaKbβ − α′λαK
2
aα − β ′KbKaα + β ′λβK2

bβ

= λββ ′K2
bβ − λαα

′K2
aα

which together with the constraints implies that λα − λβ = 0, let λ = λα = λβ . Considering
the case where the kernel matrices Ka and Kb are invertible, we have

β = K−1
b K−1

b KbKaα

λ

= K−1
b Kaα

λ
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substituting in (2) we obtain

KaKbK
−1
b Kaα − λ2KaKaα = 0.

Hence

KaKaα − λ2KaKaα = 0

or

Iα = λ2α. (4)

If we centre the data these arguments would need to be refined but the main property would
hold. We are left with a standard eigenproblem of the form Ax = λx. We can deduce from (4)
that λ = ±1 for every vector of α, we ignore the negative correlation; hence we can choose
the projections α to be unit vectors ji i = 1, . . . , � while β are the columns of 1

λ
K−1

b Ka .
Hence when Ka and Kb are invertible, perfect correlations can be formed. Since kernel
methods provide high dimensional representations such dependence is not uncommon, as
for instance with the Gaussian kernel. It is therefore clear that a naive application of CCA
in a kernel defined feature space will not provide useful results (Leurgans et al. 1993).

4 CCA convergence analysis

We would like to capture the notion that the features from one view are almost identical to
the features from the second view. The function gwa ,wb

(x) = ‖w′
aφa(x) − w′

bφb(x)‖2 mea-
sures this property, since if gwa ,wb

(x) ≈ 0 the feature w′
aφa(x) that can be obtained from

one view of the data is almost identical to the second view’s feature w′
bφb(x). Therefore

such pairs of features are able to capture underlying semantic properties of the data that
are present in both views. In practice we will project into a k-dimensional space using as
projection eigenvectors corresponding to the top k correlation directions. In order to handle
this case we introduce the matrix Wa whose columns are the first k vectors w1

a, . . . ,wk
a , and

Wb with the corresponding wi
b i = 1, . . . , k.

We are able to obtain a convergence analysis of the function by simply viewing
gWa ,Wb

(x) as a regression function, albeit with special structure, attempting to learn the
constant 0 function. In order to apply the Rademacher generalisation bound, we must com-
pute the empirical expected value of

ga,b(x) := Ê
[‖W′

aφa(x) − W′
bφb(x)‖2

]

= 1

�

�∑

i

(
φa(xi)

′WaW′
aφa(xi) − 2φa(xi)

′WaW′
bφb(xi) + φb(xi)

′WbW′
bφb(xi)

)
,

(5)

where

φ′
a(x)WaW′

aφa(x) = Tr(φa(x)′WaW′
aφa(x))

= Tr(WaW′
aφa(x)φa(x)′)

= (WaW′
a) ◦ (φa(x)φa(x)′),
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and Tr(A) is the trace of matrix A such that Tr(A) = ∑
i Aii . We represent ga,b(x) as a linear

function f̂ (x) in an appropriately defined feature space F . Let φ̂ be the mapping into the
feature space F given by

φ̂(x) = [
vec(φa(x)φa(x)′),vec(φb(x)φb(x)′),

√
2vec(φa(x)φb(x)′)

]′
,

where vec(A) creates a row vector out of the entries of the matrix A by concatenating its
rows. We have assumed for simplicity that the feature space is finite dimensional. Similar
results can be obtained for the infinite dimensional case. Note that if ◦ denotes the Frobenius
inner product between matrices, we have

A ◦ B = 〈vec(A),vec(B)〉 = Tr(A′B) =
∑

i

∑

j

AijBij .

Furthermore,

〈vec(u1u′
2),vec(v1v′

2)〉 = u1u′
2 ◦ v1v′

2 = v′
1u1u′

2v2, (6)

for u1, u2, v1, v2 appropriately dimensioned vectors. The kernel κ̂ corresponding to the
feature mapping φ̂ is therefore given by

κ̂(x, z) = (φa(x)′φa(z))
2 + (φb(x)′φb(z))

2 + 2(φa(x)′φa(z))(φb(x)′φb(z))

= (κa(x, z) + κb(x, z))2.

Again using (6) it can be verified that the weight vector

Ŵ = [
vec(WaW′

a),vec(WbW′
b),−

√
2vec(WaW′

b)
]′
,

satisfies

〈Ŵ, φ̂(x)〉 = Tr(WaW′
aφa(x)φa(x)′) + Tr(WbW′

bφb(x)φb(x)′) − 2Tr(WbW′
aφa(x)φb(x)′)

= φa(x)′WaW′
aφa(x) + φb(x)′WbW′

bφb(x) − 2φa(x)′WaW′
bφb(x)

= ‖W′
aφa(x)‖2 + ‖W′

bφb(x)‖2 − 2φa(x)WaW′
bφb(x)

= ‖W′
aφa(x) − W′

bφb(x)‖2.

It follows that Ŵ realises the function ga,b(x) in the feature space defined by φ̂(x). Further-
more again using (6) the norm of Ŵ can be computed as

‖Ŵ‖2 = ŴŴ′ = Tr(WaW′
aWaW′

a)

+ Tr(WbW′
bWbW′

b) + 2Tr(WbW′
aWaW′

b)

=
∑

i,j

[(
Wa′

i Wa
j

)2 + 2Wa′
i Wa

j Wb′
i Wb

j + (
Wb′

i Wb
j

)2]

=
∑

i,j

(
Wa′

i Wa
j + Wb′

i Wb
j

)2

= ‖W′
aWa + W′

bWb‖2
F .

We are now ready to present our main theoretical result.
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Theorem 6 Fix A in R
+. If we obtain features given by Wi

a,Wi
b i = 1, . . . , k with ‖W′

aWa +
W′

bWb‖F ≤ A with correlations ρi = wi′
a Cabwi

b and wi′
a Caawi

a = 1 = wi′
b Cbbwi

b , on a paired
training set S = {xi , i = 1, . . . , �} of size � in the feature space defined by the bounded
kernels κa and κb drawn i.i.d. according to a distribution D, then with probability greater
than 1 − δ over the generation of S, the expected value of ga,b(x) on new data is bounded
by

ED[ga,b] ≤ ÊD[ga,b] + 4A
1

�

√√√√
�∑

i=1

(κa(xi, xi) + κb(xi, xi))2 + 3RA

√
ln( 2

δ
)

2�
(7)

where

R = max
x∈supp(D)

(κa(x, x) + κb(x, x))

Proof Let the kernel functions from the two corresponding feature projections be κa(x, z) =
〈φa(x),φa(z)〉 and κb(x, z) = 〈φb(x),φb(z)〉. By the above analysis, ga,b lies in the function
class,

FA = {
x → 〈Ŵ, φ̂(x)〉 : ‖Ŵ‖ ≤ A

}
,

for i = 1, . . . , k. We apply Theorem 2 to the loss class

F̂ = {
f̂ : x �→ Af (x)|f ∈ FA

} ⊆ A ◦ FA

where A is the function

A(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ 0;
x

RA
if 0 ≤ x ≤ RA;

1 otherwise.

Note that this ensures that the range of the function class is [0,1].
Applying Theorem 2 to the pattern function ĝa,b = A ◦ ga,b ∈ F̂ or equivalently ĝa,b =

ga,b
1

RA
we can conclude that with probability 1 − δ,

ED[ĝa,b(x)] ≤ Ê[ĝa,b(x)] + R̂�(F̂ ) + 3

√
ln( 2

δ
)

2�
. (8)

Note that 0 ≤ ga,b(x) ≤ RA so ĝa,b(x) = ga,b(x) on the support of D.
Using Theorems 4 and 5 gives

R̂�(F̂ ) ≤ 4A

�RA

√√√√
�∑

i=1

(κa(xi, xi) + κb(xi, xi))2.

Multiplying (8) through with RA and using (5) gives the result. �

The theorem indicates, in an indirect way through A, that the empirical value of the
pattern function will be close to its expectation provided that the norms of the direction
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vectors are controlled and the dimension k of the projection space is small compared with �.
Hence, we must trade-off between finding good correlations while not allowing the norms
to become too large. Theorem 6 suggests to regularise KCCA as it shows that the quality of
the generalisation of the associated pattern function is controlled by the sum of the squares
of the norms of the weight vectors wa and wb. We regularise by penalising the norms of the
weight vectors

max
wa ,wb

ρ(wa,wb) = w′
aCabwb√

w′
a((1 − τa)Caa + τaI )waw′

b((1 − τb)Cbb + τbI )wb

where τa and τb control the flexibility in the two feature spaces. Note that the analysis
assumes that the vectors wa and wb that satisfy

w′
aCaawa = 1,

w′
bCbbwb = 1.

The re-normalisation is imperative as the regularised version of CCA is not a true CCA,1

since it has vectors wa and wb so that

w′
a((1 − τa)Caa + τaI )wa = 1,

w′
b((1 − τb)Cbb + τbI )wb = 1.

The scaling values associated with the solutions for different regularisation values will result
in the pattern function being non comparable.2 In other words, if we do not re-normalise so
that the true CCA conditions hold, the value ρ for τ > 0 is not a correlation value. This
is true for both the primal and dual cases. Previous works with regularised KCCA have
neglected to ensure this condition is satisfied for the chosen projections.

Following Hardoon et al. (2004), the dual form of CCA with regularisation is

max
α,β

ρ(α,β) = α′KaKbβ,

subject to

(1 − τa)α
′K2

aα + τaα
′Kaα = 1,

(1 − τb)β
′K2

bβ + τbβ
′Kbβ = 1.

The corresponding Lagrangian is

L(λα, λβ,α,β) = α′KaKbβ

− λα

2
((1 − τa)α

′K2
aα + τbα

′Kaα − 1)

− λβ

2
((1 − τa)β

′K2
bβ + τbβ

′Kbβ − 1).

1Hardoon (2006) has shown that CCA with a regularisation τ = 1 results in solving a Partial Least Squares
(PLS) for the first direction.
2The scale of the weight vectors is only irrelevant with respect to the Rayleigh quotient being optimised.
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Taking derivatives with respect to α and β gives

∂L
∂α

= KaKbβ − λα((1 − τa)K
2
aα + τaKaα), (9)

∂L
∂β

= KbKaα − λβ((1 − τb)K
2
bβ + τbKbβ). (10)

Subtracting β ′ times the second equation from α′ times the first we have

0 = α′KaKbβ − λαα
′((1 − τa)K

2
aα + τaKaα)

− β ′KbKaα + λββ ′((1 − τb)K
2
bβ + τbKbβ),

= λββ ′((1 − τb)K
2
bβ + τbKbβ)

− λαα
′((1 − τa)K

2
aα + τaKaα),

which together with the constraints shows that λα − λβ = 0. Let λ = λα = λβ . Consider the
case where Ka and Kb are invertible, we have

β = ((1 − τb)Kb + τbI )−1K−1
b KbKaα

λ

= ((1 − τb)Kb + τbI )−1Kaα

λ

substituting into (9) gives

Kb((1 − τb)Kb + τbI )−1Kaα = λ2((1 − τa)Ka + τaI )α. (11)

We are able to observe that by using regularisation we no longer obtain perfect correla-
tion, as in (4). Although this is not a symmetric eigenproblem, it is easy to show (Hardoon
et al. 2004) that by computing incomplete Cholesky decompositions of the kernel matrices
we are able to reformulate the problem into a standard symmetric eigenproblem.

5 Experiments

In the following experiment we demonstrate how one regularisation parameter τ = τa = τb

will control the flexibility and remove spurious features. This is shown by viewing the effect
of the regularisation parameter τ on the pattern function ga,b(x), as defined in the previous
section. We expect the regularisation to remove spurious features and hence allow for a better
similarity of the two views which in turn translates into a lower value of the pattern function.
In the experiments we increase the value of τ from 0 to 1 by increments of 0.05. We use the
ESP-Game images and associated keywords as found on the ESP-Game webpage.3 The two
views of the data are obtained from the images and keywords.

We chose the combined data of image and keywords for the experiment as we believe
that finding a common feature space between images and text is a non-trivial task. The ESP-
Game is a website where images are displayed for users to annotate with keywords. The

3http://www.espgame.org.

http://www.espgame.org
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goal is to have two or more users choose the same keyword at the same time, which is then
added to the image annotation with a score representing the number of combined times the
keyword has been chosen. The overall database contains several thousands of images and
associated keywords. We reduce the overall number of examples by including only images
that have at least 5 keywords each with a score of 10 or more and that are not grayscale. We
further minimise the number of examples used by extracting the images that have at least
one of the keywords house and water. This reduces our overall examples to 1682, which we
divide evenly to obtain 841 training and 841 testing examples.

The extracted features were: image Hue Saturation Values (HSV) colour, image Gabor
texture (Kolenda et al. 2002) and text term frequencies, which form a vector indexed by
terms with entries for each word that appears in the text describing an image. Let a reference
the first view derived from the image part of the data and let b reference the text part.
Following previous work (Hardoon and Shawe-Taylor 2003) we compute the kernel κa for
the first view by applying a Gaussian kernel, defined as follows

κa(x, y) = exp

(
−‖ψ(x) − ψ(y)‖2

2σ 2

)
,

where σ is the minimum distance between the different images and ψ(x) is a concatenation
of the Gabor texture and HSV feature vectors. The kernel κb for the second view was a linear
kernel on the normalised term frequency vectors.

The weight matrices Wa and Wb can be written as a linear combination of the training
examples, Wa = φa(S)�a and Wb = φb(S)�b where φa(S) is the matrix with columns
φa(xi) and similarly φb(S). As we wish to apply the pattern function in the kernel space we
evaluate the pattern function on the test examples as

1

�t

ga,b(x
t ) = 1

�t

�t∑

i=1

‖W′
aφa(x

t
i ) − W′

bφb(x
t
i )‖2

= 1

�t

‖�′
aK

t
a − �′

bK
t
b‖2

F , (12)

where xt
i are the test examples (�t is the number of test samples) and Kt

a , Kt
b are the two

kernel matrices whose rows are indexed by the training examples and columns are indexed
by the test examples.

We first demonstrate the case where no regularisation is used: τ = 0. The obtained cor-
relation values are plotted in Fig. 1 where we are able to observe that for the eigenvectors
that contribute towards the information of the two views, these are the top eigenvectors,
do indeed exhibit “perfect” correlation. Perfect correlations are obtained only for a lim-
ited number of eigenvectors as our kernel matrices are not full rank, rank(Ka) = 838 and
rank(Kb) = 759. The perfect correlation can give spurious features, as no control on the
flexibility of the features is provided (Hardoon and Shawe-Taylor 2003). For the experi-
ment we chose to use the last 100 eigenvectors in α and β corresponding to the largest
100 eigenvalues for the feature projection. As indicated above and in order to make a fair
comparison of the various Rayleigh quotient solutions we must rescale each wi

a , wi
b so that

wi
a

′
Caawi

a = 1 = wi
b

′
Cbbwi

b as for the τ = 0 case.
In Fig. 2 we plot the pattern function ga,b as defined in (5) and (12) for various values of

the regularisation parameter τ respectively on the training and testing data. The value of the
pattern function amounts to the error between the similarity of the two views once projected
into the common feature space. We are able to observe from the plots that when there is no
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Fig. 1 Correlation values for
τ = 0 on the training data

Fig. 2 The pattern function ga,b for different values of τ on the training & test data, normalised by the
respective number of samples

control on the flexibility the error of the pattern function on the training data is 0 as we obtain
perfect correlations. As some of these features are spurious the error on the testing data is
relatively high. When increasing the regularisation value to extract features better defining
the underlying semantics while reducing those which are spurious, the pattern function error
will decrease on the testing data.

As we are introducing a penalty parameter, the performance on the training data will
gradually reduce. Once an optimal value τ is found for the testing data, further increasing
τ towards 1 will cause underfitting which will gradually increase the error. In Fig. 2 we are
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Fig. 3 In this figure we plot the new bound values on ED [ga,b] for different values of τ

able to view that the error between the two views is minimal when τ = 0.05. This means
that with that value of τ we are able to, with higher accuracy, capture the notion that the
features from one view are almost identical to the features on the second view. Hence the
optimal regularisation parameter using the pattern function for testing is τ = 0.05.

We plot the bound on ED[ga,b] from (7) in Theorem 6. Observing that the value of the
bound in Fig. 3 gives rise to the possibility of model selection i.e. we can choose the value
of τ = 0.15 that corresponds to the minimal bound value. From Figs. 2 and 3 we can see that
the smallest bound value gives rise to a τ value that yields close to optimal performance. In
Fig. 4 we plot the previously suggested bound on ED[ga,b] (Shawe-Taylor and Cristianini
2004; Hardoon 2006) and it is immediately apparent that this bound is by several factors
looser than the newly proposed bound and also does not allow for model selection.

Finally, we test to see whether the regularisation parameter computed by the bound is
indeed an optimal, or near optimal, value with respect to a Content Based Information Re-
trieval (CBIR) real-world task. We asses the accuracy of retrieving the exact test images’
paired document of keywords, also known as mate-retrieval (for a detailed description of
using KCCA for CBIR we refer the reader to Hardoon et al. 2006). If the classifier is accu-
rate the test document belonging to the test image should be near the top of the resulting list.
The quality of the ordering is studied by computing average precision values. Let Ij be the
index location of the retrieved mate from query qj , the average precision p is computed as

p = 1

M

M∑

j=1

1

Ij

,

where M is the number of query documents. We plot the average precision in Fig. 5 where
we are able to observe that the optimal regularisation parameter is τ = 0.1 close to the
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Fig. 4 In this figure we plot the previous (corrected) bound on ED [ga,b] (Shawe-Taylor and Cristianini
2004) for different values of τ . The right hand figure is identical to the left hand figure excluding τ = 0

Fig. 5 The left figure is the average precision on the test data for different τ values while the right hand
figure is a zoomed-in plot of the left figure

optimal parameter computed by the pattern function and by the bound. Hence showing that
the regularisation parameter computed a-priori by the bound is near optimal with respect to
the quality of the pattern learned and real-world application.
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6 Conclusions

Kernel Canonical Correlation Analysis has been shown to be a powerful tool for extracting
patterns between two complex views of data, although these patterns may be too flexible
without proper regularisation. In this paper we have provided an in-depth investigation of
the statistical convergence of kernel Canonical Correlation Analysis, showing that the error
bound on a new example indicates that the empirical value of the pattern function will be
close to its expectation provided that the norms of the two direction vectors are controlled.
We have shown via the theoretical analysis a justification for regularisation, which is further
validated in our experiments. The analysis has brought up a problem with the previous appli-
cations of regularised kernel CCA that did not re-normalised the projections to account for
true CCA conditions and have used the subsequent ρ values as an indication of correlation.
Only when the feature vectors are correctly normalised is the pattern function minimised
and hence the projections most closely match. We plan to further investigate the application
of the bound as a method for regularisation in model-selection.
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