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Abstract In this paper, we introduce a framework for regularized least-squares (RLS) type
of ranking cost functions and we propose three such cost functions. Further, we propose a
kernel-based preference learning algorithm, which we call RankRLS, for minimizing these
functions. It is shown that RankRLS has many computational advantages compared to the
ranking algorithms that are based on minimizing other types of costs, such as the hinge cost.
In particular, we present efficient algorithms for training, parameter selection, multiple out-
put learning, cross-validation, and large-scale learning. Circumstances under which these
computational benefits make RankRLS preferable to RankSVM are considered. We eval-
uate RankRLS on four different types of ranking tasks using RankSVM and the standard
RLS regression as the baselines. RankRLS outperforms the standard RLS regression and its
performance is very similar to that of RankSVM, while RankRLS has several computational
benefits over RankSVM.
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1 Introduction

Preference learning has recently received a lot of attention in the machine learning
literature—we refer to Fiirnkranz and Hiillermeier (2005) for a compact and illuminating
summary of the preference learning tasks. Preference learning can be considered as a task
in which the aim is to learn a function capable of arranging data points according to a
given preference relation. When comparing two data points, the function is able to evaluate
whether the first point is preferred over the second one.

We assume that we are given a training data consisting of input data points and their
pairwise preferences that are used to train a supervised learning algorithm for the prediction
of the preference relations among unseen data points. We also consider the scoring setting
in which we are given a training data consisting of scored data points, that is, each input
data point is assigned a real valued score indicating its goodness. The pairwise preference
between these data points are then determined by the differences of the scores. This type
of preference learning tasks are often cast into classification tasks so that each pair of data
points, in which one point is preferred over the other, is used as a training data point whose
class indicates the direction of the preference (for recent in depth theoretical analysis of
ranking algorithms see, e.g. Clémencon et al. 2005; Agarwal 2006; Cortes et al. 2007b). For
example, Herbrich et al. (1999) used this approach together with support vector machines
(SVM) for ordinal regression tasks. This method is often referred to as RankSVM. A similar
SVM adaptation was made by Joachims (2002) to rerank the results obtained from a search
engine.

Recently, it has been shown that the RLS classifiers (see e.g. Rifkin 2002), also known
as the least-squares SVMs (Suykens and Vandewalle 1999), have a classification perfor-
mance similar to the regular SVMs (see e.g. Rifkin 2002; Gestel et al. 2004; Zhang and
Peng 2004). In Pahikkala et al. (2007b), we proposed RankRLS, an algorithm that learns
preferences from scored data, in which for each input data point x we have a real value
score s attached. If an input data point x is preferred over x’, the difference to be regressed
is s —s’, where s and s’ are the scores of x and x’, respectively. It was shown that the com-
putational complexity of training RankRLS is equal to the complexity of training an RLS
regressor for the same data set. Namely, the computational complexity of training RankRLS
was shown to be O (m?) in the dual form, where m is the number of input data points in
the training data, and O(mn® + n?) in the primal form, where n is the dimensionality of
the feature space. A similar algorithm with equal computational times was at the same time
independently proposed by Cortes et al. (2007a, 2007b) and called MPRank. They also pro-
vide a thorough theoretical analysis of the generalization error of the MPRank algorithm
using stability bounds. The difference between RankRLS and MPRank is that the former
includes in the training process only such input data point pairs that are relevant to the task
in question, while the latter is defined to include every possible input pair. For example, in
many document retrieval tasks, each input data point consists of a query and a document,
and hence there should be no preferences between such inputs that are associated to different
queries. Otherwise, the objective functions of RankRLS and MPRank are the same, but the
closed form solution are derived in a slightly different way.

In this paper, we extend our consideration of RankRLS so that it can be used to learn
not only from scored data, but also from a given sequence of pairwise preferences and their
magnitudes when the scores are not given. Moreover, we introduce a general framework for
RLS based ranking cost functions and propose three different specializations for it. Note
that we only consider the case in which we learn so-called scoring function that maps each
possible input to a real value. The function then induces a total order for the inputs. The
direction of preference between two inputs is obtained by comparing their predicted scores.
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Cost functions that are variations of the least-squares cost have certain computational
advantages compared to the other types of costs, such as the hinge cost used with SVM. For
example, the least-squares-based learning methods can be expressed using matrix calculus
which makes them simple to implement and analyze. Moreover, RankRLS can be trained
so that its computational complexity depends on the number of data points instead of the
number of observed pairwise preferences. This is an important advantage, because the num-
ber of preferences is usually proportional to the square of the number of individual data
points. Furthermore, there often exists efficient shortcut methods for calculating the cross-
validation performance for the least-squares based learners and for parameter selection (see
e.g. Pahikkala et al. 2006a, 2007a, 2008a; Rifkin and Lippert 2007a). RLS-based learn-
ing algorithms can also be extended for large-scale learning using the subset of regressors
method (see e.g. Quifionero-Candela et al. 2007; Tsivtsivadze et al. 2008). Further advan-
tages include the possibility to learn several functions in parallel as considered by Rifkin and
Klautau (2004). In this paper, we present efficient algorithms for training RankRLS both in
small and large scale as well as for both linear and nonlinear learning tasks. We also present
fast algorithms for cross-validation, parameter selection, and multiple output learning.

We also make a thorough consideration of the circumstances under which the fast cross-
validation, parameter selection, and multiple output learning algorithms make RankRLS
preferable to RankSVM from computational complexity point of view. Namely, the bene-
fits and drawbacks of RankRLS and RankSVM in both small-scale and large-scale learning
tasks are investigated and so are both the linear and nonlinear learning problems. For exam-
ple, training a single instance of a RankSVM may be faster than training a single instance
of RankRLS in the linear learning tasks, but the efficient cross-validation, parameter selec-
tion, and multiple output learning algorithms make RankRLS in many situations much faster
method to use than RankSVM. This is especially the case if nonlinear kernel functions are
used and if cross-validation is used for performance estimation.

In our experiments, we test our ranking algorithms with different tasks. The pairwise
preferences in all of the tasks are induced by a scoring of the data points. Two of the
considered tasks are the ranking of dependency parses and document retrieval. Comparing
parses generated for different sentences or documents returned for different queries would,
of course, make little sense. This kind of preference structure is typical for label ranking
problems in which the aim is to rank for each object a set of labels, and this is the approach
we use for these tasks. In the former task, the objects and labels are sentences and their parse
candidates, and in the latter they are queries and documents retrieved by them. The other two
tasks considered are document classification and collaborative filtering which we consider
as object ranking problems in which the aim is to learn a given preference structure over
all data points. Further, the document retrieval and binary classification tasks are bipartite
ranking problems, that is, there are only two possible score values for the data points. In
contrast, the parse ranking and collaborative filtering tasks have real-valued scores.

In the label ranking tasks, we test whether some of the input pairs that are not relevant
to the learning problem to be solved would be beneficial if included in the training process.
Our results suggest that this is not the case. Moreover, we compare the three proposed cost
functions on the ranking tasks. In all experiments, we use as baselines the RankSVM method
and the ordinary RLS regressor trained to regress the scores of the data points. The ranking
for the data points is then obtained from the regressed scores. We observe that performances
of RankRLS and RankSVM are very similar in all considered tasks, with no statistically
significant differences observed, although RankRLS has many computational benefits over
RankSVM as discussed in the paper. RankRLS and RankSVM perform better or as well as
the RLS regressor.
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This paper is organized as follows. In Sect. 2, we present a formal introduction on the
preference learning tasks under consideration, and define the proposed method RankRLS.
Section 3 considers computationally efficient algorithms for training and validation. We
summarize the computational benefits of RankRLS and compare them to those of RankSVM
in Sect. 4. RankRLS is experimentally evaluated in Sect. 5. We conclude the paper in Sect. 6.

2 The RankRLS algorithm

First, we give a formulation of preference learning problems in Sect. 2.1. Section 2.2 con-
cerns the framework of regularized kernel methods. In Sect. 2.3, we introduce the RankRLS
algorithm. Finally, we consider three different variations of the least-squares ranking cost
function in Sect. 2.4.

2.1 Preference learning

Let X, called the input space, denote the set of input data points which we call in the fol-
lowing shortly as inputs. We assume that we are given a sequence

X=01,...,xn) € (Xm)T
of inputs. Moreover, let
E=(e,...,en)" € (X x X x RY)!

be a sequence of observed preferences between the inputs, that is, e; = (x;, x;, y;), where
1 <h,j<mand h # j, indicating that x; is preferred over x; with magnitude y;. The
magnitudes may be supplied in the training data, or in case such information is not available,
magnitude 1 can be given for each pairwise preference. Altogether, we define the training
data to be the tuple

G=(X,E).

G can be considered as a preference graph in which the inputs x;, are the vertices and e; are
the edges. By the definition of E, there may be multiple observed preferences with possibly
differing magnitudes between two inputs. Thus, G is a multigraph. Finally, we define G to
be the set of all possible graphs of the above defined type.

We also consider a special case of preference learning setting in which E is not given but
so-called scoring information of the inputs is available and the preferences are determined
by this scoring. Thus, in the scoring setting we assume that we are given a sequence

S=0(s1,...,80) €R"

of real valued scores corresponding to the input sequence X = (xy, ...,x,) € (X")T. In
this case, we can obtain a sequence of observed preferences so that for each pair of inputs
x, and x;, where 1 < h, j <m and h # j, there exists an edge e; = (xj, x;, i), Where
yi =8, — s;, if and only if 55, > 5;. Unless stated otherwise, we do not assume that the
observed preferences are determined by a scoring information.

Fiirnkranz and Hiillermeier (2005) divided the preference learning tasks into two cate-
gories, namely, to the tasks of learning object preferences and learning label preferences.
Here, we consider a similar type of division. The cases in which the aim is to learn a given
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preference structure over all inputs are considered as object ranking problems. For example,
any binary classification task can be considered as an object ranking task in which the aim
is to rank all inputs belonging to the positive class above the ones belonging to the negative
class. We define label ranking tasks to be such in which the inputs are comprised of an object
and its label. In this case, the observed preferences make sense, that is, are relevant only be-
tween such inputs that are associated with the same object. In many document retrieval tasks,
for example, each input consists of a query and a document. In this case, the documents can
be considered as the labels of the queries. Clearly, there should be no preferences between
such inputs that are associated to different queries. If the preferences of a label ranking task
are induced by a scoring of the inputs, the preferences between inputs associated to different
objects are considered to be irrelevant to the task in question and they are not included in
the preference graph. Formally, the sequence of preferences is obtained from the scoring so
that for each pair of inputs x;, and x;, where 1 <h, j <m and h # j, there exists an edge
e; = (x5, xj, yi), where y; =s;, — s;, if and only if 55, > s; and the preference is relevant to
the task under consideration. In our notation, we make no difference between the object and
label ranking settings, and we assume that the sequence of observed preferences is formed
according to the setting in question.

Let RY denote the set of all functions from X to R, and let H € R¥ be the hypothesis
space. A natural way to measure how well a function f € H agrees with preferences of E is
to define a disagreement error:

1 1
D(f,G) =5 3 (1 = sign(g(e)), (1)

i=1
where e; = (x,, xj,y;) forsome h # j, 1 <h, j <m,
g(ei)) = f(xp) — f(x)),
and sign is the signum function

1 ifr >0,

sign(r) =
—1 ifr <0.

Note that in the disagreement error (1), we omit the magnitudes y;. Nevertheless, we take
advantage of the magnitude information when we design the learning algorithms.

Training can be considered as a process of selecting a function from the hypothesis space
that best performs the learning task in question. Thus, learning can be viewed as an algorithm
A that for a given preference graph G selects an appropriate function f from . Formally,

A:G— H. 2
2.2 Regularized kernel methods
Here, we consider the selection of the suitable function f € H. Let X’ denote the input space,

which can be any set, and F denote an inner product space we call the feature space. For
any mapping

DX > F,

@ Springer



134 Mach Learn (2009) 75: 129-165

the inner product
k(x, x') =(@(x), P (x))

of the mapped inputs is called a kernel function. We define the symmetric kernel matrix
K e R™™ where R™*™ denotes the set of real m x m-matrices, as

kQey,xn) e ke, xm)
K =
k(Xm,yx1) o k(Xp, Xpm)
for the sequence X = (x1, ..., %) € (X™)T of inputs. Unless stated otherwise, we assume

that the kernel matrix is strictly positive definite, that is, ATKA>O0forall AcR", A #0.
The strict positive definiteness of the kernel matrix K can be ensured, for example, by adding
el to K, where I € R™*" is the identity matrix and € is a small positive real number.

Following Scholkopf et al. (2001), we define the reproducing kernel Hilbert space
(RKHS) determined by the input space X and the kernel k : X x X — R as

)= Bik(x,x), B R, xi € X, || fllk <00 ¢,

i=1

Hi,x = [fERX

where

Iflle="| D BiBik(xi, x))

ij=1

denotes the norm of the function f in the RKHS. Using H; » as our hypothesis space, we
next define the cost functions that we can use to measure how well the hypotheses fit our
training data G. Overloading our notation, we denote

FX)=(f @), os f )T
for the sequence X of inputs and a hypothesis f € Hy, . We use cost functions of type
c:R"xG—R

to assign a value

c(f(X),G) (3)

on the predictions f(X), training data G = (X, E), and a candidate hypothesis f € Hy »
that measures how well f fits G.

We now consider the following variational problem as a realization of algorithm (2) that
we use to select an appropriate hypothesis f from H; » for training data G. Namely, we
consider an algorithm

A(G) =argmin J(f, G), “4)
feHr x
where
J(f.G)=c(f(X).G) +AlfII} ©)
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and A > 0 is a regularization parameter. The first term measures the performance of a can-
didate hypothesis on the training data and the second term, called the regularizer, measures
the complexity of the hypothesis with the RKHS norm.

According to the representer theorem (Scholkopf et al. 2001), any minimizer f € Hy x
of (5) admits the representation of the following form:

@) =) ak(x, x), 6)
i=1
where a; € R and k is the kernel function associated with the RKHS mentioned above. Let
A=(aj,...,a,) " €R"

be a vector consisting of the values that determine the solution (6). By overloading our
notation, we write k(x, X) = (k(x,x1), ..., k(x,x,)) € R™T, where x € X and X =
(X1, ..., %,) € (X™T. Using this type of matrix notation, we can write

o) =) aik(x, x) =k(x, X)A, ©)
i=1

Similarly, the column vector f(X) € R™, that contains the predictions for the inputs ob-
tained with the function f, is

S ) k(xi, X)A

Il
I
>
>

fX)= ®

S (m) k(xm, X)A

Further, according to (6) and to the definition of the RKHS norm, the regularizer can be
written as

MfIF=2" aak(x.x) =1ATKA. ©)
ij=1

Next, we consider realizations for the cost function.
2.3 Regularized least-squares regression of preferences

In order to construct a regularized kernel method that would learn the preferences defined
on the training data G = (X, E), we have to define an appropriate cost function. A natural
way to encode the preference information into a cost function is to use the disagreement
error (1) for the preferences:

1
c(f(X),G) = (1 —sign(g(en)), (10)

i=l

where e; = (x5, x;, y;) and g(e;) = f(x,) — f(x;). Note that in (1), % can be considered as
a constant, and hence it can be omitted from (10). It is well-known that the use of this type of

cost functions leads to intractable optimization problems. Therefore, instead of using (10),
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we use functions approximating it. We adopt an approach similar to the regularized least-
squares classification (Ritkin 2002) which has been shown to have a performance similar to
that of the support vector machine classifiers. That is, we use the following type of square
cost as an approximation of (10):

1
c(f(X),G) =) wiz —gleN), (11)

i=1

where z;, w; > 0 are real-valued parameters. When defining the actual cost functions, we
fix the parameters z; and w; to be constants or dependent on the magnitude y;. We observe
that the cost is a sum of parabolae whose zeros and widths are determined by z; and w;,
respectively. Intuitively, the parameters w; can be considered as importance weights of the
edges ¢;, since the cost function (11) is more sensitive to the predictions g(e;) of the edges
having a large value of w; than to those having a small value. In Sect. 2.4, we present three
different specializations of the cost function by setting the parameters.

Before presenting the actual learning algorithm, we introduce some notation. Let M €
R”*! be a matrix whose rows and columns are indexed by the vertices and edges of the
preference graph, respectively, and its entries are given by

w; if e; = (x4, x;, y;) for some j ##h,
My, =1 —w; ife; =(xj,x;,y;) forsome j #h, (12)
0 otherwise.

In the graph theory (see e.g. Brualdi and Ryser 1991), the matrix M is sometimes called
the oriented incidence matrix of a graph and the product L = M M" is called the Laplacian
matrix of the graph. We also note that Laplacian matrix is always positive semidefinite, since
it is a product of a real-valued matrix with its own transpose. We consider M as a linear
transformation from R™ to R/, that is, it can be used to map the vector f(X) consisting of
the values f(x;,), 1 <h <m,to a vector MT f(X) containing the values w;g(¢;), 1 <i <1I.
Further, let us write

N=(w1z1,...,w1z/)T. (13)
Using these notations, we can rewrite the cost function (11) in a matrix form as
c(f(X),G)=(N=M"f(X)'(N —M"f(X)). (14)

The next theorem characterizes a method called RankRLS.

Theorem 1 Let G = (X, E) and let

A(G) = argmin J (f, G), (15)
feHk x
where
!
J(£.6) =Y wi@ —ge)) + Al fI}. (16)

i=1

is the algorithm under consideration. A coefficient vector A € R™ that determines a mini-
mizer of (16) is

A=MMTK +11)"'MN. (17)
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Proof According to the representer theorem, the minimizer of (16) is of the form (6), that
is, the problem of finding the optimal hypothesis can be solved by finding the coefficients
ap, 1 <h<m.

According to (8), the vector consisting of the input predictions can be written as f(X) =
K A. We use the matrix M to transform the input predictions to a vector of prediction differ-
ences MTK A. Then, the ith entry of the vector MT K A contains the value w;g(e;). We use
the matrix forms (9) and (14) to rewrite the algorithm (15) as follows:

A(G) =argmin J (A, G),
AeRm

where
J(A,G)=(N—-M"KA)'(N-M"KA)+rATKA.
We take the derivative of J(A, G) with respect to A:

d
d—AJ(A,G) =—2KM(N —M'KA)+21KA

= —2KMN +2(KMM"K + 1K)A.
We set the derivative to zero and solve with respect to A:

A=(KMM"K +AK)"'KMN
= (MM K +1)"'MN,

where the last equality follows from our assumption of the kernel matrix being strictly pos-
itive definite. |

We refer to (17) as the dual solution of RankRLS in contrast to the primal solution consid-
ered in Sect. 3.1.

The multiplication of M with N can be performed in O (I) time, since M contains only 2/
nonzero elements. This is also the complexity of calculating the Laplacian matrix L = M MT
of the preference graph as can be shown in the following way. First, we note (see e.g. Brualdi
and Ryser 1991) that, if h # j, L, ; = — ), wf, where i goes through the indices of the
edges that are between the /th and jth vertex. Further, L, = Y, w?, where i goes through
the indices of the edges starting from or ending to the Ath vertex. Therefore, for constructing
the matrix L, four operations per edge are needed. For example, an edge starting from the
h vertex and ending to the jth vertex affects the entries Ly, », Ly j, Lj, and L; ;. Thus, we
have:

the complexity of calculating the products M M Tand MN is O()). (18)

The subsequent multiplication of L with K and the inversion of the matrix M MTK + Al
can be done in O (m?) time. Note that, in the time complexities considered in this paper,
we do not count the complexity of calculating the kernel matrix, because it depends on the
kernel function used. Thus, provided that the kernel matrix is already calculated,

the complexity of dual RankRLS training is om® +1). (19)

Note that the preference graph determined by the sequence of observed preferences E is
a multigraph, and hence the number / of the pairwise preferences may not necessarily be
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dominated by the term 73 in (19). However, in the scoring setting, which we discuss more
in Sect. 3, we have I = O (m?), because the number of edges is bounded above by the number
of all possible input pairs.

2.4 Specializations of the cost function

We now consider three different specializations of the least-squares cost function (11) for
approximating the disagreement error. The variations are depicted in Fig. 1. In the first
version, we justset z; =1 and w; =1 forall 1 <i <[:

1
c(f(X).G) =Y (1 - gle) (20)

i=1

This is a cost function that, similarly to the disagreement error (1), simply ignores the pref-
erence magnitudes treating every input pair in E as if their magnitudes would be equal to
one.

The second approach uses the magnitude information to determine the zero points, that
is,wesetz; =y; and w; =1forall 1 <i <I[:

1
c(f(X),G) = (v —gle). @1)

i=1

This cost function is equal to the one proposed by us in Pahikkala et al. (2007b). It has
many computational advantages in case preference magnitudes are induced by a scoring of

25F . , .

15F AN / 4

Fig. 1 The x-axis represents the value of g and the y-axis the value of the cost functions when the preference
magnitude is 0.5. The disagreement cost is depicted with a solid line and the functions (20), (21), and (22)
with ‘=’, “...”, and ‘---’, respectively
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the inputs as discussed in Sect. 3. A disadvantage of this cost is that it does not form an
upper bound on the disagreement error, and therefore this cost function is harder to analyze
theoretically.

The third cost function also uses the magnitude information to determine the zero points,
and thus we set z; = y;. In addition, the width parameters are set to w; = 1/y; which ensures
that the disagreement error is bounded above by this cost function:

i

1
c(f(X).G) =) — (i —glen)’. (22)

i=1 -1

Moreover, this cost can be intuitively justified so that the RankRLS algorithm is allowed to
make larger prediction errors for edges having a large magnitude than for edges having a
small magnitude. This is, because even a small prediction error can reverse the direction of
preference for an edge with a small magnitude but not the with a large one.

We observe that the functions (20), (21), and (22) are equal if we have only preferences
but not magnitudes, that is, y; = 1 for all 1 <i </. This is the case especially in bipartite
ranking, that is, when the preferences are induced by the scoring in which there are only
two different scores, say 1 and 0. If y; =1 for all 1 <i </, also the function (21) forms
an upper bound on the disagreement error. Therefore, one may derive results similar to
those of Agarwal and Niyogi (2005) and Cortes et al. (2007b) to analyze the generalization
performance of the ranking algorithms.

The possibility to give importance weights to the preferences with the parameters w; also
enables the design of cost functions that are more suitable for label ranking tasks than those
using only the magnitudes. Consider, for example, the task of parse ranking in which the
aim is to rank for each sentence the set of parses according to some preference criterion.
The parse candidate sets can be of different size for each sentence, while each sentence is
equally important. In this case, it may be beneficial to use a normalized version of the cost
function in which each edge associated to a sentence has a weight equal to the inverse of the
number of edges associated to the same sentence.

3 Efficient implementations

In this section, we consider ways to speed up the training process of RankRLS. We pay
special attention to the preference learning task in the scoring setting using the magnitude
preserving cost function (21). In the scoring setting, the inputs X = (x1, ..., x,,) € (X™)T
and the corresponding scores S = (s, ..., s,)T € R™ are given. Recall the definitions (12)
and (13) of M and N, respectively. We observe, that in case we use (21), the following
equation holds:

N=M"s. (23)

Therefore, the matrix form (14) can be rewritten as
c(f(X),G)=(S— fF(X)'MM"(S — f(X)). (24)

Note that we use the notation c(f(X), G), while we also have the sequence of scores S.
Further, while considering the efficient implementations with the cost function (21) in the
scoring setting, we also allow preferences with magnitude zero. Namely, we consider cases
in which the scoring § induces exactly one preference between every input x; and x;, where
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h # j,evenif x;, and x; have equal scores. If the scores are equal, the direction of the edge
does not matter, and hence only one edge is needed between the corresponding vertices in the
preference graph also in this case. These preferences with zero magnitude are generated only
for efficiency reasons and they are ignored when the performance of a ranking algorithm is
measured with the disagreement error.

When there are preferences between every input, we can take advantage of the regular-
ities of the matrix M in order to speed up the computations. We first consider the case in
which every possible preference induced by the scoring is relevant to the task in question,
as is often the case in object ranking tasks. We observe that we can write

MMT=D - PPT, (25)

where D € R™*™ is a diagonal matrix whose every diagonal entry is equal to m, and P € R"
is a vector whose every entry is equal to 1. It is much more efficient to perform matrix
multiplications with the form D — P PT than with M MT, because P is an m-dimensional
vector and D is a diagonal matrix, and thus having only m nonzero elements.

All preferences induced by the scoring are not always relevant to the task in question.
In label ranking tasks, for example, we may want to exclude the preferences that are not
relevant to the task, that is, the input pairs in which the inputs are associated to different
objects. Next, we consider the removal of this type of irrelevant preferences. Assume there
are ¢ objects in the training data and each of the m inputs are associated to one of the objects.
In the task of parse ranking, for example, an object is a sentence and an input is comprised
of a sentence and a parse candidate generated for the sentence. Each parse is associated
only with the sentence it is generated for and the aim is to learn to rank the parses for each
sentence separately. The scoring induces preferences also between parses that are associated
with different sentences but they are considered to be irrelevant to the task of parse ranking.
We redefine P € R"*? to be a matrix whose rows are indexed by the inputs and the columns
are indexed by the g objects. The value of P; ; is defined to be 1 if the ith input is associated
with the jth object and O otherwise. Further, we redefine D to be a diagonal matrix whose
entries are defined as follows. If the ith input is associated to a certain object, then the ith
diagonal element of D is the number of inputs that are associated to the same object. For
example, assume that our training data consists of altogether 5 inputs and two objects. The
first object is associated with the first two inputs and the second object with the last three
inputs. Then, the matrices P and D are

1 0 2 0 0 00

1 0 02 000
P=]0 1 and D=0 0 3 0 O},

0 1 00 0 30

0 1 0 0 0 0 3

respectively. Now, we observe that MM T can again be written as in (25). Similarly to the

object ranking case, the matrix P contains only m nonzero elements, and hence the matrix

multiplications involving P are as efficient to compute as with the object ranking case.
Further, provided that (23) and (25) hold, solving the dual form (17) involves calculating

MMTK = DK — PP'K
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and

MN =MM"S
=DS— PPTSs.

These can be done in O(m?) and O(m) time, respectively, because there are exactly m
nonzero elements in both D and P. Therefore, the cubic complexity of the matrix inversion
dominates the computation time of dual RankRLS training, and instead of (19),

the complexity of solving (17) using the cost function (21)

in the scoring setting is o@md). (26)

In some cases, we may also want to exclude the tied input pairs from the training process,
that is, the ones whose both inputs belong to the same equivalence class as determined by
the scoring. In this case, it is also possible to construct a form analogous to the one presented
in (25) that can be efficiently used in computations. However, presenting it would lead to
very technical and detailed considerations, and hence we leave it out from this paper.

The rest of this section is organized as follows. Section 3.1 concerns the primal form
of RankRLS and its efficient implementation when using scored training data. In Sect. 3.2,
we consider a way to train RankRLS simultaneously with several values of the regulariza-
tion parameter. Computationally efficient cross-validation algorithms are proposed for label
ranking in Sect. 3.3 and for object ranking in Sect. 3.4. Finally, Sect. 3.5 considers a large-
scale training algorithm based on sparse approximation.

3.1 Primal RankRLS

In some cases, the number m of inputs xi, ..., x, in the training data is much larger than
the number of dimensions # in the feature space F, that is, n < m and F = R". Then, the
sequence of mapped inputs is a matrix

H=(®(x1),...,P(xp)) € RW™
and the function (6) minimizing (5) can be equivalently expressed as
f)=Px)"HA=®(x)'W, (27)

where
W=HA

denotes the n-dimensional normal vector of the hyperplane corresponding to the RankRLS
solution in the feature space, and A is the vector that determines the function (6). Output pre-
diction for unseen inputs is more efficient with (27) than with (6) if n < m and the mapping
is fast to compute.

We next show that, if n < m, also the training process can be performed in a more effi-
cient way than with dual RankRLS (17). We call this method the primal version of RankRLS.
With the primal version, the computational complexity of the training process becomes more
dependent on the dimensionality n of the feature space rather than on the number of in-
puts m.
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Now we may write the algorithm (15) as

A(G) = argmin J (W, G),
WeRn

where
JW,G) =N —-M"H"W)'(N — MTH™W) + AWTW.
We take the derivative of J(W, G) with respect to W:

d
WJ(W, G)=—2HM(N — M"HTW) + 22w

= -—2HMN +2(HMM "H" + A)W.
Then, we set the derivative to zero and solve it with respect to W:
W=HMM"H  +)1)"'"HMN. (28)

The computational complexity of the matrix inversion in (28) is in this case O(n?). Recall
from (18) that constructing the matrices M MT and M N needs O(l) time. The other domi-
nant operations involved in (28) are the multiplication of H with MMT and HMM™ with
H" which require O (m?n) and O (n*m) time, respectively. Alternatively, one can first mul-
tiply H with M in O (nl) time, because M contains only 2/ nonzero elements, and then H M
with its transpose in O (n%]) time. In this case, the dominant terms are O (n?) and O (nl).
Therefore we have:

the complexity of calculating (28) is O(n® + min(n’m + m?n + 1, n*D)). (29)

However, there are some special cases in which the matrix multiplications can be performed
more efficiently, as shown in the following.

Let us consider ranking in the scoring setting using the magnitude preserving cost func-
tion (21), that is, (23) and (25) hold. Then, the matrix HMMTHT can be computed effi-
ciently from

HMM"H" = HDH" — (HP)(P"H™)
and HMN from

HMN = HMM"S
= H(DS — P(P"$)).

The multiplication H DH T needs O(n?m) time, because D is a diagonal matrix. Further,
the multiplication of H with P can be performed in O(nm) time, because H has n rows
and there are exactly m nonzero elements in P. The other complexities can be analyzed
analogously. Therefore, we have:

the complexity of calculating (28) using the cost function (21)

in the scoring setting is O (n® +n’m), (30)

where the first term corresponds to the matrix inversion involved in (28) and the second to
the matrix multiplications.
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3.2 Efficient regularization and learning multiple outputs

For simplicity, we assume in this section that the equations (23) and (25) hold, that is, the
cost function (21) is used in the scoring setting. Generalizations to cases in which the as-
sumption does not hold can also be made but we omit their consideration from this paper,
because their presentations would be too long and technical.

As noted in Sect. 2, the Laplacian matrix D — P PT of a preference graph is positive
semidefinite and the kernel matrix K is assumed to be strictly positive definite. Therefore,
it can be shown that the matrix (D — P PT)K is diagonalizable and has real non-negative
eigenvalues (see Horn and Johnson 1985, p. 465). By performing the eigen decomposition
of (D — PPT)K, it is possible to calculate the solutions (17) of dual RankRLS for sev-
eral values of the regularization parameter A with only small increase in the computational
cost compared to calculating with just one value. Let us consider the eigen decomposition
VAV~ = (D — PPT)K, where V is the matrix of eigenvectors and A is a diagonal matrix
containing the corresponding eigenvalues. The decomposition and the inversion V! can be
calculated in O (m®) time, and hence the complexity is not worse than that given in (26).
Let Q = V~!(D — PP")S, where the matrix products and subtractions can be computed
in O(m?) time. Then, the solution for a regularization parameter value A can be calculated
from

A=V(A+1DTQ, (31)

in O(m?) time, since A + A[ is a diagonal matrix and Q is an m-dimensional vector.

An analogous approach can be used also in the primal form (28) by calculating the matrix
H(D— PPT)HT,its eigen decomposition V AVT, and the vector Q = VTH(D — PPT)S in
altogether O (n* +n”m) time. In this case, the solutions for different values of regularization
parameter can be subsequently obtained in O(n?) time, since Q is in an n-dimensional
vector.

We now consider learning multiple outputs simultaneously, that is, we assume that we
have multiple scores per each input. Analogously to the standard RLS, instead of having
a single column matrix S for the outputs, we now have a m x v-matrix S, where v is the
number of outputs. We observe that only the time complexity of calculating Q and the
subsequent use of (31) for different values of the regularization parameter depend on v. In
the dual case, the complexity of calculating Q is O (m?v). Therefore, training RankRLS in
the dual case needs altogether O (m* + m?v) time in the first phase. Subsequently, O (m?v)
time is needed per each different value of the regularization parameter A. In the primal case,
the calculation of Q needs O (n*v + mnv) time, and hence the time complexity of the first
phase in the primal case is O(n> 4+ n*m + n*v + mnv). Subsequently, the solution for a
regularization parameter value can be calculated in O (n%v) time.

3.3 Cross-validation for label ranking

In Pahikkala et al. (2006a), we described an efficient method for calculating hold-out es-
timates for the standard RLS regression algorithm in which several inputs were held out
simultaneously. We also described a similar hold-out algorithm for label ranking with
RankRLS in the scoring setting (Pahikkala et al. 2007a), that is, by leaving out all inputs
associated to the same object simultaneously. Here, we make a more thorough consideration
of the label ranking hold-out algorithm for dual RankRLS without tying it to the scoring
setting.
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Recall that in label ranking tasks, we assume that each input consists of an object and
a label and one object is associated to several inputs. However, each input is associated to
only one object. Therefore, we assume that there are no preferences between inputs that are
associated to different objects. Let U C {1, ..., m} denote the index set that contains the
indices of the inputs that are associated to a hold-out object. Leaving more than one object
out can be defined analogously. In that case, U would refer to the union of index sets of
every hold-out object.

With any matrix (or a column vector) ¥ that has its rows indexed by a superset of U, we
use the subscript U so that the matrix ¥y, contains only the rows that are indexed by U. Sim-
ilarly, for any matrix ¥ that has its rows indexed by a superset of U and columns indexed by
a superset of V, we use ¥y y to denote a matrix that contains only the rows indexed by U and
the columns indexed by V. Moreover, we also denote U = {1,...,m}\ U. Further, let f
be the hypothesis obtained by training RankRLS without the preferences between the inputs
indexed by U. We will frequently make use of the following block matrix multiplication
identity:

Y = W)y + )1
where ¥ and 7" are matrices whose rows are indexed by a superset of U.

Note that in the case of label ranking, we obtain the incidence matrix corresponding to the
training data from which the inputs associated to the hold-out object have been removed by
just removing the rows indexed by U. After removing the rows, the columns corresponding
to the edges incident to the hold-out inputs contain only zeros. This is because both the start
and end vertices of those edges are indexed by U. Therefore, the columns have no effect on
the values of the matrix multiplications.

Let Q = Mg(Mg)" Kz + M. Then, according to (7) and (17), the predicted scores
for the inputs of the hold-out object can be obtained from

fo(Xv) = Kyg Q™' MgN
=K, 70 "(MN)g. (32)
However, having already calculated the solution with the whole training data, the predic-
tions for the hold-out instance can be performed more efficiently than using (32) which
calculates Q.
Let R = (MMTK + AI)~'. In the case of label ranking, the entries of the matrix

MU(MU)T are zeros for all U_ because there are no preferences between the inputs indexed
by U and inputs indexed by U. Therefore, we can write

0 = Mg(Mp)" Kgy + Mg
= My(Mp)" Kgg + Mg(My)" (Kyp) + Mg
= Mg((Mp)' Kz + (M) Ko)(UIp)" + Mg
= MgM™ (K" + Mgy
= (R gz
Then, due to the matrix inversion lemma (see e.g. Horn and Johnson 1985),

Q7' = Ry — Ry (Ruv) ' Ryg.
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Therefore,

fr(Xv) = Kyg(Rgg — Ry (Ruw) ™ Ryg) (MN) g7
= Kyg(Rgg(MN)g — Ry (Ryu) ™ Ry (MN))
= K 7(Ry(Iz)"MzN — Rgy (Ryy) ™' Ryz(MN)p)
= K5 (Ry(M — (Iy)"My)N — Ry (Ryy) ™ Ryg(MN)y)
= Ky7(RgMN — Rgy(MN)y — RgU(RUU)*lRUg(MN)U)
= K,7((RMN)g — Rgy(MN)y — RgU(RUU)“RUg(MN)g). (33)

If (15) has been solved with the whole training data, we already have the matrices R, M N,
and RM N stored in the memory, and hence the computational complexity of calculating
the matrix inversions, products, and subtractions (in the optimal order) involved in (33) is
O(U||U|+|U)?) = O(m|U|+|U|?). This is more efficient than the method (32) which cal-
culates the inverse of Q with complexity O (m%). Assuming that the size of the label sets are
of the same size, there is m/|U| objects in the training data, and hence the complexity of cal-
culating a leave-object-out cross-validation is O ((m/|U|)(m|U|+|U|?)) = O (m*+m|U|?).
This is more efficient than the training of dual RankRLS with the whole training data. There-
fore, the cross-validation method can also be combined with the method of selecting the
regularization parameter described in Sect. 3.2. We omit the formulas describing this com-
bination, because their presentation would be too long and technical.

3.4 Leave-pair-out cross-validation for object ranking

Here, we consider object ranking in the scoring setting, and hence there is an edge between
every input in the preference graph. We consider only the magnitude preserving cost func-
tion (21). Therefore, (23) and (25) hold. We now consider leave-pair-out cross-validation
(LPOCYV) in which every pair of inputs is held out from the training data at a time. If a
certain pair of inputs is held out, the edges that are incident to those inputs are not used
in the training process in that cross-validation round. In each round, the predictions for the
hold-out inputs are calculated. These predictions can then be used for ranking performance
measurement. This method is very useful for performance estimation when dealing with so
small amounts of data that using a subset of the inputs as a separate test data does not pro-
vide reliable enough performance estimate. For a more detailed description of this method,
we refer to Pahikkala et al. (2008a).

Cortes et al. (2007a) have proposed an algorithm that approximates the result of LPOCV
for the object ranking in O (m?) time, provided that an inversion of a certain m x m-matrix
is already computed and stored in the memory. The larger the number of inputs m is, the
closer the approximation to the exact result of the cross-validation is. Here, we improve their
result by presenting an algorithm that calculates an exact result of LPOCV in O (m?) time,
again given that the inverse of a certain m x m-matrix is already computed and stored in the
memory.

Before presenting the LPOCV algorithm, we consider the following result (for a proof,
see e.g. Ritkin and Lippert 2007b; Johnson and Zhang 2008; Pahikkala et al. 2008a).

Lemma 2 Let U C {1,..., m} denote ihe index set that contains the indices of the inputs
belonging to the hold-out set and let U = {1,...,m} \ U. Further, let K € R™"*™ be the
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kernel matrix constructed from the inputs X, fi be the hypothesis obtained by training
RankRLS without using the inputs indexed by U, and cg be a cost function that depends
only on the predictions made for the inputs indexed by U. Then, the vector of predictions
f7(X) can be computed from

fy(X) =arginf {c5(r, G) + Ar" K~ 'r}. (34)

reRm

If K is singular, the term rTK ~'r should be interpreted as

lim rT(K +€el)~'r.

e—0t

The main insight of the lemma is that we can obtain the hold-out predictions by using a
modified cost ¢ that only takes account of the predictions of the inputs not belonging
to the hold-out set U. In contrast, the regularizer Ar" K ~'r does not have to be modified
and it can still depend on all of the m predictions. Note that this property holds for any
cost function, and hence the lemma provides us a powerful framework for designing cross-
validation algorithms.

Next, we apply Lemma 2 to the cost function (21). Let

U={hi, hy}

be the index set containing the indices %; and h; of the two hold-out inputs and let U=
{1,...,m}\ U. Further, let S = (s, ...,s,)T € R” be a vector of real valued scores of the
inputs. We now reformulate the matrix form (24) so that its value is independent of the
predictions for the hold-out inputs. Recall that the preference magnitudes in the scoring
setting can be expressed with the differences of the scores of the inputs and that we also
include the preferences with zero magnitudes in training for efficiency reasons. Therefore,
the cost function (21) which is calculated over the whole training data can be expressed as

1 m
o, Gy =5 Y ((si =) = (i =)

ij=1

The sum is multiplied with the constant 1 because the sum contains each index pair twice,
since in this setting ((s; — s;) — (r; — r;)> = ((s; — 5;) — (rj — r;))* and ((s; — 5;) —
(ri —r)))> =0 for all i, j € {1,...,m}. In order to make the cost function independent
of the predictions for the hold-out inputs, we remove the terms involving the hold-out inputs
from the sum. Thus, the cost function from which the terms have been removed is

1
cg(r, Gy =3 Y (i —s)) = (i = r)))°

i,jeU
=m=2)) (i =r) = Y (si—r)s; —r))
ieU i,jeU
=S —r"LS —7), (35)

@ Springer



Mach Learn (2009) 75: 129-165 147

where I € R™*™ is a matrix whose entries are defined as
-1 ifijandi,jeU,
Lij={m-3 ifi=jandieU,

0 otherwise.

The matrix form (35) is similar to (24) except that the Laplacian matrix L corresponds to a
graph from which all edges incident to the hold-out inputs have been removed.

Next, we substitute (35) into (34). Then, derivating (34) with respect to r and setting it
to zero provides us the predictions for all of the m inputs made by f:

fe(X) =L +1KH7'LS.
Now, multiplying with 7y from the left provides us the predictions for the hold-out inputs
fr(Xv) = Iy (L+ 1K "H7'LS. (36)
We continue by observing that we can also write

L=D-BB", (37)

where B € R"*3 is a matrix whose values are determined by

1 ifieUand j=1,
m—2 ifi=h;and j=2,
Bl,j=
m—2 ifi=hyand j =3,
0 otherwise
and
D=(m—2)I eR™".
Let

Q0=(D+rkH".
Using (37), we can rewrite (36) as
fr(Xy) = Iy(Q~" — BBY)'LS
=Iy(Q — QB(—I + BTQB)'BTQ)LS
= (QLS)y — (OB)y(—1+ BTQB)'BTQLS, (38)

where the second equality is due to the Sherman-Morrison-Woodbury formula. Let C €
R”*3 be a matrix whose values are determined by

1 ifj=1,

Cij= .
0 otherwise
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—1 m—2 0
R = .
-1 0 m—2

‘We observe that we can write

and let

(I)'TR=B - C,

where [ is an m x m-identity matrix, and hence
R=By —Cy.
Let us assume that we have calculated the matrices
0,DS,0DS, 0C,C"0C,C'S, 0CC™S, and CTQDS, (39)

and stored them into the memory before starting the hold-out calculations. In order to cal-
culate (38), we have to compute the following matrices:

BTQB e R,
BTQLS e R¥!,
(QB)y € R¥,
(QLS)y e R,

Given that the matrices (39) have already been calculated, the above matrices can be calcu-
lated in a constant time as follows:

BTQB =(C+(y)"R)'Q(C+Uy)'R)
=CTQC+R"IyOC+C"QUy)"R+ R "Iy Q(Iy)"R
=C"QC + R'(QC)y + (R'(QC))" + R QuuR,
BTQLS =B"QDS— B"QOBB"S
=CTQDS+ R (QDS)y — BTOB(CTS + R"Sy),
(OB)y = (QC)y + (QUy) ' R)y
=(QC)y + QuuR,
(QLS)y = (QDS)y — (2BB"S)y
= (QDS)y — (@B)yB"S
= (QDS)y — ((QC)u + QuuR)(CTS + R"Sy).
By substituting these into (38), the hold-out predictions for a pair of inputs can be calculated
in a constant time.
Concerning the matrices (39) calculated in advance, the calculation of the matrix Q is
the computationally dominant one. Namely, its time complexity is O (m>) in the worst case

of K being of full rank. This is the same as that of training the RankRLS algorithm in the
worst case. However, if the rank of K is not full, the matrix Q can be calculated as follows.
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Let K = VAVT be the eigen decomposition of the kernel matrix, where V contains the
eigenvectors of K and A is a diagonal matrix containing the eigenvalues of K. Then,

0=VAVT,
where A is the diagonal matrix whose elements are determined by

o M
YA+ m =2 A

The calculation of the other matrices in (39) need only O (m?) time if Q is already calcu-
lated.

After the matrices (39) are calculated, the overall complexity of LPOCV is O (m?), since
only a constant time is needed to compute (38) for each hold-out set U and there are O (m?)
different hold-out sets. This is advantageous, for example, if we have many independent
ranking tasks we aim to learn from the same input data. In this case, the outputs are stored,
instead of a single column matrix, in a matrix S € R"*", where v is the number of tasks.
Then, the time complexity of the cross-validation is O (m* + m?v), since the complexity of
calculating Q is not affected by the number of tasks.

3.5 Sparse approximation

If the number of inputs m is large, the time complexities (19) or (26) of training dual
RankRLS may become infeasible and approximative techniques are needed. In this section,
we propose an approach that is based on a similar kind of idea as the subset of regressors
method (see e.g. Poggio and Girosi 1990; Smola and Scholkopf 2000; Rifkin et al. 2003;
Quifionero-Candela et al. 2007) for the standard regularized least-squares regression. More
detailed considerations and experimental results of this approach for RankRLS are presented
in Tsivtsivadze et al. (2008).

Recall that the training data contains a sequence of inputs X = (xi, ..., x,,) € (X™)T
of length m and let R C {1,...,m}, where |R| < m. The inputs indexed by the set R are
called the basis vectors. Now we consider instead of (6) a solution that allows only the inputs
indexed by R to have nonzero coefficient, that is,

fo) =Y ak(x,x). (40)

ieR

Note that it is not guaranteed that the optimal solution with only |R| nonzero coefficients
a; will have a representation as in formula (40), because the sparse approximation cannot
straightforwardly resort to the representer theorem anymore. Clearly, the selection of the
index set R may have an influence on results obtained by our method. Different approaches
for selecting R are discussed, for example, in Rifkin et al. (2003). There, it was found that
simply selecting the elements of R randomly performs no worse than more sophisticated
methods.

The problem of finding this type of hypothesis can be solved by finding the coefficients
a;, where i € R. In this case, the predictions for the training inputs can be expressed as
f(X) = (Kg)TA and the regularizer as AATK zz A, where A € RI®! is a vector consisting of
the coefficients a;. Using these definitions, we present a method we call sparse RankRLS:

A(G) = argmin J (A, G),
AcRIR|
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where
J(A,G)=(N = M"(Kp)TA)T(N = MT(Kg)TA) + L ATK g A.

We take the derivative of J(A, G) with respect to A, set it to zero, and solve with respect
to A:

A= (KaMM"(Kp)T+ AKrg) 'KgxMN. 41)

The computational complexity of calculating (41) can be analyzed in a similar way as that
of the primal RankRLS (28), because the former contains the matrix K in place of H and
Krpg in place of I, that is, we substitute | R| in place of n in (29). However, the solution can
be found more efficiently if we assume the scoring setting and that the magnitude preserving
cost function (21) is used making (23) and (25) to hold. Then, the training complexity of
the sparse RankRLS algorithm can be analyzed by substituting |R| in place of n in (30)
resulting in O (m|R|?) complexity, since |R| < m. Thus, the size of R can be selected so
that these computation times are feasible.

The efficient selection of regularization parameter discussed in Sect. 3.2 can also be
performed with sparse RankRLS using the following method. Here, we again assume that
we use the cost function (21) in the scoring setting, and hence (23) and (25) hold. Using
the Cholesky decomposition Kgrr = ZZ", where Z € RIF*I®l js a lower triangular matrix
called the Cholesky triangle of K gzg, we can rewrite the solution (41) as follows:

A= (KiMM"(KR)T+2ZZ")Y ' KxMM"S.

Note that since we assume the kernel matrix K to be strictly positive definite, it follows that
also its principal submatrix K g is strictly positive definite, and hence Z is invertible. Let

VAV = Z7' K e MM (K p)T(Z27H)T 42)

be the eigen decomposition of Z7'KxMMT(K)T(Z~")T, where V and A are the eigen-
vector matrix and diagonal matrix containing the corresponding eigenvalues, respectively.
Further, let A, = (A +AI)~'. Then,

(KgMMY(KR)"+2Z2ZH) ' = HY'wvaAvT +an~1z7!
=2Z HY'vAVTZ.

Therefore, we rewrite the solution (41) as follows:
A=Z HWYVAVTZ'KgMM'S.

The decompositions and the inversion of Z can be calculated in O(|R|?) time, and hence
the overall training complexity is not increased. The computational cost of calculating Ay is
O(|R)), since A + AI is a diagonal matrix. When the matrices VTZ~ 'Ky MMTS € RIRIx!
and (Z~HTV e RIFIXIRI are stored in the memory, the subsequent training with different
values of regularization parameters can be performed in O(|R|?) time.

We also note that the sparsity of the learned solution speeds up the prediction when
nonlinear kernels are used. Namely, the prediction complexity scales with respect to |R|
times the complexity of calculating the kernel function.
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4 Summary of computational benefits and comparison to RankSVM

Here, we make a summary about the computational properties of RankRLS and compare
them to those of RankSVM. RankSVM (Herbrich et al. 1999; Joachims 2002) is a state-of-
the-art ranking method very closely related to RankRLS. Their objective functions are the
same except that RankSVM uses the hinge cost function:

!
c(f(X),G) = max(l — g(e;)sign(y;), 0),

i=1

where e; = (x;, x;, y;) are the observed preferences, g(e;) = f(x;) — f(x;), and sign(y;)
are the directions of the preferences e;. As for RankRLS, there are also various different
methods for finding a minimizer of the objective function. It can be argued that the hinge
cost is a better approximation of the disagreement error than the squared costs as it does not
penalize correct predictions with magnitudes larger than one. However, in our experiments,
we observe that the ranking performance of RankRLS is essentially the same as that of
RankSVM. A similar phenomenon has also been observed between support vector machine
and regularized least-squares classifiers (see e.g. Rifkin 2002; Gestel et al. 2004; Zhang and
Peng 2004). Thus, the computational issues become the main factor for deciding whether
RankSVM or RankRLS is preferable.

Next, we investigate in which circumstances it is more beneficial to use RankSVM or
RankRLS method from the computational complexity point of view. For simplicity, we make
the investigation only in the case the preferences are induced by a scoring of the inputs.
Further, we only consider the cost function (21), and hence (23) and (25) hold.

Recently, Joachims (2006) proposed an efficient linear support vector machine type of
ranking algorithm for scored data. The training complexity of the algorithm is O (nm logm),
where n is the average number of nonzero features in the inputs. In our comparisons, we
consider this algorithm in the linear case. Further, we investigate the possibilities to use this
algorithm also in the nonlinear case.

We have divided our consideration into four cases. We start with small-scale learning
using linear kernel in Sect. 4.1 and continue with nonlinear case in Sect. 4.2. With small-
scale learning we refer to the case in which the number m of inputs in the training data is
such that O (m?) time complexity can be afforded, and with large-scale learning we refer to
the opposite case. Large-scale learning with linear and nonlinear kernels are considered in
Sects. 4.3 and 4.4, respectively.

4.1 Linear small scale learning

Because of the efficient training algorithm in the linear case, RankSVM has a computational
advantage over RankRLS when only one instance of the ranking method is needed and no
parameter selection or performance evaluation with cross-validation are performed. How-
ever, the advantage becomes less clear when there is a need for selecting the value of the
regularization parameter, learning multiple outputs, or performing cross-validation. For ex-
ample, the ability to perform cross-validation efficiently is very important when the number
of inputs with known scores is small, since in many cases large enough test sets for reliable
performance estimation can not be afforded. Next, we present some examples in which these
properties are especially beneficial.

Small-size data appears frequently, for example, when solving medical and biological
tasks, and hence cross-validation is often the only reliable way to measure the ranking

@ Springer



152 Mach Learn (2009) 75: 129-165

performance. In this case, the efficient methods presented in Sects. 3.3 and 3.4 are very
useful. For example, when aiming for a maximal AUC with biological data as considered
by Parker et al. (2007), a common practice for performance evaluation is to use a ten-fold
cross-validation. Then, the overall AUC is obtained by computing AUC for each fold and
taking their average or by first pooling the predictions and computing AUC afterwards. Tak-
ing the average suffers from large variance, because the number of input pairs in each fold
may be too small. Moreover, Parker et al. (2007) reported that the pooling technique suffers
from a pessimistic bias. The efficient leave-pair-out cross-validation provides a third way
for AUC calculation that avoids many of the pitfalls associated to the pooling and averaging
techniques.

Another advantage of RankRLS in linear small-scale learning is its ability to learn multi-
ple outputs at the cost of only one, provided that the number of outputs is linear in m or in n.
For example, in our experiments with the Reuters data in Sect. 5.4, there are 25 outputs that
can be learned in parallel. Of course, learning multiple outputs is also very efficient with the
fast RankSVM training methods. However, the fast cross-validation algorithms of RankRLS
can be combined with multiple output learning. This makes it possible, for example, to per-
form permutation tests similar to those used for classification (see e.g. Golland et al. 2005).
In the permutation tests, the outputs or scores of the training data are shuffled randomly and
the learner is then trained and cross-validated with the data having permuted outputs. The
shuffling and training is repeated many times and the cross-validation results are used, for
example, to estimate the reliability of the cross-validation results with the original training
data. This method can be used very efficiently with the RLS-based learning algorithms, be-
cause the permuted output vectors can be considered as extra outputs that can be learned
and cross-validated in parallel.

4.2 Nonlinear small scale learning

In general, when nonlinear kernel functions are used, support vector machine (SVM) type
of learners have an advantage in prediction time, because the form of the SVM solution may
be sparse. However, this depends on the level of regularization and the amount of noise in
the training data.

RankRLS has the advantage that its training time scales linearly instead of quadratically
with respect to the number m of inputs in the training data. To our knowledge, at least the
most commonly used implementations of nonlinear RankSVM scale roughly quadratically
with respect to the number of preferences, and hence their computational complexity can be
considered to be at least of the order O (m*), because the number of preferences in the scor-
ing setting is assumed to be of order m?. This makes RankSVM impractical even on small
datasets. The cubic complexity of RankRLS makes it thus the method of choice when using
nonlinear kernels and datasets which consist of at most a few thousand inputs. However, the
dual implementations of the RankSVM do not necessarily represent the state-of-the-art in
kernel based SVM ranking.

To demonstrate the scalability properties of nonlinear RankRLS and RankSVM algo-
rithms, we provide a comparison of running times on the acq dataset of the Reuters AUC-
maximization task (see Sect. 5.4 for description of the task and data). The RankSVM im-
plementation is the one included in the SVM-light package, for RankRLS we use our own
Python implementation. The runs are performed on a modern desktop computer using the
Gaussian kernel and the default parameter values of the software packages are used. The
results are presented in Table 1.

The runtime comparison of training provides further empirical support to the conclusions
derived from the computational complexity considerations. RankRLS is efficient to use in
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Table 1 Runtime comparisons ] -
of training for nonlinear Running times

RankRLS and RankSVM on the Inputs 200 500 750 1000 1500 2000 2500 4000 6000
acq dataset. The number of

inputs in the training data ranges RankRLS 1 3 5 10 24 48 83 280 841

from 200 to 6000, the runtimes RankSVM 2 150 579 1740 4685 13707 20055 —  —
are measured in seconds

the small-scale setting where the number of inputs in the training data is measured in thou-
sands. RankSVM however does not scale well, for example, at a point of 2500 inputs where
RankRLS training takes less than one and a half minutes, training RankSVM takes five and a
half hours. Taking further into consideration the efficient regularization, cross-validation and
multiple output learning algorithms presented for RankRLS, it is clearly the better choice in
this setting.

Next, we consider an alternative approach using the empirical kernel map (Scholkopf
et al. 1999) to transform the SVM dual problem into a primal one, and hence to achieve cubic
complexity also for the RankSVM. Formally, if a full rank kernel matrix K is decomposed,
for example, with the Cholesky decomposition

K=27",

where the Cholesky triangle Z € R™*” of K can be considered as an empirical feature
space representation of the input sequence X. It can be shown that after a linear RankSVM
is trained with these features, the dual variables needed in prediction for new inputs can be
obtained by multiplying the normal vector of the learned separating hyperplane with the in-
verse of ZT. The computational complexity of the Cholesky decomposition of K is O (m?).
After the decomposition is performed, the training of RankSVM with this feature represen-
tation is of complexity O (m?*logm), because the average number of nonzero features per
input in this case is m. When testing in practice this approach for training a single RankSVM
learner, we observed training times that were very close to that of training a single RankRLS
learner. This is because the O (m®) complexities of the eigen decomposition used in train-
ing RankRLS and the Cholesky decomposition in training RankSVM dominate the running
times.

On the one hand, the Cholesky decomposition has to be performed only once, since
the same feature space representation can be used for multiple outputs, multiple values of
the regularization parameter, and in each cross-validation round. On the other hand, the
O (m?logm) time is spent for every combination of the regularization parameter, every sep-
arate output, and every round in a cross-validation. Compared to that, RankRLS spends
O (m?) time for every combination of the regularization parameter and output. However,
the fast cross-validation properties of RankRLS make it more suitable than RankSVM for
small-scale nonlinear ranking tasks. For example, the constant time hold-out computation
introduced in Sect. 3.4 means that the eigen decomposition still dominates the RankRLS
running time in leave-pair-out cross-validation but the complexity of RankSVM would rise
to O(m* logm), since there are m? cross-validation rounds.

4.3 Linear large scale learning

Recall from (30) that the computational complexity of training the primal RankRLS is
O (n® +n*m), where n is the dimensionality of the feature space. Further, after RankRLS is
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trained once, the level of regularization can be adjusted and multiple tasks learned efficiently
as shown in Sect. 3.2. If n is a small constant and m is large enough, these properties make
RankRLS faster to train than RankSVM that has the O (nmlogm), where n is the average
number of nonzero features per input, training complexity.

If both the number of inputs in the training data m and the number of features n are large,
the cubic time complexities of training RankRLS with the matrix calculus based techniques
become infeasible. However, it may still be possible to take advantage of the sparsity of
the feature representation of the inputs, that is, n being small. We note that, similarly to
the standard RLS regression (see e.g. Rifkin et al. 2003; Shewchuk 1994), RankRLS can
also be trained in such circumstances using conjugate gradient type of algorithms where the
complexity of each iteration is O (nm). How close the coefficient vector obtained with this
method is to the minimizer of (16) depends of the number of iterations. Since we assume the
use of the cost function (21) in the scoring setting, we can write M MT =D — PPT, where
D and P are defined as in the beginning of Sect. 3. Moreover, recall that in both the object
and label ranking cases, the matrices P and D have only m nonzero entries. Further, let
H € R™™ be the sparse matrix containing the feature vectors of the training inputs having
an average of 11 nonzero features per input and let v € R™ be a vector. Then, we can compute
the product

(KMM'K +A K)v=H"HDH"Hv— H'HPPTH"Hv+ AH"Hv

in O(nm) time, since H contains approximately nm nonzero elements, and both D and P
contain only m nonzero elements. Computing this product is the most expensive operation
in each conjugate gradient iteration.

We run a test of the conjugate gradient algorithm using the Reuters classification task and
linear kernel (see Sect. 5.4) using more than 12000 inputs and features, which generate over
23 million pairwise preferences. The algorithm needs only a couple of hundred iterations to
converge, and hence the training takes only a few seconds.

4.4 Nonlinear large scale learning

The cubic complexity of nonlinear RankRLS is impractical in large-scale learning. However,
it is possible to use sparse approximations as discussed in Sect. 3.5 having O (m|R|?) train-
ing complexity, where R is the set consisting of the indices of the basis vectors and |R| < m.
This type of approximations are also possible for SVM type of learners as outlined in the
following. Similarly to the empirical kernel map approach described in Sect. 4.2, the train-
ing tasks can again be transformed in O (m|R|?) time into a more efficient linear learning
task, where the dimension of the feature space is |R|. Formally, the use of the sparse ap-
proximation corresponds to the use of the following type of modified kernel function (see
e.g. Quifionero-Candela and Rasmussen 2005):

ke, x") = ke, Xp) (Krp) k(G XR)T, (43)
where X is a sequence of basis vectors and k(x, X) € (R'®)T is a row vector consisting of
the kernel evaluations between the input x and the training inputs indexed by R. Therefore,
the kernel matrix corresponding to the modified kernel function k can be written as

K = (Kp)"(Kgg) "' K.

Now, if (Kzg)~' = ZZ7 is the Cholesky decomposition of (K )™, we can use (Kz)"Z
R”*IRI as an empirical kernel map with which linear RankSVM can be trained. It can be
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shown that after a linear RankSVM is trained using the feature representation obtained from
this empirical kernel map, the vector of |R| dual variables needed in making predictions for
new inputs with the original kernel function k can be calculated by multiplying the normal
vector of the learned separating hyperplane with Z.

After the feature representation based on the empirical kernel map has been constructed
in O(m|R|?) time, the complexity of training a RankSVM is O(|R|m logm) for a single
output and for a single value of the regularization parameter, since the number of dimen-
sions in the feature representation determined by the empirical kernel map is |R| and the
representation is usually dense. Compared to that, after the eigen decomposition (42) and
the other matrix operations needed in training a sparse RankRLS for a single output and a
single value of the regularization parameter have been performed in O (m|R|?) time, sub-
sequent training with different values of the regularization parameter for the same output is
even more efficient, namely O (|R|?) per each parameter value.

5 Experiments

We test our ranking algorithms with various different tasks. The tasks considered are: rank-
ing of dependency parses, document retrieval, binary document classification, and collabo-
rative filtering. The two first tasks are instances of label ranking while the other two can be
considered as object ranking problems. The pairwise preferences in all of the four tasks are
induced by a scoring of the inputs. For example, in the document retrieval task the score of
an input consisting of a query and a document is 1 if the document is relevant to the query
and 0 otherwise. The document retrieval and binary classification tasks can be considered
as bipartite ranking problems, that is, there are only two possible score values for the in-
puts. On the other hand, the true scores of the inputs in the parse ranking and collaborative
filtering tasks are real numbers between a certain interval.

In all tasks, we test whether the irrelevant input pairs would be beneficial if included in
the training process. For example, in document retrieval we do not measure the disagreement
error between the inputs that are associated to different queries, but test if they are still useful
in training.

We also compare the RankRLS algorithm with RankSVM and standard RLS regressor in
all of the four tasks. The RankSVM baseline is always trained with only the relevant pairs,
since the irrelevant pairs were found to be non-beneficial in our experiments with RankRLS.
Moreover, in the document retrieval experiments, RankBoost is used as additional baseline.
We also compare the cost functions (20), (21), and (22) with each other on the non-bipartite
ranking tasks, since they are equal in bipartite tasks.

Both RankRLS and RLS regressor have a regularization parameter XA that controls the
trade-off between the minimization of the training error and the complexity of the func-
tion. RankSVM has a similar parameter. The parameters are selected using cross-validation
from the scale [271°,2714, ..., 2714 213]. Further, the used kernel functions have parame-
ters that are set by cross-validation on the training data. Whenever a statistical significance
is reported, the Wilcoxon signed-ranks test (Wilcoxon 1945) has been used with 0.05 as a
significance threshold.

In Sect. 5.1, a simple example is presented in which we consider the effect of having
irrelevant input pairs in the training process. Section 5.2 presents our experiments with parse
ranking and Sect. 5.3 with document retrieval. We consider maximizing the area under ROC
curve in Sect. 5.4 and collaborative filtering in Sect. 5.5.
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5.1 The case of irrelevant input pairs

To investigate the possible effects of the irrelevant input pairs in the training process, we
now present an artificial label ranking example that is illustrated in Fig. 2. In both figures,
the feature vectors @ (x;) of the four inputs x; are depicted as circles and they reside on a
one-dimensional feature space. We assume that there are two objects, and inputs denoted x;
and x; are associated to the first object and x3 and x4 to the second one. Therefore, only two
pairs of inputs are relevant to the label ranking task, namely the pairs (x;, x,) and (x3, x4).

The four inputs are given scores that are s; =2, s, = 1, s3 =4, and s4 = 3. The scores
induce a direction of preference for the two relevant input pairs. These preferences are de-
picted with arrows between the inputs in Fig. 2 (left). The scores also induce preferences for
the four input pairs that are not relevant to the label ranking task in question. Both the rele-
vant and irrelevant preferences are depicted in Fig. 2 (right). We observe that the preference
direction of the relevant edges goes from left to right in the feature space but the direction
of the irrelevant edges is opposite.

Since the feature vectors in the example are one-dimensional and we are learning only
linear scoring functions, there are only two possible ways in which the inputs can be ordered.
Namely, from left to right or in the opposite way. In Fig. 2, the direction is determined by the
normal vector of the hyperplane corresponding to the RankRLS solution. Therefore, if the
irrelevant input pairs are excluded from the training process, RankRLS learns the first type
of ordering and it can correctly predict the preferences for both of the relevant inputs pairs.
However, if the four irrelevant pairs are included in training, they overwhelm the effect of
the two relevant pairs, and hence RankRLS learns the wrong type of ordering. This type
of phenomenon may occur frequently in the label ranking task, since the inputs associated
to the same object are often clustered in a similar way as in this example. Therefore, we
speculate that the irrelevant pairs are usually more harmful than useful if included in the
training of RankRLS for label ranking tasks.

Another type of input pair that may turn out to have an effect to the ranking performance
is a tied one, that is, a pair whose both inputs have the same score. The tied pairs of inputs
are not considered in our definition of the disagreement error. However, in our experiments
we test whether it has a beneficial or harmful effect on the ranking performance if the tied
pairs are used in the training. For simplicity, we perform the test only with (21), because it
is the only cost function in which the ties can be treated in a trivial way, that is, by setting
the zero point of the parabola to be zero.

We may also consider leaving out some of the relevant input pairs in case there is some
redundancy created by the transitivity of the preferences, for example, in the scoring setting.
However, this may not be an optimal strategy if the data is too noisy.

The hyperplane The hyperplane
The normal of The normal of
the hyperplane i the hyperplane
O(z1) O(z2)  Dlas) D(z4) O(z1) r2)  Dlzs) Dla)
S1=2 52=1 Sg=4 S4=3 51=2 52:1 53=4 S4=3
f@1) > f (@) > f(3) > f(2) f(z1) < fl@2) < f(s) < fla)

Fig. 2 Artificial label ranking example. Only the relevant input pairs are included in the training process
(left). Both the relevant and irrelevant input pairs are included in the training process (right)
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5.2 Ranking of dependency parses

First, we give a short description of the characteristics of the data. For a more detailed de-
scription, we refer to Tsivtsivadze et al. (2005). Next, we describe the task of parse ranking.
Finally, we present the experimental evaluation.

Throughout our experiments, we use the Biolnfer corpus (Pyysalo et al. 2007) which
consists of 1100 manually annotated sentences.! For each sentence, we generate a set of
candidate parses with a link grammar (LG) parser (Sleator and Temperley 1991). The LG
parser is a full dependency parser based on a broad-coverage hand-written grammar. It gen-
erates all parses allowed by its grammar and applies a set of built-in heuristics to rank the
parses. However, the ranking performance of the heuristics has been found to be poor when
applied to biomedical text (Pyysalo et al. 2006), and hence subsequent ranking or selection
methods are needed. In our previous studies, we used regularized least-squares regression
for the reranking task that notably outperformed the LG heuristics (Tsivtsivadze et al. 2005).
In these experiments, we use the graph kernel described in Pahikkala et al. (2006b).

In the task of parse ranking, each input consists of a sentence and a parse generated for it.
We obtain a scoring for an input by comparing its parse to the hand annotated correct parse
of its sentence. Tsivtsivadze et al. (2005) describes in detail how the scores are calculated.
The relevant input pairs are those of which both inputs are associated to the same sentence
and have different scores. All the other pairs are considered to be irrelevant to the task of
parse ranking. We evaluate whether these irrelevant input pairs are beneficial if included in
the training process. Furthermore, we compare the performance of RankRLS with the cost
functions (20), (21), and (22).

In order to select the parameter values, we divide the set 1100 annotated sentences into
two data sets containing 500 and 600 sentences. The first dataset is used for the parameter
estimation and the second one is reserved for the final validation. The appropriate values
of the regularization and the kernel parameters are determined by grid search with 10-fold
cross-validation on the parameter estimation data.

Finally, the algorithm is trained on the whole parameter estimation data set with the
selected parameter values and tested with the 600 sentences reserved for the final valida-
tion. The results of the validation are presented in Table 2. We observe that the regression
approach is clearly worse than RankRLS. The performance differences between RLS re-
gressor and RankRLS in the relevant pairs case are all statistically significant. Moreover, the
performance differences of the results obtained by RankRLS methods when trained using

Table 2 Disagreement errors for

the validation set using different Method Disagreement error
methods. RankRLS is tested with
the cost functions (20), (21), and RankRLS (20) 0.225
(22), and both With only relevant RankRLS (20) All pairs 0.234
pairs and all pairs RankRLS (21) 0222
RankRLS (21) All pairs 0.247
RankRLS (22) 0.216
RankRLS (22) All pairs 0.228
RankSVM 0.214
RLS Regressor 0.252

1 Available at www.it.utu.fi/Biolnfer.
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relevant and all pairs are statistically significant indicating that the irrelevant pairs are harm-
ful. Interestingly, the three cost functions seem to differ more in the all pairs experiments,
while the results were clearly worse than with the relevant pairs only. When considering the
relevant pairs, the results of RankSVM are very close to those of RankRLS.

5.3 Learning to rank for information retrieval

In this section, we present an evaluation of the RankRLS algorithm on the task of rank-
ing documents according to queries using the publicly available Letor information retrieval
dataset (Liu et al. 2007).2 The problem is an example of a typical label ranking task. Given
a set of query-document pairs, our aim is to learn to rank all the documents related to the
same query according to how well they match the query. We also test how the inclusion of
irrelevant preferences in the training data affects the performance of RankRLS. By irrelevant
preferences, we mean in this setting pairs of inputs related to different queries or input pairs
that are related to the same query, but have the same score associated with them. In addition
to RankSVM and the standard RLS regressor comparisons, we also compare our results to
those of RankBoost (Freund et al. 2003). Further details of these experiments can be found
in Pahikkala et al. (2007b).

Recently, the Letor dataset for learning to rank in information retrieval containing three
datasets of query-document pairs known as Ohsumed (16140 pairs), Trec2003 (49171 pairs)
and Trec2004 (74170 pairs), as well as baseline results on RankBoost and RankSVM algo-
rithms, has been made available. The Trec datasets contain only two possible scores for the
inputs 0 and 1, while Ohsumed has three possible scores, 0, 1 and 2. In these experiments, we
consider Ohsumed to be a bipartite ranking task by combining the scores 0 and 1 together.

We perform experiments on all of the three datasets. Because of the small dimensionality
of the feature space (25 features in Ohsumed, 44 in Trecs) coupled with the large dataset
sizes, we use the primal version of RankRLS which scales well in such settings as discussed
in Sect. 3.1. Because of this choice, we use the linear kernel. The data is preprocessed by
normalizing all of the feature values between O and 1 on per query basis. 5-fold cross-
validation is used so that in each phase the learners are trained with three folds, parameters
chosen on a fourth one and testing is done on the remaining fold. The fold split used is the
one provided in the dataset. All results are averaged over the folds. We evaluate the results
using disagreement error averaged over the different test queries. Such queries that are re-
lated only to documents that have score 1, or only to documents that have score 0, and thus
contain no preferences, are not considered in the performance evaluation. The experimental
results are presented in Table 3.

Table 3 Disagreement errors on

the Letor datasets. RankRLS is Method Ohsumed Trec2003 Trec2004

tested in two settings: only

relevant pairs are included and all ~ RankRLS 0.340 0.145 0.034

pairs are mcliudi‘; \§ﬁnd§d RLS  RankRLS All pairs 0.346 0.141 0.048

regression, Ran an

RankBoost are used as baselines RLS Regressor 0.346 0.153 0.044
RankSVM 0.336 0.150 0.041
RankBoost 0.351 0.138 0.034

2 Available at http://research.microsoft.com/users/tyliu/LETOR/.
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In the Trec2004, RankRLS achieves best results when only those pairs that come from
the same query and have documents with different relevance levels are used. On the other
two datasets, the differences between the performance results of the two approaches are
not statistically significant. There seems to be little to be gained from adding the irrelevant
pairs to the training data, suggesting that the approach of training only with relevant pairs
should be the default approach to take if given no prior information indicating otherwise.
Compared to the baseline ranking algorithms, RankRLS achieves very similar performance.
The standard RLS regressor, though slightly losing to the ranking algorithms, proves also to
be quite a competitive choice.

5.4 Maximizing area under curve

It has been argued that for many types of binary classification tasks the area under the re-
ceiver operating characteristics curve (AUC) provides a more fitting performance measure
than simple accuracy (Bradley 1997; Provost et al. 1998; Huang and Ling 2005). The task
of AUC maximization can be considered as a bipartite ranking problem where each positive
input is preferred over each negative one. Thus, it is equivalent to the task of disagree-
ment error minimization (see e.g. Clémencon et al. 2005 for a more detailed consideration).
Recent work in the field of support vector machines has shown AUC maximization to be
a challenging task (see e.g. Rakotomamonjy 2004; Brefeld and Scheffer 2005; Joachims
2005). The need to consider all positive-negative input pairs easily leads to too cumbersome
computations, or the use of approximative heuristics results in gains that are not statistically
significant. However, the computational complexity of RankRLS is proportional to the num-
ber of individual inputs in the training data instead of the number of input pairs. This makes
RankRLS a natural candidate for efficient AUC maximizing learner. For more discussion
about this topic, see Pahikkala et al. (2008b).

In our experiments, we evaluate the capability of RankRLS to maximize AUC on the
task of assigning topic labels to Reuters newswire documents. We approach the problem by
transforming the original multi-label classification task into a series of binary classification
tasks, where each sub-task consists of learning to classify documents on the basis of whether
they have a certain topic or not.

Similarly to Brefeld and Scheffer (2005), we conduct the experiments on a subset of
the Reuters-21578 dataset.> We limit the number of inputs in the training data to 500 to
test the performance of the ranking methods on small imbalanced datasets. The rest 12397
documents are used as a test data. We take into account only the 25 most numerous classes,
each of which corresponds to one possible topic a document can have. We consider the
assignment of each of these labels as a separate binary classification problem, where the task
is to decide whether a document should have the given label or not. Some of the documents
belong to more than one class, and some to none of them.

We use the linear kernel. The regularization parameter A is set using tenfold cross-
validation on the training data, the chosen parameter is the one that provides maximal AUC
on the pooled together cross-validation predictions (for a description of the pooling method,
see e.g. Bradley 1997). We also calculate the 0.95 confidence intervals for the classifiers’
AUC scores for each class. These statistical analyses are performed with SPSS 11.0. The
comparison of RankRLS and standard RLS regression results is presented in Table 4 and
similar comparison with RankSVM results is presented in Table 5.

3 Available at http://www.daviddlewis.com/resources/testcollections/reuters21578/.
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Table 4 Comparison of the AUC performance of the RankRLS and RLS algorithms on the Reuters-21578
dataset. In the first column is the name of the predicted class and in the next two are the AUC-values and
corresponding confidence intervals for the tested algorithms. The last two columns present the numbers of
positive inputs in the training set of 500 documents and test data of 12397 documents

Class RankRLS RLS Regressor +train +test
acq 0.980 (0.978-0.983) 0.979 (0.977-0.982) 94 2275
bop 0.966 (0.947-0.985) 0.880 (0.843-0.917) 4 101
cocoa 0.931 (0.891-0.970) 0.837 (0.776-0.899) 2 71
coffee 0.969 (0.948-0.990) 0.962 (0.950-0.975) 5 134
corn 0.970 (0.959-0.982) 0.950 (0.936-0.964) 11 226
cpi 0.947 (0.925-0.969) 0.601 (0.555-0.648) 3 94
crude 0.976 (0.969-0.982) 0.975 (0.969-0.982) 23 555
dir 0.971 (0.961-0.981) 0.946 (0.926-0.965) 10 165
earn 0.994 (0.993-0.995) 0.993 (0.991-0.994) 158 3806
gnp 0.987 (0.981-0.993) 0.923 (0.891-0.956) 5 131
gold 0.970 (0.953-0.986) 0.922 (0.897-0.948) 4 120
grain 0.979 (0.973-0.985) 0.974 (0.968-0.980) 23 559
interest 0.965 (0.956-0.974) 0.952 (0.941-0.962) 19 459
livestock 0.701 (0.642-0.761) 0.637 (0.578-0.696) 3 96
money-fx 0.954 (0.946-0.962) 0.947 (0.938-0.957) 28 689
money-supply 0.949 (0.930-0.968) 0.907 (0.877-0.937) 7 165
nat-gas 0.957 (0.933-0.981) 0.941 (0.920-0.962) 5 100
oilseed 0.898 (0.877-0.919) 0.816 (0.783-0.849) 6 165
reserves 0.943 (0.908-0.977) 0.511 (0.458-0.564) 2 71
ship 0.949 (0.934-0.963) 0.925 (0.907-0.942) 13 273
soybean 0.876 (0.839-0.913) 0.805 (0.757-0.853) 4 107
sugar 0.985 (0.979-0.991) 0.964 (0.952-0.976) 6 156
trade 0.978 (0.970-0.986) 0.969 (0.960-0.977) 20 466
veg-oil 0.890 (0.865-0.914) 0.697 (0.656-0.739) 4 120
wheat 0.984 (0.978-0.990) 0.976 (0.969-0.983) 12 271

The results show that the RankRLS clearly outperforms the standard RLS regressor in

the task of AUC maximization on the Reuters-21578 dataset. We observe that the smaller the
amount of positive inputs is, the larger the performance gains seem to be. Between RankRLS
and RankSVM no statistically significant differences are found.

We further examined whether including the ties in the training process has a beneficial
or a harmful effect on the ranking performance. The effect was found to be negligible.

5.5 Collaborative filtering
‘We next present the results of a series of experiments run on a publicly available collabora-

tive filtering dataset, the Jester Joke (Goldberg et al. 2001).* The task it to learn to predict
the joke preferences of a user based on the preferences of other users, an approach com-

4 Available at http://www.ieor.berkeley.edu/ goldberg/jester-data/.
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Table 5 Comparison of the AUC performance of the RankRLS and RankSVM algorithms on the Reuters-

21578 dataset

Class RankRLS RankSVM +train +test
acq 0.980 (0.978-0.983) 0.979 (0.977-0.982) 94 2275
bop 0.966 (0.947-0.985) 0.966 (0.949-0.983) 4 101
cocoa 0.931 (0.891-0.970) 0.923 (0.881-0.966) 2 71
coffee 0.969 (0.948-0.990) 0.962 (0.939-0.984) 5 134
corn 0.970 (0.959-0.982) 0.966 (0.956-0.975) 11 226
cpi 0.947 (0.925-0.969) 0.947 (0.925-0.969) 3 94
crude 0.976 (0.969-0.982) 0.976 (0.970-0.983) 23 555
dir 0.971 (0.961-0.981) 0.972 (0.962-0.982) 10 165
earn 0.994 (0.993-0.995) 0.994 (0.992-0.995) 158 3806
gnp 0.987 (0.981-0.993) 0.987 (0.980-0.993) 5 131
gold 0.970 (0.953-0.986) 0.960 (0.940-0.980) 4 120
grain 0.979 (0.973-0.985) 0.979 (0.974-0.984) 23 559
interest 0.965 (0.956-0.974) 0.968 (0.960-0.976) 19 459
livestock 0.701 (0.642-0.761) 0.741 (0.698-0.784) 3 96
money-fx 0.954 (0.946-0.962) 0.959 (0.952-0.966) 28 689
money-supply 0.949 (0.930-0.968) 0.963 (0.950-0.976) 7 165
nat-gas 0.957 (0.933-0.981) 0.957 (0.933-0.981) 5 100
oilseed 0.898 (0.877-0.919) 0.895 (0.873-0.918) 6 165
reserves 0.943 (0.908-0.977) 0.920 (0.902-0.938) 2 71
ship 0.949 (0.934-0.963) 0.951 (0.939-0.964) 13 273
soybean 0.876 (0.839-0.913) 0.882 (0.848-0.916) 4 107
sugar 0.985 (0.979-0.991) 0.977 (0.970-0.985) 6 156
trade 0.978 (0.970-0.986) 0.982 (0.976-0.988) 20 466
veg-oil 0.890 (0.865-0.914) 0.853 (0.818-0.888) 4 120
wheat 0.984 (0.978-0.990) 0.983 (0.978-0.989) 12 271

mon to many recommender systems. In these experiments, we compare the performance of
RankRLS with cost functions (20), (21) and (22) as measured by the disagreement error.

Jester Joke is a dataset of joke ratings, where a group of 73496 users has assigned real-
valued ratings in the scale —10.0 to 10.0 to a set of 100 jokes, each rating describing how
much they liked/disliked the joke in question. The task is to learn to predict the preferences
of individual users from the preferences of the other users.

Our experimental setting follows that of Cortes et al. (2007b). We choose a set of 300
active users, for whom the task is to learn to predict their joke preferences. For each user,
half of the jokes are chosen for training and half for testing. The preferences of the users are
derived from the differences of the rating scores, a joke with a higher score is preferred to
a joke with a lower score. To generate the features for the instances, a set of 300 reference
users is chosen, and their given ratings for the corresponding joke are used as the feature
values. In cases where these users have not rated the joke, the median of their ratings is used
as the feature value.

In accordance to the original experimental setup, we perform three rounds of experi-
ments, where we first choose the reference reviewers from people with 20—40, then with
40-60, and finally with 60-80 ratings. Finally, we remove these restrictions on feature den-
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Table 6 Disagreement errors for

the different versions of Method 2040 40760 60-80 All sizes

RankRLS, RankSVM, and the

basic RLS regressor on the Jester RankRLS (20) 0.413 0.400 0.378 0.371

dataset. RankRLS is tested with  RankRLS (21) 0.413 0.400 0.379 0371

?;‘;)CO“ functions (20). 21). and o VRLS (22) 0.445 0.426 0.388 0.379
RankSVM 0.413 0.400 0.378 0.371
RLS Regressor 0.414 0.401 0.378 0.371

sities and perform a fourth round of experiments using simply randomly chosen set of ref-
erence users. The kernel used is the Gaussian kernel and its width parameter was chosen
from the interval [271°,2714 ... 214 215], The parameters for each experiment are chosen
by taking the average over the performances on a hold-out set. The hold-out sets are created
for each experiment similarly as the corresponding training/test data.

The results of the collaborative filtering experiments are included in Table 6. In these
experiments, we found no difference between the performance of the cost functions (20)
and (21). Further, we noticed that the cost function weighted by the inverse of the magni-
tude of the difference (22) performed worse than the other cost functions. This difference
was statistically significant in each of the test settings. The performance of RankSVM was
identical with that of the discretized (20) and magnitude preserving cost functions (21). Fur-
ther, standard RLS also achieved as good performance as the ranking algorithms. We also
tested the effects of including all pairs instead of only relevant ones in the training data. No
performance differences were observed in the results.

6 Conclusions

There are many problems in which the aim is not to classify or to regress but to learn a rank-
ing function. Inspired by the recent success of the regularized least-squares (RLS) based
algorithms, we introduce a framework for RLS based ranking cost functions. Further, we
propose three cost functions. We investigate their benefits and drawbacks from the per-
spectives of applicability and computational complexity. Finally, we propose a kernel-based
preference learning algorithm, which we call RankRLS, for minimizing such cost functions.

RankRLS can be trained with a sequence of pairwise preferences between input data
points and it outputs a ranking function for the individual inputs. The training time of
RankRLS grows linearly with respect to the number of preferences and is cubic either with
respect to the number of inputs or to the number of dimensions in the input space.

An important special case is the one in which the preference relation is induced by a
scoring of input data points. For this case, it is possible to develop efficient shortcut methods
using techniques based on matrix calculus. Namely, we introduce training algorithms whose
complexities do not depend on the number of preferences, cross-validation algorithms for
both object and label ranking, method for selection of the regularization parameter, and
a method for learning multiple scorings simultaneously. These methods can be combined
together. In addition, we show that some of these efficient methods can also be used in
large-scale learning when the sparse approximation is used.

We also make a thorough comparison of the computational benefits and drawbacks of
RankRLS in both small-scale and large-scale learning tasks with those of RankSVM that
can be considered as a state-of-the-art ranking method. Moreover, both the linear and non-
linear learning problems are considered in the comparison. While a single instance of a
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RankSVM may be faster to train than a single instance of RankRLS in the linear learning
tasks, the computational shortcuts of RankRLS in cross-validation, parameter selection, and
multiple output learning make RankRLS in many situations much faster method to use than
RankSVM. This is especially the case if nonlinear kernel functions are used and if cross-
validation is used for performance estimation.

We evaluate RankRLS on four tasks with different characteristics. We use as the baseline
method RankSVM. The results show that the performance of RankSVM and RankRLS is
very similar. Further, the three proposed cost functions are compared with each other and
it is found that the performance differences are task dependent. We also show that in all of
the experiments RankRLS always performs better or as well as the RLS regressor trained to
regress the scores of the input data points. Often some of the pairs of input data points are
not relevant with respect to the learning task in question. We show that they may be even
harmful to the ranking performance, because the RankRLS algorithm has to minimize their
RLS error at the expense of the relevant pairs.

There has been recently discussion within the community about the importance of shar-
ing open source implementations of introduced methods (see Sonnenburg et al. 2007). In-
spired by this, we make freely available a software package called RLScore containing an
implementation of RankRLS and the efficient cross-validation methods.’
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