
Mach Learn (2009) 75: 91–127
DOI 10.1007/s10994-008-5098-y

Mining probabilistic automata: a statistical view
of sequential pattern mining

Stéphanie Jacquemont · François Jacquenet ·
Marc Sebban

Received: 9 March 2007 / Revised: 12 December 2008 / Accepted: 16 December 2008 / Published online: 8
January 2009
Springer Science+Business Media, LLC 2009

Abstract During the past decade, sequential pattern mining has been the core of numerous
research efforts. It is now possible to efficiently extract knowledge of users’ behavior from a
huge set of sequences collected over time. This has applications in various domains such as
purchases in supermarkets, Web site visits, etc. However, sequence mining algorithms do lit-
tle to control the risks of extracting false discoveries or overlooking true knowledge. In this
paper, the theoretical conditions to achieve a relevant sequence mining process are exam-
ined. Then, the article offers a statistical view of sequence mining which has the following
advantages: First, it uses a compact and generalized representation of the original sequences
in the form of a probabilistic automaton. Second, it integrates statistical constraints to guar-
antee the extraction of significant patterns. Finally, it provides an interesting solution in a
privacy preserving context in order to respect individuals’ information. An application in
car flow modeling is presented, showing the ability of our algorithm (ACSM) to discover fre-
quent routes without any private information. Comparisons with a classical sequence mining
algorithm (SPAM) are made, showing the effectiveness of our approach.

Keywords Sequence mining · Probabilistic automaton · Privacy preserving data mining

1 Introduction

Sequential pattern mining aims to automatically find subsequences (also called patterns)
that appear frequently (i.e. more than a support threshold) in a set of sequences. Many

Editors: Thomas Gärtner, Gemma C. Garriga.

S. Jacquemont (�) · F. Jacquenet · M. Sebban
Laboratoire Hubert Curien, UMR 5516 Université Jean Monnet, 18, rue Benoît Lauras, Bâtiment F,
42000 Saint-Étienne, France
e-mail: jacqstep@univ-st-etienne.fr

F. Jacquenet
e-mail: jacquene@univ-st-etienne.fr

M. Sebban
e-mail: sebbanma@univ-st-etienne.fr

mailto:jacqstep@univ-st-etienne.fr
mailto:jacquene@univ-st-etienne.fr
mailto:sebbanma@univ-st-etienne.fr

92 Mach Learn (2009) 75: 91–127

algorithms have been proposed during the last decade (Mannila et al. 1997; Zaki 2000;
Garofalakis et al. 2002; Pei et al. 2002). Completeness and correctness are two main fea-
tures that must be satisfied by those algorithms. They actually have to extract all the frequent
patterns (completeness) and only these ones (correctness). There have been a lot of applica-
tions based on such techniques (see Han et al. 2002 for a survey). The first one, proposed
by Agrawal and Srikant (1995), concerned the discovery of customers’ behavior in super-
markets over time in the form of subsequences of purchases. That knowledge may be very
valuable for the marketing departments of companies. In the domain of manufacturing su-
pervision, sequence mining can be used to discover frequent patterns of alarms. It may help
supervisors while searching for defaults in a plant (Klemettinen et al. 1999). More recently,
in the domain of Web Mining (Kosala and Blockeel 2000), various systems have been de-
signed to make use of Web logs in order to model the behavior of Web users (Spiliopoulou
and Pohle 2001). In this paper, we present another possible application that consists of dis-
covering routes frequently used by car drivers in a town.

From a statistical point of view, a sequence mining process is always achieved on a fi-
nite sample set LS of sequences that has been drawn from an unknown target distribution.
For example, LS can be a set of English sentences, and the target distribution is the whole
English language of infinite size. It is important to note that in some domains, it can be dif-
ficult to collect a large dataset LS. The data acquisition could actually be expensive (in time
or money) to manage (that can be the case in molecular biology for example), or simply
impossible due to the limited number of cases that can be observed in the real world (for in-
stance the number of breakdowns of a system). In those cases, sequence mining algorithms
are almost always applied without any consideration of the underlying statistical distribu-
tion from which LS has been drawn. However, the smaller LS, the higher the risk to have a
large statistical bias. In other words, the algorithms make no assessment of the likelihood
that an extracted pattern is an artifact of the sampling rather than a consistent pattern in the
target distribution. The first contribution of our paper consists of taking into consideration
this problem by proposing a theoretical framework to verify under which constraints a se-
quence mining process is statistically relevant. We provide a lower bound on the number
of sequences needed to guarantee the discovery of significant knowledge. However, what
happens when this bound is not satisfied in a given application? To answer this question, we
examine in our second contribution a statistical view of sequence mining. Our motivation
is based on the following remark: if the number of sequences of LS is insufficient to satisfy
the lower bound, we can try to generalize them in the form of a probabilistic generative
model. In other words, such a generative model will not only be able to cover the examples
of LS but also it will enable other sequences to be represented. Probabilistic Deterministic
Finite state Automata (PDFA) and Hidden Markov Models are such probabilistic models that
can be used to generalize the sequences of LS. It can be theoretically shown (Dupont et al.
2005) that under certain conditions the two models are equivalent. In this article, we choose
to work on PDFA and we set the theoretical conditions to learn a good automaton to be used
in a sequence mining process.

Moreover, to take into account a current trend in sequence mining, we introduce con-
straints on the extracted frequent sequences. Actually, despite the use of a support thresh-
old, an unconstrained search can produce millions of patterns or may even be intractable.
A recent strategy consists of extracting frequent patterns under constraints such as length
and width restrictions, minimum or maximum gap between events, time window of occur-
rence (Zaki 2000), or regular expressions (Garofalakis et al. 2002) (see also Pei et al. 2002).
Moreover, as Zaki claims in (Zaki 2000), there exist many domains (such as bioinformatics)
where the user may be interested in interactively adding syntactic constraints on the mined

Mach Learn (2009) 75: 91–127 93

sequences. In this paper, we introduce two new constraints that we adapt to the specific
context of probabilistic automata. The first one consists of extracting only frequent patterns
which begin after prefixes of a given length. The second constraint is based on the assess-
ment of the statistical significance of the extracted frequent patterns. This constitutes the
core of our new paradigm of statistical sequence mining.

The numerous applications prove that sequence mining algorithms are useful tools for
discovering knowledge in various situations. Nevertheless, if the goal is to discover knowl-
edge from the observation of human behavior, we claim that these algorithms do not preserve
individuals’ privacy. For example, regarding the problem of discovering frequent sequences
of Web pages visited over time by users of a web site, the input data are, at least, the IP
address of the visitors and the Web pages they have browsed. This is a great breach to their
privacy and users might want their private information not to be logged on the servers. Con-
sidering another example, to study frequent routes in a town one could install many Web
cams and trace the route for each driver. This is obviously a nonacceptable breach to the
privacy of car drivers.

In this context, privacy preserving data mining has become an important subject of re-
search with a lot of possible real world applications. There is actually a great demand from
users, and more generally from society, that data miners preserve their privacy. For example,
considering the data generated by surveillance of frequent routes traversed by car drivers,
we may think about de-identifying images from Web cams (Newton et al. 2005); but this
is a costly solution. Moreover, installing a Web cam in every street of a town may lead to
opposition from people. Our third contribution, in this paper, is to show how PDFA-based
sequence mining provides a less costly solution for privacy preserving problems that may
be stated as flow control problems.

The rest of this paper is organized as follows. In Sect. 2, after having presented some
recent approaches that deal with the significance of the extracted patterns, we present a lower
bound on the number of sequences needed for a relevant sequence mining task. Section 3
introduces a statistical sequence mining framework by describing the way we can replace the
original set of sequences by a probabilistic automaton. Section 4 presents a theoretical and
experimental study on the conditions an inference algorithm must fulfill to guarantee the
construction of a good automaton that is useful for statistical sequence mining. Section 5
shows how to integrate new constraints in a PDFA-based sequence mining algorithm called
ACSM. Section 6 explains how using an automaton can offer a good solution for privacy
preserving data mining. Finally, we present a traffic simulator able to discover frequent
routes in a town. Besides the description of the system, we experimentally compare our
algorithm with a classical sequence mining algorithm.

2 Lower bound on the number of sequences

In this section, before detailing our lower bound, we present some related works dealing
with the significance of the extracted patterns.

2.1 Related work

In a sequence mining process, one extracts frequent patterns from a set LS of N sequences.
To achieve this task, one compares, for each tested pattern w, its observed frequency p̂(w)

to a given support threshold p0. The following decision rule is then applied: if p̂(w) > p0,
w is considered as frequent. As we mentioned in the introduction, the extracted patterns rep-
resent knowledge that may be very valuable in many applications. However, the exploitation

94 Mach Learn (2009) 75: 91–127

without any risk of this knowledge requires the assumption that LS has been correctly drawn
from an unknown underlying distribution. Although classical sequence mining algorithms,
such as SPAM (Ayres et al. 2002), SPADE (Zaki 2001) or GSP (Srikant and Agrawal 1996),
are correct and complete on LS, there is no guarantee that the extracted patterns actually
describe relevant information in the unknown distribution from which LS has been drawn.
In other words, some patterns may have been extracted due to chance alone (we will call
them false positives), while some true frequent patterns may have been overlooked because
of the sampling (called false negatives).

Let us describe in the following two main solutions that have been presented in the liter-
ature to control the significance of the extracted patterns.

2.1.1 Use of Chernoff bounds

Rather than directly comparing the observed frequency p̂ in LS with p0, a first solution
consists of bounding p0 in order to take into account the estimate error |p̂ − p| due to the
use of a sample LS of finite size, where p is the true probability of the pattern under the
unknown theoretical distribution.

A well-known nonparametric approach that deals with this problem is based on Chernoff
bounds that state that the estimate error between a random variable X observed on a sample
LS and its expected value E(X) according to a target distribution is lower bounded by ε,
such that

∀ε ∈]0,1[, P (|X − E(X)| ≥ ε) < e−2Nε2
. (1)

Let the observed frequency p̂ be the random variable X of inequality (1) computed from
LS, and p its expected value E(X) over the theoretical distribution, the Chernoff bounds can
be rewritten as follows:

P (|p̂ − p| ≥ ε) < e−2Nε2
. (2)

Inequality (2) can be used in different ways. First, given a size N , solving for ε this
inequality equal to a given probability provides a slack value of the support threshold p0.
On the other hand, given a value ε, solving for N inequality (2) equal to δ provides a lower
bound of the sample size N satisfying the estimate error ε. Despite its obvious advantages,
the use of the Chernoff bounds has a limitation. Indeed, the symmetry due to the absolute
value in inequality (2) indicates that the risk of a bad estimation p̂ is equally distributed
around p. In other words, the risk that a pattern occurs in LS less often than expected in the
theoretical distribution is equal to the risk that a pattern occurs more often than expected. In
this context, Chernoff bounds does not allow the distinction between the false positive rate
and the false negative one. This can be a problem in domains where both risks have to be
independently handled.

Recently, Laur et al. proposed in (Laur et al. 2007a, 2007b) an approach that not only
makes use of Chernoff bounds but also deals with both risks. The authors show how to only
extract true frequent patterns with a high probability while controlling the false negative rate.
Inversely, they show how to guarantee the extraction of all the true frequent patterns with a
high probability while limiting the false positive rate. Even if this approach is theoretically
well founded, the user has to choose the criterion he wants to optimize (the false positive
or false negative rate), that can be a tricky task in domains where both risk are definitely
undesirable.

Mach Learn (2009) 75: 91–127 95

2.1.2 Use of statistical tests

A second solution to check the relevance of a discovered pattern is to resort to statistical
tests. In this framework of statistical inference, one have to test a so-called null hypothesis
H0 against an alternativeone Ha . The standard approach in sequence mining consists of
defining H0 as the not interesting situation, and Ha as the situation of an important discovery.
Let us recall that when a test is performed, there are two kinds of possible risks of errors,
usually called α and β , as described in Table 1 (Megiddo and Srikant 1998). α represents
the risk of rejecting a correct null hypothesis and β is the risk of not rejecting a false null
hypothesis. Therefore, in our framework, α corresponds to the false positive rate, and β is
the false negative rate.

Megiddo and Srikant (1998) deal with the evaluation of the quality of association rules
extracted from a set of N transactions by using such a statistical test-based approach. They
consider association rules X ⇒ Y , where X and Y are sets of items. As a null hypothe-
sis, they assume that X and Y occur in transactions independently. Thus, they test the null
hypothesis H0 : p(X ∩ Y) = p(X) × p(Y) against the alternative one Ha : p(X ∩ Y) >

p(X) × p(Y), which, roughly speaking, means that a lot of transactions that contain X

also contain Y . They perform this statistical test exploiting the property that the observed
frequency of an itemset asymptotically follows a normal distribution. To reduce the risk
of accepting a false discovery (i.e. to reduce α), they increase the support threshold p0 by
zα × σp̂ , where σp̂ is the standard deviation of p̂ and zα is the (1 − α) percentile of the
normal distribution. Therefore, by a priori tuning α, they can control the false positive rate.
Nevertheless, using a small value for α results in the increase of the false negative rate β .

Recently, Webb (2007) presents two new approaches to applying statistical tests in pat-
tern discovery to assess the quality of a pattern. First, he suggests the splitting of the set
of sequences LS into an exploratory set, from which a pattern extraction is achieved, and a
holdout set used to assess the quality of each pattern. Despite promising experimental re-
sults, Webb does not provide any bound that enables both risks α and β to be reduced. He
also presents an approach based on the Bonferroni adjustment (Shaffer 1995) to take into
account the multiple testing issues. When a statistical test is applied many times during an
assessment, a special problem actually arises: for instance, if α corresponds to the risk of
taking a wrong single decision, repeating the test many times globally increases that risk
(Shaffer 1995). To overcome this drawback, several strategies have been proposed. A fa-
mous one is the Bonferroni adjustment that uses a risk α/n when performing n hypothesis
tests. However, if n is large, such adjustment turns out to be strict and leads to the increase
of the other risk β .

Another solution consists of using Holm procedure (Holm 1979) that takes into account
the p-value of each test and orders them to tune a less strict risk. Such a strategy is also used
in the BH procedure (Benjamini and Hochberg 1995) that aims to fix α while controlling β .
However, both of these adjustments require the computation of the p-values of the n tests
which depend on the current application.

Table 1 Risks of errors while
performing a statistical test Truth

H0 true Ha true

Decision Not reject H0 Correct decision β

Reject H0 α Correct decision

96 Mach Learn (2009) 75: 91–127

In the next section, we aim to provide a more general tool whatever the application we
deal with. We aim to define a relationship between the number N of sequences to mine
by a sequence mining algorithm and a priori fixed risks α and β . Therefore, we assume
that we do not yet have the sequences themselves before computing our bound. Note that
the theorem we present holds for any single pattern, but since our bound is a function of
α and β , it is obviously possible to apply strategies such as the Bonferroni adjustment to
overcome multiple testing issues. So, even if the multiple testing issues remain present, we
can consider that they are not directly in the scope of our proposed approach.

Before ending this section, note that other investigations have dealt with the assessment
of the statistical significance of patterns in data mining. They often use efficient statistical
tests (such as the Chi-square test and Fisher exact test) to statistically measure the level of
dependency between the components of a pattern. An often used strategy consists of veri-
fying if the extracted structure would also be discovered from other samples having same
margins (see Gionis et al. 2006 for example). Note that such nonparametric approaches are
interesting because they do not impose a condition on the nature of the underlying distribu-
tion. This can be useful when the approximation conditions (to the normal distribution, for
instance) are not fulfilled.

2.2 Lower bound on N

As defined before, p̂(w) is the proportion of sequences in the set LS that contain a pat-
tern w = 〈x1 · · ·xl〉 where x1, . . . , xl are (possibly nonconsecutive) symbols in the orig-
inal sequences of LS. For instance, w = AGT is a pattern which occurs twice in LS =
{ACGAT,CAGCT,AAG}. Therefore, in this case, p̂(AGT) is equal to 2

3 and has to be com-
pared to a support threshold p0; if p̂(w) > p0, w is then considered as frequent, otherwise it
is considered as nonfrequent. In this statistical context, p̂(w) is nothing else but an estimate
of the real probability p(w) (note that p(w) depends on the length of the sequences which
is also determined by the target distribution). Since p(w) is unknown, one can formulate
a hypothesis on its real value and achieve a statistical test. As usually done in the standard
approaches, we suggest to describe by the null hypothesis H0 the situation where p̂(w) is
not high enough to consider w as being frequent. As done in (Megiddo and Srikant 1998),
we suggest to keep the maximal value p0 that prevents w from being accepted as frequent.
Therefore, we test the null hypothesis H0: p(w) = p0, against the alternative one Ha , which
describes an interesting discovery, i.e. Ha : p(w) > p0.

Risk of errors α In our sequence mining context, α corresponds to the false positive rate, or
in other words, the probability to accept a false frequent pattern. For instance, with a support
threshold p0 of 10%, observing p̂(w) = 10.2% in LS does not mean that w is definitely
frequent in the target distribution. To be able to take a well-founded decision, we can a priori
fix α (usually 5%, but it can depend on the application we deal with), and then compute a
bound of rejection k, satisfying α. More formally,

α = P
(
p̂(w) > k|H0 true

)
. (3)

The number of sequences of LS that contain w is a binomial random variable with success
probability p(w). According to the number N of sequences and the support threshold p0,
we can use either the normal approximation or the Poisson approximation. In our context,
we aim to provide a theoretical bound on N that will be by nature quite large. Moreover,
since we are looking for frequent patterns, we can assume that p0 will be chosen to be

Mach Learn (2009) 75: 91–127 97

sufficiently large allowing us to use the normal approximation. Even if the use of the exact
binomial distribution or the Poisson approximation would also enable us to get a bound,
this would complexify the computation of that bound due to the discrete nature of these
distributions. Therefore, using the central limit theorem, we will consider in the following
that the proportion p̂(w) follows a normal distribution N , such that

p̂(w) ≈ N
(

p(w),

√
p(w)(1 − p(w))

N

)
.

Equation (3) can be rewritten

α = P

(
p̂(w) − p(w)
√

p(w)(1−p(w))

N

>
k − p(w)

√
p(w)(1−p(w))

N

|H0 true

)
. (4)

Since H0 is true, we have to replace p(w) by its value under H0. We get

α = P

(
p̂(w) − p0√

p0(1−p0)

N

>
k − p0√
p0(1−p0)

N

)
. (5)

We can then easily deduce the bound k which corresponds to the (1 − α)-percentile zα

of the normal distribution:

k = p0 + zα

√
p0(1 − p0)

N
. (6)

To recap, by fixing a risk α, (6) gives us the bound of rejection of H0. For example, let
us suppose we are mining N = 10000 sequences. We fix the support threshold p0 = 10%
and a risk α = 5% (zα = 1.645 by reading the table of the normal distribution). Plugging

these values in (6), we get k = 0.1 + 1.645 ×
√

0.1∗0.9
10000 = 0.105. Therefore, a pattern w with

a support p̂(w) = 10.2% will be in fact rejected in order to control the risk α of accepting
false positives.

Risk of errors β Regarding β , it describes the probability to reject a true frequent pattern.
In contrast to α, β can be calculated according to the computed bound k. Since Ha : p(w) >

p0 is true, we have to set a given value for p(w) satisfying the constraint p(w) > p0. Let pa

be this value (in practice, a threshold close to p0). We get

β = P (p̂(w) < k|Ha true). (7)

As previously done for α,

β = P

(
p̂(w) − p(w)
√

p(w)(1−p(w))

N

<
k − p(w)

√
p(w)(1−p(w))

N

|Ha true

)
. (8)

By replacing p(w) by its value under Ha , we get

β = P

(
p̂(w) − pa√

pa(1−pa)

N

<
k − pa√
pa(1−pa)

N

)
. (9)

98 Mach Learn (2009) 75: 91–127

Since k is known thanks to (6), the (1 − β)-percentile zβ is also known, and β can
be easily deduced from the normal distribution. To continue with our previous example
(assuming that N = 10000 sequences), let us suppose that pa = 11%, then β = 5.5% (by
reading the table of the normal distribution). Therefore, for a true support of 11%, the risk to
falsely accept the null hypothesis based on a finite sample of N = 10000 sequences is 5.5%.

The objective of a relevant sequence mining process is to reduce both risks α and β .
However, there exists a trade-off between them. Given a fixed number of sequences N , β

increases if one reduces α and vice versa. On the other hand, one can wonder how many
sequences are needed to not exceed a priori fixed α and β risks. We define here a lower
bound on N that answers this question.

Theorem 1 Let w be a pattern and LS a set of sequences independently drawn from a target
distribution D on which a sequence mining algorithm A is run. Let p0 ∈ [0,1] be the support
threshold used by A. Given α and β , two fixed parameters respectively corresponding to the
risk of extracting w from LS with A as being a false positive (resp. false negative) pattern.

To satisfy α and β , the minimal size Nlow of LS must be equal to

Nlow =
[

zβ

√
pa(1 − pa) + zα

√
p0(1 − p0)

pa − p0

]2

, 0 < p0 < pa < 1,

where zα (resp. zβ) is the (1 − α) percentile (resp. (1 − β) percentile) of the normal distrib-
ution and where pa ∈]p0,1] is the support threshold considered by the user for describing
a false negative pattern.

Proof The proof is straightforward. We can deduce from (9) that

k = pa − zβ

√
pa(1 − pa)

N
. (10)

Equating (6) to (10), we can deduce that

p0 + zα

√
p0(1 − p0)

N
= pa − zβ

√
pa(1 − pa)

N
. (11)

Extracting N from (11), we obtain the lower bound. �

Let us now describe the meaning of this bound. It is important to note that there is a direct
relationship between β and pa given a fixed number of sequences. Indeed, as described in
Fig. 1, pa is the expectation of p̂(w) under the alternative hypothesis Ha . β corresponds
to the density of the normal distribution beneath the bound k of rejection of H0. There-
fore, the farther pa is from p0, the lower the risk β . Since β and pa are parameters in our
lower bound, reducing both implies an increase of the needed number of sequences. The
same remark can be done between α and β . Reducing α for a given size N implies the in-
crease of β . Therefore, reducing both risks results in the increase of the required number of
sequences.

To illustrate this lower bound, the chart of Fig. 2 shows the evolution of Nlow according
to α, β , p0 and pa . For the sake of legibility we choose α = β . We plot two curves with two
different values of pa . We can note that the smaller pa − p0, the larger the lower bound.

Mach Learn (2009) 75: 91–127 99

Fig. 1 Trade-off between α

(light grey area) and β (dark grey
area). p0 (resp. pa) is the
expectation of p̂(w) under H0
(resp. Ha)

Fig. 2 Nlow according to α, β , p0 and pa

2.3 Illustration of our bound on a real and on an artificial example

In this section, we first illustrate the impact of our bound on a real world application. We
carried out a series of experiments on the ATIS (Air Travel Information Service) corpus.
This database consists of information requests performed in English. We have an original set
Ω of 14044 sentences from which we randomly draw samples LSi of increasing size |LSi |
(from 10 to 14044) and we extract frequent patterns with a support threshold p0 of 10%
with SPAM (Ayres et al. 2002). In this series of experiments, we assume that Ω represents
the underlying distribution of the samples LSi that we aim to estimate (usually, let us recall
that this one is unknown). In order to assess the effect of the size |LSi | on the quality of this
estimate, we have to be able to measure the empirical risks of α and β , that we will call α̂

and β̂ . α̂ is the observed proportion of patterns that have been extracted as frequent from
LSi while they are not frequent in the target population Ω . β̂ corresponds to the observed
proportion of patterns that are frequent in Ω but overlooked from LSi .

100 Mach Learn (2009) 75: 91–127

Fig. 3 Evolution of the quality of the results of a sequence mining algorithm according to an increasing size
of LSi

Figure 3 describes, according to an increasing size |LSi | of the sample set LSi and a
support threshold p0 = 10%, the evolution of 1 − α̂, usually called the precision. Figure 3
also shows 1 − β̂ , usually called the recall, that has been obtained using a value pa = 11%.
Note that we performed 15 trials, for each size |LSi |, and we computed the average in order
to reduce the variance of the results. As expected, the higher the number of sequences, the
smaller the computed risks α̂ and β̂ . We can also note that for small sizes of LSi (<1000)
both risks α̂ and β̂ are high (>10%) meaning that a lot of extracted patterns are not truly
frequent in Ω and many others have been overlooked. This example is a good illustration of
the bottleneck of standard sequence mining algorithms.

Since α̂ and β̂ can be empirically measured, they can be compared with the theoretical
risks α and β to verify the relevance of our bound. To achieve this task, let us compute Nlow

for given theoretical parameters α, β , pa and p0. For instance, let us set α = β = 5% (pa =
10% and pa = 11% being already fixed). Plugging these values in our bound yields the value
Nlow = 10165. If we observe from Fig. 3 the results obtained from 10165 sequences, we can
conclude that our bound is relevant because the two observed errors computed on the ATIS
database (α̂ = 2% and β̂ = 3%) actually do not exceed our a priori fixed theoretical risks α

and β .
Note that the difference between the observed and the theoretical rates can appear quite

substantial on this experiment even if it is on the “safe side”. In fact, the distance between
the observed and the theoretical risks directly depends on the sample LSi drawn from the
unknown target distribution. But since Nlow constitutes a lower bound needed, in the worst
case, to satisfy α and β , our theorem states that we never fall on the “unsafe side”. An
interesting perspective of this work would consist of taking into account some information
about the set LS (for example, the empirical distribution of the supports), to improve the
assessment of the theoretical bound and then reduce its pessimism in some situations.

To illustrate the use of our bound in a situation where the theoretical distribution is a
priori known, we used a simulated example in a second series of experiments. We generated

Mach Learn (2009) 75: 91–127 101

Fig. 4 Automaton corresponding to the Reber grammar

Fig. 5 Evolution of the quality of the patterns extracted from the Reber grammar

various databases from the Reber grammar (Reber 1967) whose target distribution is an
automaton made up of 8 states and an alphabet of 7 letters (see Fig. 4).

Note that such an automaton constitutes a theoretical distribution from which it is possi-
ble to compute the true probability p(w) of any pattern w, using suitable calculation meth-
ods (see the approach of Hingston 2002 for example, that will be detailed in the next part
of this paper). As done before, we can compute for given parameters α,β,p0 and pa our
lower bound Nlow and compare it with the observed rates α̂ and β̂ . Using again α = 5%,
β = 5%, p0 = 10% and pa = 11%, we obtain Nlow = 10165 sequences. By observing the
corresponding empirical risks on the curves of Fig. 5, we can note that they are smaller than
5%; therefore, once again, our theorem holds.

102 Mach Learn (2009) 75: 91–127

Despite its advantages, our lower bound might be difficult to reach in some domains.
This can be the case in biological or medical applications. For example, DNA sequences
are difficult and expensive to produce. Paradoxically, such domains are those which require
rigorous decisions because the results concern a problem of public health. To overcome
this drawback, one solution consists of generalizing the input sequences in the form of a
generative model in order to cover more examples than those of LS. To achieve this task,
we show in Sect. 3 that we can use Probabilistic Deterministic Finite state Automata (PDFA)
that also have the advantage to constitute a compact representation of the data. We will
investigate in Sect. 4 what is the statistical significance of a PDFA.

3 A graph-based statistical view of sequence mining

3.1 Related work

The use of a graph structure has already been exploited by Borges and Levene to extract
frequent patterns. In (Borges and Levene 1998), they define the concept of composite as-
sociation rule processed from a structured directed graph, built from the log files of a Web
site. They propose two algorithms to find trails in the graph with confidence and support
higher than given thresholds. In (Borges and Levene 1999), they use a more specific struc-
ture called Hypertext Probabilistic Grammar. They use Ngrams to reduce the history depth
and find user navigation patterns. They show (Borges and Levene 2004) how to use higher-
level Markov models in order to process a weighted automaton to discover frequent paths
of Web site users from log files. They use state cloning to duplicate states such that the
first-order probabilities induced by its out-links diverge significantly from the correspond-
ing second-order probabilities. They also present a clustering algorithm to identify the best
way to distribute a state’s in-link between the state and its clones. Nevertheless, all these
approaches only aim to discover sequential patterns made up of consecutive Web pages.
Dupont et al. (2006) present a method to extract relevant subgraphs between nodes of inter-
est with Hidden Markov Models. They use random walks to calculate those subgraphs by
considering the frequency of use of each edge. Here again, the extracted patterns are con-
nected components. To achieve a more general sequence mining task, an efficient tool should
be able to discover patterns made up of (potentially) non-consecutive elements. Hingston
(2002) proposes a first solution by modeling a set of sequences in the form of a probabilistic
deterministic finite state automaton (PDFA), from which frequent patterns are extracted. Let
us first recall some definitions about PDFAs before presenting Hingston’s method, which
constitutes the starting point of our approach.

3.2 Grammatical inference and PDFA

Modeling a sample of sequences by a PDFA can be viewed as a way to generalize this set.
Learning such a PDFA is one of the aims of grammatical inference (de la Higuera 2005)
which aims to infer a grammar from a set of examples (positive and negative, or positive
only). In other words, the objective is to find the language from which the set of sequences
has been generated. When the language is regular, it can be actually modeled in the form of
a PDFA. More formally, a PDFA can be defined as follows:

Definition 1 A PDFA A = 〈Q,Σ,q, q0,π,πF 〉 is a tuple where:

– Q is a finite set of states;
– Σ is the alphabet;

Mach Learn (2009) 75: 91–127 103

Table 2 Set of 15 sequences
built from the alphabet
Σ = {a, b, c}

ab bac baba abbac abbaab

ba abcc bacc abccc baabba

abc baab ababc babac babaabc

Fig. 6 PPTA corresponding to the sequences of Table 2

– q: Q × Σ → Q is a transition function;
– q0 is the initial state;
– π : Q × Σ → [0,1] is a probability function on the transitions;
– πF : Q → [0,1] is a probability function assigning to each state a probability to be final.

Suppose we have the set of 15 sequences presented in Table 2. Let us explain how we
can build a PDFA which generalizes these sequences.

Among the inference algorithms able to learn PDFA, ALERGIA (Carrasco and Oncina
1994) is probably the most famous one. Using the set of sequences of Table 2, the principle
of this algorithm is the following: ALERGIA first builds a probabilistic prefix tree acceptor
(PPTA) which exactly models the input sequences (see Fig. 6). For each sequence, there
is actually a unique path from the initial state 0, to a final state, symbolized by a double
circle. To illustrate Definition 1, Figure 6 shows a PDFA where Q = {0,1,2,3, . . . ,27},
Σ = {a, b, c}, q0 = 0, and for instance q(0, a) = 1, π(0, a) = 7

15 and πF (4) = 1
8 .

Each transition is characterized by a symbol and a probability, representing respectively
the emitted symbol and the proportion of sequences coming from the previous state and
following that transition. For instance, the transition from state 0 to 1 has a probability of 7

15
because among fifteen sequences entering in state 0, seven go to state 1. In this example, we
represent on each node, not only its number but also its probability to be final. For example,
state 3 has a probability of 1

7 to be final, that means among the seven sequences entering,
one ends in this state.

104 Mach Learn (2009) 75: 91–127

As we mentioned before, this automaton only models the set of sequences of Table 2.
Let us recall that for overcoming the drawback of sets of sequences whose size does not
exceed the lower bound Nlow, we suggest generalizing the initial sequences. To do so, or
in other words to avoid an overfitting phenomenon, ALERGIA works by state merging. It
means that states are chosen in a lexicographical order and if they are sufficiently “similar”,
according to a compatibility function, they are merged. This function tests if the frequencies
of each symbol outgoing from the two considered states are not statistically different. Based
on Hoeffding’s bound (Hoeffding 1963), this test decides that two states q1 and q2 can be
merged if and only if:

∀z ∈ Σ ∪ {#} |π(q1, z) − π(q2, z)| <
√

1

2
ln

(
2

α

)
×

(
1√

n(q1)
+ 1√

n(q2)

)
(12)

where α is a generalization parameter, n(q1) and n(q2) are respectively the number of se-
quences entering in q1 and q2, and # is the termination symbol of a sequence. Hoeffding’s
bound is also checked for the successors states of q1 and q2. In order to obtain a deterministic
automaton, other states have to be merged recursively. Let us explain this merging process
from the PPTA of Fig. 6. Considering the merge of states 0 and 3, suppose we carry out
Hoeffding’s test with α = 0.8. First, the Hoeffding’s bound is calculated:

√
1

2
ln

(
2

α

)
×

(
1√
n(0)

+ 1√
n(3)

)
=

√
1

2
ln

(
2

0.8

)
×

(
1√
15

+ 1√
7

)
= 0.43.

Then, for each letter z ∈ Σ ∪ {#}, we calculate the difference of frequencies |π(0, z) −
π(3, z)|. For z = a, we get |π(0, a) − π(3, a)| = | 7

15 − 1
7 | = 0.32 < 0.43. For z = b:

|π(0, b) − π(3, b)| = | 8
15 − 2

7 | = 0.25 < 0.43. For z = c: |π(0, c) − π(3, c)| = | 0
15 − 3

7 | =
0.42 < 0.43. For z = #: |π(0,#) − π(3,#)| = | 0

15 − 1
7 | = 0.14 < 0.43.

So states 0 and 3 can be merged, according to the compatibility constraint (see (12)).
Figure 7 shows the resulting automaton (we will explain later the calculation of the transition
probabilities, that is why we do not mention them in that figure).

We can note that this automaton is not deterministic because there are two transitions
from state 0 labeled with the letter b (q(0, b) = 5 and q(0, b) = 2) and two transitions from
state 0 labeled with the letter a (q(0, a) = 1 and q(0, a) = 6). So we need to merge the
arrival states 2 with 5 and 1 with 6. If the resulting automaton is not yet deterministic, the
merging process recursively continues to obtain the automaton of Fig. 8 (where the states
have been renamed).

Let us now explain how to compute the new transition probabilities of the resulting au-
tomaton. Let A′ = 〈Q′,Σ,q ′, q ′

0,π
′,π ′

F 〉 be the PDFA obtained after a given state merging
from the PDFA A = 〈Q,Σ,q, q0,π,πF 〉. Suppose that state S ′ ∈ Q′ is the result of the merge
of the set of states {Sj , Sj ∈ Q}, we can calculate the probabilities as follows:

π(S ′, z) =
∑

j n(Sj , z)
∑

j

∑
z′∈Σ∪{#} n(Sj , z′)

, ∀z ∈ Σ ∪ {#}, ∀S ′ = {Sj , Sj ∈ Q} (13)

where n(Sj , z) is the number of sequences outgoing from state Sj and following the transi-
tion labeled by the symbol z. Note that

πF (S ′) = π(S ′,#), ∀S ′ = {Sj , Sj ∈ Q}. (14)

Mach Learn (2009) 75: 91–127 105

Fig. 7 Merge of state 0 and state 3

Fig. 8 Result of the merging process of states 0 and 3 after several recursive merges and the renaming of
states

For example, state 0 of Fig. 8 is the result of the merge of states 0 and 3 of the automaton of
Fig. 6. In fact, during the merging process, the state 12 has also been merged with state 0 in
order to obtain a deterministic automaton, so we get:

π(0, a) = n(0, a) + n(3, a) + n(12, a)
∑

z′∈Σ∪{#} n(0, z′) + ∑
z′∈Σ∪{#} n(3, z′) + ∑

z′∈Σ∪{#} n(12, z′)

= 7 + 1 + 0

15 + 7 + 1
= 8

23
,

πF (0) = π(0,#)

= n(0,#) + n(3,#) + n(12,#)
∑

z′∈Σ∪{#} n(0, z′) + ∑
z′∈Σ∪{#} n(3, z′) + ∑

z′∈Σ∪{#} n(12, z′)

= 0 + 1 + 0

15 + 7 + 1
= 1

23
.

106 Mach Learn (2009) 75: 91–127

Fig. 9 New transition probabilities after the merge of states 0 and 3

Fig. 10 Final PDFA inferred by
ALERGIA from sequences of
Table 2

Following this principle, we calculate all the probabilities of the automaton of Fig. 8 to
obtain the PDFA of Fig. 9.

ALERGIA stops when no more merge is possible according to the compatibility function.
Figure 10 shows the resulting final PDFA. We can see that all sequences of Table 2 are
modeled by this PDFA, i.e. their parsing ends in a final state. Moreover, thanks to the merging
process we can note that this PDFA generalizes the data. In other words, it means that it can
represent other sequences that were not in the learning set (for instance, the sequence “ccab”
is also modeled). A PDFA also provides a compact representation of the data that can be
efficiently used in a sequence mining approach.

3.3 Estimation of pattern probabilities from a PDFA

If we aim to use a probabilistic automaton (learned from a set LS of sequences) to achieve a
relevant sequence mining task, it must enable us to correctly estimate the true probability p

of any pattern according to the distribution from which LS has been drawn. Hingston (2002)
proposed a method to compute such estimates from a PDFA. Since we are going to use and

Mach Learn (2009) 75: 91–127 107

then extend this approach, let us present the necessary background in the following section.
We will then present the conditions to learn a good PDFA able to provide good estimates.

3.3.1 Probability estimate of a symbol

Let A = 〈Q,Σ,q, q0,π,πF 〉 be a PDFA that has been learned (using for instance ALER-
GIA) from a learning set LS of sequences. To estimate from A the real probability p(x) of
sequences that contain a letter x, let P (S, x) be the probability that a path in A starting
from state S contains an x. This is ensured either if a path begins with an x (of probability
π(S, x)), or with some other symbol z ∈ Σ and is followed by a path starting at the next
state (given by q(S, z)) and containing an x. This can be written with the recursive formula:

P (S, x) = π(S, x) +
∑

z �=x∈Σ

(π(S, z) × P (q(S, z), x)) , (15)

that we can rewrite as follows:

P (S, x) = π(S, x) +
∑

T ∈Q

(∑

z �=x,q(S,z)=T

π(S, z)

)
× P (T ,x). (16)

If S = q0, P (S, x) represents the estimate of p(x). Computing P (S, x) requires handling
a system of linear equations that can be efficiently solved with matrix products. Let ρ(x) be
the matrix of components

ρS,T (x) =
∑

z �=x,q(S,z)=T

π(S, z).

ρS,T (x) simply describes the probability to use a transition different from x between states
S and T . Let P (x) (resp. π(x)) be the vector of values of P (S, x) (resp. π(S, x)), (16)
becomes:

P (x) = π(x) + ρ(x) × P (x) = (I − ρ(x))−1 × π(x), (17)

where I is the identity matrix. Let us take an example with PDFA of Fig. 10 and estimate
with P (q0, c) the unknown probability p(c) of sequences that contain the letter c. Vector
π(c) has the components π(0, c) = 0.23, π(1, c) = 0.0, π(2, c) = 0.0, π(3, c) = 0.26, so
we have

π(c) =

⎛

⎜⎜
⎝

0.23
0
0

0.26

⎞

⎟⎟
⎠ .

For matrices ρ(c) and (I − ρ(c))−1, we get

ρ(c) =

⎛

⎜⎜
⎝

0 0.23 0.31 0
1 0 0 0
0 0 0 1
0 0.21 0.16 0

⎞

⎟⎟
⎠

108 Mach Learn (2009) 75: 91–127

and

(I − ρ(c))−1 =

⎛

⎜
⎜
⎝

1.44 0.44 0.53 0.53
1.44 1.44 0.53 0.53
0.36 0.36 1.32 1.32
0.36 0.36 0.32 1.32

⎞

⎟
⎟
⎠ .

So we get,

P (c) =

⎛

⎜⎜
⎝

1.44 0.44 0.53 0.53
1.44 1.44 0.53 0.53
0.36 0.36 1.32 1.32
0.36 0.36 0.32 1.32

⎞

⎟⎟
⎠ ×

⎛

⎜⎜
⎝

0.23
0
0

0.26

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0.469
0.469
0.426
0.426

⎞

⎟⎟
⎠ .

We deduce that P (0, c) = 0.469.

3.3.2 Probability estimate of a pattern

Based on the same principle, one can estimate the probability p(w) of a pattern w =
〈x1 · · ·xl〉 made up of l symbols potentially nonconsecutive. Let F(S,T , x1) be the prob-
ability that a random path starting at state S and ending at state T contains exactly one
symbol x1 at the last position. Hingston uses similar reasoning as in P (x) to show that:

F(S,T , x1) =
⎧
⎨

⎩

∑
xj �=x1

(π(S, xj) × F(q(S, xj), T , x1)) + π(S, x1)

if q(S, x1) = T ,

0 otherwise.

(18)

One can rearrange (18) using a matrix γ (x1) of values

γ (S,T , x1) =
{

π(S, x1) if q(S, x1) = T ,
0 otherwise.

Writing F(x1) for the matrix of values F(S,T , x1), (18) becomes: F(x1) = γ (x1) +
ρ(x1) × F(x1) and as before, we deduce

F(x1) = (I − ρ(x1))
−1 × γ (x1).

Let us explain how to compute P (q0, 〈x1 · · ·xl〉) the estimate of the probability p(〈x1 · · ·xl〉).
First, focus on the case l = 2, i.e. P (S, 〈x1x2〉). Note that a sequence containing an x1 fol-
lowed later by an x2 can be divided into one part containing the first x1 in the sequence, and
the following part, which contains an x2. We can deduce that:

P (S, 〈x1x2〉) =
∑

T

F (S,T , x1) × P (T ,x2). (19)

Using a matrix form, we get P (〈x1x2〉) = F(x1) × P (x2). Generalizing this principle to l

symbols, we get

P (〈x1 · · ·xl〉) = F(x1) × · · · × F(xl−1) × P (xl). (20)

Mach Learn (2009) 75: 91–127 109

For example, with the PDFA of Fig. 10, we can estimate the probability p(〈cc〉) of sequences
containing the pattern 〈cc〉. To do so, we have to compute P (0, 〈cc〉). We need γ (c):

γ (c) =

⎛

⎜⎜
⎝

0.23 0 0 0
0 0 0 0
0 0 0 0
0. 0 0 0.26

⎞

⎟⎟
⎠

to calculate F(c):

F(c) =

⎛

⎜⎜
⎝

1.44 0.44 0.53 0.53
1.44 1.44 0.53 0.53
0.36 0.36 1.32 1.32
0.36 0.36 0.32 1.32

⎞

⎟⎟
⎠×

⎛

⎜⎜
⎝

0.23 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.26

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0.33 0 0 0.14
0.33 0 0 0.14
0.08 0 0 0.34
0.08 0 0 0.34

⎞

⎟⎟
⎠ .

So

P (〈cc〉) =

⎛

⎜⎜
⎝

0.33 0 0 0.14
0.33 0 0 0.14
0.08 0 0 0.34
0.08 0 0 0.34

⎞

⎟⎟
⎠ ×

⎛

⎜⎜
⎝

0.469
0.469
0.426
0.426

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0.21
0.21
0.18
0.18

⎞

⎟⎟
⎠ .

We deduce that P (0, 〈cc〉) = 0.21.
Although one can justify the use of a PDFA by its ability to generalize the set LS of

sequences, an important question remains: Is the learned PDFA a good generative model?
In other words, since we use ALERGIA, what are the conditions to iteratively achieve good
state merging? Hingston (Hingston 2002) does not deal with this problem. We provide a
formal answer to this question in the following section.

4 How to learn a good PDFA for sequence mining?

4.1 Theoretical results

In the grammatical inference literature, many papers deal with the learnability of regular
languages in the form of PDFA (see de la Higuera 2005 for a survey). All the formal results,
such as the identification in the limit (Gold 1978) or the PAC learnability (Valiant 1984),
give a theoretical framework to guarantee the learnability of PDFA from a set of sequences.
In both cases, the goal is to provide the conditions on the number of sequences to learn
a target concept. Rather than imposing such a strong constraint, we are interested in the
definition of a bound on the number of symbols ensuring that the risks of wrongly accepting
and rejecting a merge with ALERGIA are respectively bounded by two parameters α and β .

During the merging process of ALERGIA, the Hoeffding’s bound is applied to test the
compatibility of two states (see Sect. 3.2). The generalization parameter α, used in the test,
is nothing else but a Type I error of a test of estimation error. We can note that the Type II
error β is not used in that test. In other words, the only risk that is controlled by ALERGIA

is the risk to wrongly reject a good merge. In (Carrasco and Oncina 1994), a theoretical
result shows that at the limit, both α and β risks decrease with the increase in the number
of symbols. But, nothing is said about the minimal number of symbols, considered by the
merge, that guarantees some given risks α and β . We provide such a bound in this section.

110 Mach Learn (2009) 75: 91–127

Let us recall that two states q1 and q2 are merged in ALERGIA iff:

∀z ∈ Σ ∪ {#}

|π(q1, z) − π(q2, z)| <
√

1

2
ln

(
2

α

)
×

(
1√

n(q1)
+ 1√

n(q2)

)
.

π(q1, z) and π(q2, z) are estimates of true probabilities p(q1, z) and p(q2, z). To take
into account not only α but also β , we suggest the use of a test of proportions instead of the
Hoeffding’s bound to assess the compatibility of two states. Since a good merge occurs when
∀zp(q1, z) = p(q2, z), we test the null hypothesis H0: p(q1, z) − p(q2, z) = 0 against the
alternative one Ha : p(qi, z)−p(qj , z) > 0. Note that the direction of the test will depend on
the observed data. In other words, to have a one-tailed test, qi will be the state (q1 or q2) from
which the highest proportion of z is observed. More formally, i = arg maxk∈{1,2} π(qk, z).

If n(q1) > 15 and n(q2) > 15 it is common knowledge that π(qi, z) − π(qj , z) follows a
normal distribution:1

π(qi, z) − π(qj , z)

≈ N
(

p(qi, z) − p(qj , z),

√
p(qi, z) × p̄(qi, z)

n(qi)
+ p(qj , z) × p̄(qj , z)

n(qj)

)
,

where p̄(qk, z) = 1 − p(qk, z). Under H0, p(q1, z) = p(q2, z) = p(q, z). Since p(q, z) is
unknown, we can estimate it by π(q, z) such that:

π(q, z) = π(q1, z) × n(q1) + π(q2, z) × n(q2)

n(q1) + n(q2)
. (21)

Let α be the Type I error, i.e. the risk to refuse a good merge. This will be done if the
difference π(qi, z) − π(qj , z) exceeds a rejection bound k, over which it only remains α%
of the density of the normal distribution that satisfies H0.

α = P (Ha|H0) = P
(
π(qi, z) − π(qj , z) > k|H0

)
. (22)

Subtracting the mean p(qi, z) − p(qj , z) and dividing by the standard deviation√
p(qi ,z)×p̄(qi ,z)

n(qi)
+ p(qj ,z)×p̄(qj ,z)

n(qj)
, we obtain a centered and reduced variable Z that follows

the normal distribution N (0,1). Using the estimate of (21), we get

α = P

(
Z >

k
√

π(q, z) × π̄(q, z) ×
√

1
n(qi)

+ 1
n(qj)

)
, (23)

where π̄(q, z) = 1−π(q, z). Let β be the Type II error, i.e. the risk to accept a wrong merge.
Under Ha , p(qi, z) − p(qj , z) = pa > 0. We get:

β = P (H0|Ha) = P

(
Z <

k − pa√
π(qi ,z)×π̄(qi ,z)

n(qi)
+ π(qj ,z)×π̄(qj ,z)

n(qj)

)
. (24)

1For small numbers of sequences, we can use a Fisher exact test (Fisher 1922). See Sect. 5.2.2 for more
details.

Mach Learn (2009) 75: 91–127 111

From (23) and (24), it implies that:

k = zα × √
π(q, z) × π̄(q, z) ×

√
1

n(qi)
+ 1

n(qj)
(25)

and

k = pa − zβ ×
√

π(qi, z) × π̄(qi, z)

n(qi)
+ π(qj , z) × π̄ (qj , z)

n(qj)
, (26)

where zα (resp. zβ) corresponds to the (1 − α) (resp. (1 − β)) percentile of the normal
distribution.

Theorem 2 To ensure that the proportions of rejected good merges and accepted wrong
ones do not exceed respectively fixed risks α and β , the minimal number of symbols nlow on
which the merging process must be run is equal to

nlow = 1 + γ

p2
a

×
(

zα × √
π(q, z) × π̄(q, z) ×

√
γ + 1

γ

+ zβ ×
√

(γ × π(qi, z) × π̄(qi, z)) + π(qj , z) × π̄(qj , z)

γ

)2

,

where γ represents the observed ratio
n(qj)

n(qi)
> 0.

Proof The proof is straightforward. We replace n(qj) by γ × n(qi) in (25) and (26):

k = √
π(q, z) × π̄(q, z) × 1√

n(qi)
×

√
γ + 1

γ
× zα

= pa − zβ × 1√
n(qi)

×
√

(γ × π(qi, z) × π̄(qi, z)) + π(qj , z) × π̄(qj , z)

γ

⇔

pa = 1√
n(qi)

×
(

zα × √
π(q, z) × π̄(q, z) ×

√
γ + 1

γ

+ zβ ×
√

(γ × π(qi, z) × π̄(qi, z)) + π(qj , z) × π̄(qj , z)

γ

)
.

Extracting n(qi), we obtain the lower bound nlow(qi) on the number of symbols entering in
the state qi .

nlow(qi) = 1

p2
a

×
(

zα × √
π(q, z) × π̄(q, z) ×

√
γ + 1

γ

+ zβ ×
√

(γ × π(qi, z) × π̄(qi, z)) + π(qj , z) × π̄(qj , z)

γ

)2

.

112 Mach Learn (2009) 75: 91–127

The minimal number of symbols that must be concerned by the state merging is then nlow =
nlow(qi) + nlow(qj) = (1 + γ) × nlow(qi) that gives the lower bound. �

4.2 Example

Let us provide an example of the calculation of this bound. If we consider the part of a PDFA

of Fig. 11, let us assume we test the possible merge between states 1 and 2. Let us calculate
the number nlow of local symbols necessary to achieve a good merge.

Note that for each symbol a, b,# concerned by this merge (let us recall that # is a ter-
mination symbol of a string), we have to calculate the bound. We have π(1, a) = 70

140 and
π(2, a) = 63

129 . Let us fix pa = 0.15 and α = β = 5%, so zα = zβ = 1.64 (looking at the table
of the normal distribution). The calculation of (21) for the letter a gives

π(q, a) = π(1, a) × n(1) + π(2, a) × n(2)

n(1) + n(2)

=
70

140 × 140 + 63
129 × 129

140 + 129
= 133

269
.

As γ = 129
140 = 0.92, we get:

nlow = 1 + γ

p2
a

×
(

zα × √
π(q, a) × π̄(q, a) ×

√
γ + 1

γ

+ zβ ×
√

(γ × π(1, a) × π̄(1, a)) + π(2, a) × π̄(2, a)

γ

)2

= 1 + 0.92

0.152
×

(
1.64 ×

√
133

269
× 136

269
×

√
0.92 + 1

0.92

+ 1.64 ×
√

(0.92 × 70
140 × 70

140) + 63
129 × 66

129

0.92

)2

= 207.

For b and # we obtain respectively the lower bounds 207 and 79. So we can decide that
states 1 and 2 deserve to be merged because n(1) + n(2) = 269 that satisfies the three lower
bounds 207, 207 and 79.

Fig. 11 States 1 and 2 within a
PDFA are candidates to be
merged. There are 4 sequences
that end in state 1 and 6
sequences in state 2

Mach Learn (2009) 75: 91–127 113

4.3 Experimental validation

To assess the efficiency of our lower bound nlow we carried out the following series of
experiments: We used the Reber grammar (Reber 1967) to sample sets of sequences LSi of
increasing sizes. For each of them, we learned two PDFA:

– A first one inferred by ALERGIA and its standard Hoeffding’s bound.
– A second one learned from a modified version of ALERGIA, combining the Hoeffding’s

bound and our lower bound nlow (using α = β = 5%). This means that the two bounds
must be satisfied to accept a state merging.

From these automata, we respectively computed PH (q0,w) and PH+nlow(q0,w) for all the
patterns w of 1, 2 and 3 symbols, i.e. ∀w ∈ (Σ ∪ {λ})3 (where λ is the empty symbol), and
compared them with the true probability p(w) calculated from the target distribution (i.e.
the Reber grammar). On the other hand, we computed the observed proportions p̂(w) of
each pattern directly from the sets LSi , and we also compared it with p(w). Let us recall
that p̂(w) is the information used by the classical sequence mining algorithms. Figure 12
shows the normalized average difference between the estimated and the true probabilities.
Two main remarks can be made:

– First, the two curves concerning the use of a PDFA converge toward 0; this means that
with an increasing number of sequences LSi , the number of symbols concerned by the
state merging obviously also increases, leading to better decisions during the merging
process. However, Hoeffding’s bound alone is not sufficient, and a joint use with our
theoretical bound nlow allows to avoid wrong decisions, particularly when the number of
symbols is not large. In these cases, the test of our bound often leads to the rejection of
wrong state merging resulting in better estimates.

– Second, the curve drawn from the sequences of LSi also decreases. However, the esti-
mates computed from the PDFA with our lower bound are always better than those cal-
culated from the sequences themselves. It confirms that PDFA-based sequence mining

Fig. 12 Average difference between P(q0,w) and p(w) on the Reber grammar

114 Mach Learn (2009) 75: 91–127

approach can constitute a good alternative to standard algorithms, whatever the number
of sequences.

5 Constrained sequence mining

The use of constraints is one of the current trends in sequence mining. Length and width
restrictions, minimum or maximum gap between elements, time window of occurrence, or
regular expressions (Zaki 2000; Garofalakis et al. 2002; Pei et al. 2002) are used to re-
duce the (potentially huge) number of extracted frequent patterns. We present two types of
PDFA-based constraints. The first one (Sect. 5.1) is directly devoted to reduce the number
of extracted patterns. Only patterns that occur in the PDFA after prefixes of a given length
are extracted. The second constraint we present only extracts the frequent patterns that are
statistically significant. In other words, we provide in this section the last statistical tool
that helps the user to extract true knowledge. Actually, let us suppose that neither the lower
bound Nlow (Sect. 2), nor the lower bound nlow (Sect. 4) has been satisfied. Are we still able
to extract significant knowledge from the automaton? We provide a solution to this problem
in Sect. 5.2.

5.1 Prefix length constraint

We introduce a constraint which enables us to discover patterns satisfying a given prefix-
length. This can be mainly interesting in domains where the location of the patterns in the
sequence expresses their meaning. It is the case, for instance, in bioinformatics, for the
transcription factor binding sites. Let us now explain the computation of the probability of
such constrained patterns. Let P (S, x, θ) represent the proportion of sequences containing
an x (maybe not the first one) at a distance θ from state S. Let P (S, x, θ) be a component of
the vector P (x, θ). For example, from Fig. 10, if we are looking for the proportion P (0, a,2)

of sequences containing an a at a distance two, we can establish that:

P (0, a,2) = π(0, a) × π(1, b) × π(0, a) + π(0, c) × π(0, c) × π(0, a)

+ π(0, c) × π(0, b) × π(2, a) + π(0, b) × π(2, a) × π(3, a)

= 0.23 × 1.0 × 0.23 + 0.23 × 0.23 × 0.23

+ 0.23 × 0.31 × 1.0 + 0.31 × 1.0 × 0.21

=
∑

z∈Σ

π(0, z) × P (q(0, z), a,1) = 0.201.

By observing the original sequences of Table 2, we can note that the proportion of sequences
that contain a in the third position is 3

15 = 0.2.
Generalizing, we get:

P (S, x, θ) =
∑

z∈Σ

π(S, z) × P (q(S, z), x, θ − 1) (27)

=
∑

T ∈Q

(∑

z,q(S,z)=T

π(S, z)

)
× P (T ,x, θ − 1). (28)

Mach Learn (2009) 75: 91–127 115

Let τS,T = ∑
z,q(S,z)=T π(S, z) be the probability to use one transition between states S

and T . Using the values τS,T , we get:

P (S, x, θ) =
∑

T ∈Q

τS,T × P (T ,x, θ − 1). (29)

Let P (x, θ) be the vector of values of P (S, x, θ), (29) becomes: P (x, θ) = τ ×P (x, θ − 1).
This is a geometric series of common ratio τ (the matrix of values τS,T) and first term
π(S, x). Plugging π(x) in P (x, θ), we get:

P (x, θ) = τ θ × π(x). (30)

It is possible to generalize P (S, x, θ) to P (S,w, θ), the probability to encounter any pat-
tern w at a distance θ from state S. Let us focus on the case w = 〈x1x2〉 i.e. P (S, 〈x1x2〉, θ).
We can represent the position θ of the pattern w by the position of its first letter. Note that a
sequence containing an x1 at the position θ followed later by an x2 can be divided into one
part containing the x1 at position θ in the sequence, and the following part which contains
an x2. Let F(S,T , x1, θ) be the probability that a random path starting at state S and ending
at state T contains the symbol x1 which is the θ th symbol on the path.

As done in Sect. 3.3 we can show that:

F(S,T , x1, θ) =
∑

z∈Σ

π(S, z) × F(q(S, z), T , x1, θ − 1) (31)

=
∑

R∈Q

(∑

z,q(S,z)=R

π(S, z)

)
× F(R,T , x1, θ − 1). (32)

Using the values τS,T previously defined, we get:

F(S,T , x1, θ) =
∑

R∈Q

τS,R × F(R,T , x1, θ − 1). (33)

Writing F(x, θ) the vector of values of F(S,T , x, θ), (33) becomes: F(x, θ) = τ × F(x,

θ − 1). This is a geometric series of common ratio τ and first term γ (x) (see (18)). We get

F(x, θ) = τ θ × γ (x). (34)

We can deduce that

P (S, 〈x1x2〉, θ) = F(x1, θ) × P (x2). (35)

Generalizing this principle to l symbols, we get

P (〈x1 · · ·xl〉, θ) = F(x1, θ) × F(x2) × · · · × F(xl−1) × P (xl). (36)

We could think that this prefix length constraint could sometimes be too strong. Actu-
ally, we mentioned that it could be used in bioinformatics. It is known that, in DNA se-
quences, mutations can occur, so the search for a pattern at a fixed position could be irrel-
evant. In order to relax this constraint, we introduce the stack variable ε that enables the
discovery of patterns at position θ ± ε. Using the previous formulas, we can easily show

116 Mach Learn (2009) 75: 91–127

that:

P (〈x1 · · ·xl〉, θ ± ε)

= P (〈x1 · · ·xl〉, θ) +
ε∑

i=1

(P (〈x1 · · ·xl〉, θ + i) + P (〈x1 · · ·xl〉, θ − i)). (37)

5.2 Statistical significance of a pattern

Our aim is to use the values P (q0, 〈x1 · · ·xl〉) to assess the statistical significance of a fre-
quent pattern. If the theoretical bounds presented in the previous sections are satisfied in a
given application, the problem is definitely solved and the frequent patterns extracted from
the PDFA are proved to be likely true knowledge. However, what happens if these bounds are
not satisfied (for instance, nlow is not always verified during the state merging process)? We
define the concept of statistical significance of a pattern. Since tuning the support threshold
is a tricky task, we constrain, using two statistical tests, a sequence to be not only frequent
but also statistically significant.

5.2.1 Proportion constraint

The first test verifies an absolute condition: a pattern w = 〈x1 · · ·xl〉 must cover a significant
part of the probability density of all sequences. To fulfill this constraint, we apply a propor-
tion test (called PROP_TEST) that aims to verify if P (q0,w) (the estimate of p(w)) is high
enough. To do this, we test the null hypothesis H0: p(w) = 0, against the alternative one Ha :
p(w) > 0. If the number of sequences N is large enough (> 30), P (q0, 〈w〉) asymptotically
follows the normal distribution. Let us determine the threshold k which defines the bound
of rejection of H0, and which corresponds to the (1 − α1)-percentile zα1 of the distribution
of p(w) under H0. We can show that

P (P (q0,w) > k) = α1 iff k = zα1

√
P (q0,w)(1 − P (q0,w))

N
.

We then get the decision rule: if P (q0,w) > k, the proportion constraint on w is satisfied.
For example, using the sequences of Table 2, let us consider the pattern cc. In Sect. 3.3.2

we showed that P (0, 〈cc〉) = 0.21. Fixing α1 = 5%, we get:

k = 1.64 ∗
√

0.21 ∗ (0.79)

15
= 0.172.

P (q0, 〈cc〉) = 0.21 > 0.172 so the proportion constraint on cc is satisfied.

5.2.2 Dependence constraint

We also impose a relative condition; we test if there exists a statistical dependence between
w and w′ = 〈x1 · · ·xl−1〉. Roughly speaking, this dependence is satisfied if the majority of
the sequences that contain w′ also contain w = w′.〈xl〉, where “.” is the concatenation func-
tion. This dependence can be assessed by analyzing the nature of xl occurring after w′. We
generate an output vector

−→
Vout of dimension |Σ ∪ {#}|. Each component

−→
Vout(i) is the ex-

pected number of sequences that have the symbol zi ∈ Σ ∪{#} which follows the pattern w′.
It means that

−→
Vout(i) = P (q0, 〈x1 · · ·xl−1zi〉) × N . We arrange the components of

−→
Vout in a

Mach Learn (2009) 75: 91–127 117

Table 3 2 × 2 contingency
table. The objective of the Fisher
exact test is to verify if −→

Vin and−−→
Vout are realizations of the same
random variable. We assume here
that Σ = {xl, xl′ }; but this can be
extended to larger alphabets

Total

−→
Vin N × P(q0,w′) 0 L1−−→
Vout N × P(q0,w′.〈xl〉) N × P(q0,w′.〈xl′ 〉) L2

Total C1 C2
C1 + C2 +
L1 + L2

lexicographical order. Our goal is to test the dependence between
−→
Vout and an input vector

−→
Vin

(ordered as
−→
Vout) for which only one component is not null, corresponding to the expected

number of sequences that contain the pattern w′. To do so, we consider the H0 hypothesis
that

−→
Vin and

−→
Vout are both a realization of the same multinomial random variable. Since some

components of
−→
Vin are null, we cannot use the Pearson statistics (Pearson 1900). However,

we can use a Fisher exact test (called FISHER_TEST). Let us explain the principle of this
test.

Given the two vectors
−→
Vin and

−→
Vout and their components summarized in the contingency

table of Fig. 3 (to simplify we consider a 2 × 2 contingency table but this can be extended
to 2 × |Σ | tables). The Fisher exact test enables us to compute the probability of all the
contingency tables that have the same marginal counts (C1, C2, L1, L2) and that are at least
unfavorable to H0. Fisher (1922) showed that the probability of such contingency tables
are given by a hyper-geometric distribution. If the sum of the probabilities of the previous
matrices is smaller than a given risk α2, H0 is accepted, and then the dependence constraint
is verified.

By combining the proportion and dependence constraints, we can now define a frequent
and significant pattern.

Definition 2 A pattern w = 〈x1 · · ·xl−1xl〉 is frequent and significant iff (i) P (q0,w) is
higher than a support threshold p0, (ii) the proportion constraint on P (q0,w) is satisfied
with a risk α1 and (iii) the dependence constraint between w and w′ = 〈x1 · · ·xl−1〉 is satis-
fied with a risk α2.

5.3 The ACSM algorithm

Combining our two constraints we presented so far, we suggest a new constrained sequence
mining algorithm. The objective is to discover from a PDFA all the frequent and significant
patterns, according to a support threshold p0 and two statistical risks α1 and α2. The pseudo-
code of our ACSM algorithm (Automata-based Constrained Sequence Mining) is presented
in Algorithm 1. From lines 2 to 9, it initializes a set of significant frequent patterns composed
of only one symbol. Since no pattern has been extracted yet, only the support test (line 4)
and PROP_TEST (line 5) are run. The paths of the PDFA that do not satisfy these two tests
will not be studied anymore, that allows us to prune the search space. The second part of
ACSM tests if additional symbols can be added to generate larger frequent and significant
patterns. Three conditions must be satisfied: the support test (lines 18), PROP_TEST (line
19) and FISHER_TEST (line 21). The boolean function MERGE(w,w′) (line 16) returns true
if the n − 1 last symbols of w are identical to the n − 1 first ones of w′. This ensures that
all the subsequences of the resulting pattern v = w.〈x ′

n〉 (line 17) are already frequent and
significant. In this version of the algorithm, we do not include the prefix length constraint for
the sake of understandability. To do this we would simply have to introduce new parameters
θ and ε, and replace the calculation of P (q0, v) by P (q0, v, θ) in lines 5, 18 and 19.

118 Mach Learn (2009) 75: 91–127

Algorithm 1 Pseudo-code of ACSM

6 PDFA-based sequence mining: an original solution to privacy preservation

We present in this section our last contribution. Until now, we assumed that we had a set
of sequences LS from which a PDFA is learned to model a regular language. The interest
of such an approach is to represent more sequences than those of LS and to provide a com-
pact representation of the data which can be understandable and from which a sequence
mining task can be efficiently done. Another important advantage of such a PDFA-based
representation is its potential exploitation when we do not want to (or we cannot) have
access to the original sequences. Actually, as we mentioned in the introduction, privacy
preservation is a new trend in sequence mining. It consists of the preservation of specific
characteristics of the data. As stated in (Verykios et al. 2004), the main objective in privacy
preserving data mining is to develop algorithms for modifying the original data in some
way, so that the private data and private knowledge remain private even after the mining
process. A huge number of papers have been published in that domain during the last five

Mach Learn (2009) 75: 91–127 119

years, for example (Agrawal and Srikant 2000; Sweeney 2002; Evfimievski et al. 2004;
Bayardo and Agrawal 2005), proposing different types of methods like data distribution or
data modification in order to hide sensitive data.

We think that PDFA-based sequence mining, as presented in this paper, provides a very
promising solution to privacy preservation for problems that may be stated as flow control
problems. In order to take care of the sensitivity of a set of sequences, so as to preserve
the privacy of the data, we can extract frequent sequences from a PDFA without having any
information about the original data. The crucial question that remains is the following: How
can we directly have a PDFA without learning it from sequences? Let us give two real world
examples on which we can apply our PDFA-based approach for privacy preservation.

The first one concerns mining of Web sites. In that case, the states of the automaton are
the pages of the site and transitions are the hyperlinks between pages. The weight assigned
to each transition corresponds to the number of users who clicked on the corresponding
hyperlink and the weight of each state is the number of times users left the web site from
the corresponding page. We do not need anymore users’ IP address and the Web pages they
visited, but only counters on each transition and state. This allows us to find frequent paths
within web site structures, without knowing the identity of users who take those paths.

The problem of discovering frequent routes in a town can also be directly achieved from
an automaton. As we already mentioned, installing Web cams and tracing the routes of each
driver is obviously a nonacceptable breach to their privacy, even using an anonymization
process of the inputs. A PDFA-based approach overcomes this drawback. Actually, consid-
ering a map of a town, the non-initial and non-final states can model the crossroads. The
initial and final states respectively represent the entry and exit gates in the map. The tran-
sitions model the streets. The weights are computed by using counters on the transitions
and on the final states (the other states having a null counter), that is easier to obtain than
sequences. For each car, we do not need anymore its license plate and the streets it traverses,
and thus we do not have to put in cameras to follow each car. Despite the fact we do not
have the individuals’ routes, we are able with ACSM to extract significant frequent paths
(potentially with gaps).

However, an important problem occurs when attempting to preserve individual privacy
using a PDFA. So far, we provided theoretical conditions on the number of sequences or
symbols to guarantee the relevance of an automaton. In this new context of privacy preser-
vation, we do not have access anymore to the sequences themselves. Therefore, are we still
able to assess the quality of the PDFA? We answer this question in the following section.

6.1 Assessment of the quality of a PDFA in the context of privacy preservation

In the best case, the transitions of the PDFA are described by the number of times they
have been used by the sequences; this is the case in the two previously cited examples,
i.e. web sites and road traffic. In such cases, knowing the number of times a transition has
been used between two states and the number of times the outgoing transitions have been
followed, we are able to compute the number N of sequences from whom the PDFA has been
built. To assess the quality of the PDFA, we could suggest a comparison between N and the
theoretical bound Nlow presented in Sect. 2. However, Nlow has been originally provided to
assess the quality of a sequence mining algorithm. Even if we can think it also provides a
good condition to assess the quality of the PDFA, this is not entirely satisfying.

In the worst case, no counts are available for the transitions in the PDFA but only prob-
abilities; hence the number of sequences cannot be deduced and Nlow cannot be computed
to assess the quality of the PDFA. To overcome this drawback, we suggest in the following

120 Mach Learn (2009) 75: 91–127

Fig. 13 Average difference
between P(q0,w) and p(w)

the exploitation of another piece of information that can be extracted from the PDFA: the
expected size of the sequences.

6.1.1 Effect of the length of the sequences on the quality of the PDFA

It is common knowledge in grammatical inference that the length of the sequences has a
direct impact on the convergence of the inference algorithms. This can be explained by the
fact that a PDFA has difficulties to model long time dependencies (Callut 2007) because it is
based on the Markov property. Moreover, the larger the length of the sequences, the higher
the overfitting risk of the inference grammatical algorithm. Without any information about
the number of sequences, we show in this section that we are able to compute the expected
length of the sequences modeled by a PDFA. We show that it provides good information
about the quality of the model. In other words, the shorter the length, the more confident in
the PDFA we are. Let us start from an experimental study.

We sample several sets of sequences of different lengths (5, 10 and 30 letters). As we did
in Sect. 4, Fig. 13 shows the average difference between the estimated and the true proba-
bilities for different types of patterns. We note that the smaller the length of the sequence,
the better the estimates. In this context, it seems to be very interesting to have an estimate of
the expectation of the length of the sequences to assess the quality of the PDFA.

6.1.2 Expectation of the length of the sequences

Let l be the length of a given sequence accepted by a PDFA (i.e. ending in a final state). l is
a random variable whose expected value is equal to:

E(l) =
∞∑

δ=0

δ × P (l = δ), (38)

where P (l = δ) is the probability of a sequence to have δ letters. Since the PDFA is not
learned from the sequences in this case, P (l = δ) is unknown, but it can be estimated by
P (q0, l = δ). In Sect. 5.2 we have defined τS,T = ∑

z,q(S,z)=T π(S, z) as the probability to
use one transition between states S and T . The probability to have a sequence of δ letters

Mach Learn (2009) 75: 91–127 121

is the probability to use any transition and then to have a sequence of δ − 1 letters. We can
establish that:

P (S, l = δ) =
∑

T ∈Q

τS,T × P (T , l = δ − 1). (39)

This is a geometric series of common ratio τ and first term P (S, l = 0) = πF (S). So we
get

P (l = δ) = τ δ × F, (40)

where F is the vector of values of πF (S). Using (38) we deduce that:

Ê(l) =
∞∑

δ=0

δ × τ δ × F. (41)

Let us provide an example to show that (41) gives a correct estimation of E(l). From the
set of sequences of Table 2, we deduce that E(l) = 65

15 = 4.33. Applying the formula (see

(41)), from the PDFA of Fig. 10, we obtain that Ê(l) = 4.311, very close to E(l) despite
a small number of sequences (N = 15). We now have all the tools to verify if a PDFA is
good enough to be mined in a context of privacy preservation. We present in the following
a whole system able to extract frequent routes in a town without any information about the
car drivers.

6.2 Car flow modeling

In order to bring to the fore the interest of our approach in a context of privacy preservation,
we built an application based on road traffic called TRAFFIC MINER. This software allows
us to download a given map and model it with a graphical interface in a graph form: one-
way and two-way roads as transitions of the PDFA, entry gates, exit gates and crossroads
respectively as initial, final and other states. Figure 14 describes an example of use of our
software on a map of Arlington, near Washington. On each street, we put a counter to get the
number of cars going through it (for example, 316 cars between states 15 and 17). Some of
these counters are devoted to compute the number of cars which leave the map (representing
final states). When the map is modeled, we can simulate the traffic by generating a random
flow of cars. At any moment, we can stop the flow and get a PDFA A = 〈Q,Σ,q,π,πI ,πF 〉
modeling the target distribution of drivers’ behavior where:

– Q is the set of crossroads, and enter and exit gates,
– Σ is the set of street names,
– q: Q × Σ → Q defines a transition, i.e. a street between two crossroads
– π : Q × Σ → [0,1] associates a probability to each pair (S,z), i.e. the probability to leave

the crossroad S taking the street z,
– πF : Q → [0,1] associates to each final state (i.e. the exit gates) a non-null probability

πF (S) to leave the map taking the gate S,
– πI : Q → [0,1] associates to each initial state (i.e. to entry gates) a non-null probability

πI (S).

According to Definition 1, a PDFA must have only one initial state to be deterministic. In our
case, despite the fact that we have several initial states (entry gates), the determinism is not
challenged. This is because there does not exist two paths, starting from two initial states,
that use the same transition (street). To simulate the road traffic, a multinomial distribution
is applied on the entry gates, and others are used on each crossroad to simulate the routes.

122 Mach Learn (2009) 75: 91–127

6.3 Interest of a car flow modeling

From this PDFA, we can run ACSM to extract patterns that may be very interesting in many
domains. First, it may be efficiently used in road traffic regulation. By finding frequent paths
taken by the same cars, one could locate places in the map which would deserve some mod-
ifications (traffic circles, traffic lights, etc.) to make the traffic more fluid. For example, in
Fig. 14, we can locate on the top right corner a place where the traffic is very heavy (streets
with a dark color). Second, it could be used to simulate a new traffic organization (modifica-
tion of street directions, creation of new one-way streets, etc.) to avoid traffic jams. Finally,
it could be useful in campaign advertising. Note again that a frequent and significant pattern
w = 〈x1x2〉, extracted with our model, would express that the majority of cars taking the
street x1 will probably also take later the street x2. This is determined without any infor-
mation about the individual trail of the drivers. This is the case of the pattern composed of
the street between states 15 and 17 and the street between states 20 and 28 in Fig. 14. Our
system is able to discover that those who take the first street will probably also later take the
second one.

In practice, many reasons can explain the gap in this pattern. Some people can take the
street between states 17, 18, 11 and 20 to leave their children at school. Others can prefer
to take the street between states 17, 18 and 20 which constitutes the shortest route. Finally,
a last category of people can take the street between states 17, 13, 10, 11 and 20 to avoid
traffic jams. But at the end, all the drivers meet together in the street between states 20 and
28. This kind of information could for example help an advertising agency to find the best

Fig. 14 Traffic Miner run on a map of Arlington (USA)

Mach Learn (2009) 75: 91–127 123

strategic position for billboards: either repeating the same message to increase the effect of
the advertisement or putting different ones.

6.4 Experimental results

6.4.1 Effect of the constraints

Let us now evaluate the individual effect of our constraints on the number of extracted
patterns. Fixing the prefix length θ = 0, the charts of Fig. 15 and Fig. 16 show the effects
of the significance constraints. We tested the influence of PROP_TEST without incorporating
FISHER_TEST (first chart, fixing α2 = 100%) and reciprocally (second chart, fixing α1 =
100%). Of course, we can note that the stronger these constraints, the more the number of
patterns decreases. Moreover, we can note that the more the support p0 increases, the more
the relevance constraints become obviously useless. The chart of Fig. 17 shows the influence
of the prefix length constraint θ . Here, θ could be useful to extract patterns in the city
center (for instance to build pedestrian precincts) that would avoid obtaining patterns at the
periphery of the map. We can see that strengthening this constraint (for a given configuration
of p0, α1 and α2) leads to extracting a decreasing number of patterns.

Fig. 15 Effect of the proportion
constraint on the number of
patterns

Fig. 16 Effect of the
dependence constraint on the
number of patterns

124 Mach Learn (2009) 75: 91–127

Fig. 17 Effect of Prefix length
constraint on the number of
patterns

Fig. 18 Comparison of the time
complexity between SPAM and
ACSM

6.4.2 Experimental comparison with SPAM

Since we do not use the original data, a comparison with other sequence mining algorithms
seems more difficult. To overcome this drawback, we sampled sequences from the PDFA and
tried to find the same patterns with SPAM. The experimental setup was the following.

We simulated a flow of cars in our map, and we stopped it to get the PDFA. We run
ACSM to extract the patterns (here, without constraints to allow us the comparison with
SPAM). We measured the time complexity (called ACSM time). Note that we do not take into
account the time concerning the construction of the PDFA, since this one is not learned and is
directly provided by the application. Directly used on a PDFA, ACSM does not depend on the
number of sequences that explains its constant time in Fig. 18. From the PDFA, we sampled
many sets of sequences (from 100 to 35000 sequences). From each sample, we ran SPAM to
extract a second set of frequent patterns. Both of the algorithms were run with p0 = 10%.
We computed also the time complexity of SPAM by taking into account the sampling time
and the mining time (SPAM time). The objective is to determine the minimal size of the set
of sequences required to obtain with SPAM the same patterns as ACSM. The chart of Fig. 18
describes the behavior of the two methods. While ACSM has a constant time complexity,
the one of SPAM increases with a growing size of the set of sequences. Moreover, since the

Mach Learn (2009) 75: 91–127 125

weighted graph representing the map and the traffic models the target distribution of drivers’
behavior, the frequent patterns extracted by ACSM are truly frequent. To study the strength
of ACSM with respect to SPAM, we added a curve (Cover) on this chart corresponding to
the proportion of true frequent patterns extracted by ACSM (we are not here interested in
the false frequent patterns) which have also been extracted by SPAM. We can observe that
SPAM needs a large number of sequences to approximate the results of ACSM. We can also
note that once the size of the set is sufficiently large, about 10000 examples, almost all the
frequent patterns extracted from the PDFA are covered by the frequent patterns founded by
SPAM (about 96%). But in this case, the cost of SPAM from a time standpoint is higher than
the one of ACSM.

7 Conclusion

In this paper we have shown an original approach to sequence mining, based on the use of a
probabilistic automaton. We have given statistical results on the effectiveness of classical and
PDFA-based sequence mining algorithms. More precisely, we have provided two bounds that
ensure relevant results. We have also introduced statistical and syntactic constraints in order
to reduce the search space and achieve specific tasks. We have shown that, in situations that
can be modeled as flow control problems, a PDFA-based sequence mining task may preserve
privacy thanks to a probabilistic automaton. We have proposed a new constrained sequence
mining algorithm (ACSM) based on that data structure and have shown this approach is
more efficient than sampling a database from the PDFA and then using a classical sequence
mining algorithm. Our algorithm has been implemented in a prototype we have used to
visually show the frequent routes of towns without making use of any private information
from drivers.

In the future, we plan to use ACSM on two other flow control problems: Web usage mining
by using a PDFA to model the structure of a site with the flow of visits, and social network
modeling by using a PDFA to model the flow of emails between people. In order to be as
efficient as possible, it will be interesting to integrate other constraints such as mingap,
maxgap, etc. We also intend to reverse the problem, that is to use information obtained
by sequence mining algorithms in order to improve efficiency of grammatical inference
algorithms.

References

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In Proceedings of the 11th international
conference on data engineering (pp. 3–14). Los Alamitos: IEEE Computer Society.

Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining. In Proceedings of the ACM SIGMOD
conference on management of data (pp. 439–450). New York: ACM.

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Sequential pattern mining using a bitmap representation.
In Proceedings of the 8th international conference on knowledge discovery and data mining (pp. 429–
435). New York: ACM.

Bayardo, R. J., & Agrawal, R. (2005). Data privacy through optimal k-anonymization. In Proceedings of
the 21st international conference on data engineering (pp. 217–228). Los Alamitos: IEEE Computer
Society.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A new and powerful approach to
multiple testing. Journal of the Royal Statistical Society Series B, 57, 289–300.

Borges, J., & Levene, M. (1998). Mining association rules in hypertext databases. In Proceedings of the 4th
international conference on knowledge discovery and data mining (pp. 149–153).

126 Mach Learn (2009) 75: 91–127

Borges, J., & Levene, M. (1999). Data mining of user navigation patterns. In WEBKDD ’99: revised pa-
pers from the international workshop on web usage analysis and user profiling (pp. 92–111). Berlin:
Springer.

Borges, J., & Levene, M. (2004). A dynamic clustering-based Markov model for web usage mining. In CoRR:
the computing research repository. cs.IR/0406032, June 2004.

Callut, J. (2007). First passage times dynamics in Markov models with applications to HMM: induction,
sequence classification and graph mining. PhD thesis, Université Catholique de Louvain.

Carrasco, R. C., & Oncina, J. (1994). Learning stochastic regular grammars by means of a state merg-
ing method. In Proceedings of the 2nd international colloquium on grammatical inference (Vol. 862,
pp. 139–152). Berlin: Springer.

de la Higuera, C. (2005). A bibliographical study of grammatical inference. Pattern Recognition, 38(9), 1332–
1348.

Dupont, P., Denis, F., & Esposito, Y. (2005). Links between probabilistic automata and hidden Markov mod-
els: probability distributions, learning models and induction algorithms. Pattern Recognition, 38(9),
1349–1371.

Dupont, P., Callut, J., Dooms, G., Monette, J.-N., & Deville, Y. (2006). Relevant subgraph extraction from
random walks in a graph (Technical Report 2006-2007). UCL/FSA/INGI, November 2006.

Evfimievski, A. V., Srikant, R., Agrawal, R., & Gehrke, J. (2004). Privacy preserving mining of association
rules. Information Systems, 29(4), 343–364.

Fisher, R. A. (1922). On the interpretation of chi-square from the contingency tables, and the calculation of P.
Journal of the Royal Statistical Society, 85, 87–94.

Garofalakis, M., Rastogi, R., & Shim, K. (2002). Mining sequential patterns with regular expression con-
straints. IEEE Transactions on Knowledge and Data Engineering, 14(3), 530–552.

Gionis, A., Mannila, H., Mielikainen, T., & Tsaparas, P. (2006). Assessing data mining results via swap
randomization. In KDD ’06: proceedings of the 12th international conference on knowledge discovery
and data mining (pp. 167–176).

Gold, E. M. (1978). Complexity of automaton identification from given data. Information and Control, 37(3),
302–320.

Han, J., Altman, R. B., Kumar, V., Mannila, H., & Pregibon, D. (2002). Emerging scientific applications in
data mining. Communications of the ACM, 45(8), 54–58.

Hingston, P. (2002). Using finite state automata for sequence mining. In Proceedings of the 25th Australasian
conference on computer science (pp. 105–110). Australian Computer Society.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the Ameri-
can Statistical Association, 58(301), 13–30.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics,
6, 65–70.

Klemettinen, M., Mannila, H., & Toivonen, H. (1999). Interactive exploration of interesting findings in the
telecommunication network alarm sequence analyzer. Information & Software Technology, 41(9), 557–
567.

Kosala, R., & Blockeel, H. (2000). Web mining research: a survey. SIGKDD Explorations, 2(1), 1–15.
Laur, P., Nock, R., Symphor, J., & Poncelet, P. (2007a). Mining evolving data streams for frequent patterns.

Pattern Recognition, 40(2), 492–503.
Laur, P., Symphor, J., Nock, R., & Poncelet, P. (2007b). Statistical supports for mining sequential patterns

and improving the incremental update process on data streams. Intelligent Data Analysis, 11(1), 29–47.
Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of frequent episodes in event sequences. Data

Mining and Knowledge Discovery, 1(3), 259–289.
Megiddo, N., & Srikant, R. (1998). Discovering predictive association rules. In Knowledge discovery and

data mining (pp. 274–278).
Newton, E. M., Sweeney, L., & Malin, B. (2005). Preserving privacy by de-identifying face images. IEEE

Transactions on Knowledge and Data Engineering, 17(2), 232–243.
Pearson, K. (1900). On a criterion that a given system of deviations from the probable in the case of correlated

system of variables is such that it can be reasonably supposed to have arisen from random sampling.
Philosophy Magazine, 50, 157–175.

Pei, J., Han, J., & Wang, W. (2002). Mining sequential patterns with constraints in large databases. In Pro-
ceedings of the 11th international conference on information and knowledge management (pp. 18–25).
New York: ACM.

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior,
6, 855–863.

Shaffer, J. (1995). Multiple hypothesis-testing. Annual Review of Psychology, 46, 561–584.
Spiliopoulou, M., & Pohle, C. (2001). Data mining for measuring and improving the success of web sites.

Data Mining and Knowledge Discovery, 5(1–2), 85–114.

http://arxiv.org/abs/cs.IR/0406032

Mach Learn (2009) 75: 91–127 127

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improve-
ments. In Proceedings of the 5th international conference on extending database technology (Vol. 1057,
pp. 3–17). Berlin: Springer.

Sweeney, L. (2002). k-anonymity: a model for protecting privacy. International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems, 10(5), 557–570.

Valiant, L. G. (1984). A theory of the learnable. In Proceedings of the 16th annual ACM symposium on theory
of computing (pp. 436–445). New York: ACM.

Verykios, V. S., Bertino, E., Fovino, I. N., Provenza, L. P., Saygin, Y., & Theodoridis, Y. (2004). State-of-the-
art in privacy preserving data mining. SIGMOD Record, 33(1), 50–57.

Webb, G. I. (2007). Discovering significant patterns. Machine Learning, 68(1), 1–33.
Zaki, M. J. (2000). Sequence mining in categorical domains: incorporating constraints. In Proceedings of

the 9th international conference on information and knowledge management (pp. 422–429). New York:
ACM.

Zaki, M. J. (2001). Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42(1–2),
31–60.

	Mining probabilistic automata: a statistical view of sequential pattern mining
	Abstract
	Introduction
	Lower bound on the number of sequences
	Related work
	Use of Chernoff bounds
	Use of statistical tests

	Lower bound on N
	Risk of errors alpha
	Risk of errors beta

	Illustration of our bound on a real and on an artificial example

	A graph-based statistical view of sequence mining
	Related work
	Grammatical inference and pdfa
	Estimation of pattern probabilities from a pdfa
	Probability estimate of a symbol
	Probability estimate of a pattern

	How to learn a good pdfa for sequence mining?
	Theoretical results
	Example
	Experimental validation

	Constrained sequence mining
	Prefix length constraint
	Statistical significance of a pattern
	Proportion constraint
	Dependence constraint

	The acsm algorithm

	Pdfa-based sequence mining: an original solution to privacy preservation
	Assessment of the quality of a pdfa in the context of privacy preservation
	Effect of the length of the sequences on the quality of the pdfa
	Expectation of the length of the sequences

	Car flow modeling
	Interest of a car flow modeling
	Experimental results
	Effect of the constraints
	Experimental comparison with spam

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

