
Mach Learn (2009) 77: 61–102
DOI 10.1007/s10994-009-5118-6

Anytime classification for a pool of instances

Bei Hui · Ying Yang · Geoffrey I. Webb

Received: 2 April 2008 / Revised: 27 April 2009 / Accepted: 28 April 2009 / Published online: 2 July 2009
Springer Science+Business Media, LLC 2009

Abstract In many real-world applications of classification learning, such as credit card
transaction vetting or classification embedded in sensor nodes, multiple instances simulta-
neously require classification under computational resource constraints such as limited time
or limited battery capacity. In such a situation, available computational resources should
be allocated across the instances in order to optimize the overall classification efficacy and
efficiency. We propose a novel anytime classification framework, Scheduling Anytime Aver-
aged Probabilistic Estimators (SAAPE), which is capable of classifying a pool of instances,
delivering accurate results whenever interrupted and optimizing the collective classification
performance. Following the practice of our previous anytime classification system AAPE,
SAAPE runs a sequence of very efficient Bayesian probabilistic classifiers to classify each
single instance. Furthermore, SAAPE implements seven alternative scheduling schemes to
decide which instance gets available computational resources next such that a new classifier
can be applied to refine its classification. We formally present each scheduling scheme’s de-
finition, rationale and time complexity. We conduct large-scale experiments using 60 bench-
mark data sets and diversified statistical tests to evaluate SAAPE’s performance on zero-one
loss classification as well as on probability estimation. We analyze each scheduling scheme’s
advantages and disadvantages according to both theoretical understandings and empirical
observations. Consequently we identify effective scheduling schemes that enable SAAPE to
accomplish accurate anytime classification for a pool of instances.

Editor: David Page.

B. Hui (�)
School of Computer Science and Engineering, University of Electronic Science and Technology of
China, ChengDu, China
e-mail: bhui@uestc.edu.cn

Y. Yang
Australian Taxation Office, Melbourne, Australia
e-mail: ying.yang@ato.gov.au

G.I. Webb
Clayton School of Information Technology, Monash University, Clayton, Australia
e-mail: geoff.webb@infotech.monash.edu.au

mailto:bhui@uestc.edu.cn
mailto:ying.yang@ato.gov.au
mailto:geoff.webb@infotech.monash.edu.au

62 Mach Learn (2009) 77: 61–102

Keywords Anytime classification · Computational resource constraints · Bayesian
probabilistic classifiers · Ensemble learning

1 Introduction

The goal of our research is to develop classification learning systems that are able to handle
varying computational resources and to optimize classification results within the constraints
imposed by those resources. This contrasts with conventional classification techniques that
are designed to operate within the constraints of the minimum expected resources and fail
to utilize further resources when they are available, as a result of which less accurate classi-
fication may occur than might be achievable within the available resources if a less efficient
but more accurate learner were employed.

Among four distinct computational resources, training time, training space, classifica-
tion time and classification space (Yang et al. 2007), our current research addresses one
specific dimension, classification time.1 We believe this dimension has wide practical appli-
cation and is typical of many online applications where naïve Bayes (NB) (Langley et al.
1992) is deployed. For instance, interactive systems must complete their task within strict
elapsed time limits in order to gain and retain user acceptance. Some of the many examples
of such applications include information retrieval (Baeza-Yates and Ribeiro-Neto 1999),
recommender systems (Resnick and Varian 1997), user modeling (Webb et al. 2001) and
online fraud detection (Chan et al. 1999).

In this context, constraints on training space and time are not a major issue, because
classifiers are developed infrequently off-line and then employed many times. Further, con-
straints on classification space do not apply to classifiers, because a single classifier can be
shared among all jobs and hence the constraints relating to the classification space for a
particular job relate only to the job’s additional space requirements. As a result, our focus is
on anytime classification. We assume that classifiers have been learned beforehand, and the
classification time budget is sufficient to apply at least one of the classifiers to each instance.
The idea is to run an ordered sequence of (very efficient) classifiers until classification time
runs out.

In a previous paper (Yang et al. 2007) we have proposed Anytime Averaged Probabilis-
tic Estimators (AAPE), an anytime classification system that uses an ensemble of Bayesian
probabilistic estimators and that is able to deliver accurate classification for an instance
whenever the classification is interrupted. In particular, to classify an instance, AAPE first
computes NB and then utilizes any additional time to refine the probability estimates by
invoking superparent-one-dependence estimators (SPODEs) (Keogh and Pazzani 2002) in
turn. The classification can stop anywhere in the ordered sequence of SPODEs. The proba-
bilistic classifiers invoked up to the interruption time compose an ensemble which will carry
out the classification.

The existing AAPE framework, and other existing anytime classification systems such as
anytime support vector machines (DeCoste 2002), anytime nearest neighbors (Ueno et al.
2006) and anytime Bayesian belief networks (Liu and Wellman 1996; Jitnah and Nicholson
1997) have focused on the scenario where only one instance or query needs to be evalu-
ated at one time. However it often happens that multiple instances simultaneously need to
be processed. In such a situation, the available computational resources must be allocated

1In our context, the classification time also reflects constraints such as the sensor battery capacity.

Mach Learn (2009) 77: 61–102 63

Fig. 1 When a credit card transaction takes place, the credit card company passes it to classifiers to decide
whether to approve or to reject it. There can be multiple transactions happening at the same time. (Note
that we restrict this example to a single processor for the sake of simplicity. The problem and our solutions
generalize to multi-processor contexts.)

across the instances in order to optimize the overall classification efficacy and efficiency.
Ye, Wang, Yankov and Keogh have previously studied anytime classification for multiple
instances in the context of nearest neighbor classification learning (2008). The current paper
will examine this problem in the context of Bayesian probabilistic classification learning,
where a choice has to be made about which instance should get available computational re-
sources next such that a new SPODE can be applied to refine the instance’s class probability
estimates. We use the application of credit card transaction approval to demonstrate such
a scenario. Each transaction is an instance to be classified. Note that the values used here
are toy examples devised for illustrative purposes. As shown in Fig. 1, when a credit card
transaction takes place, the credit card company passes it to classifiers to decide whether to
approve or to reject it. Assume that ten transactions happen at approximately the same time,
and that a service level agreement requires that a decision takes no more than 30 seconds
to deliver. Also assume that the company has four classifiers, and has a single processor
that can only apply a single classifier to a single transaction at one time.2 Further assume
that it takes 2 seconds for each classifier to examine each transaction. The more classifiers
that are applied to a transaction, the higher confidence the company has in its decision. In
this scenario, AAPE will consult each of the four classifiers in turn to examine Transaction
1, which takes 8 seconds. Then AAPE will consult each of the four classifiers in turn for

2The problem and our solutions generalize to multi-processor contexts. We restrict this example to a single
processor for the sake of simplicity.

64 Mach Learn (2009) 77: 61–102

Fig. 2 When a convoy of vehicle pass a sensor node, the sensor node needs to classify each vehicle type
within its available energy. The vehicle artwork (©2001, Carlo Kopp) is distributed as part of the xfig package

Transaction 2, which takes another 8 seconds. This procedure continues until some inter-
vention occurs. AAPE is optimal from the individual point of view of a single application.
If AAPE finishes processing an application, it means that this application has been allocated
as many resources as possible so that the decision about it is most appropriate. However,
AAPE is sub-optimal from the collective point of view regarding all the ten transactions. In
this case, 30 seconds will have passed before the company finishes processing Transaction
4. Transactions 5 to 10 will not have been processed within an acceptable time frame.

A similar problem exists in sensor networks. For example, as illustrated in Fig. 2 one of
the important sensor network applications is to identify vehicle types in a moving convoy in
a battlefield (Meesookho et al. 2002; Sun and Daigle 2006; Duarte and Hu 2004). A sensor
node collects acoustic and seismic signals of each vehicle moving past, and carries out the
classification. Because a sensor node has very limited battery capacity which varies with
time and usage, the challenge is to maximize the classification accuracy across the convoy
of vehicles, each time according to the available energy at that time.

To solve these problems, we propose a new anytime classification framework, which is
capable of classifying a pool of instances, delivering accurate results whenever interrupted
and optimizing the overall classification accuracy regarding the whole pool. This problem
is analogous to the computer scheduling problem where multiple processes compete for
the CPU at the same time (Tanenbaum 2001; Deitel et al. 2004; Stallings 2004). Hence we

Mach Learn (2009) 77: 61–102 65

name this new system Scheduling Anytime Averaged Probabilistic Estimators (SAAPE) and
sometimes employ scheduling terminology.

The remainder of this paper is organized as follows. Section 2 recalls the previous AAPE
system which is the base of the new SAAPE system. Section 3 proposes the new SAAPE
system and presents a wide variety of seven alternative scheduling algorithms therein. The
pseudo codes of the SAAPE system and the scheduling algorithms are presented in Ap-
pendix B to avoid distraction from the main text. Section 4 analyzes the classification time
complexity of SAAPE and each scheduling algorithm. Section 5 conducts large-scale ex-
periments using 60 benchmark data sets to test the anytime classification performance of
SAAPE. Diversified statistical tests are employed to thoroughly evaluate and rank alterna-
tive scheduling schemes. Section 6 gives concluding remarks and discusses future work.

2 The AAPE system

Our new SAAPE system for anytime classification of a pool of instances arises from our
previous AAPE system that delivers anytime classification for individual instances. Hence
we first briefly describe the AAPE system for a better understanding of the SAAPE system.

To classify an instance x, AAPE deploys the Bayesian probabilistic classification
methodology. It utilizes Bayes formula to calculate P̂ (y | x), an estimate of P (y | x) that
is the probability of each class y given the instance to be classified, x. It assigns the class
with the highest estimated probability to x. To achieve anytime classification for x, AAPE
employs both naive Bayes (NB) and relaxations thereof called superparent-one-dependence
estimators (SPODEs). It starts with invoking NB to compute P̂ (y | x). It then proceeds to
invoke each candidate SPODE in turn to compute P̂ (y | x) until interruption intervenes or
classification time runs out. At this point, AAPE averages the class probabilities given x es-
timated by all the invoked classifiers so far and delivers them to the user. Figure 3 illustrates
NB and all possible SPODEs for a data set with three attributes and one class variable.

NB and SPODEs are deployed in the AAPE system because they are efficient Bayesian
classifiers and hence can minimize the risk that a single computation step is inter-
rupted (Grass and Zilberstein 1996; Yang et al. 2007). NB assumes attributes conditionally

Fig. 3 Illustration of NB and all possible three SPODEs for a data set with three attributes and one class
variable. An arc points from a parent to a child. A child only depends on its parents. NB assumes each
attribute only depends on the class Y and is independent of other attributes given Y . A SPODE assumes that
each attribute can depend on a common attribute (the superparent) in addition to the class. For a data set with
m attributes, there are m possible SPODEs, each taking a different attribute as its superparent

66 Mach Learn (2009) 77: 61–102

independent of each other given the class. Thus it delivers class probability estimates using
Eq. 1 where m is the number of attributes:

P̂ (y | x) = P̂ (y)P̂ (x | y)

P̂ (x)

= P̂ (y)
∏m

i=1 P̂ (xi | y)

P̂ (x)
. (1)

A SPODE relaxes NB’s attribute independence assumption by allowing all attributes to de-
pend on a common attribute, the superparent, in addition to the class. For a data set with m

attributes, there are m possible SPODEs, each taking a different attribute as the superparent.
A SPODE whose superparent is the attribute Xp delivers class probability estimates using
Eq. 2:

P̂ (y | x) = P̂ (xp, y)P (x | xp, y)

P̂ (x)

= P̂ (xp, y)
∏m

i=1 P̂ (xi | xp, y)

P̂ (x)
. (2)

When the classification time budget has been exhausted, AAPE terminates and returns
the probability estimates P̂ (y | x) averaged on all classifiers invoked so far. This follows the
practice of the AODE ensemble algorithm (Webb et al. 2005) and is computed as follows.
Assume that S denotes the subset of SPODEs that have been invoked before an interrupt oc-
curs. Assume |S| denotes the number of SPODEs in S. Averaging the probability estimates
of NB and SPODEs, we get:

P̂ (y | x) = P̂ (y)P̂ (x | y) + ∑
p∈S P̂ (xp, y)P̂ (x | xp, y)

P̂ (x) × (|S| + 1)

= P̂ (y)
∏m

i=1 P̂ (xi |y) + ∑
p∈S P̂ (xp, y)

∏m

i=1 P̂ (xi |xp, y)

P̂ (x) × (|S| + 1)
(3)

where the first addend in the numerator of Eq. 3 is NB’s estimate and the second addend
in the numerator of Eq. 3 sums SPODEs’ estimates, each SPODE with the attribute xp

being the superparent. For the details of the induction of these equations, please refer to our
previous paper on AAPE (Yang et al. 2007).

Table 1 presents the AAPE algorithm. Lines 1 to 7 compute NB. It is assumed that this
computation can be completed within the contract time budget and hence interrupts are
only enabled on Line 8. Line 10 starts the loop over the ordered set of qualified attributes
S that are each the superparent for a SPODE to be invoked. Lines 12 to 17 compute the
probability estimates TP for each SPODE. Lines 19 to 22 update the average conditional
probability estimate for each class to account for a new set of TP values. Interrupts are
suspended during this process as the P values are in an unstable state. In consequence, if
the time budget expires during this process there will be a slight delay before computation
terminates.

Mach Learn (2009) 77: 61–102 67

Table 1 The AAPE algorithm
Algorithm: AAPE
Inputs:

• x: the instance to be classified.
• S: a set of ordered SPODEs.
• PP[c1 . . . ck]: prior probability estimate for each class. This and the following estimates are based on

the observed frequency in the training data with possible correction for sampling error such as a Laplace
correction.

• PP[c1 . . . ck,attvals]: prior probability estimates for each class and attribute value pair.
• CP[c1 . . . ck,attvals]: conditional probability estimates for each attribute value given each class.
• CP[c1 . . . ck, superparentvals,attvals]: conditional probability estimates for each attribute value (the fi-

nal index) given each class and each superparent value.

Outputs:

• P [c1 . . . ck]: the estimated probability of each class given x.

1: for y := c1 . . . ck do
2: P [y] := PP[y];
3: for i := 1 . . .m do
4: P [y] := P [y] × CP[y, xi];
5: end for
6: end for
7: normalize(P);
8: on interrupt goto 25;
9: count := 1;
10: for each p ∈ I in turn do
11: count := count + 1;
12: for y := c1 . . . ck do
13: TP[y] := PP[y, xp];
14: for i := 1 . . .m do
15: TP[y] := TP[y] × CP[y, xp, xi];
16: end for
17: end for
18: suspend interrupts;
19: for y := c1 . . . ck do

20: P [y] := P [y]×(count−1)+TP[y]
count ;

21: end for
22: normalize(P);
23: restore interrupts;
24: end for
25: return P;

3 The SAAPE system

The SAAPE system is an extension to the AAPE system. To classify an instance I , SAAPE
uses the same Eq. 3 to estimate the probability of each class given I , and assigns the class
of the highest probability to I . SAAPE maintains AAPE’s capability of delivering classifi-
cation results whenever the system is interrupted. In addition, SAAPE is able to handle the
more general scenario where multiple instances (instead of one instance as AAPE addresses)
require classification simultaneously. In such a situation, it is necessary to select which in-
stance should be allocated computational resources next in order to optimize the overall
classification efficacy and efficiency. This problem is analogous to the computer scheduling
problem where multiple processes compete for the CPU at the same time, and is to be solved
by SAAPE.

68 Mach Learn (2009) 77: 61–102

Table 2 Three credit card transactions (instances) I1, I2 and I3 are waiting for approval simultaneously.
Assume that two classifiers have been invoked for each instance. The probability of each class, ‘accept’ or
‘reject’, given each instance estimated by each invoked classifier is listed here. A scheduling scheme will
assign a priority to each instance so as to decide which instance gets computed by a new SPODE if time
allows

Classifier1 Classifier2 SAAPE output

For instance I1 Class label ‘accept’ 55% 55% 55%

‘reject’ 45% 45% 45%

For instance I2 Class label ‘accept’ 75% 35% 55%

‘reject’ 25% 65% 45%

For instance I3 Class label ‘accept’ 95% 55% 75%

‘reject’ 5% 45% 25%

As a matter of demonstration convenience, we use the two-class credit card transac-
tion approval application as a vehicle of illustration throughout this paper. Nonetheless,
every algorithm proposed here is directly applicable to multiple-class problems. As shown
in Table 2, three credit card transactions (instances) I1, I2 and I3 are waiting for approval
simultaneously. Assume that two classifiers have been invoked for each instance3 and the
probability of each class, ‘accept’ or ‘reject’, given each instance estimated by each invoked
classifier is listed in Table 2. If classification time has not been exhausted yet, we need
to assign each instance a priority value and the one with the highest priority will receive
new computational resources, that is, to be classified by a new SPODE. We propose seven
alternative scheduling strategies that calculate the priority of each instance as follows.

Note that in our current study SPODEs are invoked by the natural order of the superpar-
ent attributes that is inherent in the data set. We focus on comparing different scheduling
schemes under this natural order.

3.1 First-come first-served (FCFS)

FCFS maintains a list of ordered probabilistic classifiers, NB, SPODE1, SPODE2, . . . ,

SPODEm. Instances are (randomly) put into a single queue. Without losing generality, as-
sume that the queue is I1 followed by I2 and then I3. SAAPE with FCFS starts by processing
I1. It first computes NB for I1 and then utilizes any additional time to refine I1’s probability
estimates by invoking SPODEs in order. Only when all candidate SPODEs have finished
examining I1, the system proceeds to process I2 in the queue and so on. This algorithm
undertakes exhaustive application of the AAPE system to each individual instance in the
instance pool in turn.

3.2 Round robin (RR)

RR maintains a list of ordered probabilistic classifiers, NB, SPODE1, SPODE2, . . . ,

SPODEm. Instances are (randomly) put into a single queue 〈I1, I2, I3〉. SAAPE with RR
starts with computing NB for each Ii (i ∈ [1,3]). Next, it computes SPODE1 for each Ii .
The process keeps going until SPODEm is applied to each Ii or whenever an interruption
takes place.

3In practice, the number of invoked classifiers for each instance can be different.

Mach Learn (2009) 77: 61–102 69

3.3 Minimum-margin instance first (MMIF)

This approach is motivated by margin-based learning (Schapire et al. 1998; Bartlett 2007).
To classify an instance I , SAAPE estimates the probability of each class label given I and
assigns the class of the highest probability to I . Assume that the class label c1 attains the
highest predicted probability (prob1) and the class label c2 attains the second highest prob-
ability (prob2). A minimum-margin instance IMMIF is an instance whose prob1–prob2 is the
smallest. It indicates that SAAPE’s decision of classifying IMMIF into c1 is the most ambigu-
ous among all test instances. Hence more resources need to be allocated to IMMIF in order to
differentiate between c1 and c2. MMIF will dispatch a new SPODE to IMMIF first if there is
still classification time available. If multiple instances obtain the same highest priority, the
scheme randomly chooses one.

We now use the examples in Table 2 to demonstrate how MMIF works. For I1, SAAPE
predicts the class label ‘accept’ to have the highest probability (prob1 = 55%), and the class
label ‘reject’ to have the second highest probability (prob2 = 45%). Hence the value of
(prob1–prob2) for I1 equals 10%. Likewise, the value of (prob1–prob2) for I2 equals 10%
(55%–45%), and for I3 equals 50% (75%–25%). Thus both I1 and I2 are minimum-margin
instances in this case. MMIF will randomly choose one to dispatch a new SPODE. Mean-
while I3 is of a lower priority to get further computational resources because its classification
if relatively clear-cut.

A potential problem of MMIF can occur if there exist many instances like I1. As shown
in Table 2, I1 retains the minimum margin that does not change regardless of additional
classifiers being applied to it. In this case, MMIF will futilely keep dispatching SPODEs
to I1 and waste much time on it. This consideration motivates the following scheduling
schemes that can avoid this problem.

3.4 Controversial instance first

This family of scheduling schemes consider the variance among invoked classifiers’ opin-
ions regarding classifying an instance. The higher the variance, the more disagreement
among invoked classifiers on how to classify an instance, and the higher priority this in-
stance has to get a new SPODE. There are alternative ways to calculate the variance. We
study three approaches here, variance regarding predicted class label, variance averaged on
all class labels, and symmetric Kullback and Leibler distance. For each of the three schemes,
if multiple instances obtain the same highest priority, the scheme randomly chooses one to
dispatch a new SPODE.

3.4.1 Variance regarding predicted class label (VRPCL)

Given a test instance I , if I is predicted by SAAPE to belong to the class ci , the variance
equals to the variance of the probability prob(ci |I) estimated by each invoked classifier:

Var(X) = E((X − μ)2),

where the random variable X is each classifier’s estimate of prob(ci |I), and μ = E(X) is
the expected value (mean) of X and equals to SAAPE’s output probability of prob(ci |I)

according to Eq. 3.
We now use the examples in Table 2 to demonstrate how VRPCL works. For I1,

SAAPE predicts it to belong to ‘accept’ and its variance equals to (55% − 55%)2 +

70 Mach Learn (2009) 77: 61–102

(55% − 55%)2 = 0. For I2, SAAPE predicts it to belong to ‘accept’ and its variance equals
to (75% − 55%)2 + (35% − 55%)2 = 0.08. For I3, SAAPE predicts it to belong to ‘accept’
and its variance equals to (5% − 25%)2 + (45% − 25%)2 = 0.08. Thus both I2 and I3 have
the highest variance regarding the predicted class label. VRPCL will randomly choose one
to dispatch a new SPODE. Meanwhile I1 is of a lower priority to get further computational
resources because its variance is very low.

3.4.2 Variance averaged on all class labels (VAOACL)

VAOACL is an extension to VRPCL. Given a test instance I , VAOACL first calculates the
variance of every class label following the practice of VRPCL as in Sect. 3.4.1. It then
averages the variance on all class labels. It is worth mentioning that in the two-class case,
variance regarding predicted class label is equivalent to variance averaged on all class labels,
whereas in the multiple-class case, they can be different. In Appendix A, we have first proved
the equivalence case and then given an example to attest the difference case.

3.4.3 Symmetric Kullback and Leibler distance (SKLD)

The Kullback Leibler distance (KL-distance) (Kullback and Leibler 1951) is a natural dis-
tance function from one (true) probability distribution, p, to another (target) probability
distribution, q . It can be interpreted as the expected extra message-length per datum due to
using a code based on the target distribution compared to using a code based on the true
distribution.

For discrete (not necessarily finite) probability distributions, p = 〈p0,p1, . . . , pk〉 and
q = 〈q0, q1, . . . , qk〉, the KL-distance is defined to be

KL(p, q) =
∑

i=0...k

pi log2

(
pi

qi

)

.

Note that the KL-distance is not, in general, symmetric, that is KL(p, q) �= KL(q,p).
However in our context, we do not differentiate the directions from one classifier to another.
Hence here we use the symmetric version of the Kullback and Leibler distance, known
also as the J-divergence (Bekara et al. 2006; Jeffreys 1946) as a measure of the difference
between two classifiers’ estimates on the class distribution of an instance:

SKL(p, q) = KL(p, q) + KL(q,p).

Our system can invoke many classifiers for an instance if time allows. This algorithm
first calculates the symmetric Kullback and Leibler distance for each pair of classifiers. It
then obtains the distance averaged on all the pairs. The bigger the averaged distance, the
more different each classifier’s judgement on the class distribution of this test instance, and
the higher priority this instance has to get a new SPODE. In the case of I2 in Table 2, the
symmetric Kullback and Leibler distance between Classifier1 and Classifier2 is calculated
as Eq. 4.

SKL(〈75%,25%〉, 〈35%,65%〉)
= KL(〈75%,25%〉, 〈35%,65%〉)

+ KL(〈35%,65%〉, 〈75%,25%〉)

Mach Learn (2009) 77: 61–102 71

= 75% × log2

(
75%

35%

)

+ 25% × log2

(
25%

65%

)

+ 35% × log2

(
35%

75%

)

+ 65% × log2

(
65%

25%

)

= 0.9912. (4)

Following the same calculation, the symmetric Kullback and Leibler distance for I1 is 0
and for I3 is 1.5834. Hence I3 obtains the highest priority and gets the next new classifier.
I2 obtains a medium priority and I1 obtains the lowest priority.

3.5 A hybrid approach (Hybrid)

This scheduling algorithm incorporates the ideas of the minimum-margin instance first
scheduling and the controversial instance first scheduling. For each instance, not only does it
consider the difference between the highest probability estimate prob1 and the second high-
est probability estimate prob2, it also takes into account the deviation when SAAPE derives
prob1 and prob2 from each invoked classifier’s estimate.

The hybrid approach assumes that different classifiers’ probability estimates of a class
given an instance I follow a Gaussian distribution. It then measures the priority by the
overlapping area of two Gaussian curves G1 and G2, where G1 is the curve of the class
assigned with the highest probability (prob1) by SAAPE and G2 the second highest (prob2).
The bigger the overlapping area, the more similarity between the most and second most
probable class for I , and the higher the priority for I to get a new SPODE to differentiate
between the two class labels.

We now use the examples in Table 2 to demonstrate how this hybrid scheduling scheme
works. For I2 and the highest probability class ‘accept’, the mean value (μ, also known
as prob1 and SAAPE’s output probability) of different classifiers’ probability estimates is
75%+35%

2 = 0.55; and the variance σ 2 is (75% − 55%)2 + (35% − 55%)2 = 0.08. Hence the
Gaussian curve is as the red (solid) curve in Fig. 15(a). Likewise, for I2 and the second high-
est probability class ‘reject’, the Gaussian curve is as the blue (dotted) curve in Fig. 15(a).
For I3, the ‘accept’ and ‘reject’ classes are respectively associated with the red and blue
curves in Fig. 15(b). The overlapping area is calculated as:

∫ a

−∞
Gaccept(μ,σ) +

∫ ∞

a

Greject(μ,σ)

where G(μ,σ) = 1√
2πσ

exp(− (x−μ)2

2σ 2) is the Gaussian probability density function, and a is
the horizontal value of the intersection point of the two curves.

One can see from Fig. 4 that the overlapping area of I2 is bigger than that of I3. As
for I1, because its σ 2 equals to 0, there is no explicit Gaussian curve associated with it, and
the hybrid scheduling simply defines its overlapping area as 0. This might be justified on the
assumption that if multiple classifiers agree, the probability of further classifiers differing
substantially is low. Instead, one might need to add more informing attributes to describe this
instance in order to classify it. As a result, the hybrid scheduling will prioritize I2 followed
by I3 and lastly I1.

Note that if multiple instances have the same overlapping area, we use the value (prob1–
prob2) as the tie breaker. Whichever instance has the smallest value of (prob1–prob2), the
difference between the highest predicted class probability and the second highest predicted

72 Mach Learn (2009) 77: 61–102

Fig. 4 Priority equals to the
overlapping area of curves
Gaccept and Greject

class probability, gets a new SPODE. This has the same effect of the minimum-margin
instance first scheduling in Sect. 3.3 and is inspired by our observation of the very good
empirical performance of the minimum-margin instance first scheduling scheme.

The pseudo codes of the SAAPE system and every scheduling algorithm are presented
in Appendix B to avoid distraction from the main text.

4 Classification time complexity analysis

All the scheduling work takes place at the classification time. Assume the number of at-
tributes, classes and test instances are respectively m, k and n.

NB is applied to an instance to estimate the probability of every class given this instance.
This incurs a complexity of O(mk) because for each class (O(k)), NB iterates through each
attribute xi (O(m)) to calculate P̂ (xi | y) as in Eq. 1.

SPODE, at each step, is dispatched to an instance to estimate the probability of every
class given this instance. This incurs a complexity of O(mk) because for each class (O(k)),
the SPODE iterates through each attribute xi other than the superparent xp (O(m)) to calcu-
late P̂ (xi | xp, y) as in Eq. 2. In the context of anytime classification, the previous average
probability estimate for each class is also updated to account for this newly applied SPODE

Mach Learn (2009) 77: 61–102 73

(O(k)). As a result, at each step the complexity of dispatching a SPODE to an instance is
O(mk + k) = O(mk).

All the scheduling schemes share three complexity components. First, apply NB to all
the n test instances in the contract portion of the classification time budget. This complexity
is of the order O(mkn), resulting from an O(mk) algorithm applied over an O(n) sized test
set. Second, identify the instance I that attains the highest priority (O(n)). Third, dispatch
a SPODE to I (O(mk)).

What differs is how each scheduling scheme prioritizes instances at each step, that is,
how each scheme decides which instance to get a new SPODE. This distinguishing com-
plexity component is analyzed for each scheduling scheme as follows.

First-come first-served scheduling simply dispatches all SPODEs in turn to an instance.
Hence, the complexity of prioritizing is O(1).

Round robin scheduling simply dispatches a single SPODE to all instances in turn.
Hence, the complexity of prioritizing is O(1).

Borderline instance first scheduling iterates through every test instance (O(n)), identify-
ing its prob1 and prob2 (O(k)) and calculating the value of (prob1–prob2) (O(1)) . Hence,
the complexity of prioritizing is O(nk).

Controversial instance first (variance regarding predicted class label) scheduling iterates
through every test instance (O(n)), identifying the predicted class label (O(k)) and calcu-
lating the variance on the predicted class label among invoked classifiers (O(m)). Hence,
the complexity of prioritizing is O(n(k + m)).

Controversial instance first (variance averaged on all class labels) scheduling iterates
through every test instance (O(n)). For each instance, firstly it loops through every class
label (O(k)) to calculate the variance among invoked classifiers (O(m)); and secondly
it averages all the class labels’ variance (O(m)). Hence, the complexity of prioritizing is
O(n(km + m)) = O(nkm).

Controversial instance first (symmetric Kullback and Leibler distance) scheduling iter-
ates through every test instance (O(n)), calculating its symmetric Kullback and Leibler
distance (O(km2)). Hence, the complexity of prioritizing is O(nkm2).

A hybrid approach scheduling iterates through every test instance (O(n)), identifying
prob1 and prob2 (O(k)), computing μ and σ of the top two class labels (O(m)), and calcu-
lating the overlapping area of their Gauss curves (O(1)). Hence, the complexity of prioritiz-
ing is O(n(k + m)).

5 Experiments

We conduct large-scale experiments to test the anytime classification performance of
SAAPE by using an extensive suite of 60 benchmark data sets and a wide variety of
statistical tests. Our goal is to thoroughly evaluate and rank rival alternative scheduling
schemes in SAAPE under varying classification time resources including first-come first-
served (FCFS); round robin (RR); minimum-margin instance first (MMIF); controversial
instance first that comprises variance regarding predicted class label (VRPCL), variance av-
eraged on all class labels (VAOACL), and symmetric Kullback and Leibler distance (SKLD);
and lastly, the hybrid approach (Hybrid).

Note that the FCFS scheme equals to exhaustive application of the AAPE system to each
individual instance in the instance pool in turn. Hence the observations and evaluations for
FCFS are the same as those for AAPE classifying multiple instances under computational
resource constraints.

74 Mach Learn (2009) 77: 61–102

Because the SAAPE system can deliver probability estimates of class labels given each
test instance as well as output zero-one loss classification, we will study each scheduling
scheme’s performance regarding both outputs.

5.1 Experimental design

Details of our experimental setup are presented here.

Data We use a large suite of 60 benchmark data sets from the UCI Machine Learning
Repository (Asuncion and Newman 2007), as described in Table 3.

Table 3 Description of 60 experimental data sets: each data set’s name, number of instances (Ins.), number
of attributes (Att.) and number of class labels (Cls.)

Data set Ins. Att. Cls. Data set Ins. Att. Cls.

Abalone 4177 8 3 Annealing 898 38 6

Audiology 226 69 24 Automoblie 205 25 7

BalanceScale 625 4 3 BreastCancer 699 9 2

Bands 539 36 2 Bridges 105 12 6

LiverDisorders 345 6 2 Chess 551 39 2

Car 1728 6 4 ContraceptiveMethodChoice 1473 9 3

CreditApproval 690 15 2 Diabetes 768 8 2

Echocardiogram 131 6 2 Flags 194 29 8

German 1000 20 2 GlassIdentification 214 9 7

HeartDiseaseCleveland 303 13 5 Hepatitis 155 19 2

HorseColic 368 22 2 HouseVotes84 435 16 2

HeartDiseaseHungarian 294 13 2 Hypothyroid 3772 29 4

Ionosphere 351 34 2 IrisPlant 150 4 3

KRvsKP 3196 36 2 LaborRelations 57 16 2

LEDDisplay 1000 7 10 LetterRecognition 20000 16 26

LungCancer 32 56 3 Lymphography 148 18 4

MultipleFeaturesMorphological 2000 6 10 Mushrooms 8124 22 2

Musk 476 166 2 NewThyroid 215 5 3

Optdigits 5620 48 10 PageBlocks 5473 10 5

PenBasedRecognition 10992 16 10 PhoneNettalkPhonememe 5438 7 50

Postoperative 90 8 3 PrimaryTumor 339 17 22

Promoter 106 57 2 SatelliteImage 6435 36 6

ImageSegmentation 2310 19 7 SickEuthyroid 3772 29 2

AustralianSignLanguage 12546 8 3 SolarFlare 1389 9 2

Sonar 208 60 2 Soybean 683 35 19

SpliceJunctionice 3190 61 3 SyntheticControl 600 60 6

TicTacToe 958 9 2 Vehicle 846 18 4

Volcanoes 1520 3 4 Vowel 990 13 16

Waveform 5000 40 3 Wine 178 13 3

Yeast 1484 8 10 Zoo 101 17 7

Mach Learn (2009) 77: 61–102 75

Simulation of varying classification time We use steps to simulate the varying classifica-
tion time resources. One step equals to the amount of time that allows to apply one SPODE
to one instance. The maximum meaningful number of steps for a test data set D with n in-
stances and m attributes equals n × m. If the SAAPE system has time available more than
n × m steps when classifying D, it will finish applying every candidate SPODE to every
instance and its performance will remain constant afterwards. As for our experimental suite
of data sets, ‘LetterRecognition’ requires the biggest number of meaningful steps, 32000
resulting from 2000 test instances multiplying 16 attributes in each fold of the stratified
10-fold cross validation that is to be explained next.

Performance measured The SAAPE system is implemented in the WEKA machine learn-
ing environment (Witten and Frank 2005). To evaluate SAAPE’s performance, on each data
set, the WEKA’s default stratified 10-fold cross validation is performed. Each data set is
divided into 10 mutually exclusive subsets (folds) D1,D2, . . . ,D10 of approximately equal
size and approximately the same class proportions as in the full data set D. The classifier is
trained and tested 10 times. Each time t ∈ {1,2, . . . ,10}, it is trained on D − Dt and tested
on Dt (Kohavi 1995; Kohavi and Provost 1998). As a result, each instance of D is taken as
a test instance and classified once.

The following performance measures are recorded for each alternative scheduling
scheme on each data set under the stratified 10-fold cross validation.

• Zero-one loss classification error rate measures the overall classification performance of
a classifier under zero-one loss (Witten and Frank 2005). The classifier predicts the class
of each test instance. If the prediction is correct, it is counted as a success and the loss is
zero; if not, it is counted as an error and the loss is one. The zero-one loss classification
error rate is the proportion of errors made over all the test instances.

• Root mean squared error measures the quality of the probability estimates when a
classifier outputs a probability associated with each prediction (Witten and Frank
2005). Assume the actual probability of a test instance Ii belonging to each of the k

classes is ai1, ai2, . . . , aik respectively; and the probability predicted by the classifier is
pi1,pi2, . . . , pik respectively. The root mean squared error of the classifier over n test
instances equals to

√
∑n

i=1 (
(pi1−ai1)2+···+(pik−aik)2

k
)

n
.

• Rank orders competing algorithms for each data set following the practice of Friedman
(1937, 1940). The algorithm that attains the best performance is ranked 1, the second best
ranked 2, so on and so forth. An algorithm’s average rank can be obtained by averaging
its ranks across all data sets. Compared with mean value such as the arithmetic mean of
the classification error rates across all data sets, average rank can reduce the susceptibility
to outliers that, for instance, allows a classifier’s excellent performance on one data set to
compensate for its overall bad performance (Demsar 2006).

• Anytime classification curve of an algorithm A on a data set D (or averaged on multiple
data sets) is a two-dimensional curve whose horizontal axis corresponds to the exhausted
classification time resource (number of steps) by the time t , and whose vertical axis cor-
responds to A’s some performance measure such as the classification error rate by the
time t . If the number of steps becomes bigger than the meaningful number of steps re-
quired by a data set, the error rate value remains that of the full NB+SPODEs ensemble.
In practice, this means that if the classification time budget is more than what SAAPE
needs to finish, SAAPE always returns its complete calculation.

76 Mach Learn (2009) 77: 61–102

Statistical tests employed A variety of statistical tests are employed to evaluate measured
performance of each competing scheme.

• Win/lose/tie record and binomial sign test can be applied to compare each pair of algo-
rithms across multiple data sets. A win/lose/tie record can be calculated for each pair
of competing algorithms A and B with regard to a performance measure M . The record
represents the number of data sets in which A respectively beats, loses to or ties with B

on M . A one-tailed binomial sign test can be applied to wins versus losses. If its result
is less than the critical level of 0.05, the wins against losses are statistically significant,
supporting the claim that the winner has a systematic (instead of by chance) advantage
over the loser.

• Friedman test and Nemenyi test can be applied to compare multiple classifiers across mul-
tiple data sets. As recommended by Demsar (2006), the Friedman test compares schemes’
average ranks to decide whether to reject the null-hypothesis, which states that all the
schemes are equivalent and so their ranks should be equal. If the Friedman test rejects its
null-hypothesis, we can proceed with a post-hoc test, the Nemenyi test (Demsar 2006). It
can be applied to average ranks of competing schemes and indicate whose performances
have statistically significant differences (here we use the 0.05 critical level).

5.2 Observations and analysis

Rival algorithms’ anytime classification performances are presented and analyzed in this
section. Because the SAAPE system can deliver probability estimates of class labels given
each test instance as well as output zero-one loss classification, we will study each schedul-
ing scheme’s performance regarding both outputs.

5.2.1 Performance regarding zero-one loss classification

For each alternative scheduling scheme Fig. 5 illustrates its anytime classification curve
regarding SAAPE’s zero-one loss classification error rate averaged on 60 experimental data
sets. Every scheduling scheme starts with NB, resulting in the same classification error rate
at step = 0. A rapid decrease in error is witnessed at the early stages (approximately before
step = 50 × 100) of dispatching SPODEs to test instances. After step = 50 × 100, the error
decrease slows down and the relative performance among alternative scheduling schemes
largely remains the same. When available classification time is long enough so that SAAPE
dispatches every candidate SPODE to every test instance, all scheduling schemes converge
to the same classification error rate. Because most change takes place before step = 50 ×
100, we zoom in the part of Fig. 5 where step ∈ [0,50 × 100] to have a detailed study. This
results in Fig. 6.

For each alternative scheduling scheme Fig. 7 illustrates its rank averaged on 60 experi-
mental data sets regarding SAAPE’s zero-one loss classification rate under varying classifi-
cation time. Figure 8 is the zoom in version of Fig. 7 where step ∈ [0,50 × 100].

Experimental results on both error rates and ranks (Figs. 5, 6, 7, 8) reveal that in general
Hybrid is the most effective at using extra classification time to reduce classification error
rate. MMIF is the second best followed by RR and FCFS. The three versions of controversial
instance first scheduling, VRPCL, VAOACL and SKLD, are the least effective at reducing
classification error rate and do not have a big performance difference among themselves
although VAOACL often gets the worst ranking.

It is interesting to note that at the very beginning MMIF obtains lower error than Hybrid
more often than not. We suggest the reason is that Hybrid must first allocate every test in-
stance a SPODE in addition to NB in order to calculate μ and σ for the Gaussian curve.

Mach Learn (2009) 77: 61–102 77

Fig. 5 Anytime classification curve of each scheduling algorithm’s zero-one loss classification performance.
The horizontal axis is the number of steps simulating the available classification time resource. The vertical
axis is SAAPE’s classification error rate averaged on 60 experimental data sets

Fig. 6 Zoom in the part of Fig. 5 where step ∈ [0,50 × 100]

78 Mach Learn (2009) 77: 61–102

Fig. 7 Anytime classification curve of each scheduling algorithm’s average rank regarding zero-one loss
classification performance. The horizontal axis is the number of steps simulating the available classification
time resource. The vertical axis is each scheduling algorithm’s rank in terms of SAAPE’s classification error
rate and averaged on 60 experimental data sets

Fig. 8 Zoom in the part of Fig. 7 where step ∈ [0,50 × 100]

Mach Learn (2009) 77: 61–102 79

This has an effect similar to RR (Round Robin)4 and is less effective than MMIF that can
keep adding SPODEs to refine the class probability estimates for the minimum-margin in-
stance(s) so long as every test instance has been assigned its initial NB. Nonetheless, as
time progresses Hybrid gradually overtakes MMIF and becomes the most effective schedul-
ing strategy. We suggest the reason is because Hybrid not only considers the difference
between the highest probability estimate prob1 and the second highest probability estimate
prob2, it also takes into account the deviation when SAAPE derives prob1 and prob2 from
each invoked classifier’s estimate.

It is also worth noting that RR outperforms FCFS. This confirms our previous observa-
tions in the AAPE system that when adding SPODEs into the classifier ensemble to classify
an instance, very often the biggest improvements of classification performance take place
at the early stages, such as when adding the first few SPODEs (Yang et al. 2007). Hence
when classifying a pool of instances under constraint time resources, it is more effective to
dispatch the first SPODE to every instance, then the second SPODE to every instance and
so on (RR), rather than to dispatch all the SPODEs to the first instance, then all the SPODEs
to the second instance and so on (FCFS). RR exchanges time for substantial improvements
by focusing on early classification stages, while FCFS exchanges time for trivial as well as
big improvements by always proceeding to the later classification stages, which is not so
rewarding.

Meanwhile we can conduct various statistical tests at each step to find out exactly which
schemes are significantly different at this time point. To statistically compare each pair of
algorithms across 60 experimental data sets, a win/lose/tie (w/l/t) record is calculated with
regard to the classification error rate. For example, Table 4(a) lists the win/lose/tie records
when step = 200. A boldface entry indicates that the wins against losses are statistically
significant using a one-tailed binomial sign test at the 0.05 critical level. For instance, it is
observed that when step = 200, RR achieves lower error than VRPCL (w/l/t = 24/10/26),
VAOACL (w/l/t = 25/8/27) and SKLD (w/l/t = 22/11/27) with statistically significant fre-
quency. Both MMIF and Hybrid achieve lower error than FCFS, VRPCL, VAOACL and
SKLD with statistically significant frequency. MMIF wins more often than not compared
with both RR and Hybrid. The same statistical test procedure can be applied to any
time point. We have also listed two sets of representative results when step = 2,000 and
step = 20,000 in Table 4.

To compare all algorithms in one go across 60 experimental data sets, we use the Fried-
man test and the Nemenyi test following Demsar’s proposal (Demsar 2006). For example,
when step = 200, the average ranks of FCFS, RR, MMIF, VRPCL, VAOACL, SKLD and
Hybrid are respectively 4.2083, 3.725, 2.9917, 4.675, 4.625, 4.4 and 3.375. When we apply
the Friedman test, with 7 algorithms and 60 data sets, FF is distributed according to the F
distribution with (7 − 1) = 6 and (7 − 1) × (60 − 1) = 354 degrees of freedom. The critical
value of F(6, 354) at the 0.05 critical level is 2.12. FF calculated from the average ranks is
5.87. Since 5.87 > 2.12, we can reject the null hypothesis and infer that there exists signif-
icant difference among rival schemes. To find out exactly which schemes are significantly
different, we proceed to the Nemenyi test, whose results are illustrated in Fig. 9(a). The aver-
age rank of each scheme is pointed by a circle. The horizontal bar across each circle indicates
the critical difference which equals to 1.16 in this case. The performance of two methods is

4But Hybrid is not initially the same as round robin because in this particular round of dispatching the first
SPODE to test instances, under hybrid scheduling the instance that has the smallest value of (prob1–prob2)
will get the SPODE first, while under round robin scheduling test instances get the SPODE following their
natural order in the data set.

80 Mach Learn (2009) 77: 61–102

Table 4 Given a time point, every pair of algorithms’ win/lose/tie records with regard to the classification
error rate across 60 data sets. Each entry indicates that the algorithm of the row compares against the algorithm
of the column. A statistically significant record (at the 0.05 critical level) is indicated in bold

Algorithm FCFS RR MMIF VRPCL VAOACL SKLD Hybrid

(a) step = 200 FCFS – 22/23/15 12/34/14 24/18/18 23/20/17 23/20/17 14/28/18

RR 23/22/15 – 19/27/14 24/10/26 25/8/27 22/11/27 21/23/16

MMIF 34/12/14 27/19/14 – 39/8/13 37/10/13 36/9/15 22/16/22

VRPCL 18/24/18 10/24/26 8/39/13 – 8/9/43 7/14/39 9/31/20

VAOACL 20/23/17 8/25/27 10/37/13 9/8/43 – 6/14/40 9/30/21

SKLD 20/23/17 11/22/27 9/36/15 14/7/39 14/6/40 – 9/31/20

Hybrid 28/14/18 23/21/16 16/22/22 31/9/20 30/9/21 31/9/20 –

(b) step = 2,000 FCFS – 5/14/41 2/17/41 10/9/41 10/9/41 9/10/41 1/18/41

RR 14/5/41 – 4/15/41 17/0/43 17/0/43 16/2/42 1/17/42

MMIF 17/2/41 15/4/41 – 19/1/40 19/1/40 17/3/40 4/8/48

VRPCL 9/10/41 0/17/43 1/19/40 – 4/4/52 3/8/49 0/19/41

VAOACL 9/10/41 0/17/43 1/19/40 4/4/52 – 3/8/49 0/19/41

SKLD 10/9/41 2/16/42 3/17/40 8/3/49 8/3/49 – 0/17/43

Hybrid 18/1/41 17/1/42 8/4/48 19/0/41 19/0/41 17/0/43 –

(c) step = 20,000 FCFS – 0/3/57 0/3/57 3/0/57 3/0/57 3/0/57 0/3/57

RR 3/0/57 – 0/3/57 3/0/57 3/0/57 3/0/57 0/3/57

MMIF 3/0/57 3/0/57 – 3/0/57 3/0/57 3/0/57 0/1/59

VRPCL 0/3/57 0/3/57 0/3/57 – 1/2/57 0/3/57 0/3/57

VAOACL 0/3/57 0/3/57 0/3/57 2/1/57 – 0/3/57 0/3/57

SKLD 0/3/57 0/3/57 0/3/57 3/0/57 3/0/57 – 0/3/57

Hybrid 3/0/57 3/0/57 1/0/59 3/0/57 3/0/57 3/0/57 –

significantly different if their corresponding average ranks differ by at least the critical dif-
ference. In other words, two methods are significantly different if their horizontal bars are
not overlapping. For instance, Fig. 9(a) reveals that when step = 200, MMIF is ranked the
best and is statistically significantly better than FCFS, VRPCL, VAOACL and SKLD. The
same statistical test procedure can be applied to any time point. We have also illustrated two
sets of representative results when step = 2,000 and step = 20,000 in Fig. 9, from which we
observe that MMIF is ranked better than all the other scheduling schemes at the beginning
(step = 200), Hybrid overtakes MMIF and becomes the best latter on (step = 2,000), and all
schemes converge to the same performance eventually.

5.2.2 Performance regarding probability estimation

Alternative scheduling schemes’ relative performance on probability estimation presents
a general trend similar to that of their zero-one loss classification performance. For each
alternative scheduling scheme Fig. 10 illustrates its anytime classification curve regarding
SAAPE’s root mean squared error averaged on 60 experimental data sets. Figure 11 zooms
in the part of Fig. 10 where step ∈ [0,50 × 100] because substantial performance changes
take place during this period. For each alternative scheduling scheme Fig. 12 illustrates its
rank averaged on 60 experimental data sets regarding SAAPE’s root mean squared error

Mach Learn (2009) 77: 61–102 81

Fig. 9 Apply the Nemenyi test to alternative schemes’ average ranks of classification error rate

under varying classification time and Fig. 13 is the zoom in version of Fig. 12 where step ∈
[0,50 × 100].

In general, Hybrid is the most effective at using extra classification time to reduce prob-
ability estimation error for SAAPE although MMIF wins Hybrid more often than not at the
very beginning. FCFS presents mediocre performance. The three versions of controversial
instance first scheduling, VRPCL, VAOACL and SKLD, are the least effective at reducing
probability estimation error and do not have a big performance difference among themselves
although VAOACL often gets the worst ranking.

One observation worth mentioning is that the performance difference between com-
petitive methods such as RR and MMIF has slightly narrowed down when the perfor-
mance is measured by probability estimate error rather than by zero-one loss classifica-
tion error (contrasting Fig. 6 and Fig. 11, or contrasting Fig. 8 and Fig. 13). We suggest
that the reason lies in the distinction between the two measurements’ nature. We measure
probability estimate by root mean squared error. Given an instance (I) and two candidate
class labels (+, −), assume the true class label of I is +. Assume a Bayesian classifier
(B1) predicts P̂ (+|I) = 60% and P̂ (−|I) = 40%, and another Bayesian classifier (B2)
predicts P̂ (+|I) = 45% and P̂ (−|I) = 55%. Then B1’s probability estimate error equals
to

√
(1 − 0.6)2 + (0 − 0.4)2 = 0.57 and B2’s equals to 0.78. The difference between B1

and B2 is thus 0.21. In contrast, B1’s zero-one loss classification error equals to 0 since
P̂ (+|I) > P̂ (−|I), and B2’s equals to 1 since P̂ (+|I) < P̂ (−|I). The difference between

82 Mach Learn (2009) 77: 61–102

Fig. 10 Anytime classification curve of each scheduling algorithm’s probability estimation performance.
The horizontal axis is the number of steps simulating the available classification time resource. The vertical
axis is SAAPE’s root mean squared error averaged on 60 experimental data sets

Fig. 11 Zoom in the part of Fig. 10 where step ∈ [0,50 × 100]

Mach Learn (2009) 77: 61–102 83

Fig. 12 Anytime classification curve of each scheduling algorithm’s average rank regarding probability es-
timation performance. The horizontal axis is the number of steps simulating the available classification time
resource. The vertical axis is each scheduling algorithm’s rank in terms of SAAPE’s root mean squared error
and averaged on 60 experimental data sets

Fig. 13 Zoom in the part of Fig. 12 where step ∈ [0,50 × 100]

84 Mach Learn (2009) 77: 61–102

Table 5 Given a time point, every pair of algorithms’ win/lose/tie records with regard to the root mean
squared error across 60 data sets. Each entry indicates that the algorithm of the row compares against the
algorithm of the column. A statistically significant record (at the 0.05 critical level) is indicated in bold

Algorithm FCFS RR MMIF VRPCL VAOACL SKLD Hybrid

(a) step = 200 FCFS – 22/27/11 12/37/11 27/20/13 29/18/13 27/22/11 19/30/11

RR 27/22/11 – 17/33/10 30/6/24 31/6/23 28/11/21 22/24/14

MMIF 37/12/11 33/17/10 – 42/8/10 43/7/10 38/13/9 28/20/12

VRPCL 20/27/13 6/30/24 8/42/10 – 20/6/34 15/16/29 10/34/16

VAOACL 18/29/13 6/31/23 7/43/10 6/20/34 – 9/22/29 8/37/15

SKLD 22/27/11 11/28/21 13/38/9 16/15/29 22/9/29 – 14/32/14

Hybrid 30/19/11 24/22/14 20/28/12 34/10/16 37/8/15 32/14/14 –

(b) step = 2,000 FCFS – 3/17/40 4/16/40 9/11/40 11/9/40 10/10/40 2/17/41

RR 17/3/40 – 9/11/40 19/0/41 19/0/41 18/1/41 9/10/41

MMIF 16/4/40 11/9/40 – 18/2/40 19/1/40 17/3/40 8/11/41

VRPCL 11/9/40 0/19/41 2/18/40 – 8/6/46 7/8/45 1/18/41

VAOACL 9/11/40 0/19/41 1/19/40 6/8/46 – 7/8/45 0/19/41

SKLD 10/10/40 1/18/41 3/17/40 8/7/45 8/7/45 – 2/17/41

Hybrid 17/2/41 10/9/41 11/8/41 18/1/41 19/0/41 17/2/41 –

(c) step = 20,000 FCFS – 0/3/57 0/3/57 3/0/57 3/0/57 3/0/57 0/3/57

RR 3/0/57 – 0/3/57 3/0/57 3/0/57 3/0/57 0/3/57

MMIF 3/0/57 3/0/57 – 3/0/57 3/0/57 3/0/57 0/1/59

VRPCL 0/3/57 0/3/57 0/3/57 – 2/1/57 0/3/57 0/3/57

VAOACL 0/3/57 0/3/57 0/3/57 1/2/57 – 0/3/57 0/3/57

SKLD 0/3/57 0/3/57 0/3/57 3/0/57 3/0/57 – 0/3/57

Hybrid 3/0/57 3/0/57 1/0/59 3/0/57 3/0/57 3/0/57 –

B1 and B2 is thus 1. In this sense, the probability estimate measurement resembles a continu-
ous variable while the classification measurement resembles a categorical variable obtained
by discretizing probabilities into either 0 or 1. As a result, zero-one loss classification error
tends to magnify the difference between rival methods.

Following the practice detailed in Sect. 5.2.1, we can conduct various statistical tests at
each step to find out exactly which schemes are significantly different at this time point. To
statistically compare each pair of algorithms across 60 experimental data sets, a win/lose/tie
(w/l/t) record is calculated with regard to the root mean squared error. Table 5 lists three sets
of representative results when step = 200, step = 2,000 and step = 20,000. For instance, it is
observed that when step = 200, MMIF achieves lower error than FCFS (w/l/t = 37/12/11),
RR (w/l/t = 33/17/10), VRPCL (w/l/t = 42/8/10), VAOACL(w/l/t = 43/7/10) and SKLD
(w/l/t = 38/13/9) with statistically significant frequency; and MMIF wins Hybrid more of-
ten than not (w/l/t = 28/20/12), although not statistically significantly. When step = 2,000,
Hybrid achieves lower error than FCFS, VRPCL, VAOACL and SKLD with statistically
significant frequency; and Hybrid wins RR and MMIF more often than not, although not
statistically significantly.

To compare all algorithms in one go across 60 experimental data sets, we use the Fried-
man test and the Nemenyi test following Demsar’s proposal (Demsar 2006). Figure 14 illus-
trates three sets of representative results when step = 200, step = 2,000 and step = 20,000.

Mach Learn (2009) 77: 61–102 85

Fig. 14 Apply the Nemenyi test to alternative schemes’ average ranks of root mean squared error

It shows that at the beginning (step = 200), MMIF is ranked the best and is statistically sig-
nificantly better than FCFS, VRPCL, VAOACL and SKLD. Hybrid is ranked the second best
and is statistically significantly better than VRPCL and VAOACL. Later on (step = 2,000),
Hybrid overtakes MMIF and becomes the best although the performance difference is sta-
tistically insignificant if all seven schemes are considered in one go. Eventually, all schemes
converge to the same performance.

5.2.3 MMIF versus Hybrid

Because the empirical evidence has suggested that Hybrid and MMIF are the best two
scheduling methods in general, we conduct a further comparison between the two top win-
ners.

As we have reasoned in Sect. 3.3, a potential pitfall for MMIF is when there exist many
instances like I1 in Table 2, which retains the minimum margin that does not change re-
gardless of additional classifiers being applied to I1. In this case, MMIF will futilely keep
dispatching SPODEs to I1 and waste much time on it. This problem is similar to the medical
situation where multiple doctors agree that a patient diagnosis is not a clear cut. In such a
case, it might not help much to consult more doctors. Instead one might need to add more
informing attributes, such as a new blood test.

When it is not possible to bring new attributes into the data, as is often the case, Hybrid
offers another way out. We expect Hybrid to circumvent the pitfall because for each instance,
not only does Hybrid consider the difference between the highest probability estimate prob1

86 Mach Learn (2009) 77: 61–102

Fig. 15 MMIF is less effective
than Hybrid at lowering error for
data sets that have many
instances like I1

and the second highest probability estimate prob2, it also takes into account the deviation
when SAAPE derives prob1 and prob2 from each invoked classifier’s estimate.

The Waveform and Splice data sets in our experimental data suite are characterized with
the above-mentioned problem. For example, the Waveform data set offers 40 candidate
SPODEs. The 340th instance is prioritized as the minimum-margin instance for 38 con-
tinuous times out of 40. Altogether Waveform has about 180 such instances and Splice has
about 120. Figure 15 illustrates the anytime classification curves of MMIF versus Hybrid
regarding SAAPE’s root mean squared error on the two data sets respectively. It is observed
that Hybrid is more effective at lowering error than MMIF in both cases. The zero-one loss
classification error has the same story.

Nonetheless, we suggest that this type of pitfalls does not occur very often. Among the
comprehensive set of 60 data sets that we have studied, only two data sets (Waveform and
Splice) have a non-negligible number of instances like I1. Since MMIF also has a strong ad-

Mach Learn (2009) 77: 61–102 87

vantage in terms of efficiency, we suggest that in general MMIF is still an effective schedul-
ing method.

6 Conclusion and future work

We have proposed an anytime classification system, Scheduling Anytime Averaged Proba-
bilistic Estimators (SAAPE), which is capable of classifying a pool of instances, delivering
accurate results whenever interrupted and optimizing the overall classification performance
regarding the whole pool. When multiple instances simultaneously require classification, a
choice has to be made which instance to get available computational resources next. We
have proposed seven alternative scheduling strategies that calculate the priority of each in-
stance: first-come first-served (FCFS); round robin (RR); minimum-margin instance first
(MMIF); controversial instance first that comprises variance regarding predicted class label
(VRPCL), variance averaged on all class labels (VAOACL), and symmetric Kullback and
Leibler distance (SKLD); and lastly, the hybrid approach (Hybrid). Based on our large-scale
experiments that utilize an extensive suite of 60 benchmark data sets and a wide variety of
statistical tests, we draw the following conclusions.

1. In general, alternative scheduling schemes’ relative performances on zero-one loss clas-
sification and on probability estimation present a similar trend.

2. Overall Hybrid is the most effective at using extra classification time to reduce zero-one
loss classification error and probability estimation error. However, it loses to MMIF more
often than not at the very beginning of anytime classification. We suggest the reason is
that Hybrid need first allocate every test instance a SPODE in addition to NB in order
to calculate μ and σ 2 for the Gaussian curve. This has an effect similar to RR (round
robin) and is less effective than MMIF that can keep adding SPODEs to refine the class
probability estimates for the minimum-margin instance(s) so long as every test instance
has been assigned its initial NB.

3. Overall MMIF is the second most effective at using extra classification time to reduce
zero-one loss classification error and probability estimation error. Considering that its
performance is close to that of Hybrid, and it is more efficient than Hybrid at calculating
each instance’s priority (the simple subtract prob1–prob2 in contrast to the overlapping
area of two Gaussian curves), it is the method of choice if one needs both high accuracy
and high efficiency.

4. RR outperforms FCFS. This is because very often the biggest improvements for classi-
fying an instance take place when adding the first few SPODEs. Hence when classifying
a pool of instances under time resource constraints, it is more effective to dispatch the
first SPODE to every instance, then the second SPODE to every instance and so on (RR),
rather than to dispatch all the SPODEs to the first instance, then all the SPODEs to the
second instance and so on (FCFS).

5. FCFS only presents mediocre performance. Since FCFS equals to applying the previ-
ous AAPE system to classify a pool of instances under time resource constraints, this
observation suggests that SAAPE is more capable of handling anytime classification for
multiple instances when coupled with appropriate scheduling schemes such as Hybrid,
MMIF or RR. This is an important improvement because in reality it often happens that
multiple instances simultaneously require classification such as in the credit card trans-
action approval application.

88 Mach Learn (2009) 77: 61–102

6. The three versions of controversial instance first scheduling, VRPCL, VAOACL and
SKLD, are the least effective at reducing classification error rate as well as reducing
probability estimation error. They do not have a big performance difference among them-
selves although VAOACL often gets the worst ranking. Hence we do not recommend to
deploy them in the SAAPE system.

There are still various interesting issues to further investigate in our research on anytime
classification for multiple instances. We name a few as follows.

• In our current study SPODEs are invoked by the natural order of the superparent attributes
that is inherent in the data set. We focus on comparing different scheduling schemes under
this natural order. However, one might suspect that the available SPODEs be of varying
quality. It will be desirable to invoke the most effective SPODE first. Meanwhile, differ-
ent scheduling schemes might require different optimal SPODEs ordering. How to order
SPODEs under alternative scheduling schemes is a research topic for further investiga-
tion.

• Although we have used Bayesian probabilistic classifiers (NB and SPODEs) as a vehicle
of illustration throughout this paper, the proposed anytime classification framework is a
generic framework that can also accommodate other types of classifiers such as TAN, de-
cision trees and SVM. Any ensemble learner could be converted into an anytime classifier
by evaluating at classification time only as many of the available ensemble members as
time allows. It would be very interesting to investigate alternative classifiers’ efficacy and
efficiency for anytime classification, and study which scheduling methods are optimal for
those alternatives.

• Our future research will also explore the benefit of user interaction for anytime classifi-
cation systems. In such an interaction scenario, when a user intends to terminate the clas-
sification process, the system can inform the user such as “If given this much more time,
I could further improve the classification accuracy by this much”. This type of informa-
tion can be very useful in practice because if the improvement in accuracy is substantial
while the extra time demand is trivial, the user may well choose to interrupt a little later
in order to gain much better classification performance.

Acknowledgements We gratefully acknowledge Dr. Zhen He, Dr. Lloyd Allison and Dr. Enes Makalic
for their thoughtful and constructive comments on this paper. This research was supported by Australian
Research Council Grants DP0556279 and DP0770741.

Appendix A: Relationship between VRPCL and VAOACL

In the two-class case, variance regarding predicted class label is equivalent to variance av-
eraged on all class labels, whereas in the multiple-class case, they can be different. We first
prove the equivalence case and then give an example to attest the difference case.

Theorem 1 (Equivalence) In the two-class case, variance regarding predicted class label is
equivalent to variance averaged on all class labels.

Proof Assume there are two possible class labels y1 and y2. Assume that l classifiers have
been invoked to classify an instance I . Assume that the ith classifier estimates the proba-
bility of y1 given I is ai . Because there are only two possible class labels, the ith classifier
estimates the probability of y2 given I as (1 − ai). Without losing generality, assume that y1

is the class label predicted by SAAPE for I .

Mach Learn (2009) 77: 61–102 89

Table 6 If there are more than two classes, the two scheduling schemes VRPCL and VAOACL can be
different

Classifier1 Classifier2 SAAPE output

For instance I4 Class label y1 80% 60% 70%

y2 10% 20% 15%

y3 10% 20% 15%

For instance I5 Class label y1 80% 60% 70%

y2 20% 0% 10%

y3 0% 40% 20%

By the definition of variance, the variance regarding the predicted class label y1 is:

Var(y1) =
l∑

i=1

(

ai −
∑l

i=1 ai

l

)2

, (5)

where the term
∑l

i=1 ai

l
is the mean value of all classifiers’ probability estimates of y1 given I .

Likewise, the variance regarding the other class label y2 is:

Var(y2) =
l∑

i=1

(

(1 − ai) −
∑l

i=1(1 − ai)

l

)2

=
l∑

i=1

(

(1 − ai) −
(

1 −
∑l

i=1 ai

l

))2

=
l∑

i=1

(∑l

i=1 ai

l
− ai

)2

. (6)

According to Eqs. 5 and 6, we get

Var(y1) = Var(y2).

As a result

average
(
Var(y1),Var(y2)

) = Var(y1). � (7)

The above theorem and proof assure us that the two scheduling schemes VRPCL and
VAOACL are identical for two-class classification applications.

Nonetheless, if there are more than two classes, VRPCL and VAOACL can assign differ-
ent priorities to an instance. One example is given in Table 6. For I4, the predicted class is
y1 and its variance equals (0.8 − 0.7)2 + (0.6 − 0.7)2 = 0.02. I4’s variance averaged across
all class labels equals to

(0.8−0.7)2+(0.6−0.7)2+(0.1−0.15)2+(0.2−0.15)2+(0.1−0.15)2+(0.2−0.15)2

3 = 0.03.

90 Mach Learn (2009) 77: 61–102

For I5, the predicted class is y1 and its variance equals (0.8 − 0.7)2 + (0.6 − 0.7)2 = 0.02.
I5’s variance averaged across all class labels equals to

(0.8−0.7)2+(0.6−0.7)2+(0.2−0.1)2+(0−0.1)2+(0−0.2)2+(0.4−0.2)2

3 = 0.12.

As a result, under the scheduling scheme VRPCL, I4 and I5 obtain the same highest priority
to get the next SPODE. In contrast, under the scheduling scheme VAOACL, I5 attains the
higher priority because 0.12 > 0.03.

Appendix B: Pseudo codes of the SAAPE system

The pseudo codes of the SAAPE system and every scheduling algorithm are presented here.
To be succinct, if an algorithm repeats some operations that have taken placed and thus have
been explained in previous algorithms, we will skip the redundant explanation.

Table 7 The parameters
Explanation: Table 7 lists the parameters of our algorithms. In particular, an attribute value’s frequency must
be equal to or more than m_Limit in the training data in order to be qualified as a superparent. In our
experiments m_Limit is set as 1 following AAPE’s practice. The maximum number of qualified superparents
equals the number of attributes m. We use available_steps to simulate the time variable. One step equals to
the amount of time that allows to apply one SPODE to one instance. The maximum meaningful number of
steps for a test data set D with n instances and m attributes equals n × m. If the SAAPE system has time
available more than n × m steps when classifying D, it will finish applying every candidate SPODE to every
instance and its performance will remain constant afterwards.

Algorithm: The parameters of SAAPE

Input:

• D[I1..In]: test data set that comprises n instances to be classified. Each instance Ii has m attributes;
• C[c1..ck]: class attribute with k class labels;
• attvals[att1..attm]: stores attribute values;
• m_Limite: the lower threshold of an attribute value’s frequency in training data in order to qualify for

being a superparent;
• PP[C]: prior probability of each class label estimated from the training data;
• PP[C,attvals]: prior probability of each class label and attribute-value pair estimated from the training

data;
• CP[C,attvals]: conditional probability of each attribute value given each class label estimated from the

training data;
• CP[C,parent,attvals]: conditional probability of each attribute value (the final index) given each class

and each super-parent estimated from the training data;
• available_steps: simulates the time variable. One step equals the amount of time that allows to apply

one SPODE to one instance;

Output:

• P [D, C]: the post probability of each class label given each instance in D.

Mach Learn (2009) 77: 61–102 91

Table 8 The SAAPE algorithm
Explanation: Table 8 presents the framework of the SAAPE system. Same as the AAPE algorithm, Lines 1
to 10 compute NB. Interrupts are only enabled on Line 11 because we assume that the contract portion of
the classification time budget is sufficient to allow standard NB classification to be performed. Line 6 stores
the probability of each class label estimated by NB in the NP array because some scheduling algorithms (in
Sect. 3.4) need this information later. Line 12 starts simulating the situation when there is still classification
time available. Lines 13 to 21 initialize two arrays for every scheduling function: superparentCount and
retainParent. The one-dimensional array superparentCount[D] records how many SPODEs have been
invoked for each instance in addition to NB, across all of which the class probability estimates given this
instance will be averaged. The two-dimensional array retainParent[D,attvals] is initialized to include every
qualified superparent. For each test instance I in D a superparent will be removed from retainParent[I] once
its corresponding SPODE has been dispatched to I by a scheduling function. Depending on which
scheduling scheme (Line 22) is used, different instances get possibly different SPODEs to update their
predicted class probabilities. The update is performed by calling the function update_prob() defined by
Lines 24 to 31 where P [C] is the existent class probability estimates given I , xp is the superparent whose
SPODE is newly dispatched to I , TP[C] is the class probabilities estimated by xp and count is the number of
SPODEs I has received so far (including xp). Interrupts are suspended during this process as the P values
are in an unstable state. In consequence, if the time budget expires during this process there will be a slight
delay before computation terminates.
Algorithm: SAAPE

1: for num := I1..In do
2: for y := c1..ck do
3: P [num, y] := PP[num, y];
4: for i := 1..m do
5: P [num, y] := P [num, y] × CP[y, xi];
6: NP[num, y] := P [num, y];
7: end for
8: end for
9: end for

10: normalize(P);
11: on interrupt goto Line 23;
12: step := 0;
13: for num := I1 . . . In do
14: superparentCount[num] := 1; /* Already has NB computed. */
15: retainParent[num] := ∅;
16: for sp := att1 . . .attm do
17: if sp’s value for Inum has frequency no less than m_Limit in the training data then
18: add sp into retainParent[num];
19: end if
20: end for
21: end for

22: call scheduling function;

23: return P ;

24: update_prob (P [C], xp,TP[C],appliedClassifierCount){
25: suspend interrupts;
26: for y := c1..ck do
27: P [y] := P [y]×(appliedClassifierCount−1)+TP[y]

appliedClassifierCount ;
28: end for
29: restore interrupts;
30: return P [c1..ck];
31: }

92 Mach Learn (2009) 77: 61–102

Table 9 First-come first-served scheduling
Explanation: Table 9 presents the first-come first-served algorithm. Line 7 adds one step which means
SAAPE dispatches a new SPODE to an instance Inum, and Line 8 increments superparentCount[num] by
one accordingly. Lines 9 to 14 compute TP, the temporary class probabilities given Inum that are estimated
by this new SPODE. Line 15 calls the function update_prob() to update the average probability estimates of
each class label given Inum, accounting for this newly applied SPODE.
Algorithm: First-come first-served scheduling

1: if scheduling = First-come first-served then
2: for num := I1..In do
3: for each xp in retainParent[num] do
4: if step ≥ available_steps then
5: return P ; /* Classification time resources have been exhausted. */
6: end if
7: step + +;
8: superparentCount[num] + +;
9: for y := c1..ck do

10: TP[num, xp, y] := PP[y, xp];
11: for i := 1..m do
12: TP[num, xp, y] := TP[num, xp, y] × CP[y, xp, xi];
13: end for
14: end for
15: P [num, C] = update_prob(P [num, C], xp,TP[num, xp, C], superparentCount[num] + 1);

/*(superparentCount[num] + 1) counts invoked SPODEs and NB. */
16: remove xp from retainParent[num];
17: end for
18: end for
19: normalize(P);
20: end if

Mach Learn (2009) 77: 61–102 93

Table 10 Round robin scheduling
Explanation: Table 10 represents the round robin algorithm. Line 3 decides which instance gets a new
SPODE. The % is the modular operator and n is the number of test instances in D. Line 5 selects a
superparent xp for the instance Inum from the retainParent[num] array. Line 6 removes xp from
retainParent[num] since it has been scheduled to dispatch, and accordingly Line 7 increments by 1 the
number of classifiers applied to Inum. Lines 8 to 13 compute the temporary class probabilities given Inum
that are estimated by the SPODE whose superparent is xp .
Algorithm: Round robin scheduling

1: if scheduling = Round robin then
2: while step < available_steps && retainParent �= ∅ do
3: num := step % n;
4: step + +;
5: select xp in retainParent[num];
6: remove xp from retainParent[num];
7: superparentCount[num] + +;
8: for y := c1..ck do
9: TP[num, xp, y] := PP[y, xp];

10: for i := 1..m do
11: TP[num, xp, y] := TP[num, xp, y] × CP[y, xp, xi];
12: end for
13: end for
14: P [num, C] = update_prob(P [num, C], xp,TP[num, xp, C], superparentCount[num] + 1);
15: end while
16: normalize(P);
17: end if

94 Mach Learn (2009) 77: 61–102

Table 11 Borderline instance first scheduling
Explanation: Table 11 presents the borderline instance first scheduling algorithm. Line 2 copies the test data
set D to Dtmp. Lines 4 to 10 calculate for each instance (prob1–prob2) where prob1 is the highest predicted
class probability and prob2 is the second highest predicted class probability. Line 11 chooses the instance
Inum which has the smallest value of (prob1–prob2) and thus which gets a new SPODE. If the instance Inum
has no more SPODEs to be invoked, we remove it from Dtmp (Lines 23 to 25).
Algorithm: Borderline instance first scheduling

1: if scheduling = Borderline instance first then
2: Dtmp := D;
3: while step < available_steps && Dtmp �= ∅ do
4: for num := I1..In do
5: if Inum in Dtmp then
6: prob1 := highest predicted class probability value;
7: prob2 := second highest predicted class probability value;
8: priority[num] := prob1 − prob2;
9: end if

10: end for
11: num := arg minnum(priority[Inum]);
12: select xp from retainParent[num];
13: remove xp from retainParent[num];
14: step + +;
15: superparentCount[num] + +;
16: for y := c1..ck do
17: TP[num, xp, y] := PP[y, xp];
18: for i := 1..m do
19: TP[num, xp, y] := TP[num, xp, y] × CP[y, xp, xi]
20: end for
21: end for
22: P [num, C] = update_prob(P [num, C], xp,TP[num, xp, C], superparentCount[num] + 1);
23: if retainParent[num] is null then
24: remove Inum from Dtmp
25: end if
26: end while
27: normalize(P);
28: end if

Mach Learn (2009) 77: 61–102 95

Table 12 The function to calculate variance among invoked classifiers’ opinions regarding
a class label given an instance
Explanation: Table 12 presents the function Var(ci ,num) that calculates the variance among invoked
classifiers’ opinions regarding a class label ci given an instance Inum. This function will be called by two
scheduling algorithm: variance regarding predicted class label (Sect. 3.4.1) and variance averaged on all
class labels (Sect. 3.4.2). NP[num, ci] records the probability of ci given Inum estimated by NB, and
TP[num, xp, ci] records the probability of ci given Inum estimated by the SPODE whose superparent is xp .
Function: Var(ci ,num)

1: Var(ci ,num){
2: μi := NP[num, ci];
3: for xp := 0..(superparentCount[num] − 1) do
4: μi := μi + TP[num, xp, ci];
5: end for
6: μi := μi

superparentCount[num]+1 ;

7: σi := (NP[num, ci] − μi)
2;

8: for xp := 0..(superparentCount[num] − 1) do
9: σi := σi + (TP[num, xp, ci] − μi)

2;
10: end for
11: σi := σi

superparentCount[num]+1 ;

12: return
√

σi ;
13: }

96 Mach Learn (2009) 77: 61–102

Table 13 Controversial instance first (variance regarding predicted class label) scheduling
Explanation: Table 13 presents the scheduling algorithm of controversial instance first (variance regarding
predicted class label). Lines 2 to 6 initialize the parameters. Line 3 sets a flag in order to make sure that each
instance has been estimated by one SPODE in addition to NB before starting calculating variance (Lines 8
and 9). This is necessary for getting σi for the class label ci . In Line 5, the array variance[D] is used to
record the priority (variance) for each instance and is initialized by 0. Line 7 keeps running until the
classification time resource has exhausted or every instance has obtained all qualified SPODEs. Line 11
picks out the instance Inum to get a new SPODE. Line 24 identifies the predicted class label predictedClass
for Inum and Line 25 updates variance among invoked classifiers’ opinions regarding predictedClass given
Inum.
Algorithm: Controversial instance first (variance regarding predicted
class label) scheduling

1: if scheduling = Controversial instance first (variance regarding predicted class label) then
2: Dtmp := D;
3: flag := 0;
4: for j := I1..In do
5: variance[j] := 0;
6: end for
7: while step < available_steps && Dtmp �= ∅ do
8: if flag < n then
9: num := flag + +;

10: else
11: num := arg maxj (variance[Ij]);
12: end if
13: step + +;
14: superparentCount[num] + +;
15: select xp from retainParent[num];
16: remove xp from retainParent[num];
17: for y := c1..ck do
18: TP[num, xp, y] := PP[y, xp]
19: for i := 1..m do
20: TP[num, xp, y] := TP[num, xp, y] × CP[y, xp, xi]
21: end for
22: end for
23: P [num, C] = update_prob(P [num, C], xp,TP[num, xp, y], superparentCount[num]);
24: predictedClass := arg maxi (P [num, ci]);
25: variance[num] := Var(predictedClass,num);
26: if retainParent[num] is null then
27: remove Inum from Dtmp
28: end if
29: end while
30: normalize(P);
31: end if

Mach Learn (2009) 77: 61–102 97

Table 14 Controversial instance first (variance averaged on all class labels) scheduling
Explanation: Table 14 presents the scheduling algorithm of controversial instance first (variance averaged on
all class labels). The key difference between this algorithm and the previous one in Table 13 is that it
calculates the variance regarding each class and then averages across them to get the priority of each
instance (Lines 25 to 27).
Algorithm: Controversial instance first (variance averaged on all class
labels) scheduling

1: if scheduling = Controversial instance first (variance averaged on all class labels) then
2: Dtmp := D;
3: flag := 0;
4: for j := I1..In do
5: variance[j] := 0;
6: end for
7: while step < available_steps && Dtmp �= ∅ do
8: if flag < n then
9: num := flag + +;

10: else
11: num := arg maxj (variance[Ij]);
12: end if
13: step + +;
14: superparentCount[num] + +;
15: select xp from retainParent[num];
16: remove xp from retainParent[num];
17: for y := c1..ck do
18: TP[num, xp, y] := PP[y, xp]
19: for i := 1..m do
20: TP[num, xp, y] := TP[num, xp, y] × CP[y, xp, xi]
21: end for
22: end for
23: P [num, C] = update_prob(P [num, C], xp,TP[num, xp, C], superparentCount[num] + 1);
24: sum := 0.0;
25: for y := c1..ck do
26: sum := sum + Var(y,num);
27: end for
28: variance[num] := sum

k
;

29: if retainParent[num] is null then
30: remove Inum from Dtmp
31: end if
32: end while
33: end if

98 Mach Learn (2009) 77: 61–102

Table 15 The function of calculating symmetric Kullback and Leibler distance averaged
across all classifier pairs
Explanation: Table 15 implements the function calculating the symmetric Kullback and Leibler distance
(SKL) averaged across all pairs of invoked classifiers regarding an instance Inum. Lines 5 to 9 compute the
SKL distance between NB and each invoked SPODE. Lines 4 to 17 compute the SKL distance between each
pair of invoked SPODEs. Line 18 returns the average value across all computed SKL distances.
Function: SKL(num)

1: SKL(num){
2: sum := 0.0;
3: count := 0;
4: for sp := 0..(superparentCount[num] − 1) do
5: for y := c1..ck do
6: sum := sum + NP[num, y] × log NP[num,y]

TP[num,sp,y] ;

7: sum := sum + TP[num, sp, y] × log TP[num,sp,y]
NP[num,y] ;

8: count + +;
9: end for

10: for sq := (sp + 1)..(superparentCount[num] − 1) do
11: for y := c1..ck do
12: sum := sum + TP[num, sp, y] × log TP[num,sp,y]

TP[num,sq,y] ;

13: sum := sum + TP[num, sq, y] × log TP[num,sq,y]
TP[num,sp,y] ;

14: count + +;
15: end for
16: end for
17: end for
18: return sum

count ;
19: }

Mach Learn (2009) 77: 61–102 99

Table 16 Controversial instance first (symmetric Kullback and Leibler distance) scheduling
Explanation: Table 16 presents the scheduling algorithm of controversial instance first (symmetric Kullback
and Leibler distance). Lines 8 to 12 select the instance Inum who has the highest averaged SKL distance
across all pairs of invoked classifiers and thus who gets allocated a new SPODE. Line 24 updates Inum’s
SKL distance by calling the function SKL(num).
Algorithm: Controversial instance first (symmetric Kullback and Leibler
distance) scheduling

1: if scheduling = Controversial instance first (symmetric Kullback and Leibler distance) then
2: Dtmp := D;
3: flag := 0;
4: for j := I1..In do
5: variance[j] := 0;
6: end for
7: while step < available_steps && Dtmp �= ∅ do
8: if flag < n then
9: num := flag + +;

10: else
11: num := arg maxj (variance[Ij]);
12: end if
13: select xp from retainParent[num];
14: remove xp from retainParent[num];
15: step + +;
16: superparentCount[num] + +;
17: for y := c1..ck do
18: TP[num, xp, y] := PP[y, xp]
19: for i := 1..m do
20: TP[num, xp, y] := TP[num, xp, y] × CP[y, xp, xi]
21: end for
22: end for
23: P [num, C] = update_prob(P [num, C], xp,TP[num, xp, C], superparentCount[num] + 1);
24: variance[num] := SKL(num);
25: if retainParent[num] is null then
26: remove Inum from Dtmp;
27: end if
28: end while
29: end if

100 Mach Learn (2009) 77: 61–102

Table 17 A hybrid approach for scheduling
Explanation: Table 17 presents the algorithm of the hybrid approach. Line 2 copies D to two temporary data
sets Dtmp and T D. Because calculating σ of the Gaussian distribution requires at least two values, we need
first allocate every test instance a SPODE in addition to NB. In this particular round of allocating the first
SPODE, the instance that gets the smallest value of prob1 − prob2 will get the SPODE first, which is
different from the round robin scheduling and is implemented by Lines 8 to 16. T D registers instances
which still need add the first SPODE. When T D becomes empty, it means every instance has got its first
SPODE. Given an instance Inum which has obtained multiple classifiers, Lines 31 and 32 identify its class
labels of the highest and second highest predicted probability among all labels. We only need to calculate
the overlapping area of these two class labels’ Gaussian distributions (Lines 33 to 35). Line 18 identifies the
instance which has the highest priority (overlapping area) and thus which gets a new SPODE by calling the
function get_Instance().
Algorithm: A hybrid approach for scheduling

1: if scheduling = A hybrid approach then
2: Dtmp := D; T D := D;
3: flag := 0;
4: for j := I1..In do
5: variance[j] := 0;
6: end for
7: while step < available_steps && Dtmp �= ∅ do
8: if flag < n then
9: for num ∈ T D do

10: prob1 := highest predicted class probability value;
11: prob2 := second highest predicted class probability value;
12: priority[num] := prob1 − prob2;
13: end for
14: num := arg minnum(priority[num]);
15: remove num from T D;
16: flag + +;
17: else
18: num := get_Instance();
19: end if
20: select xp from retainParent[num];
21: remove xp from retainParent[num];
22: step + +;
23: superparentCount[num] + +;
24: for y := c1..ck do
25: TP[num, xp, y] := PP[y, xp];
26: for i := 1..m do
27: TP[num, xp, y] := TP[num, xp, y] × CP[y, xp, xi];
28: end for
29: end for
30: P [num, C] = update_prob(P [num, C], xp,TP[num, xp, C], superparentCount[num] + 1);
31: y1 := arg maxy (P [num, C]); /* Class with highest predicted probability.*/
32: y2 := arg maxy (P [num, C] − P [num, y1]); /* Class with second highest predicted probability.*/
33: CDF1 = Gaussian(y1);
34: CDF2 = Gaussian(y2);
35: variance[num] := overlap(CDF1,CDF2);
36: if retainParent[num] is null then
37: remove Inum from Dtmp;
38: end if
39: end while
40: end if

Mach Learn (2009) 77: 61–102 101

Table 18 The function of get_Instance
Explanation: Table 18 presents the get_Instance() function that is called by the hybrid approach in Table 17.
Lines 7 to 11 identify the instance which has the highest priority (overlapping area) and thus which gets a
new SPODE. This function also implements a tie breaker strategy from Lines 12 to 17. If two instances
attain the same highest priority, we use their values of (prob1 − prob2) as the tie breaker. Whichever
instance has the smallest value gets a new SPODE. This is inspired by our observation of the very good
empirical performance of the borderline instance first scheduling scheme. Note that prob1 and prob2 equal
to μ1 and μ2 respectively.
Function: get_Instance()

1: get_Instance(){
2: tmpPriority := 0.0;
3: diff := 0.0;
4: for i := 1..n do
5: prob1 := highest predicted class probability value of instance Ii ;
6: prob2 := second highest predicted class probability value of instance Ii ;
7: if variance[i] > tmpPriority then
8: tmp := i;
9: tmpPriority := variance[i];

10: diff := prob1 − prob2;
11: end if
12: if variance[i] = tmpPriority then
13: if (prob1 − prob2) < diff then
14: tmp := i;
15: diff := prob1 − prob2;
16: end if
17: end if
18: end for
19: return tmp;
20: }

References

Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. University of California, Irvine,
School of Information and Computer Sciences.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Reading/Harlow: Addison-
Wesley/Longman.

Bartlett, P. L. (2007). Pattern classification and large margin classifiers. Machine Learning Summer School
2006, Taipei.

Bekara, M., Knockaert, L., Seghouane, A.-K., & Fleury, G. (2006). A model selection approach to signal
denoising using Kullback’s symmetric divergence. Signal Processing, 86, 1400–1409.

Chan, P., Fan, W., Prodromidis, A., & Stolfo, S. (1999). Distributed data mining in credit card fraud detection.
IEEE Intelligent Systems, 14(6), 67–74.

DeCoste, D. (2002). Anytime interval-valued outputs for kernel machines: Fast support vector machine classi-
fication via distance geometry. In Proceedings of the 19th international conference on machine learning
(pp. 99–106).

Deitel, H. M., Deitel, P. J., & Choffnes, D. R. (2004). Operating systems (3rd ed.). New York: Prentice Hall.
Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning

Research, 7, 1–30.
Duarte, M. F., & Hu, Y. H. (2004). Vehicle classification in distributed sensor networks. Journal of Parallel

and Distributed Computing, 64(7), 826–838.
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of

variance. Journal of the American Statistical Association, 32, 675–701.
Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. Annals

of Mathematical Statistics, 11, 86–92.

102 Mach Learn (2009) 77: 61–102

Grass, J., & Zilberstein, S. (1996). Anytime algorithm development tools. M. Pittarelli (Ed.). SIGART Bulletin
Special Issue on Anytime Algorithms and Deliberation Scheduling, 7(2), 20–27.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences, 186, 453–461.

Jitnah, N., & Nicholson, A. (1997). treeNets: A framework for anytime evaluation of belief networks. In
Proceedings of the international joint conference on qualitative and quantitative practical reasoning
(pp. 350–364).

Keogh, E. J., & Pazzani, M. J. (2002). Learning the structure of augmented Bayesian classifiers. International
Journal on Artificial Intelligence Tools, 11(40), 587–601.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In
Proceedings of the 14th international joint conference on artificial intelligence (pp. 1137–1145).

Kohavi, R., & Provost, F. (1998). Glossary of terms, special issue on applications of machine learning and
the knowledge discovery process. Machine Learning, 30, 271–274.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics,
22(1), 79–86.

Langley, P., Iba, W., & Thompson, K. (1992). An analysis of Bayesian classifiers. In Proceedings of the 10th
national conference on artificial intelligence (pp. 223–228).

Liu, C.-L., & Wellman, M. P. (1996). On state-space abstraction for anytime evaluation of Bayesian networks.
ACM SIGART Bulletin, 7(2), 50–57.

Meesookho, C., Narayanan, S., & Raghavendra, C. S. (2002). Collaborative classification applications in
sensor networks. In Proceedings of the sensor array and multichannel signal processing workshop (pp.
370–374).

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56–58.
Schapire, R., Freund, Y., Bartlett, P., & Lee, W. (1998). Boosting the margin: A new explanation for the

effectiveness of voting methods. Annals of Statistics, 26(5), 1651–1686.
Stallings, W. (2004). Operating systems: Internals and design principles (5th ed.). New York: Prentice Hall.
Sun, Y., & Daigle, J. N. (2006). A PCA-based vehicle classification system in wireless sensor networks. In

Proceedings of the wireless communications and networking conference (Vol. 4, pp. 2193–2198).
Tanenbaum, A. S. (2001). Modern operating systems (2nd ed.). New York: Prentice Hall.
Ueno, K., Xi, X., Keogh, E., & Lee, D.-J. (2006). Anytime classification using the nearest neighbor algorithm

with applications to stream mining. In Proceedings of the 6th international conference on data mining
(pp. 623–632).

Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naive Bayes: Averaged one-dependence estimators.
Machine Learning, 58(1), 5–24.

Webb, G. I., Pazzani, M. J., & Billsus, D. (2001). Machine learning for user modeling. User Modeling and
User-Adapted Interaction, 11(1–2), 19–29.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques with java
implementations (2nd ed.). San Mateo: Morgan Kaufmann.

Yang, Y., Webb, G. I., Korb, K., & Ting, K. M. (2007). Classifying under computational resource constraints:
anytime classification using probabilistic estimators. Machine Learning, 69, 35–53.

Ye, L., Wang, X., Yankov, D., & Keogh, E. (2008). The asymmetric approximate anytime join: A new primi-
tive with applications to data mining. In Proceedings of the SIAM conference on data mining.

	Anytime classification for a pool of instances
	Abstract
	Introduction
	The AAPE system
	The SAAPE system
	First-come first-served (FCFS)
	Round robin (RR)
	Minimum-margin instance first (MMIF)
	Controversial instance first
	Variance regarding predicted class label (VRPCL)
	Variance averaged on all class labels (VAOACL)
	Symmetric Kullback and Leibler distance (SKLD)

	A hybrid approach (Hybrid)

	Classification time complexity analysis
	Experiments
	Experimental design
	Data
	Simulation of varying classification time
	Performance measured
	Statistical tests employed

	Observations and analysis
	Performance regarding zero-one loss classification
	Performance regarding probability estimation
	MMIF versus Hybrid

	Conclusion and future work
	Acknowledgements
	Appendix A: Relationship between VRPCL and VAOACL
	Appendix B: Pseudo codes of the SAAPE system
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

