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Abstract
We consider a Bayesian approach to model-based reinforcement learning, where the agent
uses a distribution of environment models to find the action that optimally trades off explo-
ration and exploitation. Unfortunately, it is intractable to find the Bayes-optimal solution to
the problem except for restricted cases. In this paper, we present BOKLE, a simple algorithm
that uses Kullback–Leibler divergence to constrain the set of plausible models for guid-
ing the exploration. We provide a formal analysis that this algorithm is near Bayes-optimal
with high probability. We also show an asymptotic relation between the solution pursued by
BOKLE and a well-known algorithm called Bayesian exploration bonus. Finally, we show
experimental results that clearly demonstrate the exploration efficiency of the algorithm.
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1 Introduction

Reinforcement learning (RL) agents face the fundamental problem of maximizing long-term
rewards while actively exploring an unknown environment, commonly referred to as explo-
ration versus exploitation trade-off. Model-based Bayesian reinforcement learning (BRL) is
a principled framework for computing the optimal trade-off from the Bayesian perspective by
maintaining a posterior distribution over themodel of the unknown environment and comput-
ing Bayes-optimal policy (Duff 2002; Poupart et al. 2006; Ross et al. 2007). Unfortunately,
it is intractable to exactly compute Bayes-optimal policies except for very restricted cases.

Among a large and growing body of literature on model-based BRL, we focus on algo-
rithmswith formal guarantees, particularly PAC-BAMDP (Kolter andNg 2009;Araya-López
et al. 2012). These algorithms are followed by rigorous analyses showing that they are able
to perform nearly as well as the Bayes-optimal policy after executing a polynomial number
of time steps. They are variants of PAC-MDP algorithms (Kearns and Singh 2002; Strehl and
Littman 2008; Asmuth et al. 2009), which guarantee near-optimal performance with respect
to the optimal policy of an unknown ground-truth model, to the BRL setting. As such, they
balance exploration and exploitation by adopting optimism in the face of uncertainty prin-
ciple as in many PAC-MDP algorithms using additional reward bonus for state-action pairs
that are less executed than others (Kolter and Ng 2009), assuming optimistic transitions to
states with higher values (Araya-López et al. 2012), or using posterior samples of models
(Asmuth 2013).

In this paper, we propose a PAC-BAMDPalgorithm based on optimistic transitionswith an
information-theoretic bound, which we name Bayesian optimistic Kullback–Leibler explo-
ration (BOKLE). Specifically, BOKLE computes policies by constructing an optimistic
MDP model in the neighborhood of posterior mean of transition probabilities, defined in
terms of Kullback–Leibler (KL) divergence. We provide an analysis showing that BOKLE
is near Bayes-optimal with high probability, i.e. PAC-BAMDP. In addition, we show that
BOKLE asymptotically reduces to a well-known PAC-BAMDP algorithm, namely Bayesian
exploration bonus (BEB) (Kolter and Ng 2009), with a reward bonus equivalent to that of
UCB-V (Audibert et al. 2009), which strengthen our understanding of how optimistic tran-
sitions and reward bonuses relate to each other. Finally, although our contribution is mainly
in the formal analysis of the algorithm, we provide experimental results on well-known
model-based BRL domains and show that BOKLE performs better than some representative
PAC-BAMDP algorithms in the literature.

We remark that perhaps the most relevant work in the literature is KL-UCRL (Filippi et al.
2010), where the transition probabilities are optimistically chosen in the neighborhood of
empirical transition (multinomial) probabilities, also defined in terms of KL divergence. KL-
UCRL is also shown to perform nearly optimally under a different type of formal analysis,
namely regret. Compared to KL-UCRL, BOKLE can be seen as extending the neighborhood
to be defined over Dirichlets. In addition, perhaps not surprisingly, we lose the connection to
existing PAC-BAMDP algorithms if we make BOKLE optimal under Bayesian regret. We
provide details on this issue in the next section after we review some necessary background.

2 Background

A Markov decision process (MDP) is a common environment model for RL, defined by a
tuple 〈S, A, P, R〉, where S is a finite set of states, A is a finite set of actions, P = {psa ∈
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�S |s ∈ S, a ∈ A} is the transition distribution, i.e. psas′ = Pr(s′|s, a), and R(s, a) ∈
[0, Rmax] is the reward function. A (stationary) policy π : S → A specifies the action to be
executed in each state. For a fixed time horizon H , the value function of a given policy π

is defined as V π
H (s) = E

[ ∑H−1
t=0 R(st , π(st ))|s0 = s

]
, where st is the state at time step t .

The optimal policy π∗
H is typically obtained by computing optimal value function V ∗

H that
satisfies Bellman optimality equation V ∗

H (s) = maxa∈A
[
R(s, a) + ∑

s′∈S psas′V ∗
H−1(s

′)
]

using classical dynamic programming methods (Puterman 2005).
In this paper, we considermodel-basedBRLwhere the underlying environment ismodeled

as an MDP with unknown transition distribution P = {psa}. Following the Bayes-adaptive
MDP (BAMDP) formulation with discrete states (Duff 2002), we represent psa’s as multino-
mial parameters and maintain the posterior over these parameters (i.e. belief b) using the flat
Dirichlet-multinomial (FDM) distribution (Kolter and Ng 2009; Araya-López et al. 2012).
Formally, given Dirichlet parameters αsa for each state-action pair, which consist of both
initial prior parameters α0

sa and execution counts nsa , the prior over the transition distribution
psa is given by

Dir(psa;αsa) = 1

B(αsa)

∏

s′
p

αsas′−1
sas′ (1)

where B(αsa) = ∏
s′ Γ (αsas′)/Γ (

∑
s′ αsas′) is the normalizing constant, Γ is the gamma

function. The FDM assumes independent transition distributions among state-action pairs so
that

b(P) =
∏

s,a

Dir(psa;αsa).

Upon observing a transition tuple 〈s, a, s′〉, this prior belief is updated by

bss
′

a (P) = ηpsas′
∏

ŝ,â

Dir(pŝâ;αŝâ) =
∏

ŝ,â

Dir(pŝâ;αŝâ + δŝ,â,ŝ′(s, a, s′))

where δŝ,â,ŝ′(s, a, s′) is the Kronecker delta function that yields 1 if (s, a, s′) = (ŝ, â, ŝ′)
and 0 otherwise, η is the normalizing factor. This is equivalent to incrementing the single
Dirichlet parameter corresponding to the observed transition: αsas′ ← αsas′ + 1. Thus, the
belief is equivalently represented by its Dirichlet parameters, b = {αsa |s ∈ S, a ∈ A}, and
this results in αsa = α0

sa + nsa where α0
sa is the initial Dirichlet parameters and nsa is the

execution counts.
The BAMDP formulates the task of computing Bayes-optimal policy as a stochastic

planning problem. Specifically, the BAMDP augments environment state s with current
belief b, which essentially captures the uncertainty in the transition distribution as part of
the state space. Then, the optimal value function of the BAMDP should satisfy Bellman
optimality equation

V
∗
H (s, b) = max

a

[
R(s, a) + ∑

s′ E[psas′ |b]V∗
H−1(s

′, bss′a )
]

where E[psas′ |b] = αsas′/
∑

s′′ αsas′′ . Unfortunately, it is intractable to find the solution
except for restricted cases primarily because the number of beliefs grows exponentially in
H .

Before we present our algorithm, we briefly review some of the most relevant work in the
literature on RL. Since Rmax (Brafman and Tennenholtz 2002) and E3 (Kearns and Singh
1998), a growing body of research has been devoted to algorithms that can be shown to achieve
near-optimal performance with high probability, i.e. probably approximately correct (PAC).
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Depending on whether the learning target is the optimal policy or the Bayes-optimal policy,
these algorithms are classified as either PAC-MDP or PAC-BAMDP. They commonly con-
struct and solve optimistic MDP models of the environment by defining confidence regions
of transition distributions centered at empirical distributions, or by adding larger bonuses to
rewards of state-action pairs that are less executed than others.

Model-based interval estimation (MBIE) (Strehl and Littman 2005) is a PAC-MDP algo-
rithm that uses confidence regions of transition distributions captured by the 1-norm distance
of O(1/

√
nsa), where nsa is the execution count of action a in state s. Bayesian optimistic

local transition (BOLT) (Araya-López et al. 2012) is a PAC-BAMDP algorithm that uses
confidence regions of transition distributions captured by the 1-norm distance of O(1/nsa),
although not explicitly mentioned in the work. MBIE-EB (Strehl and Littman 2008) is a sim-
pler version that uses additive rewards of O(1/

√
nsa). On the other hand, BEB (Kolter and

Ng 2009) is a PAC-BAMDP algorithm that uses additive rewards of O(1/nsa). These results
imply that we can significantly reduce the degree of exploration in PAC-BAMDP compared
to PAC-MDP, which is natural: the learning target is the Bayes-optimal policy (which we
know but hard to compute) rather than the optimal policy of the environment (which we don’t
know).

On the other hand, UCRL2 (Jaksch et al. 2010) uses the 1-norm distance bound of
O(1/

√
nsa) for confidence regions of transition distributions, and is shown to produce near

optimal policy under the notion of regret, a formal analysis framework alternative to PAC-
MDP. KL-UCRL (Filippi et al. 2010) uses the KL bound of O(1/nsa) to achieve the same
regret, while exhibiting a better performance in experiments. This empirical advantage is
due to the continuous change in optimistic transition models being constructed with the KL
bound. Now, it would be interesting to question ourselves whether we can reduce the degree
of exploration if we switch to Bayesian regret, as was the case with PAC-BAMDP. Unfor-
tunately, there is some evidence to the contrary. In Bayes-UCB (Kaufmann et al. 2012), it
was shown that the Bayesian bandit algorithm requires the same degree of exploration as
KL-UCB (Garivier and Cappé 2011). In PSRL (Osband et al. 2013), the formal analysis uses
the same set of plausible models as in UCRL2. Hence, we strongly believe that we cannot
reduce the degree of exploration under the Bayesian regret criterion.

These results motivate us to investigate a PAC-BAMDP algorithm that uses optimistic
transition models with the KL bound of O(1/n2sa), which is the main result of this paper.

3 Bayesian optimistic KL exploration

In order to characterize confidence regions of transition distributions defined byKLbound,
wefirst defineCαsa for each state-action pair s, a, which specifies theKLdivergence threshold
from the posterior mean qsa . Here, Cαsa is the parameter of the algorithm proportional
to O(1/n2sa), which will be discussed later. Algorithm 1 presents our algorithm, Bayesian
Optimistic KL Exploration (BOKLE), that precisely uses this idea for computing optimistic
value functions. For each state-action pair s, a, the optimistic Bellman backup in BOKLE
essentially seeks the solution to the following convex optimization problem

max
p

∑

s′
ps′ Ṽ (s′) subject to

DKL(qsa‖p) ≤ Cαsa∑
s′ ps′ = 1

ps′ ≥ 0, ∀s′ ∈ S

(2)
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Algorithm 1 BOKLE
Input: s0 : initial state

{α0
sa}: Dirichlet parameters of initial belief for each state-action pair s, a

1: (s, b) ← (s0, {α0
sa})

2: for t = 1, 2, . . . , T do
% m ean of the belief

3: ∀(s, a, s′) ∈ S × A × S : qsas′ = αsas′∑
s′′ αsas′′

4: for h = 1, 2, · · · , H do
% o ptimistic backup within KL-neighborhood

5: ∀(s, a) ∈ S × A : Q̃h(s, b, a) = R(s, a) + maxp:DKL (qsa‖p)≤Cαsa

∑
s′ ps′ Ṽh−1(s

′, b)
6: ∀s ∈ S : Ṽh(s, b) = maxa∈A Q̃h(s, b, a)

7: end for
8: Execute action a∗ = argmaxa∈A Q̃h(s, b, a)

9: Observe new state s′ and update the belief and the state b ← bss
′

a∗ , s ← s′
10: end for

recursively using Ṽ from the previous step, which can be solved in polynomial time by the
barrier method (Boyd and Vandenberghe 2004) (Details are available in the “Appendix A”).

4 PAC-BAMDP analysis

BOKLE algorithm described in Algorithm 1 obtains the optimistic value function over a KL
bound of O(1/n2sa). This exploration bound is much tighter than that of KL-UCRL (Filippi
et al. 2010), O(1/nsa), since BOKLE seeks Bayes-optimal actions whereas KL-UCRL seeks
the ground-truth actions. Similarly, the Pinsker inequality implies that the exploration bound
can be much tighter than the 1-norm bound of O(1/

√
nsa) in MBIE (Strehl and Littman

2005) and UCRL2 (Jaksch et al. 2010). In this section, we provide a PAC-BAMDP analysis
of BOKLE algorithm even though it optimizes over asymptotically much tighter bound than

others. Also, we show the sample complexity bound O(
|S||A|H4R2

max
ε2

log |S||A|
δ

) in Theorem 1,
the same complexity bound in BOLT (Araya-López et al. 2012), which is the main result of
our analysis.

Before we embark on providing the main theorem, we define KL bound parameter Cαsa

in Eq. (2).

Definition 1 Given a Dirichlet distribution with parameter αsa , let qsa be the mean of the
posterior distribution. Then, Cαsa is the maximum KL divergence

Cαsa = max
h=1,...,H ,
ŝ s.t. nsaŝ �=0

DKL(qsa‖ph,ŝ)

where ph,ŝ is the mean of the Dirichlet distribution with parameter α′
sa = αsa + heŝ where

eŝ is the standard base, i.e. α′
sa can be “reached” from αsa in h steps by applying h Bayesian

updates from αsa so that α′
sas′ = αsas′ for all s′ �= ŝ except α′

saŝ = αsaŝ + h.

We note that, in Definition 1, h artificial pieces of evidence are only applied to the state
ŝ, which is the state observed at least once by action a in state s while the agent is learning.
Therefore, αsaŝ asymptotically increases at a ratio of psaŝ nsa , which results in Cαsa dimin-
ishing at a ratio of O(1/n2sa) if we regard the true underlying transition probability psaŝ as a
domain-specific constant.
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Proposition 1 Cαsa defined in Definition 1 diminishes at a ratio of O(1/n2sa) and is upper
bounded by H2/minŝ s.t. nsaŝ �=0 αsaαsaŝ whereαsa = ∑

s′ αsas′ is the sum ofDirichlet param-
eters.

We provide the proof of Proposition 1 in the “Appendix C.1”. We now present the main
theorem stating that BOKLE is PAC-BAMDP.

Theorem 1 Let At be the policy followed by BOKLE at time step t using H as the horizon
for computing value functions with KL bound parameter Cαsa defined in Definition 1, and
let st and bt be the state and the belief (the parameter of the FDM posterior) at that time.
Then, with probability at least 1− δ, the Bayesian evaluation of At is ε-close to the optimal
Bayesian evaluation

V
At
H (st , bt ) ≥ V

∗
H (st , bt ) − ε

for all but

O

( |S||A|H4R2
max

ε2
log

|S||A|
δ

)

time steps. In this equation, the definition of Bayes value function Vπ
H (s, b) is

V
π
H (s, b) =

∑

a

R(s, a) +
∑

s′
E[psas′ |b]Vπ

H−1(s
′, bss′a ) (3)

Our proof of Theorem 1 is based on showing three essential properties of being PAC-
BAMDP: bounded optimism, induced inequality, and mixed bound. We provide the proofs
of three properties in the “Appendix C” by following the steps analogous to the analyses of
BEB (Kolter and Ng 2009) and BOLT (Araya-López et al. 2012).

Lemma 1 (Bounded Optimism) Let st and bt be the state and the belief at time step t. Then,
ṼH (st , bt ), computed by BOKLE with Cαsa defined in Definition 1, is lower bounded by

ṼH (st , bt ) ≥ V
∗
H (st , bt ) − H2Vmax

αst + H

where V
∗
H (st , bt ) is the H-horizon Bayes-optimal value, Vmax is the upper bound on the

H-horizon value function, and αst = mina αst a .

Compared to the optimism lemma that appears in all PAC-BAMDP analysis (Kolter and
Ng 2009; Araya-López et al. 2012), this lemma is much more general, because we allow
V

∗
H (st , bt ) to be less than ṼH (st , bt ) by at most O(1/nsa). In the proof of the main theorem,

we show that this weaker condition is still sufficient to establish that the algorithm is PAC-
BAMDP.

The second lemma states that, if we evaluate a policy π on two different rewards and
transition distributions, R,p and R̂, p̂, where R(s, a) = R̂(s, a) and psa = p̂sa on a set K of
“known” state-action pairs (Brafman and Tennenholtz 2002), the two value functions will be
similar given that the probability of escaping from K is small. This is a slight modification
of the induced inequality lemma used in PAC-MDP analysis, essentially the same lemma in
BEB (Kolter and Ng 2009) and BOLT (Araya-López et al. 2012). The known set K is defined
by

K =
{
(s, a)|αsa =

∑

s′
αsas′ ≥ m

}
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wherem is a threshold parameter that represents state-action pair with enough evidence. This
definition will be used frequently in the rest of this section.Wewill later derive an appropriate
value of m that results in the PAC-BAMDP bound in Theorem 1.

Lemma 2 (Induced Inequality) LetVπ
h (s, b) be the Bayesian evaluation of a policy π defined

by Eq. (3), and a be the action selected by the policy at (s, b). We define the mixed value
function by

V̂
π
h+1(s, b) =

{
R(s, a) + ∑

s′ E[psas′ |b] V̂π
h (s′, b′) if (s, a) ∈ K

R̂(s, a) + ∑
s′ p̂sas′ V̂

π
h (s′, b′) if (s, a) /∈ K

for the known set K , where p̂sas′ is a transition probability that can be different from the
expected transition probability E[psas′ |b] and b′ is the updated belief of b by observing state
transition (s, a, s′). Let AK be the event that a state-action pair not in K is visited when
starting from state s and following policy π for H steps. Then,

V
π
H (s,α) ≥ V̂

π
H (s,α) − Vmax Pr(AK )

where Vmax is the upper bound on the H-horizon value function and Pr(AK ) is the probability
of event AK .

The last lemma bounds the difference between the value function computed by BOKLE
and the mixed value function, where the reward and transition distribution R̂, p̂ are set to
those used by BOKLE. Note that R̂ = R in our case, since BOKLE only modifies transition
distribution.

Lemma 3 (BOKLE Mixed Bound) Let the known set K = {(s, a)| αsa = ∑
s′ αsas′ ≥ m}.

Then, the difference between the value obtained by BOKLE, ṼH , and the mixed value of
BOKLE’s policy At with BOKLE’s transition probabilities p̂sa for K , V̂At

H , is bounded by

ṼH (st , bt ) − V̂
At
H (st , bt ) ≤ (

√
2/pmin + 1)H2Vmax

m

where pmin = mins,a,s′ psas′ is the minimum non-zero transition probability of each action
a in each state s on the true underlying environment, which is a domain-specific constant.

Finally, we provide the proof of Theorem 1 using the three lemmas.

Proof

V
At
H (st , bt )

≥ V̂
π̃
H (st , bt ) − Vmax Pr(AK )

≥ ṼH (st , bt ) − (
√
2/pmin + 1)H2Vmax

m
− Vmax Pr(AK )

≥ V
∗
H (st , bt ) − (

√
2/pmin + 1)H2Vmax

m
− H2Vmax

m + H
− Vmax Pr(AK )

≥ V
∗
H (st , bt ) − ε

2
− Vmax Pr(AK ) (4)

by applying Lemma 2 (induced inequality) in the first inequality and noticing thatAt equals
π̃ unless AK occurs, Lemma 3 (mixed bound) in the second inequality, Lemma 1 (bounded
optimism) in the third inequality. We obtain the last line if we set
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m = (2
√
2/pmin + 4)H2Vmax

ε
.

This particular value is set to satisfy (
√
2/pmin+1)H2Vmax

m < ε
4 and H2Vmax

m+H < ε
4 , which can be

easily checked.
If Pr(AK ) ≤ ε

2Vmax
, from Eq. (4), we obtain V

At
H (st , αt ) ≥ V

∗
H (st , αt ) − ε. If Pr(AK ) >

ε
2Vmax

, using the Hoeffding and union bounds, with probability at least (1−δ), AK will occur

no more than O(
|S||A|m
Pr(AK )

log |S||A|
δ

) = O(
|S||A|H4R2

max
ε2

log |S||A|
δ

) time steps since Vmax ≤
HRmax (It can be easily checked using the fact that Pr(AK ) > ε

2Vmax
≥ ε

2HRmax
with the m

as described above). ��
As we mentioned before, this sample complexity bound O(

|S||A|H4R2
max

ε2
log |S||A|

δ
) is the

same as the bound of BOLT (Araya-López et al. 2012) O(
|S||A|H2

ε2(1−γ )2
log |S||A|

δ
) and better than

the bound of BEB (Kolter and Ng 2009) O(
|S||A|H6

ε2
log |S||A|

δ
) if we reconcile the differences

in the problem settings (in BOKLE: Vmax = HRmax, in BEB: Vmax = H , and in BOLT:
Vmax = 1/(1 − γ )).

5 Relating to BEB

In this section, we discuss how BOKLE relates to BEB (Kolter and Ng 2009). The first
few steps of our analysis share some similarities with KL-UCRL (Filippi et al. 2010), but
we go further to derive asymptotic approximate solutions in order to make the connection.
For the asymptotic analysis, from now on, we will consider confidence regions of transition
distributions centered at the posterior mode rather than the mean since both asymptotically
converge the same value after a large number of observations.

The mode of the transition distribution in Eq. (1) is r given by

rs = αs − 1
∑

s′ αs′ − |S| ,

where we dropped the state-action subscript for brevity. If we define the overall concentration
parameter N = ∑

s αs − |S|, then we can rewrite the belief as Dir(p;α) = 1
B(α)

∏
s p

Nrs
s ,

and its log density as

logDir(p;α) =
∑

s

Nrs log ps − log B(α).

Then, the difference of log densities between p and the mode r becomes

logDir(p;α) − logDir(r;α) = −NDKL(r‖p)

Thus, we can see that isocontours of the Dirichlet density function Dir(p;α) = ε are
equivalent to the uniform KL divergence from the mode, i.e. DKL(r‖p) = ε′/N with an
appropriately chosen ε′. This shows why KL bound neighborhood is a better idea than the
1-norm neighborhood: the former can be seen as conditioning directly on the density.

Explicitly representing the non-negativity constraint of probabilities, the Lagrangian L of
the problem in Eq. (2) can be written with the multipliers ν, μs ≥ 0 and λ as

L =
∑

s

psV (s) − ν
( ∑

s

rs log
rs
ps

− Cα

)
− λ

( ∑

s

ps − 1
)

+
∑

s

μs ps,
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which has the analytical solution

p∗
s =

[
ν

λ − μs − V (s)

]
rs =

{
0 if rs = 0[

ν
λ−V (s)

]
rs if rs �= 0

,

where the multiplier μs = 0 when if rs �= 0. This is because KL divergence is well-defined
only when ps = 0 ⇒ rs = 0, and μs ps = 0 while rs �= 0. Thus, μs was omitted in the
earlier formulation.

We focus on the case rs �= 0, where the solution can be rewritten as

p∗
s =

[
1 − 1

ν
(V (s) − λ′)

]−1

rs,

with constant λ′ is determined by the condition
∑

s ps = 1. In the regime ν � 1 (i.e.
Cα ≈ 0), we can approximate this solution by the first-order Taylor expansion:

p∗
s ≈

[
1 + 1

ν
(V (s) − λ′)

]
rs =

[
1 + 1

ν
(V (s) − Er[V ])

]
rs (5)

where Er[V ] = ∑
s rsV (s).

Then, the KL divergence can be approximated by the second-order Taylor expansion (The
proof is available in the “Appendix D”):

Cα = 1

2ν2
Varr[V ]

where Varr[V ] = Er[(V − Er[V ])2]. Thus, ν can be approximated as

ν ≈
√
Varr[V ]
2Cα

.

Using this ν in Eq. (5), we obtain

p∗
s ≈

[

1 +
√

2Cα

Varr[V ] (V (s) − Er[V ])
]

rs and

∑

s

p∗
s V (s) ≈

∑

s

rsV (s) + √
2CαVarr[V ].

We can now derive an approximation to the dynamic programming update performed in
BOKLE:

Ṽh(s, b) = max
a∈A

[
R(s, a) +

∑

s′
p∗
sa(s

′)Ṽh−1(s
′, b)

]

≈ max
a∈A

[
R(s, a) + √

2CαsaVarrsa [V ] +
∑

s′
rsas′ Ṽh−1(s

′, b)
]
.

which is comparable to the value function computed in BEB (Kolter and Ng 2009):

VBEB
h (s, b) = max

a∈A

[
R(s, a) + βBEB

1 + ∑
s′′ αsas′′

+
∑

s′
E[psas′ |b]V BEB

h−1 (s′, b)
]
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for some constant βBEB. This highly suggests that the additive reward
√
CαsaVarrsa [V ] cor-

responds to BEB exploration bonus βBEB

1+∑
s′′ αsas′′

, ignoring the mean-mode difference in the

transition model. As we have discussed in the previous section, Cαsa = O(1/n2sa), which
is consistent with BEB exploration bonus O(1/nsa). In addition, BOKLE scales the addi-
tive reward by

√
Varrsa [V ], which incentivizes the agent to explore actions with a higher

variance in values, a similar but different formulation compared to Variance-Based Reward
Bonus (VBRB) (Sorg et al. 2010). Interestingly, adding the square-root of the empirical
variance coincides with the exploration bonus in UCB-V (Audibert et al. 2009), which is a
variance-aware upper confidence bound (UCB) algorithm in bandits.

6 Experiments

Although our contribution is mainly in the formal analysis of BOKLE, we present simulation
results on three BRL domains. We emphasize that the experiments are intended as a prelim-
inary demonstration of how the different exploration strategies compare to each other, and
not as a rigorous evaluation on real-world problems.

Chain (Strens 2000) consists of 5 states and 2 actions as shown in Fig. 1a. The agent
starts in state 1 and for each time step can either move on to the next state (action a, solid
edges) or reset to state 1 (action b, dotted edges). The transition distributions make the agent
perform the other action with a “slip” probability of 0.2. The agent receives a large reward of
10 by executing action a in the rightmost state 5 or a small reward of 2 by executing action
b in any state. Double-Loop (Dearden et al. 1998) consists of 9 states and 2 deterministic

(a)

(b)

(c)

Fig. 1 Three benchmark domains: a chain (top), b double-loop (middle), and c RiverSwim (bottom). The
solid (resp. dotted) arrows indicate transition probabilities and rewards for action a (resp. b), but only non-
zero rewards are represented together with transition probabilities
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Table 1 Average returns and
their standard errors in chain,
double-loop, and RiverSwim
from 50 runs of 1000 time steps

Algorithm Chain Double-loop RiverSwim

BOKLE 3470.8 391.1 236.29

(±44.32) (±0.28) (±3.07)

BEB 3344.04 374.9 211.8

(±42.02) (±0.15) (±3.64)

BOLT 3231.64 370.4 215.1

(±36.15) (±0.08) (±4.05)
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Fig. 2 Average return versus time step in a chain (top-left), b double-loop (top-right), c RiverSwim (bottom)
for three PAC-BAMDP algorithms: BOKLE, BEB, and BOLT. The shaded region represents the standard error

actions as shown in Fig. 1b. It has two loops with a shared (starting) state 1, and the agent has
to execute action b (dotted edges) to complete the loop with a higher reward of 2, instead of
the easier loop with a lower reward of 1. RiverSwim (Filippi et al. 2010; Strehl and Littman
2008) consists of 6 states and 2 actions as shown in Fig. 1c. The agent starts in state 1, and
can swim either to the left (action b, dotted edges) or the right (action a, solid edges). The
agent has to swim all the way to state 6 to receive a reward of 1, which requires swimming
against the current of the river. Swimming to the right has a success probability of 0.35, and
a small probability 0.05 of drifting to the left. Swimming to the left always succeeds, but
receives a much smaller reward of 0.005 in state 1.

Table 1 compares the returns collected from three PAC-BAMDP algorithms averaged
over 50 runs of 1000 timesteps: BOKLE (our algorithm in Algorithm 1), BEB (Kolter and
Ng 2009), and BOLT (Araya-López et al. 2012). To handle the sparsity of the transition
distributions better, BOKLE used confidence regions centered at the posterior mode. In all
experiments, we used the discount factor γ = 0.95 for computing internal value functions.
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For each domain, we varied the algorithm parameters as follows: for BOKLE, Cα = ε/N 2

where ε ∈ {0.1, 0.25, 0.5, 1, 5, 10, 25, 50}; for BEB, β ∈ {0.1, 1, 5, 10, 25, 50, 100, 150};
for BOLT, η ∈ {0.1, 1, 5, 10, 25, 50, 100, 150}, and selected the best parameter setting for
each domain.

In Fig. 2, we show the cumulative returns versus time steps on the onset of each simulation.
It is evident from the figure that the learning performance of BOKLE is better than those
of BEB and BOLT. These results reflect our discussions on the advantage of KL bound
exploration in the previous section.

It is noteworthy that BOKLE performs better than BOLT in the experiments, even though
their sample complexity bounds are the same. This result is supported by the discussion
in Filippi et al. (2010) on the comparison between KL-UCRL (Filippi et al. 2010) and
UCRL2 (Jaksch et al. 2010): For constructing the optimistic transition model, KL-UCRL
uses KL divergence bound of O(1/nsa) whereas UCRL2 uses 1-norm distance bound of
O(1/

√
nsa). Although the formal bounds of these two algorithms are the same, KL-UCRL

performs better than UCRL2 in the experiments. This is due to the desirable properties of the
neighborhood models under KL divergence, being continuous with respect to the estimated
value and robust with respect to unlikely transitions. This insight carries on to BOKLE versus
BOLT, since BOKLE uses KL divergence bound of O(1/n2sa) whereas BOLT uses 1-norm
distance bound of O(1/nsa).

7 Conclusion

In this paper, we introduced Bayesian optimistic Kullback–Leibler exploration (BOKLE),
a model-based Bayesian reinforcement learning algorithm that uses KL divergence in con-
structing the optimistic posterior model of the environment for Bayesian exploration. We
provided a formal analysis showing that the algorithm is PAC-BAMDP, meaning that the
algorithm is near Bayes-optimal with high probability.

As we have discussed in previous sections, using KL divergence is a natural measure of
bounding the credible region of multinomial transition models when constructing optimistic
models for exploration. It directly yields the log ratio of the posterior density to the mode,
which results in smooth isocontours in the probability simplex. In addition, we showed that
the optimistic model constrained by KL divergence can be quantitatively related to other
algorithms that use an additive reward approach for exploration (Kolter and Ng 2009; Sorg
et al. 2010; Audibert et al. 2009). We presented simulation results on a number of standard
BRL domains, highlighting the advantage of using KL exploration.

A number of promising directions for future work include extending the approach to
other families of priors and continuous state/action spaces, as well as their formal analyses.
In particular, we believe that BOKLE can be extended to the continuous case, similar to
UCCRL (Ortner and Ryabko 2012), and it would be an important direction for our future
work.
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Development of Explainable Human-level DeepMachine Learning Inference Framework) and was conducted
at High-Speed Vehicle Research Center of KAIST with the support of the Defense Acquisition Program
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Appendix A: Polynomial time optimization

We show that the optimization problem

maximize
∑

s

ps Ṽ (s)

subject to DKL(q‖p) ≤ Cα

ps ≥ 0,∀s ∈ S
∑

s

ps = 1

can be solved in polynomial time by the barrier method.
First of all, we show that the above problem is a convex optimization problem since only

the convex optimization problems can be applied to the barrier method. Since the objective
function and simplex constraints are linear, it is obviously convex. Moreover, the KL bound
{p |DKL(q‖p) ≤ Cα} is a convex set by the property of KL divergence. Thus, the problem
is a kind of convex optimization problem.

The proof in Chapter 11 of Boyd and Vandenberghe (2004) guarantees that a convex
optimization problem with certain assumptions takes a polynomial number of Newton steps.
Thus, if the problem satisfies these assumptions, the result of the proof can be directly applied.
The assumptions are as follows:

– −t
∑

s ps Ṽ (s) + φ(p) is closed and self-concordant for all t ≥ t (0).
– The sublevel sets of the original optimization problem are bounded.

In the first assumption, φ(p) = − log(Cα − DKL(q‖p)) − ∑
s log ps and t (0) > 0. Now,

we will show that the assumptions hold.
Let domφ = {p |κ ≥ 0, ps ≥ 0, ∀s ∈ S} be the domain of φ. Then−t

∑
s ps Ṽ (s)+φ(p)

is closed since it is a continuous function and domφ is compact.
Let κ = Cα − DKL(q‖p) and ηs = κ/qs . Then,

∂2φ

∂ p2s
=

(
qs/ps

κ

)2

(η2s + ηs + 1),

∂3φ

∂ p3s
= −

(
qs/ps

κ

)3

(2η3s + 2η2s + 3ηs + 2).

From κ > 0 and ηs > 0, we obtain

∂2φ

∂ p2s
=

(
qs/ps

κ

)2

(η2s + ηs + 1) ≥ 0,

4

(
∂2φ

∂ p2s

)3

−
(

∂3φ

∂ p3s

)2

=
(
qs/ps

κ

)6

(4η5s + 8η4s + 8η3s + 7η2s ) ≥ 0.

Therefore,
∣∣∣ ∂3φ

∂ p3s

∣∣∣ ≤ 2
(

∂2φ

∂ p2s

)3/2
and it provides that −t

∑
s ps Ṽ (s) + φ(p) is self-

concordant.
For any k > 0, the k-sublevel set of the original problem is contained in {p | ∑s ps Ṽ (s) ≤

k} ∩ domφ, which is a bounded set. Therefore, the sublevel sets are bounded.
We can apply the result in Boyd and Vandenberghe (2004) since the given prob-

lem satisfies the assumptions. According to the result, the given problem takes at most
O(

√
m log(m2GRM/ε)) Newton steps where m, G, R, M , and ε are the number of
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inequalities, the maximum Euclidean norm of the gradient of the objective function and
the constraints, radius of the Euclidean ball which contains domφ, the maximum value of
the objective function, and accuracy, respectively. These parameters satisfy m = |S| + 1,

G ≤ max{√|S|,
√∑

s Ṽ (s)2, 1}, R = ‖q‖2 + √
2Cα , M ≤ Vmax. Therefore, the total num-

ber of Newton steps is no more than O(
√|S| log(|S|3)) for any fixed ε. Consequently, the

given optimization problem can be solved in polynomial time by the barrier method.

Appendix B: Reducing the number ofDKL evaluations in Definition 1

We argue that the optimal solution of the optimization problem in Definition 1 is equivalent
to the optimal solution of the optimization problem

Cα = max
h=1,...,H

DKL (q‖ph,s′min) (6)

where s′
min = argmins′ s.t. ns′ �=0αs′ . By doing so, the number of DKL evaluations will reduce

from |S|H in Definition 1 to H in Eq. (6).
From now, we prove the equivalence between the two optimization problems, Definition 1

and Eq. (6). Let α0 = ∑
s αs . Then, for a fixed h,

max
∀s′

DKL(q‖ph,s′)

= max
∀s′

∑

s

αs

α0
log

[
αs(α0 + h)

(αs + δss′h)α0

]

=
∑

s

αs

α0
log

[
αs(α0 + h)

α0

]
+ max

∀s′

[

−
∑

s

αs

α0
log(αs + δss′h)

]

=
∑

s

αs

α0
log

[
αs(α0 + h)

α0

]
− 1

α0

∑

s

αs logαs + 1

α0
max
∀s′

αs′
[
log

αs′

αs′ + h

]

Thus, maximizing DKL(q‖ph,s′) is equivalent to maximizing

αs′ log
αs′

αs′ + h
(7)

with respect to s′. Fortunately, Eq. (7) is a decreasing function since for f (x) = x log x
x+h ,

f (x) = x log x − x log(x + h)

f ′(x) = log
x

x + h
+ h

x + h
= log z + (1 − z)

< 0

where z = x
x+h and z ∈ (0, 1) since x > 0, h ≥ 0. Thus, f (x) is a decreasing for all x > 0.

Going back toEq. (7), it has themaximumvalue atαs′min
where s′

min = argmins′ s.t. ns′ �=0αs′ .
Hence, Cα also has the maximum value at s′

min. Since we need to compute DKL only for
s′
min, the total number of evaluations is reduced from |S|H to H .
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Appendix C: Proofs of PAC-BAMDP analysis

Appendix C.1: Proof of Proposition 1

Proof Recall that qsas′ = αsas′/αsa is the posterior mean. Then,

DKL(qsa‖ph,ŝ) =
∑

s′

αsas′

αsa
log

αsas′/αsa

(αsas′ + hδŝ(s′))/(αsa + h)

=
∑

s′

αsas′

αsa

[
log

αsas′

αsas′ + hδŝ(s′)
+ log

αsa + h

αsa

]

=
∑

s′

αsas′

αsa
log

[
1 + hδŝ(s

′)
αsas′

]−1

+ log

[
1 + h

αsa

]

≤
∑

s′

αsas′

αsa

[

−hδŝ(s
′)

αsas′
+ h2δŝ(s

′)
2α2

sas′

]

+ h

αsa

= h2

2αsaαsaŝ

≤ H2

minŝ s.t. nsaŝ �=0 αsaαsaŝ

where the first inequality is due to Taylor inequalities log(1+ x)−1 ≤ −x + x2
2 and log(1+

x) ≤ x . Since both αsa and αsaŝ increase at a ratio of O(nsa) by Definition 1, DKL (qsa‖ph,ŝ)

has a ratio of O(1/n2sa) and thus so does Cαsa . ��

Appendix C.2: Proof of Lemma 1

Proof The proof is almost an immediate consequence of defining Cαsa to bounded cover the
mean of any belief that can be reached from bt in H time steps.

More formally, recall the following recursive definition of the h-horizon Bayes-optimal
value

V
∗
h(s, bt+i ) = max

a

[
R(s, a) +

∑

s′
E[psas′ |bt+i ]V∗

h−1(s
′, bt+i+1)

]

where E[psas′ |b] = αsas′/
∑

s′′ αsas′′ , bt+i is a belief reachable from bt in i = H − h time
steps, and bt+i+1 is the updated belief after observing transition 〈s, a, s′〉, i.e. bt+i+1 =
(bt+i )

s,s′
a .

Let Q∗
h be the Bayes-optimal action value function, defined by

Q
∗
h(s, bt+i , a) = R(s, a) +

∑

s′
E[psas′ |bt+i ]V∗

h−1(s
′, bt+i+1).

From the result of BOLT Araya-López et al. (2012),Q∗
h(s, bt+i , a) is maximized among the

beliefs of α′
sa = αsa + ies′ . Let s∗ be the state that maximize Q∗

h(s, bt+i , a) among α′
sa’s.

Then,

Q
∗
h(s, bt+i , a) ≤ R(s, a) +

∑

s′

αsas′ + iδs∗(s′)
αsa + i

V
∗
h−1(s

′, bt+i+1). (8)
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And then, let Q̃h be the BOKLE action value function, defined by

Q̃h(s, bt , a) = R(s, a) + max
p:DKL (qsa‖p)≤Cαsa

∑

s′
ps′ Ṽh−1(s

′, bt ).

Then, by Definition 1, for any ŝ such that nsaŝ �= 0 (i.e. nsaŝ > 0),

Q̃h(s, bt , a) ≥ R(s, a) +
∑

s′

αsas′ + iδŝ(s
′)

αsa + i
Ṽh−1(s

′, bt ). (9)

Now, suppose that Ṽh−1(s, bt ) − V
∗
h−1(s, bt+i+1) ≥ κh−1. Then, using Eqs. (8) and (9),

Q̃h(s, bt , a) − Q
∗
h(s, bt+i , a)

≥
∑

s′

αsas′ + iδŝ(s
′)

αsa + i
Ṽh−1(s

′, bt ) −
∑

s′

αsas′ + iδs∗(s′)
αsa + i

V
∗
h−1(s

′, bt+i+1)

=
∑

s′

αsas′ + iδŝ(s
′)

αsa + i

[
Ṽh−1(s

′, bt ) − V
∗
h−1(s

′, bt+i+1)
]

− i
[
V

∗
h−1(ŝ, bt+i+1) − V

∗
h−1(s

∗, bt+i+1)
]

αsa + i

≥ κh−1 − i

αsa + i
Vmax

and we can obtain that

Ṽh(s, bt , a) − V
∗
h(s, bt+i , a) ≥ min

a

[
Q̃h(s, bt , a) − Q

∗
h(s, bt+i , a)

]

≥ κh−1 − i

αs + i
Vmax

where αs = mina αsa . This implies that

ṼH (st , bt ) ≥ V
∗
H (st , bt ) − H2

αst + H
Vmax

since −∑
i=1,...,H

i
αs+i ≥ − H2

αst +H and Ṽ0(s, bt ) = V
∗
0(s, bt+H ) = 0. ��

Appendix C.3: Proof of Lemma 2

Proof See the proofs of Lemma 5 in BEB (Kolter and Ng 2009) and Lemma 5.2 in
BOLT (Araya-López et al. 2012) ��

Appendix C.4: Proof of Lemma 3

Proof This can be shown by closely following the proof steps of Lem 5.3 in Araya-López
et al. (2012), which uses mathematical induction.

Suppose that Ṽh(s, bt ) − V̂
π̃
h (s, bt+i ) ≤ �h for any belief bt+i that is reachable from bt

in i = H − h time steps.
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First, if (s, a) ∈ K ,

�
(∈K )
h+1 = Ṽh+1(s, bt ) − V̂

π̃
h+1(s, bt+i−1)

=
∑

s′
p̂sas′ Ṽh(s

′, bt ) −
∑

s′
E[psas′ |bt+i−1]V̂π̃

h (s′, bt+i )

≤ �h +
∑

s′
( p̂sas′ − E[psas′ |bt+i−1]) V̂π̃

h (s′, bt+i )

≤ �h + Vmax

∑

s′
| p̂sas′ − E[psas′ |bt+i−1]|

≤ �h + Vmax

∑

s′

[
| p̂sas′ − qsas′ | + |qsas′ − E[psas′ |bt+i−1]|

]

≤ �h + Vmax

[√
2DKL (q‖p̂sa) + H

αsa

]

≤ �h + Vmax

[√
2Cαsa + H

αsa

]

≤ �h + Vmax

[ √
2H

√
minŝ s.t. nsaŝ �=0 αsaαsaŝ

+ H

αsa

]

= �h + (
√
2/pmin

sa + 1)H

αsa
Vmax

where qsa is the posterior mean and pmin
sa = mins′ psas′ is the minimum non-zero transition

probability of action a in state s on the true underlying environment, which is a domain-
specific constant. In the fourth inequality, we apply the Pinsker inequality to the first term.
For the second term, we use Lem. 3 in Kolter and Ng (2009), which states

∑
s

∣∣E[ps |α] − E[ps |α′]∣∣ ≤ 2/(1 + ∑
s αs)

when α = α′ except αs = α′
s + 1 for an entry s. The fifth inequality holds since BOKLE

chose p̂sa within KL bound of Cαsa from the mean. The sixth inequality comes from our
upper bound derivation of Cα presented in Proposition 1.

In the case (s, a) /∈ K , with a = π̃(s, bt ), the transition distributions are the same, which
yields

�
(/∈K )
h+1 = Ṽh+1(s, bt ) − V̂

π̃
h+1(s, bt+i−1)

=
∑

s′
p̂sas′

[
Ṽh(s

′, bt ) − V̂
π̃
h (s′, bt+i )

]

≤ �h .

Thus, using �h+1 = max[�(/∈K )
h+1 ,�

(∈K )
h+1 ] and summing up over the H horizon, we obtain

the lemma. ��
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Appendix D: Second-order Taylor approximation of C˛

Cα =
∑

s

rs log
rs
p∗
s

≈
∑

s

rs log

[
1 + 1

ν
(V (s) − Er[V ])

]−1

≈
∑

s

rs

[
− 1

ν
(V (s) − Er[V ]) + 1

2ν2
(V (s) − Er[V ])2

]

= 1

2ν2
∑

s

rs(V (s) − Er[V ])2

= 1

2ν2
Varr[V ]

References

Araya-López, M., Thomas, V., & Buffet, O. (2012). Near-optimal BRL using optimistic local transitions. In
Proceedings of the 29th international conference on machine learning (pp. 97–104).

Asmuth, J., Li, L., Littman, M. L., Nouri, A., & Wingate, D. (2009). A Bayesian sampling approach to
exploration in reinforcement learning. In Proceedings of the 25th conference on uncertainty in artificial
intelligence (pp. 19–26).

Asmuth, J. T. (2013). Model-based Bayesian reinforcement learning with generalized priors. Ph.D. thesis,
Rutgers University-Graduate School-New Brunswick.

Audibert, J. Y.,Munos, R.,&Szepesvári, C. (2009). Exploration–exploitation tradeoff using variance estimates
in multi-armed bandits. Theoretical Computer Science, 410, 1876–1902.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
Brafman, R. I., & Tennenholtz, M. (2002). R-MAX—A general polynomial time algorithm for near-optimal

reinforcement learning. Journal of Machine Learning Research, 3, 213–231.
Dearden, R., Friedman, N., & Russell, S. (1998). Bayesian Q-learning. In Proceedings of the fifteenth national

conference on artificial intelligence (pp. 761–768).
Duff, M. O. (2002). Optimal learning: Computational procedures for Bayes-adaptive Markov decision pro-

cesses. Ph.D. thesis, University of Massachusetts Amherst.
Filippi, S., Cappé, O., & Garivier, A. (2010). Optimism in reinforcement learning and Kullback–Leibler

divergence. In 48th Annual Allerton conference on communication, control, and computing (Allerton)
(pp. 115–122).

Garivier, A., & Cappé, O. (2011) The KL-UCB algorithm for bounded stochastic bandits and beyond. In The
24rd annual conference on learning theory (pp. 359–376).

Jaksch, T., Ortner, R., & Auer, P. (2010). Near-optimal regret bounds for reinforcement learning. Journal of
Machine Learning Research, 11, 1563–1600.

Kaufmann, E., Cappé, O., & Garivier, A. (2012). On Bayesian upper confidence bounds for bandit problems.
In Fifteenth international conference on artificial intelligence and statistics (pp. 592–600).

Kearns, M., & Singh, S. (1998) Near-optimal reinforcement learning in polynomial time. In Proceedings of
the 15th international conference on machine learning (pp. 260–268).

Kearns, M., & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time.Machine Learning,
49, 209–232.

Kolter, J. Z., & Ng, A. Y. (2009). Near-Bayesian exploration in polynomial time. In Proceedings of the 26th
international conference on machine learning (pp. 513–520).

Ortner, R., & Ryabko, D. (2012). Online regret bounds for undiscounted continuous reinforcement learning. In
Proceedings of the 25th international conference on neural information processing systems (pp. 1763–
1771).

Osband, I., Roy, B. V., & Russo, D. (2013). (More) efficient reinforcement learning via posterior sampling. In
Proceedings of the 26th international conference on neural information processing systems (pp. 3003–
3011).

123



Machine Learning (2019) 108:765–783 783

Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (2006). An analytic solution to discrete Bayesian reinforcement
learning. In Proceedings of the 23rd international conference on machine learning (pp. 697–704).

Puterman, M. L. (2005).Markov decision processes: Discrete Stochastic Dynamic Programming. New York:
Wiley-Interscience.

Ross, S., Chaib-draa, B., & Pineau, J. (2007). Bayes-adaptive POMDPs. In Proceedings of the 20th interna-
tional conference on neural information processing systems (pp. 1225–1232).

Sorg, J., Singh, S., & Lewis, R. L. (2010). Variance-based rewards for approximate Bayesian reinforcement
learning. In Proceedings of the 26th conference on uncertainty in artificial intelligence.

Strehl, A. L.,&Littman,M.L. (2005)A theoretical analysis ofmodel-based interval estimation. InProceedings
of the 22nd international conference on machine learning (pp. 856–863).

Strehl, A. L., & Littman, M. L. (2008). An analysis of model-based interval estimation for Markov decision
processes. Journal of Computer and System Sciences, 74, 1309–1331.

Strens, M. (2000). A Bayesian framework for reinforcement learning. In Proceedings of the 17th international
conference on machine learning (pp. 943–950).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Bayesian optimistic Kullback–Leibler exploration
	Abstract
	1 Introduction
	2 Background
	3 Bayesian optimistic KL exploration
	4 PAC-BAMDP analysis
	5 Relating to BEB
	6 Experiments
	7 Conclusion
	Acknowledgements
	Appendix A: Polynomial time optimization
	Appendix B: Reducing the number of DKL evaluations in Definition 1
	Appendix C: Proofs of PAC-BAMDP analysis
	Appendix C.1: Proof of Proposition 1
	Appendix C.2: Proof of Lemma 1
	Appendix C.3: Proof of Lemma 2
	Appendix C.4: Proof of Lemma 3

	Appendix D: Second-order Taylor approximation of Cα
	References




