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Abstract
We study multi-label classification (MLC) with three important real-world issues: online
updating, label space dimension reduction (LSDR), and cost-sensitivity. Current MLC algo-
rithms have not been designed to address these three issues simultaneously. In this paper,
we propose a novel algorithm, cost-sensitive dynamic principal projection (CS-DPP) that
resolves all three issues. The foundation of CS-DPP is an online LSDR framework derived
from a leading LSDR algorithm. In particular, CS-DPP is equipped with an efficient online
dimension reducer motivated by matrix stochastic gradient, and establishes its theoretical
backbone when coupled with a carefully-designed online regression learner. In addition, CS-
DPP embeds the cost information into label weights to achieve cost-sensitivity along with
theoretical guarantees. Experimental results verify that CS-DPP achieves better practical per-
formance than current MLC algorithms across different evaluation criteria, and demonstrate
the importance of resolving the three issues simultaneously.

Keywords Multi-label classification · Cost-sensitive · Label space dimension reduction

1 Introduction

The multi-label classification (MLC) problem allows each instance to be associated with
a set of labels and reflects the nature of a wide spectrum of real-world applications (Chua
et al. 2009; Bello et al. 2008; Elisseeff and Weston 2001). Traditional MLC algorithms
mainly tackle the batch MLC problem, where the input data are presented in a batch (Read
et al. 2011; Tsoumakas et al. 2010). Nevertheless, in many MLC applications such as e-mail
categorization (Osojnik et al. 2017), multi-label examples arrive as a stream. Online analysis
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is therefore required as batch MLC algorithms may not meet the needs to make a prediction
and update the predictor on the fly. The needs of such applications can be formalized as the
online MLC (OMLC) problem.

The OMLC problem is generally more challenging than the batch one, and many mature
algorithms for the batch problem have not yet been carefully extended to OMLC. Label
space dimension reduction (LSDR) is a family of mature algorithms for the batch MLC
problem (Chen and Lin 2012; Hsu et al. 2009; Lin et al. 2014; Tai and Lin 2012; Kapoor
et al. 2012; Sun et al. 2011; Yu et al. 2014; Bi and Kwok 2013; Balasubramanian and
Lebanon 2012; Bhatia et al. 2015). By viewing the label set of each instance as a high-
dimensional label vector in a label space, LSDR encodes each label vector as a code vector
in a lower-dimensional code space, and learns a predictor within the code space. An unseen
instance is predicted by coupling the predictor with a decoder from the code space to the
label space. For example, compressed sensing (CS) (Hsu et al. 2009) encodes with random
projections, and decodes with sparse vector reconstruction; principal label space transfor-
mation (PLST) (Tai and Lin 2012) encodes by projecting to the key eigenvectors of the
known label vectors obtained from principal component analysis (PCA), and decodes by
reconstruction with the same eigenvectors. This low-dimensional encoding allows LSDR
algorithms to exploit the key joint information between labels to be more robust to noise
and be more effective on learning (Tai and Lin 2012). Nevertheless, to the best of our
knowledge, all the LSDR algorithms mentioned above are designed only for the batch MLC
problem.

Another family of MLC algorithms that have not been carefully extended for OMLC con-
tains the cost-sensitive MLC algorithms. In particular, different MLC applications usually
come with different evaluation criteria (costs) that reflect their realistic needs. It is impor-
tant to design MLC algorithms that are cost-sensitive to systematically cope with different
costs, because an MLC algorithm that targets one specific cost may not always perform
well under other costs (Li and Lin 2014). Two representative cost-sensitive MLC algo-
rithms are probabilistic classifier chain (PCC) (Dembczynski et al. 2010) and condensed
filter tree (CFT) (Li and Lin 2014). PCC estimates the conditional probability with the classi-
fier chain (CC) method (Read et al. 2011) and makes Bayes-optimal predictions with respect
to the given cost; CFT decomposes the cost into instance weights when training the classi-
fiers in CC. Both algorithms, again, target the batch MLC problem rather than the OMLC
one.

From the discussions above, there is currently no algorithm that considers the three
realistic needs of online updating, label space dimension reduction, and cost-sensitivity
at the same time. The goal of this work is to study such algorithms. We first formal-
ize the OMLC and cost-sensitive OMLC (CSOMLC) problems in Sect. 2 and discuss
related work. We then extend LSDR for the OMLC problem and propose a novel
online LSDR algorithm, dynamic principal projection (DPP), by connecting PLST with
online PCA. In particular, we derive the DPP algorithm in Sect. 3 along with its the-
oretical guarantees, and resolve the issue of possible basis drifting caused by online
PCA.

In Sect. 4, we further generalize DPP to cost-sensitive DPP (CS-DPP) to fully match the
needs of CSOMLC with a theoretically-backed label-weighting scheme inspired by CFT.
Extensive empirical studies demonstrate the strength of CS-DPP in addressing the three
realistic needs in Sect. 5. In particular, we justify the necessity to consider LSDR, basis
drifting and cost-sensitivity. The results show that CS-DPP significantly outperforms other
OMLC competitors across different CSOMLC problems, which validates the robustness and
effectiveness of CS-DPP, as concluded in Sect. 6.
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2 Preliminaries and related work

For the MLC problem, we denote the feature vector of an instance as x ∈ R
d and its

corresponding label vector as y ∈ Y ≡ {+1,−1}K , where y[k] = +1 iff the instance is
associated with the k-th label out of a total of K possible labels. We let y[k] ∈ {+1,−1}
to conform with the common setting of online binary classification (Crammer et al. 2006),
which is equivalent to another scheme, y[k] ∈ {1, 0}, used in other MLC works (Li and Lin
2014; Read et al. 2011).

Traditional MLC methods consider the batch setting, where a training dataset D =
{(xn, yn)}Nn=1 is given at once, and the objective is to learn a classifier g : Rd → {+1,−1}K
fromD with the hope that ŷ = g(x) accurately predicts the ground truth y with respect to an
unseen x. In this work, we focus on the OMLC setting, which assumes that instance (xt , yt )
arrives in sequence from a data stream. Whenever an xt arrives at iteration t , the OMLC
algorithm is required to make a prediction ŷt = gt (xt ) based on the current classifier gt and
feature vector xt . The ground truth yt with respect to xt is then revealed, and the penalty of ŷt
is evaluated against yt .

Many evaluation criteria for comparing y and ŷ have been considered in the literature to
satisfy different application needs.A simple criterion (Tsoumakas et al. 2010) is theHamming
loss cham(y, ŷ) = 1

K

∑K
k=1�y[k] �= ŷ[k]�. The Hamming loss separately considers each

label during evaluation. There are other criteria that jointly evaluate all labels, such as the F1
loss (Tsoumakas et al. 2010)

cf(y, ŷ) = 1 − 2

∑K
k=1�y[k] = +1 and ŷ[k] = +1�

∑K
k=1

(
�y[k] = +1� + �ŷ[k] = +1�

) .

In this work, we follow existing cost-sensitive MLC approaches (Li and Lin 2014) to extend
OMLC to the cost-sensitive OMLC (CSOMLC) setting, which further takes the evaluation
criterion as an additional input to the learning algorithm. We call the criterion a cost function
and overload c : {+1,−1}K × {+1,−1}K → R as its notation. The cost function evaluates
the penalty of ŷ against y by c(y, ŷ). We naturally assume that c(·, ·) satisfies c(y, y) = 0 and
maxŷ c(y, ŷ) ≤ 1. The objective of a CSOMLC algorithm is to adaptively learn a classifier

gt : Rd → {+1,−1}K based on not only the data stream but also the input cost function c
such that the cumulative cost

∑T
t=1 c(yt , ŷt ) with respect to the input c, where ŷt = gt (xt ),

can be minimized.
Note that the cost function within the CSOMLC setting above corresponds to the example-

based evaluation criteria for MLC, named because the prediction ŷt of each example is
evaluated against the ground truth yt independently. More sophisticated evaluation criteria
such as micro-based and macro-based criteria (Tang et al. 2009; Mao et al. 2013) can also be
found in the literature. The following equations highlight the difference between example-
F1 (what our CSOMLC setting can handle), micro-F1 and macro-F1 when calculated on T
predictions

Example-F1 loss = 1 − 2

T

T∑

t=1

∑K
k=1�yt [k] = +1 and ŷt [k] = +1�

∑K
k=1

(
�yt [k] = +1� + �ŷt [k] = +1�

) ;

Micro-F1 loss = 1 − 2

K

K∑

k=1

∑T
t=1�yt [k] = +1 and ŷt [k] = +1�

∑T
t=1

(
�yt [k] = +1� + �ŷt [k] = +1�

) ;
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Macro-F1 loss = 1 − 2

∑T
t=1

∑K
k=1�yt [k] = +1 and ŷt [k] = +1�

∑T
t=1

∑K
k=1

(
�yt [k] = +1� + �ŷt [k] = +1�

) .

In particular, the three criteria differ by the averaging process. Average example-F1 computes
the geometric mean of precision and recall (F1 score) per example and then computes the
arithmetic mean over all examples; micro-F1 computes the geometic mean of precision and
recall per label and then computes the arithmetic mean over all labels; macro-F1 computes
the geometric mean of precision and recall over the set of all example-label predictions.
The more sophisticated ones are known to be more difficult to optimize. Thus, similar to
many existing cost-sensitive MLC algorithms for the batch setting (Li and Lin 2014), we
consider only example-based criteria in this work, and leave the investigation of achieving
cost-sensitivity for micro- and macro-based criteria to the future.

Several OMLC algorithms have been studied in the literature, including online binary
relevance (Read et al. 2011), Bayesian OMLC framework (Zhang et al. 2010), and the multi-
window approach using k nearest neighbors (Xioufis et al. 2011). However, none of them are
cost-sensitive. That is, they cannot take the cost function into account to improve learning
performance.

Cost-sensitive MLC algorithms have also been studied in the literature. Cost-sensitive
RAkEL (Lo et al. 2011) and progressive RAkEL (Wu and Lin 2017) are two algorithms
that generalize a famous batch MLC algorithm called RAkEL (Tsoumakas and Vlahavas
2007) to cost-sensitive learning. The former achieves cost-sensitivity for any weighted Ham-
ming loss, and the latter achieves this for any cost function. Probabilistic classifier chain
(PCC; Dembczynski et al. 2010) and condensed filter tree (CFT; Li and Lin 2014) are two
other algorithms that generalizes another famous batchMLC algorithm called classifier chain
(CC; Read et al. 2011) to cost-sensitive learning. PCC estimates the conditional probability
of the label vector via CC, and makes a Bayes-optimal prediction with respect to the cost
function and the estimation. PCC in principal achieves cost-sensitivity for any cost function,
but the prediction can be time-consuming unless an efficient Bayes inference rule is designed
for the cost function [e.g. the F1 loss (Dembczynski et al. 2011)]. CFT embeds the cost
information into CC by an O(K 2)-time step that re-weights the training instances for each
classifier. All four algorithms above are designed for the batch cost-sensitive MLC problem,
and it is not clear how they can bemodified for the CSOMLC problem. CC-family algorithms
typically suffer from the problem of ordering the labels properly to achieve decent perfor-
mance. Some works start solving the ordering problem for the original CC algorithm, such
as the easy-to-hard paradigm (Liu et al. 2017), but whether those works can be well-coupled
with CFT or PCC has yet to be studied.

Label space dimension reduction (LSDR) is another family of MLC algorithms. LSDR
encodes each label vector as a code vector in the lower-dimensional code space, and learns
a predictor from the feature vectors to the corresponding code vectors. The prediction of
LSDR consists of the predictor followed by a decoder from the code space to the label
space. For example, compressed sensing (CS; Hsu et al. 2009) uses random projection for
encoding, takes a regressor as the predictor, and decodes by sparse vector reconstruction.
Instead of using a random projection, principal label space transformation (PLST; Tai and
Lin 2012) encodes the label vectors {yn}Nn=1 to their top principal components for the batch
MLC problem. Some other LSDR algorithms, including conditional principal label space
transformation (CPLST; Chen and Lin 2012), feature-aware implicit label space encoding
(FaIE; Lin et al. 2014), canonical-correlation-analysis method (Sun et al. 2011), and low-rank
empirical risk minimization for multi-label learning (Yu et al. 2014), jointly take the feature
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and the label vectors into account during encoding (Chen and Lin 2012; Lin et al. 2014; Sun
et al. 2011; Yu et al. 2014) to further improve the performance.

The physical intuition behind LSDR algorithms is to capture the key joint information
between labels before learning. By encoding to a more concise code space, LSDR algo-
rithms enjoy the advantage of learning the predictor more effectively to improve the MLC
performance. Moreover, compared with non-LSDR algorithms like RAkEL and CFT, LSDR
algorithms are generally more efficient, which in turn makes them favorable candidates to
be extended to online learning.

Motivated by the possible applications of online updating, the realistic needs of cost-
sensitivity, and the potential effectiveness of label space dimension reduction, we take an
initiative to study LSDR algorithms for the CSOMLC setting. In particular, we first adapt
PLST to the OMLC setting in Sect. 3, and further generalize it to the CSOMLC setting in
Sect. 4.

3 Dynamic principal projection

In this section, we first propose an online LSDR algorithm, dynamic principal projection
(DPP), that optimizes the Hamming loss. DPP is motivated by the connection between
PLST, which encodes the label vectors to their top principal components, and the rich
literature of online PCA algorithms (Arora et al. 2013; Nie et al. 2016; Li et al. 2016).
We shall first introduce the detail of PLST. Then, we discuss the potential difficulties
along with our solutions to advance PLST to our proposed DPP. To facilitate reading,
the common notations that will be used for the coming sections are summarized in
Table 1.

Table 1 Summary of common notations

Notation Meaning

d number of features

K number of labels

M dimension of the code space

x ∈ R
d feature vector

y ∈ {+1,−1}K ground truth label vector

ŷ ∈ {+1,−1}K predicted label vector

c(y, ŷ) cost for predicting y as ŷ

z ∈ R
M code vector

P ∈ R
M×K encoding matrix from the label space to the code space

W ∈ R
d×M linear predictor matrix from the input space to the code space

U ∈ R
K×K (roughly) rank-M matrix within matrix stochastic gradient (MSG)

(Q ∈ R
(M+1)×K

, σ ∈ R
M+1

) decomposition of U such that U = Qdiag(σ )Q�

Γ ∈ [0, 1]M+1 discrete probability distribution for sampling the rows of Q to get P

δ(k) ∈ R weight of the k-th label for representing the cost in CS-DPP

C ∈ R
K×K a diagonal matrix that stores {

√
δ(k)}Kk=1 in CS-DPP
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3.1 Principal label space transformation

Given the dimension M ≤ K of the code space and a batch training dataset D =
{(xn, yn)}Nn=1, PLST, as a batch LSDR algorithm, encodes each yn ∈ {+1,−1}K into a
code vector zn = P∗(yn − o), where o is a fixed reference point for shifting yn , and P∗
contains the top M eigenvectors of

∑N
n=1(yn − o)(yn − o)�. While PLST works with any

fixed o, it is worth noting that when o is taken as 1
N

∑N
n=1 yn , the code vector zn contains the

topM principal components of yn . Amulti-target regressor r is then learned on {(xn, zn)}Nn=1,
and the prediction of an unseen instance x is made by

ŷ = round
(
(P∗)�r(x) + o

)
(1)

where1 round(v) = (
sign(v[1]), . . . , sign(v[K ]))�.

By projecting to the top principal components, PLST preserves the maximum amount of
information within the observed label vectors. In addition, PLST is backed by the following
theoretical guarantee.

Theorem 1 (Tai and Lin 2012) When making a prediction ŷ from x by ŷ = round(
P�r(x) + o

)
with any left orthogonal matrix P, the Hamming loss

cham(y, ŷ) ≤ 1

K
(‖r(x) − z‖22︸ ︷︷ ︸

pred. error

+‖(I − P�P)(y′)‖22︸ ︷︷ ︸
reconstruction error

) (2)

where z ≡ Py′ and y′ ≡ y − o with respect to any fixed reference point o.

Theorem 1 bounds the Hamming loss by the prediction and reconstruction errors. Based on
the results of singular value decomposition,P∗ in PLST is the optimal solution forminimizing
the total reconstruction error of the observed label vectors with respect to any fixed o, and the
particular reference point 1

N

∑N
n=1 yn minimizes the reconstruction error over all possible o.

Then, by minimizing the prediction error with regressor r, PLST is able to minimize the
Hamming loss approximately.

3.2 General online LSDR framework for DPP

The upper bound in Theorem 1 works for any regressor r and any left orthogonal encoding
matrix P. Based on the bound, we propose an online LSDR framework that approximately
minimizes the Hamming loss with an online regressor rt and an online encoding matrix Pt in
each iteration t . Similar to PLST, the proposed framework works with any fixed referenced
point o. But for simplicity of illustration, we assume that o = 0 to remove o from the
derivations below. The steps of the framework are:

For t = 1, . . . , T
Receive xt and predict ŷt = round(P�

t rt (xt ))
Receive yt and incur error �(t)(rt ,Pt )

Update Pt and rt

In each iteration t of the framework, an online prediction ŷt ismadewith the updated rt andPt .
We take the online error function �(t)(r,P) to be‖r(xt )−Pyt‖22+‖(I−P�P)yt‖22,whichupper
1 The naming of the round(·) operator follows directly from the original paper of PLST (Tai and Lin 2012),
which represents y ∈ {0, 1}K instead of {−1,+1}K . Our use of sign is thus equivalent to the rounding steps
used in the original PLST.
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bounds the Hamming loss cham(yt , ŷt ) of the online prediction. Then, by updating rt and Pt

with online learning algorithms that minimize the cumulative online error
∑T

t=1 �(t)(rt ,Pt ),
we can approximately minimize the cumulative Hamming loss.

The simple framework above transforms theOMLCproblem to an online learning problem
with an error function composed of two terms. Ideally, the online learning algorithm should
update Pt and rt to jointly minimize the total error from both terms. Optimizing the two
terms jointly has been studied in batch LSDR algorithms like CPLST (Chen and Lin 2012),
which is a successor of PLST (Tai and Lin 2012) that also operates with the upper bound
in Theorem 1. Nevertheless, it is very challenging to extend CPLST to the online setting
efficiently. In particular, a naïve online extension would require computing the hat matrix of
the ridge regression part (from x to z) within CPLST in order to obtain Pt , and the hat matrix
grows quadratically with the number of examples. That is, in an online setting, computing and
storing the hat matrix needs at least Ω(T 2) complexity up to iteration T , which is practically
infeasible.

Thus, we resort to PLST (Tai and Lin 2012), the predecessor of CPLST, to make an initial
attempt towards tackling OMLC problems. PLST minimizes the two terms separately in the
batch setting, and our proposed extension of PLST similarly contains two online learning
algorithms, one for minimizing each term. That is, we further decompose the online learn-
ing problem to two sub-problems, one for minimizing the cumulative reconstruction error
(by updating Pt ), and one for minimizing the cumulative prediction error (by updating rt ).
Designing efficient and effective algorithms for the two sub-problems turns out to be non-
trivial, and will be discussed in Sects. 3.3 and 3.4.

3.3 Onlineminimization of reconstruction error

Next, we discuss the design of our first online learning algorithm to tackle the sub-problem of
minimizing the cumulative reconstruction error

∑T
t=1 ‖(I − P�

t Pt )yt‖22, which corresponds
to the second term in (2). The goal is to generate a left-orthogonal matrix Pt ∈ R

M×K in each
iteration which guarantees minimizing the cumulative reconstruction error theoretically.

Our design ismotivated by a simple but promising online PCAalgorithm,matrix stochastic
gradient (MSG) (Arora et al. 2013). MSG does not directly solve the sub-problem of our
interest because the problem is non-convex over Pt . Instead, MSG substitutes P�

t Pt with a
rank-M matrixUt ∈ R

K×K and rewrites the cumulative reconstruction error as
∑T

t=1 y
�
t (I−

Ut )yt . By further assuming that ‖yt‖2 ≤ 1, MSG loosens the constraint of rank(Ut ) = M to
tr(Ut ) = M , and updates Ut with online projected gradient descent upon receiving a new yt
as

Ut+1 = Ptr (Ut + ηyty�
t ) (3)

where η is the learning rate and Ptr (·) is the projecting operator to a feasible U. The
less-constrained Ut in MSG carries the theoretical guarantee of minimizing the cumulative
reconstruction error (subject to Ut ), but decomposing Ut to a left-orthogonal Pt ∈ R

M×K

with theoretical guarantee on Pt is not only non-trivial but also time-consuming.
Capped MSG (Arora et al. 2013) is an extension of MSG with the hope of lightening

the computational burden of decomposing Ut . In particular, Capped MSG introduces an
additional (non-convex) constraint of rank(Ut ) ≤ M + 1, and indirectly maintains the
decomposition of Ut as (Qt , σt ), where the left-orthogonal matrix Qt ∈ R

(M+1)×K and
the vector of singular values σt ∈ R

M+1 such that Ut = Qtdiag(σt )Q�
t . The decomposed

(Qt , σt ) in CappedMSG enjoys the same theoretical guarantee of minimizing the reconstruc-
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tion error as the Ut in MSG, while the maintenance step of Capped MSG is more efficient
than MSG. Nevertheless, because we want Pt to be M by K while Qt is (M + 1) by K , the
generatedQt in CappedMSG cannot be directly used to solve our sub-problem. A naïve idea
is to generate Pt by truncating the least important row of Qt , but the naïve idea is no longer
backed by the theoretical guarantee of Capped MSG.

Aiming to address the above difficulties, we propose an efficient and effective algorithm
to stochastically generate Pt from (Qt , σt ) maintained by Capped MSG in each iteration. To
elaborate, letQ−i

t beQt with its i-th row removed and σt [i] be the eigenvalue corresponding
to i-th row of Qt . We generate Pt by sampling from a discrete probability distribution Γt ,
which consists of M + 1 events {Q−i

t }M+1
i=1 with probability of Q−i

t being 1 − σt [i]. As the
projecting operator Ptr (·) ensures 0 ≤ σt [i] ≤ 1 for each σt [i], one can easily verify Γt to
be a valid distribution with the additional fact that

∑
i σt [i] = tr(Ut ) = M . The following

lemma shows that the online encoding matrix generated by our simple stochastic algorithm
is truly effective, and the proof can be found in the Appendix A.1.

Lemma 2 Suppose (Qt , σt ) is obtained after an updated of Capped MSG such that Ut =
Qt diag(σt )Q�

t . If Γt is a discrete probability distribution over events {Q−i
t }M+1

i=1 with prob-

ability of Q−i
t being 1 − σt [i], we have for any y

EPt∼Γt [y�(I − P�
t Pt )y] = y�(I − Ut )y (4)

The proof of the lemma can be found in Appendix A.1. Moreover, our sampling algorithm is
highly efficient regarding its O(M) time complexity. Note that there is an earlier work that
contains another algorithm of similar spirit (Nie et al. 2016). Somehow the algorithm’s time
complexity isO(K 2), which is less efficient than ours.

To sum up, our online learning algorithm that minimizes the cumulative reconstruction
error for DPP takes Capped MSG as its building block to maintain Ut by Qt and σt , and
then samples the online encoding matrix Pt from Γt derived by Qt in each iteration by our
proposed sampling algorithm. Note that to fulfill the assumption of ‖yt‖2 ≤ 1 required by
Capped MSG, we apply a simple trick to scale each yt ∈ {+1,−1}K with a factor of 1√

K
.

The predictions given by our online LSDR framework remain unchanged after the constant
scaling due to the use of round(·) operator.

3.4 Onlineminimization of prediction error

Next, we discuss another proposed online learning algorithm to solve the second sub-problem
of minimizing the cumulative prediction error

∑T
t=1 ‖rt (xt )−Ptyt‖2, which corresponds to

the first term in (2). The proposed online learning algorithm is based on thewell-known online
ridge regression, and incorporates two different carefully designed techniques to remedy the
negative effect caused by the variation of Pt in each iteration.

The naïve online ridge regression parameterizes rt (x) to be an online linear regressor
W�

t x with Wt ∈ R
d×M , and updateWt by

Wt = argmin
W

λ

2
tr(WW�) +

t−1∑

i=1

‖W�xi − zi‖22 (5)

where zi = Piyi is the code vector of yi regarding Pi , and λ is the regularization parameter.
However, the naïve online ridge regression suffers from the drifting of projection basis caused
by varying the online encoding matrix Pt as t advances. To elaborate, recall that the online
regressor Wt aims to predict zt = Ptyt from xt , where the code vector zt can essentially be
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viewed as the set of combination coefficients with reference projection basis formed by Pt .
However,Wt is learned from {(xi , zi )}t−1

i=1, where the learning target {zi }t−1
i=1 is mixed up with

coefficients zi induced from different projection basisPi . As a consequence, expectingW�
t xt

to give accurate prediction of zt for any specific Pt is unrealistic. For a very extreme case,
if P1 = P3 = · · · = P2τ−1 = P and P2 = P4 = · · · = P2τ = −P, the zi ’s in the odd and
even iterations are of totally opposite meanings although the projection matrices P and −P
are mathematically equivalent in quality. The totally opposite meanings make it impossible
forWt to predict zt accurately.

To remedy the problem of basis drifting, we propose two different techniques, principal
basis correction (PBC) and principal basis transform (PBT), to improve online regressorWt .
Each of them enjoys different advantages.

3.4.1 Principal basis correction

The ideal solution to handle basis drifting is to “correct” the reference basis of each zi to be the
latestPt used for prediction.More specifically, wewantWt to be the ridge regression solution
obtained from {(xi ,Ptyi )}t−1

i=1 instead of {(xi ,Piyi )}t−1
i=1. Such a correction step ensures that

the reference basis for generating the previous zi ’s is the same as the basis that will be
used to predict zt and decode ŷt from zt . Denote WPBC

t as the ridge regression solution of
{(xi ,Ptyi )}t−1

i=1. The closed-form solution ofWPBC
t is

WPBC
t =

(

λI +
t−1∑

i=1

xix�
i

)−1

︸ ︷︷ ︸
A−1
t

(
t−1∑

i=1

xiy�
i

)

︸ ︷︷ ︸
Bt

P�
t . (6)

The part A−1
t Bt is independent of the projection matrix Pt . Thus, by maintaining another d

by K matrix

Ht = A−1
t Bt

throughout the iterations,WPBC
t can be easily obtained byHtP�

t for anyPt . The update ofHt

to Ht+1, on the other hand, requires the calculation of Ht+1 = (At + xtx�
t )−1(Bt + xty�

t ),
which at a first glance has a time complexity ofO(d3 + Kd2). Fortunately, we can speed up
the calculation by applying the Sherman-Morrison formula, which states that

(At + xtx�
t )−1 =

(

A−1
t − A−1

t xtx�
t A

−1
t

1 + γ

)

with γ = x�
t A

−1
t xt . Then, the calculation can be rewritten as

Ht+1 =
(

A−1
t − A−1

t xtx�
t A

−1
t

1 + γ

)
(
Bt + xty�

t

)

= A−1
t Bt − A−1

t xtx�
t A

−1
t Bt

1 + γ
+ A−1

t xty�
t − A−1

t xtx�
t A

−1
t xty�

t

1 + γ
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= Ht − A−1
t xt ỹ�

t

1 + γ
+ A−1

t xty�
t − γA−1

t xty�
t

1 + γ

= Ht − A−1
t xt (ỹt − yt )�

1 + γ
,

where ỹt = H�
t xt . The third line follows from the fact that Ht = A−1

t Bt . Thus, the d by K
matrix Ht can be efficiently updated online by

Ht+1 = Ht − A−1
t xt (ỹt − yt )�

1 + x�
t A

−1
t xt

(7)

which requires only a time complexity ofO(d2 + Kd).
It is worth noting that Ht actually stores the online ridge regression solution from x to y.

Based on the definition of Ht , we can then theoretically analyze the performance of our
online ridge regression solution WPBC

t from x to z with respect to the error �(t)(·, ·) in our
proposed online LSDR framework. Following the convention of online learning, we analyze

the expected average regret
R
T
, defined as

R
T

= 1

T

T∑

t=1

EPt∼Γt [�(t)(WPBC
t ,Pt ) − �(t)(W#,P∗)], (8)

for any given sequence of {(Pt , Γt )}Tt=1, where each Pt is sampled from the distribution Γt .
(W#,P∗) here denotes the offline reference solution that is allowed to peek the whole data
stream {(xt , yt )}Tt=1. As our algorithm aims to minimize the online error function by a similar
decomposition of sub-problems asPLST ,weparticularly consider (W#,P∗) to be the solution
of PLST when treating {(xt , yt )}Tt=1 as the input batch data. That is, P∗ is the minimizer of
∑T

t=1 y
�
t (I − P�P)yt , which corresponds to the second term of �(t)(·, ·), and W# is the

minimizer of
∑T

t=1 ‖W�xt − P∗yt‖22, which corresponds to the first term of �(t)(·, ·) given
P∗. It can be easily proved that W# = H∗(P∗)� where H∗ is the optimal linear regression
solution of {(xt , yt )}Tt=1. That is,

H∗ = argmin
H

T∑

t=1

‖H�xt − yt‖22 . (9)

With the expected average regret defined, we can prove its convergence by assuming the
convergence of the subspace spanned by Pt to the subspace spanned by P∗. The assumption
generally holds when the M-th and (M + 1)-th eigenvalues of

∑T
t=1(yt − o)(yt − o)�

are different, as the subspace spanned by P∗ to reach the minimum reconstruction error is
consequently unique. In particular, define the expected subspace difference

Δt = ‖EPt∼Γt [P�
t Pt ] − (

P∗)� P∗‖2 . (10)

Theorem 3 With the definitions ofHt in (7),H∗ in (9), R
T

in (8) and Δt in (10), assume that

‖xt‖ ≤ 1, ‖yt‖ ≤ 1 and ‖Htxt − yt‖22 ≤ ε.
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1. For any given T , the expected cumulative regretR is upper-bounded by

(1 + ε)

T∑

t=1

Δt + M

2
‖H∗‖2F + 2εMd log

(

1 + T

d

)

.

2. If limT→∞ ΔT = 0 and ‖H∗‖F ≤ h∗ across all iterations,2 limT→∞
R
T

= 0.

The third assumption requires the residual errors of online ridge regression without pro-
jection to be bounded, which generally holds when there is some linear relationship between
xt and yt . The detailed of the proof of the theorem can be found in Appendix A.2. Theorem 3
guarantees the performance of PBC to be competitive with a reasonable offline baseline in the
long run given the convergence of subspace spanned by Pt . Such a guarantee makes online
linear regressor with PBC a solid option for DPP to tackle the sub-problem of minimizing
cumulative prediction error.

3.4.2 Principal basis transform

While PBC always gives the WPBC
t learned on the correct code vectors with respect to the

basis formed by Pt , the time and space complexity of PBC depends on Ω(Kd) at the cost of
maintainingHt ∈ R

d×K . TheΩ(Kd)dependency canmakePBCcomputationally inefficient
when both K and d are large.

To address the issue, we propose another technique, principal basis transform (PBT).
Different from PBC, when a new online encoding matrix Pt+1 is presented, PBT aims at a
direct basis transform of the online linear regressor fromPt toPt+1. To bemore specific, PBT
assumes the regressor WPBT

t to be the low-rank coefficients matrix of some unknown H′
t ∈

R
d×K with reference projection basis formed by Pt , which can equivalently be described

as WPBT
t = H′

tP
�
t . The goal of PBT is to update WPBT

t to WPBT
t+1 with (xt , yt ) such that

the reference projection basis of WPBT
t+1 is now induced from Pt+1. PBT achieves the goal

by a two-step procedure. The first step is to find the low-rank coefficients matrix W′
t of H

′
t

based on the new reference basis formed by Pt+1. However, as only the low rank coefficients
matrix WPBT

t rather than H′
t itself is known, we approximateW′

t by

W′
t = argmin

W
‖WPt+1 − WPBT

t Pt‖2F . (11)

Solving (11) analytically gives
W′

t = WPBT
t PtP�

t+1 . (12)

The second step is to updateW′
t with (xt , yt ) to obtain WPBT

t+1 by

WPBT
t+1 = W′

t − A−1
t xt (z̃′

t − Pt+1yt )�

1 + x�
t A

−1
t xt

(13)

2 The technicality of requiring ‖H∗‖F to be bounded is because we defined regret (up to the T -th iteration)
with respect to the optimal offline solution upon receiving T examples, and henceH∗ depends on T . Standard
regret proof in online learning alternatively defines regret with respect to any fixed H. Our proof could also go
through with the alternative definition, which changes ‖H∗‖F to a constant ‖H‖F (that is trivially bounded).
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Table 2 Time and space complexity for two DPP variants

Time complexity Space complexity

DPP-PBC O(d2 + MK + Kd + M2K ) O(d2 + MK + Kd)

DPP-PBT O(d2 + M2d + M2K ) O(d2 + MK + Md)

where z̃′
t = (

W′
t

)� xt . Equation (13) can be derived with a similar use of the Sherman-
Morrison formula as that for (7) by replacing (ỹt , yt ) with (z̃′

t ,Ptyt ) respectively. One can
easily verify thatWPBT

t+1 obtained by (13) still keeps its reference basis as Pt+1.
Comparing to PBC, PBT only has Ω(M2(K + d)) time complexity, which is particularly

useful when M2 � min(K , d). The appealing time complexity makes PBT a highly prac-
tical option for DPP to minimize the cumulative prediction error with. The time and space
complexity of the two variants of DPP are listed in Table 2.

4 Generalization to cost-sensitive learning

In this section, we generalize DPP to cost-sensitive DPP (CS-DPP), which meets the
requirement of CSOMLC. The key ingredient to the generalization is a carefully designed
label-weighting scheme that transforms cost c(y, ŷ) into the corresponding weighted Ham-
ming loss. With the help of the label weighting scheme, we subsequently derive the
optimization objective similar to Theorem 1 for general cost functions, which allows us
to derive CS-DPP by reusing the building blocks of DPP.

We start from the detail of our label-weighting scheme based on the label-wise decompo-
sition of c(y, ŷ). To represent the cost with the label weights, we propose a label-weighting
scheme based on a label-wise and order-dependent decomposition of c(·, ·), which is moti-
vated by a similar concept in Li andLin (2014). The label-weighting schemeworks as follows.
Defining ŷ(k)

real and ŷ
(k)
pred as

ŷ(k)
real[i] =

⎧
⎨

⎩

y[i] if i < k
y[i] if i = k
ŷ[i] if i > k

and ŷ(k)
pred[i] =

⎧
⎨

⎩

y[i] if i < k
−y[i] if i = k
ŷ[i] if i > k

we decompose c(y, ŷ) into δ(1), . . . , δ(K ) such that

δ(k) = |c(y, ŷ(k)
pred) − c(y, ŷ(k)

real)| . (14)

Recall that y is the ground truth vector and ŷ is the prediction vector from the algorithm.
The two newly constructed vectors, ŷ(k)

real and ŷ
(k)
pred, can both be viewed as pseudo prediction

vectors that are “better” than ŷ, as they are both perfectly correct up to the (k−1)-th label. The
two vectors only differ on the k-th prediction, which is correct for ŷ(k)

real and incorrect for ŷ
(k)
pred.

The difference allows the term δ(k) in (14) to quantify the price that the algorithm needs to
pay if the k-th prediction is wrong. Then, the price δ(k) can be viewed as an indicator of
importance for predicting the k-th label correctly. Our label-weighting scheme follows such

123



Machine Learning (2019) 108:1193–1230 1205

intuition by simply setting the weight of k-th label as δ(k). The label-weighting scheme with
(14) is not only intuitive, but also enjoys nice theoretical guarantee under a mild condition
of c(·, ·), as shown in the following lemma.

Lemma 4 If c(y, y(k)
pred) − c(y, y(k)

real) ≥ 0 holds for any k, y and ŷ, then for any given y
and ŷ, we have

c(y, ŷ) =
K∑

k=1

δ(k)�y[k] �= ŷ[k]�

The condition of the lemma, which generally holds for reasonable cost functions, simply says
that for any label, a correct prediction should enjoy a lower cost than an incorrect prediction.
The proof of the lemma can be found in Appendix A.3. Lemma 4 transforms c(y, ŷ) into the
corresponding weighted Hamming loss, and thus enables the optimization over general cost
functions.

Next, we propose CS-DPP, which extends DPP based on our proposed label-weighting
scheme. Define C as

C = diag(
√

δ(1), ...,
√

δ(K )) (15)

With C, which carries the cost information, we establish a theorem similar to Theorem 1
to upper-bound c(y, ŷ).

Theorem 5 When making a prediction ŷ from x by ŷ = round
(
P�r(x) + o

)
with any left

orthogonal matrix P, if c(·, ·) satisfies the condition of Lemma 4, the prediction cost

c(y, ŷ) ≤ ‖r(x) − zC‖22 + ‖(I − P�P)(y′
C)‖22

where zC = P(y′
C) and y′

C = Cy − o with respect to any fixed reference point o.

Theorem 5 generalizes Theorem 1 to upper-bound the general cost c(y, ŷ) instead of
the original Hamming loss cham(y, ŷ). With Theorem 5, extending DPP to CS-DPP is a
straightforward task by reusing the online updating algorithms of DPP with yt replaced
by Ctyt . The full details of CS-DPP using PBT is given in Algorithm 1, and we can easily
write down similar steps for CS-DPP using PBC. Note that we simplify WPBT

t to Wt in
Algorithm 1 to make a cleaner presentation.

Algorithm 1 Cost-Sensitive Dynamic Principal Projection with Principal Basis Transform
Parameters: λ, η, M
1: P0 ← OM×K , U0 ← OK×K , A−1

0 ← 1
λ
Id×d , W0 ← Od×M (O is zero matrix)

2: while Receive (xt , yt ) do
3: ŷt ← round(P�

t−1W
�
t−1xt )

4: Obtain Ct by (15)
5: Update Ut−1 to Ut by Capped MSG (with Ctyt ) and sample Pt from Γt as defined in Lemma 2
6: W′

t−1 ← Wt−1Pt−1P�
t (PBT)

7: Update W′
t−1, A

−1
t−1 toWt , A

−1
t by (13) (with Ctyt )

8: end while
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5 Experiments

To empirically evaluate the performance, and also to study the effectiveness and neces-
sity of design components of CS-DPP, we conduct three sets of experiments: (1) necessity
justification of online LSDR, (2) experiments on basis drifting, and (3) experiments on cost-
sensitivity. Furthermore, recall that the label weighting scheme of CS-DPP depends on the
label order. We therefore conduct an additional set of experiments to study how different
label orders affect the performance of CS-DPP. To assist the readers in understanding the
experiments, we list the full names and acronyms of the algorithms to be compared alongwith
their key differences in Table 3. The details of the algorithms will be illustrated as needed.

5.1 Experiments setup

We conduct our experiments on eleven real-world datasets3 downloaded from MULAN
(Tsoumakas et al. 2011). Statistics of the datasets can be found in Table 4. In particular,
datasets eurlex-eurovec and delicious are used only in the experiment to justify the necessity
of onlineLSDR, and only 7500 sub-sampled instances are used on these twodatasets to reduce
the computational burden of the competitors in the experiment. In addition, only 50000
sub-sampled instances are used for nuswide because a competitor in the cost-sensitivity
experiment is rather computationally inefficient.

Data streams are generated bypermutingdatasets into different randomorders.Weperform
sub-sampling on eurlex-eurovec, delicious and nuswide after computing the permutation so
that each stream contains a diferent set of original instances for the three datasets.

All LSDR algorithms, except for competitors run on delicious and eurlex-eurovec, are
coupled with online ridge regression and three different code space dimensions, M = 10%,
25%, and 50% of K , are considered. For DPP we fix λ = 1 and follow (Arora et al. 2013) to
use the time-decreasing learning rate η = 2√

t
M
K , and parameters of other algorithms will be

elaborated along with their details in the corresponding section. For the two larger datasets
delicious and eurlex-eurovec, we implement both DPP and O-BR using gradient descent
instead of online ridge regression for calculatingWt , where O-BR is the competitor that will
be elaborated in Sect. 5.2. In particular, for PBC of DPP we replace the update of the online
ridge regressor (6) with online gradient descent, while for PBT we replace (13), the update
after basis transform, with a gradient descent update as well. Note that even with online ridge
regression replaced with gradient descent, the ability of DPP with PBT or PBC to handle
the basis drifting problem remains unchanged. We use the time decreasing step-size 1√

t
for

gradient descent on delicious, and 0.001√
t

on eurlex-eurovec.
We consider four different cost functions, Hamming loss, Normalized rank loss, F1 loss

and Accuracy loss.

cham(y, ŷ) = 1

K

⎛

⎝
K∑

k=1

�y[k] �= ŷ[k]�
⎞

⎠

cnr(y, ŷ) = average
y[i]>y[ j]

(
�ŷ[i] < ŷ[ j]� + 1

2
�ŷ[i] = ŷ[ j]�

)

3 CAL500, emotions, scene, yeast, enron, Corel5k, mediamill, nuswide, medical,
delicious and eurlex-eurovec.
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Table 4 Statistics of datasets

# of features # of labels # of instances Cardinality

CAL500 68 174 502 26.044

Corel5k 499 374 5000 3.522

emotions 72 6 593 1.869

enron 1001 53 1702 3.378

mediamill 120 101 43907 4.376

medical 1449 45 978 1.245

scene 294 6 2407 1.074

yeast 103 14 2417 4.237

nuswide 128 81 50000* 1.869

delicious 500 983 7500* 19.020

eurlex-eurovec 5000 3993 7500* 5.310

cf1(y, ŷ) = 1−2

⎛

⎝
K∑

k=1

�y[k]=+1 and ŷ[k] = +1�

⎞

⎠ /

⎛

⎝
K∑

k=1

(�y[k] = +1� + �ŷ[k] = +1�)

⎞

⎠

cacc(y, ŷ) = 1 −
⎛

⎝
K∑

k=1

�y[k] = +1 and ŷ[k] = +1�

⎞

⎠ /

⎛

⎝
K∑

k=1

�y[k] = +1 or ŷ[k] = +1�

⎞

⎠

The performances of different algorithms are compared using the average cumulative cost
1
t

∑t
i=1 c(yi , ŷi ) at each iteration t . We remark that a lower average cumulative cost implies

better performance. We report the average results of each experiment after 15 repetitions.

5.2 Necessity of online LSDR

In this experiment, we aim to justify the necessity to address LSDR for OMLC problems. We
demonstrate that the ability of LSDR to preserve the key joint correlations between labels can
be helpful when facing (1) data with noisy labels or (2) data with a large possible set of labels,
which are often encountered in real-world OMLC problems. We compare DPP with online
Binary Relevance (O-BR), which is a naïve extension from binary relevance (Tsoumakas
et al. 2010) with online ridge regressor. The only difference between DPP and O-BR is
whether the algorithm incorporates LSDR.

We first compare DPP and O-BR on data with noisy labels. We generate noisy data
stream by randomly flipping each positive label y[i] = 1 to negative with probability p =
{0.3, 0.5, 0.7}, which simulates the real-world scenario in which human annotators fail to
tag the existed labels. We plot the results of O-BR and DPP with M = 10%, 25% and 50%
of K on datasets emotions and enron with respect to Hamming loss and F1 loss in Fig. 1,
which contains error bars that represent the standard error of the average results. The standard
errors are naturally larger when M is smaller or when t (number of iterations) is small, but
in general for M ≥ 25% · K and for t ≥ 400 the standard errors are small enough to justify
the difference. The complete results are listed in Appendix B.1.

The results from the first two rows of Fig. 1 show that DPP with M = 10% of K performs
competitively and even better than O-BR as p increases on dataset emotions. The results
from the last two rows of Fig. 1 show that DPP always performs better on enron. We can
also observe from Fig. 1 that DPP with smaller M tends to perform better as p increases.
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Fig. 1 DPP versus O-BR on noisy labels

Table 5 DPP versus O-BR on large datasets

Dataset Delicious Eurlex-eurovec

Algorithms PBT PBC O-BR PBT PBC O-BR

cham 0.1136 0.1153 0.1245 0.4917 0.5011 0.4993

cNR 0.5636 0.5641 0.5756 0.7435 0.7467 0.7433

cF1 0.9143 0.9138 0.9076 0.9972 0.9928 0.9921

cAcc 0.9512 0.9517 0.9494 0.9980 0.9964 0.9958

Avg. time (s) 21.49 140.77 105.18 60.81 10,522.25 4841.35

Best (smallest) time values on each dataset are given in bold
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Fig. 2 PBC versus PBT versus none, M = 10% of K

The above results clearly demonstrate that DPP better resists the effect of noisy labels with
its incorporation of LSDR as the noise level (p) increases. The observation that DPP with
smallerM tends to performbetter demonstrates thatDPP ismore robust to noise by preserving
the key of the key joint correlations between labels with LSDR.

Next, we demonstrate that LSDR is also helpful for handling data with a large label set.
We compare O-BR with DPP that is coupled with either PBC or PBT on datasets delicious
and eurlex-eurovec.4 DPP uses M = 10 for delicious and M = 25 for eurlex-eurovec. We
summarize the results and average run-time in Table 5. Table 5 indicates that DPP coupled
with either PBT or PBC performs competitively with O-BR, while DPP with PBT enjoys
significantly cheaper computational cost. The results demonstrate that DPP enjoys more
effective and efficient learning for data with a large label set than O-BR, and also justifies
the advantage of PBT over PBC in terms of efficiency when K and d are large while M is
relatively small, as previously highlighted in Sect. 3.

5.3 Experiments on basis drifting

To empirically justify the necessity of handling basis drifting, we compare variants of DPP
that (a) incorporates PBC by (6), (b) incorporates PBT by (13), and (c) neglects basis drifting
as (5). We plot the results for Hamming loss with M = 10% of K in Fig. 2 on six datasets,
and report the complete results in Appendix B.2. The results on all datasets in Fig. 2 show
that DPP with either PBC or PBT significantly improves the performance over its variant that
neglects the basis drifting, which clearly demonstrates the necessity to handle the drifting of
projection basis.

Further comparison of PBC and PBT based on Fig. 2 reveals that PBC in general per-
forms slightly better than PBT, reflecting its advantage of exact projection basis correction.
Nevertheless, as discussed in Sect. 5.2, PBT enjoys a nice computational speedup when K

4 delicious: d = 500, K = 983, eurlex-eurovec: d = 5000, K = 3993.
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Fig. 3 CS-DPP versus others, M = 10% of K

and d are large and M is relatively small, making PBT more suitable to handle data with a
large label set.

5.4 Experiments on cost-sensitivity

To empirically justify the necessity of cost-sensitivity, we compare CS-DPP using PBT with
DPP using PBT and other online LSDR algorithms. To the best of our knowledge, no online
LSDR algorithm has yet been proposed in the literature. We therefore design two simple
online LSDR algorithms, online compressed sensing (O-CS) and online random projection
(O-RAND), to compare with CS-DPP. O-CS is a straightforward extension of CS (Hsu et al.
2009) with an online ridge regressor, and we follow (Hsu et al. 2009) to determine the
parameter of O-CS. O-RAND encodes using randommatrix PR and simply decodes with the
corresponding pseudo inverse P†

R .
We plot the results with respect to all evaluation criteria except for the Hamming loss with

M = 10% of K in Fig. 3 on three datasets, and report the complete results in Appendix B.3.
Note that the results for CS-DPP here are obtained by using the original label order from the
dataset.
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Table 6 Results of CS-DPP on CAL500 with 50 random label orders

10% of K 25% of K 50 % of K

cham 0.1458 ± 0.00019 0.1489 ± 0.00012 0.1503 ± 0.00008

cNR 0.1247 ± 0.00224 0.1321 ± 0.00210 0.1371 ± 0.00222

cF1 0.5914 ± 0.00108 0.5956 ± 0.00110 0.5949 ± 0.00101

cAcc 0.7388 ± 0.00105 0.7428 ± 0.00131 0.7426 ± 0.00126

Table 7 Results of CS-DPP on yeast with 50 random label orders

10% of K 25% of K 50 % of K

cham 0.2296 ± 0.00010 0.2162 ± 0.00009 0.2092 ± 0.00001

cNR 0.0064 ± 0.00081 0.0170 ± 0.00242 0.0232 ± 0.00158

cF1 0.4518 ± 0.00919 0.3841 ± 0.00199 0.3784 ± 0.00107

cAcc 0.5448 ± 0.02252 0.4971 ± 0.00379 0.4901 ± 0.00124

5.4.1 CS-DPP versus DPP

The results of Fig. 3 clearly indicate that CS-DPP performs significantly better than DPP
on all evaluation criteria other than the Hamming loss, while CS-DPP reduces to DPP when
cHam(·, ·) is used as the cost function. These observations demonstrate that CS-DPP, by
optimizing the given cost function instead of Hamming loss, indeed achieves cost-sensitivity
and is superior to its cost-insensitive counterpart, DPP.

5.4.2 CS-DPP versus other online LSDR algorithms

As shown in Fig. 3, while DPP generally performs better than O-CS andO-RAND because of
the advantage to preserve key label correlations rather than random ones, it can nevertheless
be inferior on some datasets with respect to specific cost functions due to its cost-insensitivity.
For example, DPP loses to O-RAND on dataset Corel5k with respect to the Normalized rank
loss, as shown in the third row of Fig. 3. CS-DPP conquers the weakness of DPP with its
cost-sensitivity, and significantly outperforms O-CS and O-RAND on all three datasets with
respect to all three evaluation criteria, as demonstrated in Fig. 3. The superiority of CS-DPP
justifies the necessity to take cost-sensitivity into account.

5.5 Experiment on effect of label order for CS-DPP

The goal of this experiment is to study how different label orders affect the performance
of CS-DPP as our proposed label weighting scheme with (14) is label-order-dependent. To
evaluate the impact of label orders, we run CS-DPP with 50 randomly generated label orders
and M = 10%, 25% and 50% of K on each dataset. The permutation of each dataset is
fixed to the original one given in Tsoumakas et al. (2011), which allows the variance of the
performance to better indicate the effect of different orders.

We summarize the results of all four different cost functions with mean and standard
deviation on datasets CAL500, enron and yeast in Tables 6, 7 and 8 respectively, and report
the complete results in Appendix B.4. Note that the results of Hamming loss are unaffected
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Table 8 Results of CS-DPP on enron with 50 random label orders

10% of K 25% of K 50 % of K

cham 0.0562 ± 0.00020 0.0600 ± 0.00011 0.0632 ± 0.00009

cNR 0.1432 ± 0.00333 0.1364 ± 0.00244 0.1305 ± 0.00216

cF1 0.5421 ± 0.00334 0.5392 ± 0.00291 0.5428 ± 0.00293

cAcc 0.6573 ± 0.00360 0.6561 ± 0.00331 0.6627 ± 0.00315

by the order of labels, and the reported deviation is due to the randomness from Pt . From the
results of Tables 6, 7 and 8, we see that standard deviation is generally in a relatively small
scale of 10−3, indicating that the performance of CS-DPP is not that sensitive to the order of
labels. Closer inspection of Table 7 reveals that the standard deviation of cacc on yeast with
M = 10% of K (which is less than 2 in this case) is somewhat larger, but for sufficiently
large M the label order does not seem to cause much variation.

6 Conclusion

We proposed a novel cost-sensitive online LSDR algorithm called cost-sensitive dynamic
principal projection (CS-DPP). We established the foundation of CS-DPP with an online
LSDR framework derived from PLST, and derived CS-DPP along with its theoretical guar-
antees on top of MSG. We successfully conquered the challenge of basis drifting using
our carefully designed PBC and PBT. CS-DPP further achieves cost-sensitivity with the-
oretical guarantees based on our proposed label-weighting scheme. The empirical results
demonstrate that CS-DPP significantly outperforms other OMLC algorithms on all evalu-
ation criteria, which validates the robustness and superiority of CS-DPP. The necessity for
CS-DPP to address LSDR, basis drifting and cost-sensitivity was also empirically justified.

For possible future works, an interesting direction is to design an online LSDR algorithm
capable of capturing the key joint information between features and labels. As discussed, the
concept to capture such joint information has been investigated for batchMLC (Chen and Lin
2012; Lin et al. 2014; Yu et al. 2014), but it remains challenging for online MLC. Another
direction is to apply OMLC algorithms as a fast approximate solver for large-scale batch data,
and see how they compete with traditional batch algorithms. The other interesting direction,
as mentioned in Sect. 2, is to design online learning algorithms that achieve cost-sensitivity
for the more sophisticated micro- and macro-based criteria.

Appendix A: Proof of lemmas and theorems

Appendix A.1: Proof of Lemma 2

Lemma 2 Suppose (Qt , σt ) is obtained after an updated of Capped MSG such that Ut =
Qt diag(σt )Q�

t . If Γt is a discrete probability distribution over events {Q−i
t }M+1

i=1 with prob-

ability of Q−i
t being 1 − σt [i], we have for any y

EPt∼Γt [y�(I − P�
t Pt )y] = y�(I − Ut )y. (16)
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Proof We first formally show that Γt is a well-defined probability distribution. By the def-
inition of the projection operator of Capped MSG we have 0 ≤ σt [i] ≤ 1 for each σt [i]
and

∑M+1
i=1 1 − σt [i] = M + 1 − ∑M+1

i=1 σt [i] = 1 with tr(Ut ) = M . Γt is therefore a
well-defined probability distribution.

Then it suffices to show that EPt∼Γt [P�
t Pt ] = Ut as

EPt∼Γt [y�(I − P�
t Pt )y] = ‖y‖22 − y�

EPt∼Γt [P�
t Pt ]y

To see that EPt∼Γt [P�
t Pt ] = Ut , first notice that by orthogonality of rows of Qt we have

Ut = ∑M+1
j=1 σt ( j)e je�

j where e j is the j-th row of Qt . We then have

EPt∼Γt [P�
t Pt ] =

M+1∑

i=1

(1 − σt [i])
M+1∑

j=1

�i �= j�e je�
j

=
M+1∑

j=1

(e je�
j

M+1∑

i=1

�i �= j�(1 − σt [i]))

=
M+1∑

j=1

(σt [ j]e je�
j ) (a)

= Ut

where (a) is by
∑M+1

i=1 σt [i] = M . ��

Appendix A.2: Proof of Theorem 3

Theorem 3 With the definitions ofHt in (7),H∗ in (9), R
T

in (8) and Δt in (10), assume that

‖xt‖ ≤ 1, ‖yt‖ ≤ 1 and ‖Htxt − yt‖22 ≤ ε.

1. For any given T , the expected cumulative regretR is upper-bounded by

(1 + ε)

T∑

t=1

Δt + M

2
‖H∗‖2F + 2εMd log

(

1 + T

d

)

.

2. If limT→∞ ΔT = 0 and ‖H∗‖F ≤ h∗ across all iterations, limT→∞
R
T

= 0.

Proof We start by separating the definition of R to two terms: one for how Pt in MSG
converges to P∗, and the other for howWPBC

t for Pt in ridge regression differs toW# for P∗.
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For simplicity, we will denoteWPBC
t byWt . Then,

R =
T∑

t=1

EPt∼Γt [�(t)(Wt ,Pt ) − �(t)(W#,P∗)]

= +
T∑

t=1

EPt∼Γt [‖W�
t xt − Ptyt‖22 + ‖(I − P�

t Pt )yt‖22]

−
T∑

t=1

EPt∼Γt [‖W�
# xt − P∗yt‖22 + ‖(I − (P∗)�P∗)yt‖22]

= +
T∑

t=1

EPt∼Γt [‖(I − P�
t Pt )yt‖22] − ‖(I − (P∗)�P∗)yt‖22]

︸ ︷︷ ︸
RMSG

+
T∑

t=1

EPt∼Γt [‖W�
t xt − Ptyt‖22] − ‖W�

# xt − P∗yt‖22
︸ ︷︷ ︸

Rridge

We can bound RMSG first. Let Ut = EPt∼Γt [P�
t Pt ] and U∗ = (P∗)� P∗, by linearity of

expectation,

RMSG =
T∑

t=1

y�
t (Ut − U∗)yt

≤
T∑

t=1

‖Ut − U∗‖2

≤
T∑

t=1

Δt (17)

where (17) from the assumption of ‖yt‖2 ≤ 1 and the definition of the matrix 2-norm.
Next, we bound Rridge. With the definitions of Ht in (7) and H∗ in (9), Rridge can be

further decomposed to

Rridge = +
T∑

t=1

(
EPt∼Γt [‖Pt (H�

t xt − yt )‖22] − ‖P∗(H�
t xt − yt )‖22

)

︸ ︷︷ ︸
R1

+
T∑

t=1

(
‖P∗(H�

t xt − yt )‖22 − ‖P∗(
(
H∗)� xt − yt )‖22

)

︸ ︷︷ ︸
R2

.

BoundingR1 is very similar to boundingRMSG. In particular,

R1 =
T∑

t=1

(H�
t xt − yt )�(Ut − U∗)(H�

t xt − yt )
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≤
T∑

t=1

ε‖Ut − U∗‖2

≤
T∑

t=1

εΔt (18)

where (18) follows from the assumption of ‖H�
t xt − yt‖22 ≤ ε.

The termR2 can be viewed as an online ridge regression process from x to P∗y, because it
can be easily proved thatHt (P∗)� is the ridge regression solution after receiving (x1,P∗y1),
(x2,P∗y2), . . ., (xt−1,P∗yt−1). Also, as discussed in Sect. 3.4,W# = H∗(P∗)� is the optimal
linear regression solution of {(xt ,P∗yt )}Tt=1. The assumption of ‖Htxt − yt‖22 ≤ ε implies
that

‖P∗H�
t xt − P∗yt‖22 = (H�

t xt − yt )�U∗(H�
t xt − yt ) ≤ ε

as well. Similarly, the assumption of ‖yt‖2 ≤ 1 implies that ‖P∗yt‖2 ≤ 1. Then, a standard
ridge regression analysis (see, e.g. Bartlett 2008) by provng thatAt = λI+∑t−1

i=1 xix
�
i grows

linearly with t leads to

R2 =
T∑

t=1

(
‖P∗(H�

t xt − yt )‖22 − ‖P∗(
(
H∗)� xt − yt )‖22

)

≤ 1

2
‖P∗H∗‖2F + 2εMd log

(

1 + T

d

)

≤ M

2
‖H∗‖2F + 2εMd log

(

1 + T

d

)

(19)

where (19) is because ‖P∗‖2F = tr(U∗) = M .
SummingRMSG,R1 andR2 results in

R ≤ (1 + ε)

T∑

t=1

Δt + M

2
‖H∗‖2F + 2εMd log

(

1 + T

d

)

, (20)

which proves the first part of the theorem. The second part easily follows because the con-
vergence of a sequence implies the convergence of the mean. ��

Appendix A.3: Proof of Lemma 4

Lemma 4 If c(y, y(k)
pred) − c(y, y(k)

real) ≥ 0 holds for any k, y and ŷ, then for any given y and ŷ
we have

c(y, ŷ) =
K∑

k=1

δ(k)�y[k] �= ŷ[k]� (21)

Proof Recall the definition of y(k)
real and y(k)

pred to be

ŷ(k)
real[i] =

⎧
⎨

⎩

y[i] if i < k
y[i] if i = k
y[i] if i > k

and ŷ(k)
pred[i] =

⎧
⎨

⎩

y[i] if i < k
−y[i] if i = k
ŷ[i] if i > k
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and the definition of δ(k) to be

δ(k) = |c(y, ŷ(k)
pred) − c(y, ŷ(k)

real)|
Now define ki , i = 1, . . . , L be the sequence of indices such that y[ki ] �= ŷ[ki ] for every ki
and ki < ki+1. If such ki does not exist than (21) holds trivially by c(y, y) = 0. Otherwise,
by the condition of c we have

K∑

k=1

δ(k)�y[k] �= ŷ[k]� (a)

=
K∑

k=1

(c(y, ŷ(k)
pred) − c(y, ŷ(k)

real))�y[k] �= ŷ[k]�

=
L∑

i=1

c(y, ŷ(ki )
pred) − c(y, ŷ(ki )

real )

= c(y, ŷ(k1)
pred) − c(y, ŷ(kL )

real ) (b)

= c(y, ŷ) (c)

where (a) uses the condition of c(·, ·) to remove the absolute value function; (b) is from two
possibilities of L: if L = 1 then the equation trivially holds; if L > 1 we use the observation
that ŷ(ki )

real = ŷ(ki+1)

pred where the observation is by realizing y[ j] = ŷ[ j] for any ki < j < ki+1;

(c) follows from the observation that ŷ(k1)
pred = ŷ and ŷ(kL )

real = y and c(y, y) = 0. ��

Appendix A.4: Proof of Theorem 5

Theorem 5 When making a prediction ŷ from x by ŷ = round
(
P�r(x) + o

)
with any left

orthogonal matrix P, if c(·, ·) satisfies the condition of Lemma 4, the prediction cost

c(y, ŷ) ≤ ‖r(x) − zC‖22 + ‖(I − P�P)(y′
C)‖22

where zC = P(y′
C) and y′

C = Cy − o with respect to any fixed reference point o.

Recall the definition of C in the main context is

C = diag(
√

δ(1), ...,
√

δ(K )) (22)

Next we show and prove the following lemma before we proceed to the complete proof.

Lemma 6 Given the ground truth y, if the binary-value prediction ŷ ∈ {+1,−1}K is made
by round(ỹ) where ỹ is the real-value prediction ỹ ∈ R

K . Then for any y, ŷ, ỹ, if c satisfies
the condition in Lemma 4, we have

c(y, ŷ) ≤ ‖Cy − ỹ‖2 (23)

Proof From Lemma 4 we have c(y, ŷ) = ∑K
k=1 δ(k)�y[k] �= ŷ[k]�. As ‖Cy − ỹ‖22 =

∑K
k=1(

√
δ(K )y[k] − ỹ[k])2, it suffices to show that for all k we have

δ(k)�y[k] �= ŷ[k]� ≤ (
√

δ(k)y[k] − ỹ[k])2 (24)
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When δ(k) = 0, (24) holds trivially. When δ(k) > 0, we have

δ(k)�y[k] �= ŷ[k]�
= δ(k)(�ỹ[k] ≥ 0��y[k] = −1� + �ỹ[k] < 0��y[k] = +1�)

= δ(k)
(

�
ỹ[k]√
δ(k)

≥ 0��y[k] = −1� + �
ỹ[k]√
δ(k)

< 0��y[k] = +1�

)

≤ δ(k)

((
ỹ[k]√
δ(k)

− y[k]
)2

�y[k] = −1� +
(

ỹ[k]√
δ(k)

− y[k]
)2

�y[k] = +1�

)

= δ(k)
(

ỹ[k]√
δ(k)

− y[k]
)2

=
(√

δ(k)y[k] − ỹ[k]
)2

where the second equality uses the fact that δ(k) > 0. As δ(k) ≥ 0 holds by its definition, (24)
holds for every k. Summing (24) with respect to all k then completes the proof. ��

With Lemma 6 established, we now prove Theorem 5.

Proof of Theorem 5 If the given c satisfies the condition in Lemma (4), and let ỹ = P�r(x)+o
and ŷ = round(ỹ). Then for any (x, y) we have

c(y, ŷ)

≤ ‖Cy − ỹ‖22 (a)

= ‖((ỹ − o − P�Py′
C) − (y′

C − P�Py′
C))‖22

= ‖(P�(r(x) − zC) − (I − P�P)y′
C‖22

= ‖(P�(r(x) − zC)‖22 + ‖(I − P�P)y′
C)‖22 (b)

= ‖r(x) − zC‖22 + ‖(I − P�P)y′
C‖22 (c)

where we recall that ȳ′
C = Cy − o and zC = P(y′

c). (a) is from Lemma 24, while (b) and
(c) follow from the orthogonal rows of P. ��

We note that the proof above closely follows the proof of Theorem 1 in Tai and Lin (2012),
while the key difference comes from Lemma 6 to handle the weighted Hamming loss.

Appendix B: Complete results of experiments

Here we report the complete results of each experiment.

Appendix B.1: Necessity of online LSDR

We report the complete results of comparison between O-BR and DPP with M = 10%, 25%
and 50% of K from Tables 9, 10 and 11 with respect to all four evaluation criteria, where the
best values (the lowest) are marked in bold.
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Table 9 DPP versus O-BR on noisy data, p = 0.3

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 O-BR 0.1130 ± 0.0003 0.823 ± 0.002 0.453 ± 0.001 0.898 ± 0.001

DPP-50 0.1143 ± 0.0001 0.823 ± 0.002 0.455 ± 0.001 0.897 ± 0.001

DPP-25 0.1133 ± 0.0002 0.830 ± 0.003 0.454 ± 0.001 0.900 ± 0.001

DPP-10 0.1113 ± 0.0002 0.837 ± 0.002 0.458 ± 0.001 0.911 ± 0.002

Corel5k O-BR 0.0070 ± 0.0000 0.949 ± 0.001 0.496 ± 0.000 0.957 ± 0.001

DPP-50 0.0072 ± 0.0000 0.945 ± 0.001 0.496 ± 0.001 0.957 ± 0.001

DPP-25 0.0072 ± 0.0000 0.949 ± 0.001 0.497 ± 0.000 0.958 ± 0.000

DPP-10 0.0071 ± 0.0000 0.949 ± 0.001 0.498 ± 0.000 0.960 ± 0.001

emotions O-BR 0.2213 ± 0.0011 0.697 ± 0.005 0.480 ± 0.004 0.719 ± 0.005

DPP-50 0.2214 ± 0.0013 0.740 ± 0.008 0.504 ± 0.005 0.764 ± 0.004

DPP-25 0.2226 ± 0.0013 0.767 ± 0.006 0.527 ± 0.003 0.783 ± 0.002

DPP-10 0.2238 ± 0.0026 0.857 ± 0.003 0.570 ± 0.002 0.858 ± 0.004

enron O-BR 0.0584 ± 0.0002 0.694 ± 0.002 0.386 ± 0.001 0.766 ± 0.002

DPP-50 0.0572 ± 0.0002 0.697 ± 0.003 0.388 ± 0.001 0.770 ± 0.002

DPP-25 0.0534 ± 0.0002 0.696 ± 0.002 0.397 ± 0.001 0.767 ± 0.002

DPP-10 0.0489 ± 0.0001 0.716 ± 0.002 0.414 ± 0.001 0.784 ± 0.002

mediamill O-BR 0.0271 ± 0.0000 0.640 ± 0.001 0.403 ± 0.000 0.721 ± 0.000

DPP-50 0.0272 ± 0.0000 0.640 ± 0.001 0.402 ± 0.000 0.721 ± 0.000

DPP-25 0.0272 ± 0.0000 0.639 ± 0.001 0.403 ± 0.000 0.721 ± 0.001

DPP-10 0.0272 ± 0.0000 0.639 ± 0.001 0.402 ± 0.000 0.720 ± 0.001

medical O-BR 0.0168 ± 0.0001 0.550 ± 0.004 0.448 ± 0.004 0.563 ± 0.005

DPP-50 0.0177 ± 0.0001 0.544 ± 0.006 0.446 ± 0.002 0.556 ± 0.003

DPP-25 0.0183 ± 0.0001 0.577 ± 0.004 0.469 ± 0.005 0.589 ± 0.005

DPP-10 0.0190 ± 0.0001 0.645 ± 0.006 0.538 ± 0.003 0.651 ± 0.004

nuswide O-BR 0.0151 ± 0.0000 0.627 ± 0.001 0.668 ± 0.000 0.632 ± 0.000

DPP-50 0.0151 ± 0.0000 0.627 ± 0.000 0.667 ± 0.000 0.633 ± 0.000

DPP-25 0.0151 ± 0.0000 0.627 ± 0.000 0.667 ± 0.000 0.632 ± 0.000

DPP-10 0.0151 ± 0.0000 0.626 ± 0.000 0.668 ± 0.000 0.632 ± 0.000

scene O-BR 0.1197 ± 0.0005 0.626 ± 0.001 0.560 ± 0.002 0.628 ± 0.003

DPP-50 0.1282 ± 0.0008 0.695 ± 0.003 0.622 ± 0.002 0.698 ± 0.003

DPP-25 0.1273 ± 0.0005 0.706 ± 0.003 0.632 ± 0.002 0.710 ± 0.004

DPP-10 0.1258 ± 0.0004 0.717 ± 0.003 0.643 ± 0.001 0.715 ± 0.002

yeast O-BR 0.2034 ± 0.0004 0.669 ± 0.002 0.406 ± 0.001 0.755 ± 0.002

DPP-50 0.2032 ± 0.0004 0.678 ± 0.004 0.413 ± 0.002 0.762 ± 0.003

DPP-25 0.2045 ± 0.0004 0.711 ± 0.004 0.427 ± 0.002 0.783 ± 0.003

DPP-10 0.2034 ± 0.0005 0.733 ± 0.005 0.443 ± 0.002 0.798 ± 0.009
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Table 10 DPP versus O-BR on noisy data, p = 0.5

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 O-BR 0.0815 ± 0.0003 0.925 ± 0.002 0.483 ± 0.001 0.961 ± 0.001

DPP-50 0.0834 ± 0.0001 0.925 ± 0.002 0.480 ± 0.001 0.962 ± 0.001

DPP-25 0.0823 ± 0.0002 0.932 ± 0.002 0.483 ± 0.000 0.961 ± 0.001

DPP-10 0.0816 ± 0.0002 0.947 ± 0.002 0.485 ± 0.001 0.970 ± 0.001

Corel5k O-BR 0.0049 ± 0.0000 0.898 ± 0.001 0.543 ± 0.000 0.902 ± 0.001

DPP-50 0.0051 ± 0.0000 0.899 ± 0.001 0.544 ± 0.001 0.900 ± 0.001

DPP-25 0.0051 ± 0.0000 0.897 ± 0.001 0.544 ± 0.000 0.900 ± 0.001

DPP-10 0.0051 ± 0.0000 0.898 ± 0.001 0.543 ± 0.001 0.902 ± 0.001

emotions O-BR 0.1736 ± 0.0014 0.694 ± 0.004 0.633 ± 0.003 0.698 ± 0.004

DPP-50 0.1689 ± 0.0017 0.691 ± 0.003 0.640 ± 0.003 0.706 ± 0.004

DPP-25 0.1660 ± 0.0015 0.703 ± 0.006 0.646 ± 0.002 0.706 ± 0.004

DPP-10 0.1598 ± 0.0014 0.699 ± 0.004 0.650 ± 0.002 0.692 ± 0.004

enron O-BR 0.0475 ± 0.0002 0.768 ± 0.001 0.491 ± 0.002 0.809 ± 0.002

DPP-50 0.0470 ± 0.0002 0.765 ± 0.003 0.488 ± 0.001 0.809 ± 0.001

DPP-25 0.0440 ± 0.0002 0.764 ± 0.003 0.491 ± 0.001 0.806 ± 0.002

DPP-10 0.0398 ± 0.0002 0.772 ± 0.002 0.510 ± 0.002 0.810 ± 0.002

mediamill O-BR 0.0217 ± 0.0000 0.831 ± 0.001 0.548 ± 0.000 0.840 ± 0.001

DPP-50 0.0217 ± 0.0000 0.830 ± 0.001 0.550 ± 0.000 0.839 ± 0.001

DPP-25 0.0217 ± 0.0000 0.830 ± 0.001 0.550 ± 0.001 0.840 ± 0.001

DPP-10 0.0217 ± 0.0000 0.830 ± 0.001 0.549 ± 0.000 0.840 ± 0.001

medical O-BR 0.0153 ± 0.0001 0.570 ± 0.002 0.655 ± 0.005 0.568 ± 0.004

DPP-50 0.0163 ± 0.0001 0.563 ± 0.005 0.661 ± 0.003 0.577 ± 0.004

DPP-25 0.0160 ± 0.0001 0.569 ± 0.004 0.664 ± 0.005 0.570 ± 0.004

DPP-10 0.0157 ± 0.0001 0.561 ± 0.003 0.690 ± 0.003 0.565 ± 0.003

nuswide O-BR 0.0109 ± 0.0000 0.537 ± 0.000 0.730 ± 0.000 0.537 ± 0.000

DPP-50 0.0110 ± 0.0000 0.537 ± 0.000 0.730 ± 0.000 0.537 ± 0.000

DPP-25 0.0110 ± 0.0000 0.536 ± 0.000 0.730 ± 0.000 0.536 ± 0.000

DPP-10 0.0109 ± 0.0000 0.536 ± 0.000 0.730 ± 0.000 0.537 ± 0.000

scene O-BR 0.0965 ± 0.0006 0.533 ± 0.003 0.718 ± 0.002 0.533 ± 0.003

DPP-50 0.0926 ± 0.0004 0.525 ± 0.002 0.731 ± 0.002 0.524 ± 0.002

DPP-25 0.0915 ± 0.0004 0.519 ± 0.003 0.739 ± 0.001 0.522 ± 0.003

DPP-10 0.0902 ± 0.0004 0.524 ± 0.003 0.740 ± 0.001 0.515 ± 0.004

yeast O-BR 0.1581 ± 0.0005 0.853 ± 0.002 0.518 ± 0.001 0.875 ± 0.001

DPP-50 0.1586 ± 0.0005 0.850 ± 0.002 0.520 ± 0.001 0.873 ± 0.002

DPP-25 0.1573 ± 0.0004 0.860 ± 0.002 0.524 ± 0.001 0.878 ± 0.002

DPP-10 0.1543 ± 0.0004 0.876 ± 0.004 0.531 ± 0.002 0.890 ± 0.002
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Table 11 DPP versus O-BR on noisy data, p = 0.7

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 O-BR 0.0483 ± 0.0003 0.985 ± 0.001 0.495 ± 0.000 0.990 ± 0.001

DPP-50 0.0499 ± 0.0002 0.983 ± 0.001 0.495 ± 0.000 0.991 ± 0.000

DPP-25 0.0502 ± 0.0002 0.984 ± 0.001 0.495 ± 0.000 0.991 ± 0.000

DPP-10 0.0490 ± 0.0002 0.987 ± 0.000 0.496 ± 0.000 0.992 ± 0.001

Corel5k O-BR 0.0029 ± 0.0000 0.716 ± 0.002 0.647 ± 0.001 0.716 ± 0.002

DPP-50 0.0031 ± 0.0000 0.713 ± 0.001 0.646 ± 0.001 0.714 ± 0.002

DPP-25 0.0031 ± 0.0000 0.714 ± 0.001 0.647 ± 0.001 0.715 ± 0.002

DPP-10 0.0031 ± 0.0000 0.712 ± 0.002 0.646 ± 0.001 0.714 ± 0.002

emotions O-BR 0.1007 ± 0.0013 0.493 ± 0.006 0.759 ± 0.002 0.490 ± 0.006

DPP-50 0.1017 ± 0.0011 0.486 ± 0.005 0.758 ± 0.002 0.493 ± 0.005

DPP-25 0.0993 ± 0.0015 0.489 ± 0.006 0.757 ± 0.002 0.491 ± 0.005

DPP-10 0.0951 ± 0.0013 0.477 ± 0.004 0.763 ± 0.002 0.474 ± 0.004

enron O-BR 0.0311 ± 0.0002 0.734 ± 0.003 0.634 ± 0.002 0.753 ± 0.003

DPP-50 0.0311 ± 0.0002 0.729 ± 0.003 0.633 ± 0.002 0.745 ± 0.002

DPP-25 0.0298 ± 0.0002 0.731 ± 0.002 0.635 ± 0.002 0.742 ± 0.003

DPP-10 0.0266 ± 0.0002 0.711 ± 0.003 0.644 ± 0.001 0.726 ± 0.003

mediamill O-BR 0.0130 ± 0.0000 0.714 ± 0.001 0.643 ± 0.000 0.715 ± 0.000

DPP-50 0.0130 ± 0.0000 0.715 ± 0.000 0.643 ± 0.000 0.714 ± 0.000

DPP-25 0.0130 ± 0.0000 0.714 ± 0.000 0.643 ± 0.000 0.714 ± 0.001

DPP-10 0.0130 ± 0.0000 0.715 ± 0.001 0.643 ± 0.000 0.715 ± 0.001

medical O-BR 0.0099 ± 0.0002 0.398 ± 0.007 0.814 ± 0.003 0.404 ± 0.004

DPP-50 0.0106 ± 0.0002 0.401 ± 0.005 0.812 ± 0.003 0.398 ± 0.005

DPP-25 0.0105 ± 0.0001 0.391 ± 0.004 0.815 ± 0.002 0.399 ± 0.004

DPP-10 0.0097 ± 0.0001 0.377 ± 0.004 0.819 ± 0.003 0.377 ± 0.005

nuswide O-BR 0.0066 ± 0.0000 0.386 ± 0.001 0.808 ± 0.000 0.386 ± 0.001

DPP-50 0.0066 ± 0.0000 0.386 ± 0.000 0.807 ± 0.000 0.385 ± 0.000

DPP-25 0.0066 ± 0.0000 0.386 ± 0.000 0.807 ± 0.000 0.386 ± 0.000

DPP-10 0.0066 ± 0.0000 0.386 ± 0.000 0.807 ± 0.000 0.385 ± 0.001

scene O-BR 0.0562 ± 0.0004 0.328 ± 0.003 0.841 ± 0.001 0.328 ± 0.002

DPP-50 0.0544 ± 0.0003 0.323 ± 0.002 0.841 ± 0.001 0.321 ± 0.002

DPP-25 0.0542 ± 0.0005 0.316 ± 0.002 0.842 ± 0.001 0.317 ± 0.002

DPP-10 0.0538 ± 0.0005 0.313 ± 0.002 0.842 ± 0.001 0.318 ± 0.002

yeast O-BR 0.0920 ± 0.0004 0.746 ± 0.002 0.625 ± 0.001 0.747 ± 0.002

DPP-50 0.0918 ± 0.0003 0.748 ± 0.002 0.627 ± 0.001 0.747 ± 0.002

DPP-25 0.0921 ± 0.0004 0.747 ± 0.002 0.627 ± 0.001 0.746 ± 0.002

DPP-10 0.0915 ± 0.0004 0.748 ± 0.002 0.626 ± 0.001 0.746 ± 0.002
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The results show that DPP outperforms O-BR as the value of p increases with respect
to Hamming loss, F1 loss and Accuracy loss, demonstrating the robustness of DPP. On
the other hand, the results related to Normalized rank loss from Tables 9, 10 and 11 show
that, while DPP cannot outperform O-BR regarding this specific criterion, DPP does start to
perform competitively as the value of p increases. The observation again demonstrates that
DPP indeed suffers less from noisy labels comparing to O-BR due to the incorporation with
LSDR.

Appendix B.2: Experiments on basis drifting

The complete results of comparison between DPP using (1) PBC, (2) PBT, and (3) noth-
ing regarding Hamming loss can be found in Tables 12, 13 and 14, where the best values
(the lowest) are marked in bold. To further understand the behavior of basis drifting and
the effectiveness of PBC and PBT for CS-DPP, we also compare CS-DPP coupled with
PBC/PBT/none on F1 loss, Accuracy loss and Normalized rank loss, and summarize the
results in the same tables. From these results we can again draw the same conclusion as
that in Sect. 5.3. That is, CS-DPP with either PBT or PBC greatly outperforms CS-DPP that
neglects the basis drifting, and CS-DPP with PBT performs competitively with CS-DPP with
PBC.

Appendix B.3: Experiments on cost-sensitivity

We report the complete results of on all datasets with respect to all four cost functions in
Tables 15, 16 and 17, where the best values (the lowest) are marked in bold. These complete
results validate the conclusion in Sect. 5.4.

Appendix B.4: Experiments on effect of label orders

The complete average results and the corresponding standard deviations of CS-DPP run
on 50 random label orders are reported in Table 18. The results indicate that the standard
deviation over the average results of 50 random orders are of 10−3 scale generally, indicating
that our CS-DPP is relatively not sensitive to the change of label order. On the other hand,
the results of CS-DPP have comparatively large deviation on several datasets for some cost
functions, such as the Normalized rank loss on dataset emotions with M = 10% of K . We
attribute the reason to the instability of interaction between the randomness ofPt and different
label orders based on the fact that larger deviations are observed only when M = 10%
of K .
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Table 12 CS-DPP with PBC versus PBT versus none, M = 10% of K

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 CS-DPP-None 0.4464 ± 0.0074 0.733 ± 0.001 0.393 ± 0.002 0.843 ± 0.001

CS-DPP-PBT 0.1443 ± 0.0001 0.601 ± 0.001 0.137 ± 0.001 0.749 ± 0.001

CS-DPP-PBC 0.1454 ± 0.0002 0.603 ± 0.001 0.144 ± 0.002 0.748 ± 0.001

Corel5k CS-DPP-None 0.4814 ± 0.0063 0.957 ± 0.000 0.357 ± 0.001 0.980 ± 0.000

CS-DPP-PBT 0.0099 ± 0.0000 0.853 ± 0.001 0.248 ± 0.001 0.912 ± 0.001

CS-DPP-PBC 0.0100 ± 0.0000 0.850 ± 0.001 0.237 ± 0.001 0.910 ± 0.000

emotions CS-DPP-None 0.4787 ± 0.0039 0.618 ± 0.004 0.376 ± 0.008 0.696 ± 0.005

CS-DPP-PBT 0.3419 ± 0.0033 0.445 ± 0.003 0.159 ± 0.021 0.563 ± 0.007

CS-DPP-PBC 0.3301 ± 0.0012 0.450 ± 0.007 0.133 ± 0.023 0.560 ± 0.009

enron CS-DPP-None 0.4030 ± 0.0160 0.802 ± 0.002 0.385 ± 0.002 0.875 ± 0.001

CS-DPP-PBT 0.0560 ± 0.0001 0.534 ± 0.002 0.124 ± 0.003 0.642 ± 0.002

CS-DPP-PBC 0.0565 ± 0.0001 0.528 ± 0.002 0.132 ± 0.001 0.638 ± 0.001

mediamill CS-DPP-None 0.4936 ± 0.0016 0.692 ± 0.016 0.416 ± 0.004 0.728 ± 0.001

CS-DPP-PBT 0.0309 ± 0.0000 0.460 ± 0.000 0.066 ± 0.002 0.583 ± 0.000

CS-DPP-PBC 0.0308 ± 0.0000 0.460 ± 0.000 0.072 ± 0.002 0.582 ± 0.000

medical CS-DPP-None 0.1923 ± 0.0352 0.896 ± 0.002 0.346 ± 0.003 0.932 ± 0.003

CS-DPP-PBT 0.0242 ± 0.0001 0.554 ± 0.012 0.132 ± 0.005 0.583 ± 0.008

CS-DPP-PBC 0.0204 ± 0.0002 0.508 ± 0.006 0.096 ± 0.003 0.549 ± 0.007

nuswide CS-DPP-None 0.4975 ± 0.0006 0.933 ± 0.001 0.520 ± 0.001 0.959 ± 0.001

CS-DPP-PBT 0.0201 ± 0.0000 0.649 ± 0.000 0.356 ± 0.001 0.675 ± 0.000

CS-DPP-PBC 0.0201 ± 0.0000 0.648 ± 0.000 0.358 ± 0.001 0.675 ± 0.000

scene CS-DPP-None 0.4609 ± 0.0080 0.761 ± 0.003 0.362 ± 0.007 0.825 ± 0.002

CS-DPP-PBT 0.1796 ± 0.0001 0.723 ± 0.002 0.264 ± 0.012 0.798 ± 0.003

CS-DPP-PBC 0.1797 ± 0.0001 0.724 ± 0.002 0.231 ± 0.016 0.796 ± 0.002

yeast CS-DPP-None 0.4979 ± 0.0015 0.616 ± 0.002 0.422 ± 0.003 0.727 ± 0.001

CS-DPP-PBT 0.2294 ± 0.0010 0.435 ± 0.004 0.003 ± 0.000 0.549 ± 0.003

CS-DPP-PBC 0.2307 ± 0.0011 0.433 ± 0.003 0.003 ± 0.000 0.541 ± 0.003

Table 13 CS-DPP with PBC versus PBT versus none, M = 25% of K

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 CS-DPP-None 0.4374 ± 0.0100 0.732 ± 0.002 0.392 ± 0.002 0.846 ± 0.002

CS-DPP-PBT 0.1471 ± 0.0002 0.604 ± 0.001 0.151 ± 0.002 0.750 ± 0.001

CS-DPP-PBC 0.1476 ± 0.0001 0.602 ± 0.001 0.150 ± 0.002 0.751 ± 0.001

Corel5k CS-DPP-None 0.4997 ± 0.0018 0.965 ± 0.000 0.366 ± 0.001 0.983 ± 0.000

CS-DPP-PBT 0.0100 ± 0.0000 0.845 ± 0.000 0.223 ± 0.001 0.905 ± 0.000

CS-DPP-PBC 0.0101 ± 0.0000 0.844 ± 0.000 0.220 ± 0.001 0.904 ± 0.000
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Table 13 continued

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

emotions CS-DPP-None 0.4988 ± 0.0022 0.631 ± 0.004 0.420 ± 0.005 0.722 ± 0.003

CS-DPP-PBT 0.2768 ± 0.0051 0.401 ± 0.003 0.078 ± 0.016 0.513 ± 0.003

CS-DPP-PBC 0.2819 ± 0.0036 0.398 ± 0.004 0.046 ± 0.015 0.509 ± 0.003

enron CS-DPP-None 0.4844 ± 0.0050 0.812 ± 0.002 0.386 ± 0.002 0.884 ± 0.001

CS-DPP-PBT 0.0581 ± 0.0002 0.517 ± 0.001 0.136 ± 0.002 0.633 ± 0.001

CS-DPP-PBC 0.0601 ± 0.0002 0.519 ± 0.001 0.135 ± 0.001 0.633 ± 0.001

mediamill CS-DPP-None 0.4917 ± 0.0015 0.842 ± 0.009 0.429 ± 0.001 0.759 ± 0.009

CS-DPP-PBT 0.0307 ± 0.0000 0.458 ± 0.000 0.070 ± 0.000 0.581 ± 0.000

CS-DPP-PBC 0.0307 ± 0.0000 0.457 ± 0.000 0.068 ± 0.000 0.580 ± 0.000

medical CS-DPP-None 0.4493 ± 0.0161 0.902 ± 0.002 0.361 ± 0.004 0.931 ± 0.004

CS-DPP-PBT 0.0171 ± 0.0002 0.338 ± 0.005 0.043 ± 0.003 0.374 ± 0.004

CS-DPP-PBC 0.0152 ± 0.0001 0.316 ± 0.004 0.036 ± 0.002 0.360 ± 0.004

nuswide CS-DPP-None 0.4978 ± 0.0007 0.930 ± 0.003 0.523 ± 0.000 0.964 ± 0.001

CS-DPP-PBT 0.0201 ± 0.0000 0.648 ± 0.000 0.334 ± 0.001 0.675 ± 0.000

CS-DPP-PBC 0.0201 ± 0.0000 0.648 ± 0.000 0.329 ± 0.001 0.675 ± 0.000

scene CS-DPP-None 0.5002 ± 0.0012 0.747 ± 0.002 0.373 ± 0.004 0.830 ± 0.002

CS-DPP-PBT 0.1787 ± 0.0014 0.632 ± 0.003 0.185 ± 0.013 0.692 ± 0.003

CS-DPP-PBC 0.1797 ± 0.0014 0.631 ± 0.004 0.142 ± 0.011 0.697 ± 0.004

yeast CS-DPP-None 0.4992 ± 0.0014 0.622 ± 0.001 0.424 ± 0.002 0.737 ± 0.001

CS-DPP-PBT 0.2139 ± 0.0006 0.389 ± 0.001 0.017 ± 0.001 0.495 ± 0.001

CS-DPP-PBC 0.2144 ± 0.0005 0.385 ± 0.001 0.016 ± 0.001 0.497 ± 0.001

Table 14 CS-DPP with PBC versus PBT versus none, M = 50% of K

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 CS-DPP-None 0.4141 ± 0.0176 0.735 ± 0.002 0.398 ± 0.002 0.844 ± 0.002

CS-DPP-PBT 0.1487 ± 0.0002 0.602 ± 0.001 0.154 ± 0.001 0.752 ± 0.001

CS-DPP-PBC 0.1490 ± 0.0002 0.602 ± 0.001 0.151 ± 0.001 0.751 ± 0.001

Corel5k CS-DPP-None 0.5014 ± 0.0017 0.969 ± 0.000 0.369 ± 0.001 0.986 ± 0.000

CS-DPP-PBT 0.0101 ± 0.0000 0.843 ± 0.000 0.214 ± 0.001 0.901 ± 0.000

CS-DPP-PBC 0.0101 ± 0.0000 0.842 ± 0.001 0.213 ± 0.000 0.903 ± 0.001

emotions CS-DPP-None 0.4941 ± 0.0029 0.631 ± 0.003 0.386 ± 0.004 0.729 ± 0.002

CS-DPP-PBT 0.2308 ± 0.0014 0.381 ± 0.002 0.034 ± 0.003 0.481 ± 0.002

CS-DPP-PBC 0.2306 ± 0.0012 0.377 ± 0.002 0.033 ± 0.003 0.481 ± 0.002

enron CS-DPP-None 0.4953 ± 0.0016 0.821 ± 0.003 0.385 ± 0.002 0.889 ± 0.002

CS-DPP-PBT 0.0626 ± 0.0002 0.523 ± 0.001 0.130 ± 0.001 0.636 ± 0.001

CS-DPP-PBC 0.0643 ± 0.0001 0.522 ± 0.001 0.129 ± 0.001 0.636 ± 0.001
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Table 14 continued

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

mediamill CS-DPP-None 0.4907 ± 0.0018 0.895 ± 0.008 0.426 ± 0.001 0.838 ± 0.019

CS-DPP-PBT 0.0308 ± 0.0000 0.457 ± 0.000 0.062 ± 0.000 0.581 ± 0.000

CS-DPP-PBC 0.0307 ± 0.0000 0.457 ± 0.000 0.059 ± 0.000 0.581 ± 0.000

medical CS-DPP-None 0.4177 ± 0.0370 0.907 ± 0.002 0.368 ± 0.002 0.944 ± 0.002

CS-DPP-PBT 0.0136 ± 0.0001 0.252 ± 0.002 0.021 ± 0.001 0.303 ± 0.002

CS-DPP-PBC 0.0130 ± 0.0001 0.250 ± 0.002 0.019 ± 0.001 0.299 ± 0.002

nuswide CS-DPP-None 0.4972 ± 0.0007 0.940 ± 0.004 0.528 ± 0.001 0.964 ± 0.002

CS-DPP-PBT 0.0201 ± 0.0000 0.648 ± 0.000 0.307 ± 0.000 0.674 ± 0.000

CS-DPP-PBC 0.0201 ± 0.0000 0.648 ± 0.000 0.304 ± 0.000 0.675 ± 0.000

scene CS-DPP-None 0.5015 ± 0.0012 0.745 ± 0.001 0.385 ± 0.002 0.832 ± 0.001

CS-DPP-PBT 0.1731 ± 0.0010 0.554 ± 0.003 0.125 ± 0.005 0.626 ± 0.004

CS-DPP-PBC 0.1720 ± 0.0015 0.558 ± 0.003 0.104 ± 0.009 0.623 ± 0.004

yeast CS-DPP-None 0.4982 ± 0.0011 0.630 ± 0.001 0.413 ± 0.001 0.745 ± 0.001

CS-DPP-PBT 0.2077 ± 0.0003 0.382 ± 0.001 0.024 ± 0.001 0.493 ± 0.001

CS-DPP-PBC 0.2079 ± 0.0003 0.382 ± 0.001 0.026 ± 0.001 0.492 ± 0.001

Table 15 CS-DPP versus others, M = 10% of K

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 O-CS 0.1610 ± 0.0006 0.953 ± 0.003 0.497 ± 0.001 0.971 ± 0.002

O-RAND 0.4042 ± 0.0052 0.750 ± 0.004 0.397 ± 0.006 0.858 ± 0.004

DPP 0.1453 ± 0.0001 0.654 ± 0.002 0.399 ± 0.001 0.787 ± 0.001

CS-DPP 0.1454 ± 0.0002 0.603 ± 0.001 0.144 ± 0.002 0.748 ± 0.001

Corel5k O-CS 0.0117 ± 0.0000 0.926 ± 0.002 0.470 ± 0.001 0.949 ± 0.001

O-RAND 0.3734 ± 0.0044 0.980 ± 0.001 0.393 ± 0.013 0.990 ± 0.000

DPP 0.0100 ± 0.0000 0.918 ± 0.001 0.470 ± 0.000 0.943 ± 0.000

CS-DPP 0.0100 ± 0.0000 0.850 ± 0.001 0.237 ± 0.001 0.910 ± 0.000

emotions O-CS 0.3338 ± 0.0073 0.900 ± 0.014 0.508 ± 0.006 0.924 ± 0.009

O-RAND 0.3847 ± 0.0099 0.621 ± 0.033 0.363 ± 0.020 0.683 ± 0.021

DPP 0.3335 ± 0.0042 0.428 ± 0.003 0.223 ± 0.009 0.558 ± 0.004

CS-DPP 0.3301 ± 0.0012 0.450 ± 0.007 0.133 ± 0.023 0.560 ± 0.009

enron O-CS 0.0739 ± 0.0006 0.885 ± 0.010 0.463 ± 0.004 0.927 ± 0.009

O-RAND 0.3907 ± 0.0090 0.867 ± 0.007 0.320 ± 0.015 0.923 ± 0.004

DPP 0.0563 ± 0.0001 0.552 ± 0.003 0.304 ± 0.001 0.646 ± 0.002

CS-DPP 0.0565 ± 0.0001 0.528 ± 0.002 0.132 ± 0.001 0.638 ± 0.001
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Table 15 continued

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

mediamill O-CS 0.0485 ± 0.0011 0.821 ± 0.025 0.454 ± 0.009 0.868 ± 0.014

O-RAND 0.3737 ± 0.0070 0.899 ± 0.007 0.391 ± 0.020 0.950 ± 0.003

DPP 0.0308 ± 0.0000 0.474 ± 0.000 0.307 ± 0.000 0.594 ± 0.000

CS-DPP 0.0308 ± 0.0000 0.460 ± 0.000 0.072 ± 0.002 0.582 ± 0.000

medical O-CS 0.0272 ± 0.0006 0.819 ± 0.016 0.397 ± 0.004 0.840 ± 0.017

O-RAND 0.3674 ± 0.0093 0.924 ± 0.005 0.301 ± 0.019 0.959 ± 0.003

DPP 0.0204 ± 0.0002 0.602 ± 0.008 0.311 ± 0.005 0.628 ± 0.008

CS-DPP 0.0204 ± 0.0002 0.508 ± 0.006 0.096 ± 0.003 0.549 ± 0.007

nuswide O-CS 0.0239 ± 0.0004 0.746 ± 0.005 0.600 ± 0.003 0.741 ± 0.003

O-RAND 0.3707 ± 0.0107 0.956 ± 0.002 0.532 ± 0.013 0.973 ± 0.002

DPP 0.0201 ± 0.0000 0.673 ± 0.000 0.580 ± 0.000 0.691 ± 0.000

CS-DPP 0.0201 ± 0.0000 0.648 ± 0.000 0.358 ± 0.001 0.675 ± 0.000

scene O-CS 0.2168 ± 0.0047 0.920 ± 0.010 0.491 ± 0.003 0.902 ± 0.009

O-RAND 0.3711 ± 0.0172 0.743 ± 0.030 0.295 ± 0.029 0.782 ± 0.009

DPP 0.1797 ± 0.0001 0.999 ± 0.000 0.500 ± 0.000 0.999 ± 0.000

CS-DPP 0.1797 ± 0.0001 0.724 ± 0.002 0.231 ± 0.016 0.796 ± 0.002

yeast O-CS 0.3077 ± 0.0021 0.885 ± 0.018 0.490 ± 0.002 0.926 ± 0.014

O-RAND 0.4162 ± 0.0096 0.596 ± 0.008 0.376 ± 0.018 0.702 ± 0.014

DPP 0.2314 ± 0.0014 0.463 ± 0.005 0.340 ± 0.003 0.597 ± 0.005

CS-DPP 0.2307 ± 0.0011 0.433 ± 0.003 0.003 ± 0.000 0.541 ± 0.003

Table 16 CS-DPP versus others, M = 25% of K

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 O-CS 0.1610 ± 0.0006 0.953 ± 0.003 0.497 ± 0.001 0.971 ± 0.002

O-RAND 0.4042 ± 0.0052 0.750 ± 0.004 0.397 ± 0.006 0.858 ± 0.004

DPP 0.1453 ± 0.0001 0.654 ± 0.002 0.399 ± 0.001 0.787 ± 0.001

CS-DPP 0.1454 ± 0.0002 0.603 ± 0.001 0.144 ± 0.002 0.748 ± 0.001

Corel5k O-CS 0.0117 ± 0.0000 0.926 ± 0.002 0.470 ± 0.001 0.949 ± 0.001

O-RAND 0.3734 ± 0.0044 0.980 ± 0.001 0.393 ± 0.013 0.990 ± 0.000

DPP 0.0100 ± 0.0000 0.918 ± 0.001 0.470 ± 0.000 0.943 ± 0.000

CS-DPP 0.0100 ± 0.0000 0.850 ± 0.001 0.237 ± 0.001 0.910 ± 0.000

emotions O-CS 0.3338 ± 0.0073 0.900 ± 0.014 0.508 ± 0.006 0.924 ± 0.009

O-RAND 0.3847 ± 0.0099 0.621 ± 0.033 0.363 ± 0.020 0.683 ± 0.021

DPP 0.3335 ± 0.0042 0.428 ± 0.003 0.223 ± 0.009 0.558 ± 0.004

CS-DPP 0.3301 ± 0.0012 0.450 ± 0.007 0.133 ± 0.023 0.560 ± 0.009
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Table 16 continued

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

enron O-CS 0.0739 ± 0.0006 0.885 ± 0.010 0.463 ± 0.004 0.927 ± 0.009

O-RAND 0.3907 ± 0.0090 0.867 ± 0.007 0.320 ± 0.015 0.923 ± 0.004

DPP 0.0563 ± 0.0001 0.552 ± 0.003 0.304 ± 0.001 0.646 ± 0.002

CS-DPP 0.0565 ± 0.0001 0.528 ± 0.002 0.132 ± 0.001 0.638 ± 0.001

mediamill O-CS 0.0485 ± 0.0011 0.821 ± 0.025 0.454 ± 0.009 0.868 ± 0.014

O-RAND 0.3737 ± 0.0070 0.899 ± 0.007 0.391 ± 0.020 0.950 ± 0.003

DPP 0.0308 ± 0.0000 0.474 ± 0.000 0.307 ± 0.000 0.594 ± 0.000

CS-DPP 0.0308 ± 0.0000 0.460 ± 0.000 0.072 ± 0.002 0.582 ± 0.000

medical O-CS 0.0272 ± 0.0006 0.819 ± 0.016 0.397 ± 0.004 0.840 ± 0.017

O-RAND 0.3674 ± 0.0093 0.924 ± 0.005 0.301 ± 0.019 0.959 ± 0.003

DPP 0.0204 ± 0.0002 0.602 ± 0.008 0.311 ± 0.005 0.628 ± 0.008

CS-DPP 0.0204 ± 0.0002 0.508 ± 0.006 0.096 ± 0.003 0.549 ± 0.007

nuswide O-CS 0.0239 ± 0.0004 0.746 ± 0.005 0.600 ± 0.003 0.741 ± 0.003

O-RAND 0.3707 ± 0.0107 0.956 ± 0.002 0.532 ± 0.013 0.973 ± 0.002

DPP 0.0201 ± 0.0000 0.673 ± 0.000 0.580 ± 0.000 0.691 ± 0.000

CS-DPP 0.0201 ± 0.0000 0.648 ± 0.000 0.358 ± 0.001 0.675 ± 0.000

scene O-CS 0.2168 ± 0.0047 0.920 ± 0.010 0.491 ± 0.003 0.902 ± 0.009

O-RAND 0.3711 ± 0.0172 0.743 ± 0.030 0.295 ± 0.029 0.782 ± 0.009

DPP 0.1797 ± 0.0001 0.999 ± 0.000 0.500 ± 0.000 0.999 ± 0.000

CS-DPP 0.1797 ± 0.0001 0.724 ± 0.002 0.231 ± 0.016 0.796 ± 0.002

yeast O-CS 0.3077 ± 0.0021 0.885 ± 0.018 0.490 ± 0.002 0.926 ± 0.014

O-RAND 0.4162 ± 0.0096 0.596 ± 0.008 0.376 ± 0.018 0.702 ± 0.014

DPP 0.2314 ± 0.0014 0.463 ± 0.005 0.340 ± 0.003 0.597 ± 0.005

CS-DPP 0.2307 ± 0.0011 0.433 ± 0.003 0.003 ± 0.000 0.541 ± 0.003

Table 17 CS-DPP versus others, M = 50% of K

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 O-CS 0.1610 ± 0.0006 0.953 ± 0.003 0.497 ± 0.001 0.971 ± 0.002

O-RAND 0.4042 ± 0.0052 0.750 ± 0.004 0.397 ± 0.006 0.858 ± 0.004

DPP 0.1453 ± 0.0001 0.654 ± 0.002 0.399 ± 0.001 0.787 ± 0.001

CS-DPP 0.1454 ± 0.0002 0.603 ± 0.001 0.144 ± 0.002 0.748 ± 0.001

Corel5k O-CS 0.0117 ± 0.0000 0.926 ± 0.002 0.470 ± 0.001 0.949 ± 0.001

O-RAND 0.3734 ± 0.0044 0.980 ± 0.001 0.393 ± 0.013 0.990 ± 0.000

DPP 0.0100 ± 0.0000 0.918 ± 0.001 0.470 ± 0.000 0.943 ± 0.000

CS-DPP 0.0100 ± 0.0000 0.850 ± 0.001 0.237 ± 0.001 0.910 ± 0.000
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Table 17 continued

Dataset Alg. Hamm. loss F1 loss Acc. loss Norm. rank loss

emotions O-CS 0.3338 ± 0.0073 0.900 ± 0.014 0.508 ± 0.006 0.924 ± 0.009

O-RAND 0.3847 ± 0.0099 0.621 ± 0.033 0.363 ± 0.020 0.683 ± 0.021

DPP 0.3335 ± 0.0042 0.428 ± 0.003 0.223 ± 0.009 0.558 ± 0.004

CS-DPP 0.3301 ± 0.0012 0.450 ± 0.007 0.133 ± 0.023 0.560 ± 0.009

enron O-CS 0.0739 ± 0.0006 0.885 ± 0.010 0.463 ± 0.004 0.927 ± 0.009

O-RAND 0.3907 ± 0.0090 0.867 ± 0.007 0.320 ± 0.015 0.923 ± 0.004

DPP 0.0563 ± 0.0001 0.552 ± 0.003 0.304 ± 0.001 0.646 ± 0.002

CS-DPP 0.0565 ± 0.0001 0.528 ± 0.002 0.132 ± 0.001 0.638 ± 0.001

mediamill O-CS 0.0485 ± 0.0011 0.821 ± 0.025 0.454 ± 0.009 0.868 ± 0.014

O-RAND 0.3737 ± 0.0070 0.899 ± 0.007 0.391 ± 0.020 0.950 ± 0.003

DPP 0.0308 ± 0.0000 0.474 ± 0.000 0.307 ± 0.000 0.594 ± 0.000

CS-DPP 0.0308 ± 0.0000 0.460 ± 0.000 0.072 ± 0.002 0.582 ± 0.000

medical O-CS 0.0272 ± 0.0006 0.819 ± 0.016 0.397 ± 0.004 0.840 ± 0.017

O-RAND 0.3674 ± 0.0093 0.924 ± 0.005 0.301 ± 0.019 0.959 ± 0.003

DPP 0.0204 ± 0.0002 0.602 ± 0.008 0.311 ± 0.005 0.628 ± 0.008

CS-DPP 0.0204 ± 0.0002 0.508 ± 0.006 0.096 ± 0.003 0.549 ± 0.007

nuswide O-CS 0.0239 ± 0.0004 0.746 ± 0.005 0.600 ± 0.003 0.741 ± 0.003

O-RAND 0.3707 ± 0.0107 0.956 ± 0.002 0.532 ± 0.013 0.973 ± 0.002

DPP 0.0201 ± 0.0000 0.673 ± 0.000 0.580 ± 0.000 0.691 ± 0.000

CS-DPP 0.0201 ± 0.0000 0.648 ± 0.000 0.358 ± 0.001 0.675 ± 0.000

scene O-CS 0.2168 ± 0.0047 0.920 ± 0.010 0.491 ± 0.003 0.902 ± 0.009

O-RAND 0.3711 ± 0.0172 0.743 ± 0.030 0.295 ± 0.029 0.782 ± 0.009

DPP 0.1797 ± 0.0001 0.999 ± 0.000 0.500 ± 0.000 0.999 ± 0.000

CS-DPP 0.1797 ± 0.0001 0.724 ± 0.002 0.231 ± 0.016 0.796 ± 0.002

yeast O-CS 0.3077 ± 0.0021 0.885 ± 0.018 0.490 ± 0.002 0.926 ± 0.014

O-RAND 0.4162 ± 0.0096 0.596 ± 0.008 0.376 ± 0.018 0.702 ± 0.014

DPP 0.2314 ± 0.0014 0.463 ± 0.005 0.340 ± 0.003 0.597 ± 0.005

CS-DPP 0.2307 ± 0.0011 0.433 ± 0.003 0.003 ± 0.000 0.541 ± 0.003

Table 18 Results of CS-DPP on 50 random label orders

Dataset Reduced Dim. Hamm. loss F1 loss Acc. loss Norm. rank loss

CAL500 M = 10% of K 0.1458 ± 0.00019 0.5914 ± 0.00108 0.1247 ± 0.00224 0.7388 ± 0.00105

M = 25% of K 0.1489 ± 0.00012 0.5956 ± 0.00110 0.1321 ± 0.00210 0.7428 ± 0.00131

M = 50% of K 0.1503 ± 0.00009 0.5949 ± 0.00101 0.1371 ± 0.00222 0.7426 ± 0.00127

Corel5k M = 10% of K 0.0102 ± 0.00000 0.8379 ± 0.00175 0.2382 ± 0.00193 0.9026 ± 0.00138

M = 25% of K 0.0103 ± 0.00000 0.8248 ± 0.00174 0.2102 ± 0.00102 0.8936 ± 0.00161

M = 50% of K 0.0102 ± 0.00000 0.8186 ± 0.00138 0.1991 ± 0.00123 0.8914 ± 0.00152
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Table 18 continued

Dataset Reduced Dim. Hamm. loss F1 loss Acc. loss Norm. rank loss

emotions M = 10% of K 0.3421 ± 0.00167 0.4511 ± 0.00525 0.0745 ± 0.08548 0.5881 ± 0.02669

M = 25% of K 0.2743 ± 0.00000 0.3964 ± 0.00476 0.0235 ± 0.00597 0.5068 ± 0.00653

M = 50% of K 0.2324 ± 0.00000 0.3809 ± 0.00450 0.0237 ± 0.00244 0.4858 ± 0.00463

enron M = 10% of K 0.0562 ± 0.00020 0.5421 ± 0.00335 0.1432 ± 0.00333 0.6573 ± 0.00360

M = 25% of K 0.0600 ± 0.00011 0.5392 ± 0.00291 0.1364 ± 0.00244 0.6561 ± 0.00332

M = 50% of K 0.0632 ± 0.00009 0.5428 ± 0.00293 0.1305 ± 0.00216 0.6627 ± 0.00316

mediamill M = 10% of K 0.0309 ± 0.00001 0.4564 ± 0.00037 0.0617 ± 0.00108 0.5790 ± 0.00049

M = 25% of K 0.0308 ± 0.00000 0.4535 ± 0.00030 0.0597 ± 0.00062 0.5756 ± 0.00022

M = 50% of K 0.0308 ± 0.00000 0.4534 ± 0.00027 0.0565 ± 0.00026 0.5755 ± 0.00027

medical M = 10% of K 0.0202 ± 0.00014 0.5246 ± 0.01649 0.0949 ± 0.00836 0.5764 ± 0.02145

M = 25% of K 0.0150 ± 0.00010 0.3416 ± 0.00815 0.0337 ± 0.00431 0.4026 ± 0.00942

M = 50% of K 0.0130 ± 0.00003 0.2783 ± 0.00618 0.0201 ± 0.00276 0.3361 ± 0.00979

nuswide M = 10% of K 0.0201 ± 0.00000 0.6338 ± 0.00064 0.3394 ± 0.00294 0.6627 ± 0.00063

M = 25% of K 0.0201 ± 0.00000 0.6305 ± 0.00057 0.3124 ± 0.00189 0.6600 ± 0.00045

M = 50% of K 0.0201 ± 0.00000 0.6290 ± 0.00035 0.2945 ± 0.00076 0.6588 ± 0.00042

scene M = 10% of K 0.2837 ± 0.00000 0.7433 ± 0.00184 0.1732 ± 0.00593 0.7917 ± 0.00111

M = 25% of K 0.1873 ± 0.00000 0.6387 ± 0.00199 0.2265 ± 0.02788 0.6882 ± 0.00196

M = 50% of K 0.1723 ± 0.00005 0.5571 ± 0.00206 0.1708 ± 0.02179 0.6138 ± 0.00221

yeast M = 10% of K 0.2296 ± 0.00010 0.4518 ± 0.00920 0.0064 ± 0.00081 0.5448 ± 0.02253

M = 25% of K 0.2162 ± 0.00009 0.3841 ± 0.00200 0.0170 ± 0.00242 0.4971 ± 0.00379

M = 50% of K 0.2092 ± 0.00001 0.3784 ± 0.00107 0.0232 ± 0.00158 0.4901 ± 0.00124
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