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Abstract
A common way of solving a multi-class classification problem is to decompose it into a
collection of simpler two-class problems. One major disadvantage is that with such a binary
decomposition scheme it may be difficult to represent subtle between-class differences in
many-class classification problems due to limited choices of binary-value partitions. To over-
come this challenge, we propose a new decomposition method called N-ary decomposition
that decomposes the original multi-class problem into a set of simpler multi-class subprob-
lems. We theoretically show that the proposed N-ary decomposition could be unified into the
framework of error correcting output codes and give the generalization error bound of an N-
ary decomposition for multi-class classification. Extensive experimental results demonstrate
the state-of-the-art performance of our approach.

Keywords Ensemble learning · Multi-class classification · N-ary ECOC

1 Introduction

Many real-world problems are multi-class in nature. To handle multi-class problems, many
approaches have been proposed. One research direction focuses on solving multi-class
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problems directly. These approaches include decision tree based methods (Quinlan 1986;
Beygelzimer et al. 2009; Su and Zhang 2006; Bengio et al. 2010; Yang and Tsang 2011;
Gao and Koller 2011; Deng et al. 2011). In particular, decision-tree based algorithms label
each leaf of the decision tree with one of the NC classes, and internal nodes can be selected
to discriminate between these classes. The performance of decision-tree based algorithms
heavily depends on the internal tree structure. Thus, these methods are usually vulnerable
to outliers. To achieve better generalization, Yang and Tsang (2011) and Gao and Koller
(2011) propose to learn the decision tree structure based on the large margin criterion. How-
ever, these algorithms usually involve solving sophisticated optimization problems and their
training time increases dramatically with the increase of the number of classes. Contrary to
these complicated methods, K-Nearest Neighbour (KNN) (Cover and Hart 1967) is a simple
but effective and stable approach to handle multi-class problems. However, KNN is sensi-
tive to noise features and can therefore suffer from the curse-of-dimensionality. Meanwhile,
Crammer and Singer (2002) and Jenssen et al. (2012) propose a direct approach for learning
multi-class support vector machines (M-SVM) by deriving the generalized notion of margins
as well as separating hyperplanes.

Another research direction focuses on the framework of the ensemble of binary classi-
fiers. It first decomposes a multi-class problem into multiple binary problems , and then
one can reuse the well-studied binary classification algorithms for their simplicity and effi-
ciency. To obtain base classifiers, different decomposition strategies can be found in the
literature (Galar et al. 2011; Rocha and Goldenstein 2014). The most common strategies
are called binary decomposition such as “one-vs-all” (OVA) (Knerr et al. 1990) and ternary
decomposition such as “one-vs-one” (OVO) (Galar et al. 2011). To this end, more general
decomposition strategies have been developed, for instance, error correcting output codes
(ECOC) approaches (Dietterich and Bakiri 1991; Liu et al. 2013; Rocha and Goldenstein
2014; Zhao and Xing 2013; Übeyli 2007; García-Pedrajas and Ortiz-Boyer 2011) have been
proposed in recent years to design codes to enable a good partition scheme. One of most pop-
ular ways is to use random dense/sparse binary matrix to represent class assignment in each
subproblem and it is able to correct errors committed in some base classifiers through the final
results aggregation. For aggregation strategy, there are a number of methods are developed
to combine the outputs of the base classifiers, such as probability estimates (Wu et al. 2004),
binary-tree based strategies (Fei and Liu 2006) and dynamic classification schemes (Hong
et al. 2008).

Though all the above-mentioned approaches endeavor to enhance the partition strategy for
classification tasks, their designs of base learners are confined to binary classification. In the
more challenging real-world applications, there exists multi-class problems where some of
the classes are very similar and difficult to differentiate with each other. The existing binary
partition schemes cannot handle this challenge due to limited choices . It is highly possible
that some classes are assigned with same or similar codes.

To address this issue, we investigate whether one can extend the existing binary decompo-
sition scheme to an N-ary decomposition scheme to (i) allow users the flexibility to choose
N to construct the subclass in order to (ii) improve the classification performance for a given
dataset. The main idea of our scheme is to decompose the original multi-class problem into a
series of smaller multi-class subproblems instead of binary classification problems. To make
it clearer, we first define a meta-class as follows,

Definition 1 A meta-class is defined as a subset of classes such that the original classes are
partitioned into different meta-classes.
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(a) Multi-class Data (b) Binary Decomposition (e.g., OVA)

(c) Ternary Decomposition (e.g., OVO) (d)N-ary Decomposition

Fig. 1 Fail cases of existing decomposition scheme: Figure a illustrates the originalmulti-class data (i.e., black,
red, blue and green). The binary decomposition scheme sometimes creates non-separate binary classification
problems as shown in b. The ternary decomposition sometimes creates cases where the data from the same
class is assigned to different classes as shown in c. N -ary decomposition scheme decomposes the difficult task
into some smaller and easier tasks as shown in d (Color figure online)

Figure 1 is drawn to illustrate the meta-class. Suppose that all original classes (i.e., black, red,
blue and green ) can be merged into a series of large meta-classes (i.e., black, red, blue). So,
in each level, there is a classifier to divide the data into two N smaller meta-classes (N = 3
in Fig. 1d). Here we only consider two levels. Based on the definition of meta-classes, this
N-ary decomposition scheme is deemed as a divide-and-conquer method.

More interestingly, we revisit N -ary decomposition for multi-class classification from the
perspective of ECOC. Each partition scheme corresponds to a specific coding matrix M .
We find that the performance of ensemble based methods relies on the minimum distance,
Δmin(M), between any distinct pair of rows in the coding matrix M . A larger Δmin(M) is
more likely to rectify the errors committed by individual base classifiers (Allwein et al. 2001).
We further theoretically investigate the impact of the error correcting capability of different
decomposition strategies for multi-class classification and show that N-ary decomposition
has more advantages in correcting errors than binary decomposition strategy for multi-class
classification.

The main contributions of this paper are as follows.

– We propose a novel N -ary decomposition scheme that achieves a large expected distance
between any pair of rows in M at a reasonable N (> 3) for a multi-class problem (see
Sect. 3). The two main advantages of such a decomposition scheme are as follows: (i)
the ability to construct more discriminative codes and (ii) the flexibility for the user to
select the best N for ensemble-based multi-class classification. In light of this approach,
class binarization techniques are considered special cases of the N -ary decomposition.
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– We provide theoretical insights on the dependency of the generalization error bound of
N -ary decomposition on the average base classifier generalization error and theminimum
distance between any two constructed codes (see Sect. 5). Furthermore, we conduct a
series of empirical analysis to verify the validity of the theorem on the error bound (see
Sect. 6).

– We show empirically that the optimal N (based on classification performance) lies in
[3, 10] with a slight trade-off in computational cost (see Sect. 6).

– We show empirically the superiority of the proposed decomposition scheme over the
state-of-the-art coding methods for multi-class prediction tasks on a set of benchmark
datasets (see Sect. 6).

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
presents the generalization from binary to N -ary decomposition scheme. In Sect. 4, we
give the complexity analysis of N -ary decomposition and compare it with other schemes
with the SVM classifier as a showcase. Section 5 gives the error bound analysis of N -ary
decomposition. Finally, Sect. 6 discusses our empirical studies and Sect. 7 concludes this
work.

2 Related work

Many decomposition strategy for multi-class classification (Allwein et al. 2001) have been
proposed to design a good coding matrix M for partition assignment in recent years with
Mi j ∈ {−1, 1, 0}, where 1/ − 1 denotes the assigned positive/negative class, 0 denotes
unselected class. Most of them fall into the following two categories, i.e., problem dependent
decomposition, problem-independent decomposition (Rocha and Goldenstein 2014; Zhong
andCheriet 2013). Our proposed randomdecomposition belongs to the problem-independent
decomposition. Here we mainly survey the problem-independent decomposition.

Problem-independent decomposition designs a good coding matrix for partition assign-
ment independent of data, such as OVO, OVA, random binary/ternary decomposition
(Dietterich 2000). However, the codingmatrix design is not optimized for the training dataset
or the instance labels. Therefore, these approaches usually require a large number of base
classifiers generated by the pre-designed coding matrix. For example, the random ternary
decomposition approach aims to construct the coding matrix M ∈ {−1, 1}NC×NL where NC

is the number of classes, NL is the code length, and its elements are randomly chosen as either
1 (positive class) or -1 (negative class) (Dietterich and Bakiri 1995). Allwein et al. (2001)
extends this binary decomposition scheme to ternary decomposition by using a codingmatrix
M ∈ {−1, 0, 1}NC×NL where the classes corresponding to 0 are not considered in the learn-
ing process. However, a random binary decomposition approach cannot guarantee that the
created base binary classification task are always well designed and easily trained. Therefore,
Allwein et al. (2001) suggest that binary/ternary decomposition approaches require at least
10 log2(NC ) and 15 log2(NC ) base classifiers, respectively, to achieve optimal results.

Problem-independent decomposition is the ensemble of binary classifiers, which has fol-
lowing advantages: (1) It is easy to use in practice without any ad-hoc design of coding
matrix; (2) It can be parallelized due to independences of base tasks; (3) It enjoys a good
theoretical guarantee on classification performance.

Due to the favorable properties and promising performance of problem-independent
approaches for the classification task, they have been applied to real-world classification
applications such as face verification (Kittler et al. 2003), ECG beats classification (Übeyli
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2007), and even beyond multi-class problems, such as feature extraction (Zhong and Liu
2013) and fast similarity search (Yu et al. 2010).

Though all the above-mentioned variations of the binary decomposition endeavor to
enhance the error correcting ability for the classification task, their designs are still based
on aggregation of base binary classification results which lack some desirable properties
available in their generalized form.

3 From a binary to N-ary decomposition

In this section, we discuss necessities and advantages of N -ary decomposition scheme from
aspects of coding matrix and investigate the column correlation of coding matrix and
separation between codewords of different classes.

Existing ensemblemethods design the codingmatrix and constrain the coding values either
in {−1, 1} (binary) or {−1, 0, 1} (ternary) and train a number of different binary classifiers
accordingly. A lot of studies show that when there are sufficient classifiers, ensemble-based
multi-class classification algorithm can reach stable and reasonable performance (Rocha and
Goldenstein 2014; Dietterich and Bakiri 1995). Nevertheless, binary and ternary codes can
generate at most 2NC and 3NC binary classifiers, where NC denotes the number of classes.
On the other hand, due to limited choices of coding values, existing codes tend to create
correlated and redundant classifiers and make them less effective “voters”. Moreover, some
studies show that binary and ternary codes usually require only 10 log2(NC ) and 15 log2(NC )

base classifiers, respectively, to achieve optimal results (Allwein et al. 2001). Furthermore,
when the original multi-class problem is difficult, the existing coding schemes cannot handle
well. For example, as shown in Fig. 1b, the binary decomposition that creates binary codes
like OVA may result in difficult base binary classification tasks. The ternary decomposition
(see Fig. 1c) may cause cases where the test data from the same class is assigned to different
classes.

To address these issues,we extend the binary or ternary codes to N -ary codes.One example
of the N -ary coding matrix to represent seven classes is shown in Table 1. Unlike the existing
binary decomposition methods, a row of coding matrix M represents the code of each class
and the code consists of NL numbers in {1 · · · N }, where N > 3; while a column Ms of
M represents the N partitions of classes to be considered. To be specific, the N -ary ECOC
approach consists of four main steps:

1. Generate an N -ary matrix M by uniformly random sampling from a range {1..N } (e.g.,
Table 1).

Table 1 An example of N -ary
coding matrix M with N = 4 and
NL = 6

M1 M2 M3 M4 M5 M6

C1 1 1 2 4 1 1

C2 2 1 1 3 2 1

C3 3 2 1 2 3 1

C4 4 3 1 1 4 2

C5 4 3 2 2 4 3

C6 4 3 3 3 3 4

C7 3 4 4 4 2 4
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Fig. 2 Column correlation comparison (PCC vs. NL )

2. For each of the NL matrix columns, partition original training data into N groups based
on the new class assignments and build an N -class classifier.

3. Given a test example xt , use the NL classifiers to output NL predicted labels for the
testing output code (e.g., f (xt ) = [4, 3, 1, 2, 4, 2]).

4. Final label prediction yt for xt is the nearest class based on minimum distance between
the training and the testing output codes (e.g., yt = argmini d( f (xt ),Ci ) = 4).

One notes that N -ary decomposition randomly breaks a large multi-class problem into
a number of smaller multi-class subproblems. These subproblems are more complicated
than binary problems and they incur additional computational cost. Hence, there is a trade-
off between error correcting capability and computational cost.1 Fortunately, our empirical
studies indicate that N does not need to be too large to achieve good classification perfor-
mance.

3.1 Column correlations of codingmatrix

In the traditional binary decomposition strategy, it suggests longer codes, i.e., NL is larger,
however more binary base classifiers are likely to be more correlated. Thus, more base clas-
sifiers created by binary or ternary codes are not effective for final multi-class classification.
To illustrate the advantage of N -ary decomposition in creating uncorrelated class assignment
for base classifications, we conduct an experiment to investigate the column correlations of
codingmatrixM . The results are shown in Fig. 2. In the experiment, we set NC = 20, N = 5,
and NL varies in [10, 80], and use Pearson’s correlation (PCC) which is a normalized corre-
lation measure that eliminates the scaling effect of the codes. From Fig. 2, we observe that
N -ary decomposition achieves lower correlations for columns of coding matrix compared to
conventional ternary codes. Especially, when the number of tasks is small, the correlations

1 More complexity analyses can be found from Sect. 4.
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over the created tasks for binary decomposition is significantly higher than that of the N -
ary decomposition. Therefore, an N -ary decomposition not only provides more flexibility in
creating a coding matrix, but also generates codes that are less correlated and less redundant,
compared to traditional binary decomposition methods.

3.2 Separation between codewords of different classes

Apart from the column correlation, the row separation is another important measure to eval-
uate the error correcting ability of the coding matrix M (Dietterich and Bakiri 1995; Allwein
et al. 2001). The codes for different classes are expected to be as dissimilar as possible. If
codes (rows) for different classes are similar, it is easier to commit errors. Thus, the capa-
bility of error correction relies on the minimum distance, Δmin(M) or expected Δ(M) for
any distinct pair of rows in the coding matrix M ∈ {1, 2, . . . , N }NC×NL where NC is the
number of classes, and NL is the code length. Both the absolute distance and the Hamming
distance can serve as the measure of row separation. The key difference between these two
distances is that Hamming distance measures a scale-invariant difference. Specifically, the
Hamming distance only cares about the number of different elements. It ignores the scale of
the difference.
HammingDistanceOnecanuse thegeneralizedHammingdistance to calculate theΔHam(M)

for the existing coding schemes, which is defined as follows,

Definition 1 (Generalized Hamming Distance) Let M(r1, :), M(r2, :) denote row r1, r2 cod-
ing vectors in coding matrix M with length NL , respectively. Then the generalized hamming
distance can be expressed as

ΔHam(M(r1, :), M(r2, :))

=
NL∑

s=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if M(r1, s) = M(r2, s) ∧ M(r1, s) �= 0 ∧ M(r2, s) �= 0

1 if M(r1, s) �= M(r2, s) ∧ M(r1, s) �= 0 ∧ M(r2, s) �= 0

0.5 if M(r1, s) = 0 ∨ M(r2, s) = 0.

For the OVA coding, every two rows have exactly two entries with opposite signs,
Δ

Ham(OV A)
min (M) = 2. For theOVO coding, every two rows have exactly one entrywith oppo-

site signs, Δ
Ham(OV O)
min (M) =

((
NC

2

)
− 1

)
/2 + 1, where NC is the number of classes.

Moreover, for a random coding matrix with its entries uniformly chosen, the expected value
of any two different class codes is ΔHam(RAND)(M) is NL/2, where NL is the code length.
A larger ΔHam(RAND)(M) is more likely to rectify the errors committed by individual base
classifiers. Therefore, when NL � NC , a random coding matrix is expected to be more
robust and rectify more errors than the OVO and OVA approaches (Allwein et al. 2001).
However, the choice of only either binary or ternary codes hinders the construction of longer
and more discriminative codes. For example, binary codes can only construct codes of length
NL ≤ 2NC . Moreover, they lead to many redundant base learners. In contrast, for N -ary
random matrix, the expected value of ΔHam(N )(M) is NL(1− 1

N ) (see Lemma 1 for proof).
ΔHam(N )(M) is expected to be larger than ΔHam(RAND)(M) when N ≥ 3 (Table 2).
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Table 2 Comparison of distance
of different codes

Decomposition
strategies

Generalized
Hamming distance

Absolute
distance

OVA 2 4

OVO

((
NC
2

)
− 1

)
/2 + 1 2NC − 2

ECOC NL/2 NL

N -ary NL (1 − 1/N ) NL (N2 − 1)/3N

Lemma 1 The expected Hamming distance for any two distinct rows in a random N-ary
coding matrix M ∈ {1, 2, . . . , N }NC×NL is

ΔHam(N )(M) = NL

(
1 − 1

N

)
. (1)

Proof Given a random matrix M with components chosen uniformly over {1, 2, . . . , N },
for any distinct pair of entries in column s, i.e., M(ri , s) and M(r j , s), the probability of
M(ri , s) = M(r j , s) is 1

N . Then the probability of M(ri , s) �= M(r j , s) is 1 − 1
N .

Therefore, according to Definition 1, the expected Hamming distance for M can be com-
puted as follows,

ΔHam(N )(M) = NL

(
1 ×

(
1 − 1

N

)
+ 0 × 1

N

)

= NL

(
1 − 1

N

)
.

	

Absolute distance Different from the Hamming distance, the absolute distance measures the
difference scales. Thus, for a fair comparison, we assume that coding values are in the same
scale for the absolute distance analysis. The definition of absolute distance is given as follows,

Definition 2 (Absolute distance) Let M(r1, :) and M(r2, :) denote row r1 and r2 coding
vectors in coding matrix M with length NL , respectively. Then the absolute distance can be
expressed as

Δabs(M(r1, :), M(r2, :)) =
NL∑

s=1

|M(r1, s) − M(r2, s)|.

For the convenience of analysis, we first give the expected absolute distance for N -ary coding
matrix in Lemma 2.

Lemma 2 The expected absolute distance for any two distinct rows in a random N-ary coding
matrix M ∈ {1, 2, . . . , N }NC×NL is

Δabs(N )(M) = NL
(N 2 − 1)

3N
. (2)

Proof Given a random matrix M with components chosen uniformly over {1, 2, . . . , N }, for
any distinct pair of entries in column s, i.e., M(ri , s), M(r j , s), we denote the corresponding
expected absolute distance as Δabs(N )(M(:, s)) = E di j = E |M(ri , s) − M(r j , s)|.
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Table 3 All possible choices of
di j

di j r j = 1 r j = 2 · · · r j = N

ri = 1 0 1 · · · N−1

ri = 2 1 0 · · ·
.
.
.

.

.

.
.
.
.

.

.

. 0 1

ri = N N−1 · · · 1 0

It can be calculated by averaging all the possible pairwise distances di j for i, j ∈
{1, 2, . . . , N }. Since the two numbers ri , r j are chosen randomly from {1, ..., N }, ΔN (M)

can be expressed as follows:

Δabs(N )(M(:, s)) = 1

N 2

N∑

i, j=1

di j

= 1

N 2

N∑

i, j=1

|M(ri , s) − M(r j , s)| (3)

First, we define the sequence an as follows:

an = (1 + 2 + · · · + n) = n(n + 1)

2
. (4)

Table 3 gives all the possible choices of di j . Thus the calculation ofΔN (M) is equal to taking
the average of all the entries in Table 3, which can be expressed as follows:

Δabs(N )(M(:, s)) = 2

N 2 (a1 + a2 + · · · + aN−1)

= 1

N 2 (1 × 2 + 2 × 3 + · · · + (N − 1)N )

= 1

N 2

N∑

n=1

(n2 − n)

= 1

N 2

(
N∑

n=1

n2 −
N∑

n=1

n

)

= 1

N 2

(
N (N + 1)(2N + 1)

6
− N (N + 1)

2

)

= N 2 − 1

3N
, (5)

where (5) comes from the symmetry of di j . Then

Δabs(N )(M) =
NL∑

s=1

Δabs(N )(M(:, s)) = NL
(N 2 − 1)

3N
.
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For the OVA coding scheme, every two rows have exactly two entries with opposite signs,
the minimum absolute distance Δ

abs(OV A)
min (M) = 4; while for the OVO coding scheme,

every two rows have exactly one entry with opposite signs and only 2NC − 4 entries with a
difference of exactly one,Δabs(OV O)

min (M) = 2NC −2. For binary random codes, the expected
absolute distance between any two different rows is Δabs(RAND)(M) = NL . Thus, when N
is large, Δabs(N )(M) is much larger than Δabs(RAND)(M), and N -ary coding is expected to
be better.

The Hamming and absolute distance comparisons for different codes are summarized in
Table 2. We can see that N -ary coding scheme has an advantage in creating more discrimi-
native codes with larger distances for different classes in both two distance measures. This
advantage is very important to analyze the generalization error analysis of N -ary ECOC.

4 Complexity comparison

As discussed in Sect. 3, N -ary codes have a better error correcting capability than the tra-
ditional random codes when N is larger than 3. However, one notes that the base classifier
of each column is no longer solving a binary problem. Instead, we randomly break a large
multi-class problem into a number of smaller multi-class subproblems. These subproblems
are more complicated than binary problems and they incur additional computational cost.
Hence, there is a trade-off between the error correcting capability and computational cost.

If the complexity of the algorithm employed to learn the small-size multi-class base
problem isO(g(N , Ntr , d))with N classes, Ntr training examples, d predictive features and
g(N , Ntr , d) is the complexity function w.r.t N , Ntr , d , then the computational complexity
of N -ary codes is O(NLg(N , Ntr , D)) for codes of length NL .

Taking SVM as the base learner for example, one can learn each binary classification
task created by binary coding matrix with training complexity of O(N 3

tr ) for traditional
SVM solvers that build on the quadratic programming (QP) problems. However, a major
stumbling block for these traditional methods is in scaling up these QPs to large data sets,
such as those commonly encountered in datamining applications. Thus, some state-of-the-art
SVM implementations, e.g., LIBSVM (Chang and Lin 2011), Core Vector Machines (Tsang
et al. 2005), have been proposed to reduce training time complexity from O(N 3

tr ) to O(N 2
tr )

and O(Ntr ), respectively. Nevertheless, how to efficiently train SVM is not the focus of
our paper. For the convenience of complexity analysis, we use the time complexity of the
traditional SVMsolvers as the complexity of the base learners. Then, the complexity of binary
codes isO(NLN 3

tr ). Different from existing decomposition method, one can directly address
the multi-class problem in one single optimization process, e.g., multi-class SVM (Crammer
and Singer 2002). This kind of model combines multiple binary-class optimization problems
into one single objective function and simultaneously achieves the classification of multiple
classes. In this way, the correlations across multiple binary classification tasks are captured
in the learning model. The resulting QP optimization requires a complexity ofO((NC Ntr )

3).
However, it causes high computational complexity for a relatively large number of classes.
In contrast, N -ary codes are in the complexity of O(NL(NNtr )

3), where N < NC . In this
case, it achieves better trade-off between the error correcting capability and computational
cost, especially for large class size NC .

We summarize the time complexity of different codes in Table 4. In Sect. 6.1.4, our
empirical studies indicate that N does not need to be too large to achieve optimal classification
performance.
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Table 4 Complexity analysis Classifier SVM

Binary decomposition O(NL N
3
tr )

Direct multi-class O((NC Ntr )
3)

N -ary decomposition O(NL (NNtr )
3)

5 Generalization analysis of N-ary decomposition for multi-class
classification

In Sect. 5.1, we study the error correcting ability of an N -ary decomposition. In Sect. 5.2,
we derive the generalization error bound for N -ary decomposition independent of the base
classifier.

5.1 Analysis of error correcting on N-ary decomposition

To study the error correcting ability of N -ary decomposition, we first define the distance
between the codes in any distinct pair of rows, M(ri ) and M(r j ), in an N -ary coding matrix
M asΔN (M(ri ), M(r j )). It is the sum of the NL distances between two entries, M(ri , s) and
M(r j , s) in the same column s at two different rows, ri and r j , i.e., ΔN (M(ri ), M(r j )) =∑NL

s=1 ΔN (M(ri , s), M(r j , s)).
We further define ρ = minri �=r j ΔN (M(ri ), M(r j )) as the minimum distance between

any two rows in M .

Proposition 1 Given an N-ary coding matrix M and a vector of predicted labels f (x) =
[ f1(x)), . . . , fNL (x))] by NL base classifiers for a test instance x. If x is misclassified by the
N-ary ECOC decoding, then the distance between the correct label in M(y) and f (x) is
greater than one half of ρ, i.e.,

ΔN (M(y), f (x)) ≥ 1

2
ρ. (6)

Proof Suppose that the distance-based decoding incorrectly classifies a test instance x with
known label y. In other words, there exists a label r �= y for which

ΔN (M(y), f (x)) ≥ ΔN (M(r), f (x)).

Here, ΔN (M(y), f (x)) and ΔN (M(r), f (x)) can be expanded as the element-wise sum-
mation. Then, we have

NL∑

s=1

ΔN (M(y, s), fs(x)) ≥
NL∑

s=1

ΔN (M(r , s), fs(x)). (7)

Based on the above inequality, we obtain:

ΔN (M(y), f (x)) = 1

2

NL∑

s=1

{
ΔN (M(y, s), fs(x)) + ΔN (M(y, s), fs(x))

}

≥ 1

2

NL∑

s=1

{ΔN (M(y, s), fs(x)) + ΔN (M(r , s), fs(x))} (8)
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≥ 1

2

NL∑

s=1

{ΔN (M(y, s), M(r , s))}

= 1

2
ΔN (M(r), M(y))

≥ 1

2
ρ, (9)

where Inequality (8) uses Inequality (7) and Inequality (9) follows from the triangle inequality.
	


Remark 1 From Proposition 1, one notes that a mistake on a test instance (x, y) implies that
ΔN (M(y), f (x)) ≥ 1

2ρ. In other words, the prediction codes are not required to be exactly
the same as the ground-truth codes for all the base classifications. As long as the distance is
no larger than 1

2ρ, N -ary coding can rectify the error committed by some base classifiers,
and is still able to make an accurate prediction. This error correcting ability is very important
especially when the labeled data is insufficient. Moreover, a larger minimum distance, i.e.,
ρ, leads to a stronger capability of error correcting. Note that this proposition holds for all
the distance measures and traditional coding schemes due to the fact that only the triangle
inequality is required in the proof.

5.2 Generalization error of N-ary decomposition

The next result provides a generalization error bound for any type of base classifier, such
as the SVM classifier and decision tree, used in the N -nary decomposition for multi-class
classification.

Theorem 1 (N -ary decomposition error bound) Given NL base classifiers, f1, . . . , fNL ,
trained on NL subsets {(xi , M(yi , s))i=1,...,Ntr }s=1,...,NL of the dataset with Ntr instances
for coding matrix M ∈ {1, 2, . . . , N }NC×NL . The generalized error rate for the N-ary ECOC
approach using distance-based decoding is upper bounded by

2NL B̄

ρ
, (10)

where B̄ = 1
NL

∑NL
s=1 Bs and Bs is the upper bound of the distance-based loss for the sth

base classifier.

Proof According to Proposition 1, for any misclassified data instance, the distance between
its incorrect label vector f (x) and the true label vector M(y) should satisfy the minimal
distance ρ

2 , i.e., Δ
N (M(y), f (x)) = ∑NL

s=1 ΔN (M(y, s), fs(x)) ≥ ρ
2 .

Let a be the number of incorrect label predictions for a set of test instances of size Nte.
One obtains

a
ρ

2
≤

Nte∑

i=1

NL∑

s=1

ΔN (M(yi , s), f (xi )). (11)

Then,

a ≤ 2Nte
∑NL

s=1 Bs

ρ
= 2NteNL B̄

ρ
, (12)

where B̄ = 1
NL

∑NL
s=1 Bs .
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Fig. 3 Experimental results to study error bound (Theorem 1) w.r.t. N

Hence, the testing error rate is bounded by 2NL B̄
ρ

. 	

Remark 2 From Theorem 1, one notes that for the fixed NL , the generalization error bound
of the N -ary decomposition depends on the two following factors:

1. The averaged loss B̄ for all the base classifiers. In practice, some base tasks may be badly
designed due to the randomness. As long as the averaged loss B̄ over all the tasks is
small, the resulting ensemble classifier is still able to make a precise prediction.

2. The minimum distance ρ for coding matrix M . As we discussed in Proposition 1, the
larger ρ, the stronger capability of error correcting N -ary code has.

Both two factors are affected by the choice of N . In particular, B̄ increases as N increases since
the base classification tasks become more difficult. On the other hand, from experimental
results in Fig. 3b, it is observed that ρ becomes larger when N increases. Therefore, there is
a tradeoff between these two factors.

6 Experimental results

We present experimental results on 11 well-known UCI multi-class datasets from a wide
range of application domains. The statistics of these datasets are summarized in Table 5.
The parameter N is chosen by cross-validation procedure. With the tuned parameters, all
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Table 5 Summary of the datasets
used in the experiments

Dataset #Train #Test #Features #Classes

Pendigits 3498 7494 16 10

Vowel 462 528 10 10

News20 3993 15935 62061 20

Letters 5000 15000 16 26

Auslan 1000 1565 128 95

Sector 3207 6412 55197 105

Aloi 50000 58000 128 1000

Glass 100 114 9 10

Satimage 3435 3000 36 7

Usps 4298 5000 256 10

Segment 1310 1000 19 7

methods are run ten realizations. Each has different random splittings with fixed training
and testing size as given in Table 5. Our experimental results focus on the comparison of
different encoding schemes rather than decoding schemes. Therefore, we fix generalized
hamming distance as the decoding strategy for all the coding designs for a fair comparison.

To investigate the effectiveness of the proposed N -ary coding scheme, we compare it
with data-independent coding schemes including OVO, OVA, and random binary encoding
as well as the direct multi-class methods multi-class SVM (M-SVM) and decision tree. For
the random binary encoding scheme, or ECOC in short, and the N -ary strategy, we select the
matrix with the largest minimum absolute distance from 1000 randomly generated matrices.

To ensure a fair comparison and easy replication of results, the base learners decision tree
CART (Breiman et al. 1984) and linear SVM are implemented with the CART decision tree
MATLAB toolbox and the LIBSVM (Chang and Lin 2011) with the linear kernel in default
settings, respectively.

6.1 Error bound analysis on N-ary decomposition

In the bound analysis, we choose hamming distance 1 to measure the row separation as a
showcase. According to Theorem 1, the generalization error bound depends on the minimum
distance ρ between any two distinct rows in the N -ary codingmatrixM as well as the average
loss of base classifiers B̄. In particular, the expected value of ΔN (M) scales with O(N ).

In this subsection, we investigate the effect of the number of classes N using the Pendigits
dataset with CART as the base classifier to illustrate the following aspects: (i) ΔN (M)

between any two distinct rows of codes (see Fig. 3a), (ii) ρ (see Fig. 3b), (iii) B̄
ρ
(see Fig. 3c),

and (iv) the classification performance (see Fig. 4). The empirical results corroborate the
proposed error bounds in Theorem 1.

6.1.1 Average distance1N(M) versus N

Recall that the hamming distance for different coding matrices discussed in Sect. 3
are: ΔN (M) = NL(1 − 1

N ), Δrand(M) = NL/2, Δova
min(M) = 2 and Δovo

min(M) =((
NC

2

)
− 1

)
/2 + 1.
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Fig. 4 Accuracy versus N

From Fig. 3a, we observe that the empirical average hamming distances of the constructed
N -ary coding matrices for random N -ary schemes are close to NL(1 − 1

N ). Furthermore,
when there are 45 base classifiers, the average distance for N -ary coding matrices is larger
than 30,which is larger than that of the binary randomcodeswith an average absolute distance
of 22.5. Moreover, a higher N leads to a larger average distance. Comparing Fig. 3a, b, the
large average distance ΔN (M) also correlates with the large minimum distance ρ.

6.1.2 Minimum distance� versus N

For the Pendigits dataset with 10 classes, ρ for OVA and OVO are 4 and 18, respectively.
From Fig. 3b, we observe that with a fixed number of base classifiers, ρ increases with the
number of multi-class subproblems of class-size N , meanwhile ρ also increases with respect
to the code length NL . Furthermore, in comparison to the other coding schemes, our proposed
method usually creates a coding matrix with a large ρ. For example, in Fig. 3b, one observes
that when there are 25 and 45 base classifiers, the corresponding ρ for binary random codes
are 0. On the other hand, N -ary decomposition, given a sufficiently large N , creates a coding
matrix with ρ to be larger than 10 and 20, respectively. Although N -ary decomposition
creates an N -ary coding matrix with a large ρ when N is larger, in real-world applications, it
is preferred that N is not too large to ensure reasonable computational cost and difficulty of

123



824 Machine Learning (2019) 108:809–830

subproblems. In short, N -ary decomposition provides a better alternative to creating a coding
matrix with a large class separation compared to traditional coding schemes.

6.1.3 Ratio B̄/� versus N

Both B̄ and ρ are dependent on N .Moreover, from the generalization error bound,we observe
that B̄/ρ directly affects classification performance.

Hence, this ratio, which bounds the classification error, requires further investigation.
Figure 3c shows that when N = 4, the ratio B̄/ρ is lowest. This observation suggests that
the more the row and column separation of the coding matrix, the stronger the capability
of error correction (Dietterich and Bakiri 1995). Therefore, N -ary decomposition is a better
way to creating the coding matrix with large separation among the classes as well as more
diversity, compared to the binary and ternary coding schemes. One notes that B̄/ρ starts to
increase when N ≥ 5. This means that the increase of the average base classifier loss B̄
overwhelms the increase in ρ. The reason for this phenomena is the increase in difficulty of
the subproblem classification with more classes.

6.1.4 Classification accuracy versus N

Next, we study the impact of N on the multi-class classification accuracy. We use datasets
Pendigits, Letters, Sectors, Aloi with 10 classes, 26 classes, 105 classes, 1000 classes respec-
tively as showcase. In order to a obtain meaningful analysis, we choose a suitable classifier
for different datasets. In particular, we apply the CART to datasets Pendigits, Letters and Aloi
and linear SVM to Sectors. One observes from Fig. 4 that the N -ary decomposition achieves
competitive prediction performance when 3 ≤ N ≤ 10. However, given sufficient base
learners, the classification error starts increasing when N is large (e.g. N > 4 for Pendigits,
N > 5 for Letters and N > 8 for Sector). This is because the base tasks are more challenging
to solve when N is large and it indicates the influence of B̄ outweighs that of ρ. Furthermore,
one observes that the performance curves in Figs.3c and 4a roughly correlate to each other.
Hence, one can estimate the trend in the empirical error using the ratio B̄/ρ. This verifies
the validity of the generalized error bound in Theorem 1. To investigate the choice of N
on multi-class classification more comprehensively, we further conduct experiments on the
other datasets. The results of datasets Pendigits, Letters, Sectors and Aloi are summarized
in Fig. 4a–d, respectively. For the rest of the datasets, we have the similar observations. In
general, smaller values of N (N ∈ [3, 10]) usually lead to reasonably competitive perfor-
mance. In other words, the complexity of base learners for N -ary codes does not need to
significantly increase above 3 for the performance to be better than existing binary or ternary
coding approaches.

6.1.5 Classification accuracy versus NL

From Fig. 5, we observe that high accuracy can be achieved with a small number of base
learners. Another important observation is that given fewer base learners, it is better to choose
a large value of N rather than a small N . This may be due to the fact that a larger N leads to
stronger discrimination among codes as well as base learners. However, neither a large nor
small N can reach optimal results given a sufficiently large NL .
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Fig. 5 Accuracy versus NL

6.2 Comparison to state-of-the-art decomposition strategies

We compare our proposed N -ary decomposition to other popular decomposition strategies
for with different base classifiers including decision tree (DT) (Breiman et al. 1984) and
support vector machine (SVM) (Chang and Lin 2011).2 The two binary classifiers can be
easily extended to a multi-class setting. In particular, we use the multi-class SVM (M-SVM)
(Crammer and Singer 2002) implemented with theMSVMpack (Lauer and Guermeur 2011).
In addition to the multi-class extension of the two classifiers, we also compare N -ary decom-
position strategies to OVO, OVA, random ternary decomposition strategies with the two
binary classifiers. For random ternary and N -ary decomposition strategies, we report the
best results with NL ≤ NC (NC − 1)/2, which is sufficient for conventional random decom-
position methods to reach optimal performance (Allwein et al. 2001). But for Aloi dataset
with 1000 classes, we only report the results for all the decomposition strategies within
NL = 1000 due to its large class size.

2 Note that coding design is independent from base learners. It is fair to fix the base learners for decomposition
strategy comparison.
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Table 6 Classification accuracy and standard deviation obtained by SVM classifiers for UCI datasets

Dataset OVO OVA ECOC M-SVM Nary

Pendigits 93.71 ± 2.03 81.75 ± 1.07 87.64 ± 1.08 89.85 ± 1.65 93.22 ± 1.71

Vowel 48.67 ± 2.63 30.30 ± 1.42 34.28 ± 1.55 41.67 ± 1.42 39.96 ± 2.07

News20 68.36 ± 1.70 72.65 ± 2.24 70.61 ± 1.67 70.78 ± 0.85 72.79 ± 1.08

Letters 81.85 ± 1.26 66.93 ± 1.37 77.78 ± 1.26 80.16 ± 2.06 82.27 ± 1.09

Auslan 89.94 ± 2.23 41.12 ± 1.28 83.15 ± 0.84 90.06 ± 1.58 91.57 ± 0.96

Sector 85.06 ± 1.54 89.06 ± 1.35 88.01 ± 1.47 88.75 ± 1.55 91.05 ± 1.32

Aloi 91.49 ± 1.68 84.26 ± 2.53 85.48 ± 1.17 86.69 ± 1.02 92.77 ± 1.86

Glass 61.84 ± 2.24 55.00 ± 2.23 56.84 ± 1.12 58.84 ± 2.42 60.25 ± 1.60

Satimage 85.69 ± 2.57 83.11 ± 1.86 81.19 ± 1.62 83.28 ± 0.36 86.50 ± 0.93

Usps 94.30 ± 1.14 92.37 ± 1.65 90.76 ± 1.45 92.16 ± 1.27 96.15 ± 2.47

Segment 92.30 ± 1.46 92.00 ± 1.89 87.80 ± 1.61 89.96 ± 1.49 93.60 ± 1.53

The best performance on each dataset is marked in bold

6.2.1 Comparison to state-of-the-art baselines with SVM classifiers

The classification accuracy of different coding schemes as well as proposed N -ary coding
with SVM classifiers are presented in Table 6. We observe that OVO has the best and most
stable performance on most datasets of all the encoding schemes except for N -ary coding.
This is because all the information between any two classes is used during classification and
the OVO coding strategy has no redundancy among different base classifiers. However, it
sacrifices efficiency for better performance. It is very expensive for both training and testing
when there are many classes in the datasets such as the Auslan, Sector and Aloi. Especially,
for Aloi with 1000 classes, it is often not viable to calculate the entire OVO classifications in
the real-world application as it would require 499 500 base learners in the pool of possible
combinations for training and testing. The performance of OVA is unstable. For the datasets
News20 and Sector, OVA even significantly outperforms OVO. However, the performances
of OVA on the datasets Vowel, Letters, and Glass are much worse than other encoding
schemes. Note that ECOCONE is initialized with OVA. We observe that M-SVM achieves
better results than random binary decomposition because it considers relationship among
classes. However, the training complexity of M-SVM is very high. In contrast to M-SVM,
random binary decomposition is ensemble of binary classifiers, which can be parallelized
due to independences of base tasks. N -ary decomposition combines the advantages of both
M-SVM and ensemble to achieve better performance.

6.2.2 Comparison to state-of-the-art baselines with decision tree classifiers

Next, we compare N -ary decomposition with other state-of-the-art coding schemes using
binary decision tree classifiers CART (Breiman et al. 1984) aswell as itsmulti-class extension
M-CART. We implement it with the CART toolbox with a default setting and the results
are reported in Table 7. We observe that binary decision tree classifiers with traditional
decomposition strategies are worse than the direct multi-class extension of the decision
tree. The decision tree classifiers show better performances than SVM on the Pendigits,
Vowel, and Letters datasets. However, it shows very poor performances on high dimensional
datasets such as News20 and Sector. This is due to the fact that high-dimensional features
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Table 7 Classification accuracy and standard deviation obtained by CART classifiers for UCI datasets

Dataset OVO OVA ECOC M-CART Nary

Pendigits 93.84 ± 2.33 78.12 ± 1.24 83.54 ± 1.30 87.64 ± 1.12 95.84 ± 1.08

Vowel 44.45 ± 1.74 33.57 ± 2.31 43.65 ± 2.35 45.45 ± 2.25 48.50 ± 1.20

News20 50.60 ± 1.17 45.23 ± 1.15 51.29 ± 1.26 50.83 ± 1.37 53.71 ± 1.70

Letters 81.56 ± 1.30 74.69 ± 1.50 89.75 ± 1.55 77.35 ± 1.26 92.15 ± 1.92

Auslan 79.84 ± 2.23 72.86 ± 2.04 83.15 ± 2.84 78.89 ± 1.18 85.17 ± 1.26

Sector 39.49 ± 1.33 41.89 ± 1.26 43.60 ± 1.17 45.89 ± 2.15 47.05 ± 1.27

Aloi 89.26 ± 1.49 72.10 ± 2.60 79.41 ± 1.08 73.00 ± 2.07 95.13 ± 1.89

Glass 52.84 ± 1.15 50.12 ± 1.24 54.65 ± 1.35 64.00 ± 2.12 56.00 ± 1.14

Satimage 85.70 ± 1.27 84.15 ± 1.08 85.86 ± 2.75 83.47 ± 2.36 86.47 ± 2.23

Usps 90.94 ± 2.16 80.89 ± 1.47 91.95 ± 1.57 83.54 ± 1.16 92.77 ± 1.15

Segment 93.68 ± 1.25 86.45 ± 2.22 96.44 ± 2.52 92.70 ± 1.34 97.10 ± 1.28

The best performance on each dataset is marked in bold

often lead to complex tree structure construction. Nevertheless, N -ary decomposition still
can significantly improve the performance on either traditional coding schemes with binary
decision tree learner as well as the multi-class decision tree.

In summary, our proposed N -ary decomposition is superior to traditional decomposition
schemes and direct multi-class algorithms on most tasks, and provides a flexible strategy
to decompose many classes into many smaller multi-class problems, each of which can be
independently solved by either M-SVM or M-CART in parallelization.

6.2.3 Discussion onmany class situation

From the experiments results, we observe that the N -ary decomposition shows significant
improvement on the Aloi dataset with 1000 classes over other existing coding schemes as
well as direct multi-class classification algorithms, especially decision tree classifiers. For
the binary or ternary codes, it is highly possible to assign the same codes to different classes.
From the experimental results, we observe the minimum distance ρ for binary and ternary
coding are small or even tends to be 0. In other words, the existing coding cannot help the
classification algorithms to differentiate some classes. In contrast, N -ary with NL = 1000
and N = 5, the minimum distance ρ is 741. Thus, it creates codes with larger margins
for different classes, which explains the superior On the other hand, the direct multi-class
algorithms cannot work well when the class size is large. Furthermore, the computation cost
for direct multi-class algorithms is in O(N 3

C ). When the class size NC is large, the algorithms
are expensive to train. On the contrary, random binary codes can be easily parallelized due
to the independence among the subproblems.

6.2.4 Discussion on performance on each individual class

To understand the performances of different codes for each individual class, we show the
confusion matrix on the Pendigits dataset in Fig. 6. First, we observe that binary code (i.e.,
OVA)has very poor performances on someclasses in termsof recall or precision. For example,
recall on class 2, 6 and precision on class 10 are below 50%. It can be explained by that as
illustrated in Fig. 1b, binary codes may lead to nonseparable cases. Nevertheless, it achieves
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Class 1 2 3 4 5 6 7 8 9 10 Pre
1 90.2 0 0 0 0 0.1 0 0 0.7 0.3 88.9
2 0 96.3 0.1 0 0 0 0 0 0 0.1 94.8
3 0 0.5 89.8 0.1 0 0 0 0 0.3 0.3 89.2
4 0 0.1 0 92.1 0 0 0 0 0 0 98.5
5 0.1 0.1 0 0 89.8 0 0.3 0 0 0.1 94.7
6 0 0.3 0 0 0 95.2 0 0 0.4 0 86.1
7 0 0 0 0 0 0 90.7 0 0.1 0 98.7
8 0.2 1.1 0.1 0.2 0.1 0.9 0 89.8 0.7 0 75.9
9 0.2 0 0 0 0 0.5 0 0.1 93.1 0 89.9

10 0.1 4.6 0 1.4 0.1 3.2 0 0.1 0.5 91.2 46.9
Rec 94.4 35.4 97.8 82.1 98.2 49.9 96.4 98.6 71.8 91.8 81.8

Target Class

O
ut

pu
t C

la
ss

(a) Binary Code.

Class 1 2 3 4 5 6 7 8 9 10 Pre
1 90.2 0 0 0 0 0.2 0 0 0.2 0.3 92.9
2 0 90.7 0.3 0 0 0.1 0 0.2 0 0.2 90.5
3 0 0.1 89.9 0 0 0 0 0 0 0 98.3
4 0 0.6 0 90.6 0 0 0 0 0 0.3 90.7
5 0.3 0.1 0 0 89.7 0 0 0 0 0.1 94.6
6 0 0.1 0 0 0 91.4 0 0 0.3 0.2 92.9
7 0 0 0 0 0 0 90.4 0 0 0 99.4
8 0 0.1 0 0.1 0 0 0 89.9 0.3 0 95.4
9 0.2 0 0 0 0 0.4 0 0 91.8 0 92.1

10 0 0.1 0 0.1 0 0.2 0 0.1 0.5 91.7 89.8
Rec 94 89.6 97.4 97.9 99.4 89.6 99.6 96.9 85.4 85.6 93.7

Target Class

O
ut

pu
t C

la
ss

(b) Ternary Code.

Class 1 2 3 4 5 6 7 8 9 10 Pre
1 89.9 0 0.2 0.1 0.1 0.1 0.1 0 0 0.3 92.9
2 0 90.5 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 90.2
3 0 0.3 90.4 0.1 0.1 0 0.1 0 0 0 94.7
4 0 0.3 0.1 91 0.1 0.1 0 0 0 0.3 91.1
5 0.1 0 0 0 90.3 0 0 0 0 0.1 97.2
6 0 0.1 0 0.1 0 90.9 0 0 0.2 0.2 92.8
7 0 0.1 0 0 0 0.1 90.8 0 0.1 0 95.9
8 0 0 0.1 0.1 0 0 0.1 89.9 0.5 0 92.1
9 0.1 0 0 0.1 0.1 0.1 0.1 0 91.7 0 94.8

10 0 0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 91.4 91.1
Rec 97.2 91.7 91.9 93.7 93.6 95 95.3 97.6 86.5 89.2 93.2

Target Class

O
ut

pu
t C

la
ss

(c) N-ary Code.

Fig. 6 Confusion matrix on Pendigits: in confusion matrix, the entry in the ith row and jth column is the
percentage of images from class i that are misidentified as class j. Average classification rates for individ-
ual classes are listed along the diagonal. The last column and last row are precision (Pre) and recall (Rec)
respectively

best classification results on the class 2, 4, 6 and class 9. Compared to the binary code, ternary
code (i.e., OVO) largely reduces the bias and improve precision and recall scores on most
classes. What is more interesting, when the ternary code and N -ary decomposition achieves
comparable overall performances, N -ary decomposition achieves smaller maximal errors.
It may be benefited from simpler subtasks created by N -ary decomposition, as shown in
Fig. 1d.
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7 Conclusions

In this paper, we investigate whether one can relax binary decomposition to N -ary decom-
position to achieve better multi-class classification performance. In particular, we present an
N -ary decomposition strategy that decomposes the original multi-class problem into sim-
pler multi-class subproblems. The advantages of such decomposition are as follows: (i) the
ability to construct more discriminative codes and (ii) the flexibility for the user to select the
best N for random decomposition-based classification. We derive a base classifier indepen-
dent generalization error bound for the N -ary decomposition classification problem.We show
empirically that the optimal N (based on classification performance) lies in [3, 10]with some
tradeoff in computational cost. Experimental results on benchmark multi-class datasets show
that the proposed decomposition achieves superior prediction performance over the state-of-
the-art multi-class baselines. In the future, we will investigate a more efficient realization of
N -ary decomposition to improve the prediction speed.
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