
Machine Learning (2019) 108:1951–1974
https://doi.org/10.1007/s10994-019-05797-z

Boosting as a kernel-based method

Aleksandr Y. Aravkin1 · Giulio Bottegal2 · Gianluigi Pillonetto3

Received: 17 October 2017 / Accepted: 20 April 2019 / Published online: 17 May 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract
Boosting combines weak (biased) learners to obtain effective learning algorithms for classifi-
cation and prediction. In this paper, we show a connection between boosting and kernel-based
methods, highlighting both theoretical and practical applications. In the �2 context, we show
that boosting with a weak learner defined by a kernel K is equivalent to estimation with a
special boosting kernel. The number of boosting iterations can then be modeled as a contin-
uous hyperparameter, and fit (along with other parameters) using standard techniques. We
then generalize the boosting kernel to a broad new class of boosting approaches for general
weak learners, including those based on the �1, hinge and Vapnik losses. We develop fast
hyperparameter tuning for this class, which has a wide range of applications including robust
regression and classification. We illustrate several applications using synthetic and real data.

Keywords Boosting · Weak learners · Kernel-based methods · Reproducing kernel Hilbert
spaces · Robust estimation

1 Introduction

Boosting is a popular technique to construct learning algorithms (Schapire 2003). The basic
idea is that any weak learner, i.e. algorithm that is only slightly better than guessing, can
be used to build an effective learning mechanism that achieves high accuracy. Since the
introduction of boosting in Schapire’s seminal work (Schapire 1990), numerous variants
have been proposed for regression, classification, and specific applications including semantic

Editor: Thomas Gärtner.

B Aleksandr Y. Aravkin
saravkin@uw.edu

Giulio Bottegal
g.bottegal@tue.nl

Gianluigi Pillonetto
giapi@dei.unipd.it

1 Department of Applied Mathematics, University of Washington, Seattle, WA 98195-4322, USA

2 Department of Electrical Engineering, TU Eindhoven, 5600 MB Eindhoven, The Netherlands

3 Department of Information Engineering, University of Padova, 35131 Padua, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05797-z&domain=pdf
http://orcid.org/0000-0002-1875-1801


1952 Machine Learning (2019) 108:1951–1974

learning and computer vision (Schapire and Freund 2012; Viola and Jones 2001; Temlyakov
2000; Tokarczyk et al. 2015; Bissacco et al. 2007; Cao et al. 2014). In particular, in the
context of classification, LPBoost, LogitBoost (Friedman et al. 2000), Bagging and Boosting
(Lemmens andCroux 2006) andAdaBoost (Freund andSchapire 1997) have become standard
tools, the latter having being recognized as the best off-the-shelf binary classification method
(Breiman 1998; Zhang 2003; Zhu et al. 2009). In recent years, AdaBoost has been extended
in several ways. In particular, in Cortes et al. (2014, 2017), AdaBoost has been used in the
context of neural networks and deep decision trees, while the method introduced in Rätsch
andWarmuth (2005) incorporates estimates of the achievable maximummargin between two
classes. In Gao and Koller (2011), a multiclass method based on boosting and the hinge loss
is discussed. Applications of the boosting principle are also found in decision tree learning
(Tu 2005) and distributed learning (Fan et al. 1999), and classification tasks (Freund et al.
1999). For regression problems, AdaBoost.RT (Solomatine and Shrestha 2004; Avnimelech
and Intrator 1999) and �2 Boost (Bühlmann and Yu 2003; Tutz and Binder 2007; Champion
et al. 2014; Oglic and Gärtner 2016) are the most prominent boosting algorithms. In this
context, boosting the weak learner usually corresponds to a kernel-based estimator with a
heavily weighted regularization term. The fit on the training set improves at each iteration,
and the procedure will over-fit as it continues (Bühlmann and Hothorn 2007). To avoid
this, stopping criteria based on model complexity are used. Hurvich et al. (1998) propose
a modified version of Akaike’s information criterion (AIC); Hansen and Yu (2001) use the
principle of minimum description length (MDL), and Bühlmann and Yu (2003) implement
five-fold cross validation.

In this paper, we first focus on �2 boosting and consider linear weak learners induced by
the combination of a quadratic loss and a regularizer induced by a kernel K . We show that
the resulting boosting estimator is equivalent to estimation with a special boosting kernel that
depends on K , as well as on the regression matrix, noise variance, and hyperparameters. This
viewpoint leads to both greater generality and better computational efficiency. In particular,
the number of boosting iterations ν is a continuous hyperparameter of the boosting kernel,
and can be tuned by standard fast hyper-parameter selection techniques including SURE,
generalized cross validation, and marginal likelihood (Hastie et al. 2001a). In Sect. 5, we
show that tuning ν is far more efficient than applying boosting iterations, and non-integer
values of ν can improve performance.

We then generalize to awider class of problems, including robust regression, by combining
the boosting kernel with piecewise linear quadratic (PLQ) loss functions (e.g. �1, Vapnik,
Huber). The computational burden of standard boosting for general loss functions is high,1

but the boosting kernel makes the approach tractable. We also use the boosting kernel to
solve regularization problems in reproducing kernel Hilbert spaces (RKHSs), e.g. to solve
classification formulations that use the hinge loss.

The organization of the paper is as follows. After a brief overview of boosting in regres-
sion and classification, we develop the main connection between boosting and kernel-based
methods for finite-dimensional inverse problems in Sect. 2. Consequences of this connection
are presented in Sect. 3 also discussing the case of function estimation from direct noisy
data. In Sect. 4 we combine the boosting kernel with PLQ penalties to develop a new class
of boosting algorithms for regression and classification in RKHSs. We also discuss new
RKHSs induced by a generalized class of boosting kernels which allow to connect learning
rates and consistency analysis of boosting with those related to kernel machines. In Sect. 5

1 The estimator at each iteration is a linear function of the data only for the �2 loss.

123



Machine Learning (2019) 108:1951–1974 1953

we show numerical results for several experiments involving the boosting kernel. We end
with discussion and conclusions in Sect. 6.

2 Boosting as a kernel-basedmethod

In this section, we give a basic overview of boosting, and present the boosting kernel.

2.1 Boosting: notation and overview

Assume we are given a model g(θ) for some observed data y ∈ R
n , where θ ∈ R

m is an
unknown parameter vector. Suppose our estimator θ̂ for θ minimizes some objective that
balances variance with bias. In the boosting context, the objective is designed to provide a
weak estimator, i.e. one with low variance in comparison to the bias.

Given a loss function V and a kernel matrix K ∈ R
m×m , the weak estimator can be defined

by minimizing the regularized formulation

θ̂ := argmin
θ

{
J (θ; y) := V(y − g(θ)) + γ θT K−1θ

}
, (1)

where the regularization parameter γ is large and leads to over-smoothing. Boosting uses
this weak estimator iteratively, as detailed below. The predicted data for an estimator θ̂ are
denoted by ŷ = g(θ̂).

Boosting scheme

1. Set ν = 1 and obtain θ̂ (1) and ŷ(1) = g(θ̂(1)) using (1);
2. Solve (1) using the current residuals as data vector, i.e. compute

θ̂ (ν) = argmin
θ

J (θ; y − ŷ(ν)),

and set the new predicted output to

ŷ(ν + 1) = ŷ(ν) + g(θ̂(ν)).

3. Increase ν by 1 and repeat step 2 for a prescribed number of iterations.

2.2 Using regularized least squares as weak learner

Suppose data y are generated according to

y = Uθ + v, v ∼ N (0, σ 2 I ), (2)

where U is a known regression matrix of full column rank. The components of v are inde-
pendent random variables, mean zero and variance σ 2.

We now use a quadratic loss to define the regularized weak learner. Let λ denote the kernel
scale factor and set γ = σ 2/λ so that (1) becomes

θ̂ = argmin
θ

‖y −Uθ‖2 + σ 2

λ
θT K−1θ (3)

= λKUT (λUKUT + σ 2 I )−1y. (4)

123



1954 Machine Learning (2019) 108:1951–1974

Defining
Pλ := λUKUT , f := Uθ, (5)

we have the predicted data ŷ = U θ̂ given by

ŷ = argmin
f

‖y − f ‖2 + σ 2 f T P−1
λ f (6)

= Pλ(Pλ + σ 2 I )−1y. (7)

In (3) and (6), we have assumed K and Pλ invertible. If this does not hold, both of these
problems can be easily reformulated using pseudoinverses, e.g. see Aravkin et al. (2017,
Appendix), while (4) and (7) remain the same. All the derivations obtained below rely on (7)
so that invertibility of K and Pλ is never required in what follows.

The followingwell-known connection (Wahba 1990) between (3) andBayesian estimation
is useful for theoretical development. Assume that θ and v are independent Gaussian random
vectors with priors

θ ∼ N (0, λK ), v ∼ N (0, σ 2 I ).

Then, given any regressionmatrixU and (possibly singular) covariance K , (4) and (7) provide
the well-known expressions of the minimum variance estimates of θ and Uθ conditional on
the data y, e.g. see Anderson and Moore (1979) for derivations through projections onto
subspaces spanned by random variables. In view of this, we refer to diagonal values of K as
the prior variances of θ .

2.3 The boosting kernel

Define
Sλ = Pλ(Pλ + σ 2 I )−1. (8)

Fixing a small λ, the predicted data obtained by the weak kernel-based learner is

ŷ(1) = Sλy,

where ŷ(1) indicates that we performed one boosting iteration. According to the scheme
specified in Sect. 2.1, as boosting iteration ν increases, the estimate is refined as follows:

ŷ(2) = Sλy + Sλ(I − Sλ)y

ŷ(3) = Sλy + Sλ(I − Sλ)y + Sλ(I − Sλ)
2y

...

ŷ(ν) = Sλ

ν−1∑
i=0

(I − Sλ)
i y. (9)

We now show that the ŷ(ν) are kernel-based estimators from a special boosting kernel,
which plays a key role for subsequent developments.

Proposition 1 The quantity ŷ(ν) is a kernel-based estimator

ŷ(ν) = Sλ,ν y = Pλ,ν(Pλ,ν + σ 2 I )−1y,

123



Machine Learning (2019) 108:1951–1974 1955

where Pλ,ν is the boosting kernel defined by

Pλ,ν = σ 2
(
I − Pλ

(
Pλ + σ 2 I

)−1
)−ν − σ 2 I

= σ 2 (I − Sλ)
−ν − σ 2 I . (10)

Proof First note that Sλ satisfies

Sλ = Pλ

(
Pλ + σ 2 I

)−1 = I − σ 2 (
Pλ + σ 2 I

)−1
. (11)

This follows from adding the term σ 2
(
Pλ + σ 2

)−1
to (8) and observing that expression

reduces to I . Plugging in the expression (10) for Pλ,ν into the right hand side of expression (11)
for Sλ,ν , we have

Sλ,ν = I − σ 2 (
Pλ,ν + σ 2 I

)−1

= I − σ 2 (
σ 2 (I − Sλ)

−ν
)−1

= I − (I − Sλ)
ν

= Sλ

ν−1∑
i=0

(I − Sλ)
i ,

exactly as required by (9). ��

In Bayesian terms, for a given ν, boosting returns the minimum variance estimate of the
noiseless output f conditional on y, if f and v are independent Gaussian random vectors
with priors

f ∼ N (0, Pλ,ν), v ∼ N (0, σ 2 I ). (12)

3 Consequences

In this section, we use Proposition 1 to gain new insights on boosting and to develop a fast
method for tuning the boosting parameter ν.

3.1 Insights on the nature of boosting

We first derive a new representation of the boosting kernel Pλ,ν via a change of coordinates.
Starting from (10), we have

Pλ,ν = σ 2
(
I − Pλ

(
Pλ + σ 2 I

)−1
)−ν − σ 2 I

= σ 2
(
I −

(
I − σ 2 (

Pλ + σ 2 I
)−1

))−ν − σ 2 I

= σ 2

(σ 2)ν

(
Pλ + σ 2 I

)−ν − σ 2 I

where we used (11) to move get from the first to the second line above. Now, let V DV T be
the SVD of UKUT . Then, we obtain

123



1956 Machine Learning (2019) 108:1951–1974

Pλ,ν = σ 2

(σ 2)ν

(
λUKUT + σ 2 I

)ν − σ 2 I

= σ 2V

[(
λD + σ 2 I

σ 2

)ν

− I

]
V T (13)

and the predicted output can be rewritten as

ŷ(ν) = V
(
I − σ 2ν (

λD + σ 2 I
)−ν

)
V T y.

In coordinates z = V T y, the estimate of each component of z is

ẑi (ν) =
(
1 − σ 2ν

(
λd2i + σ 2

)ν

)
zi , (14)

and corresponds to the regularized least squares estimate induced by a diagonal kernel with
(i, i) entry

σ 2

(
λd2i
σ 2 + 1

)ν

− σ 2. (15)

In Bayesian terms, (15) is the prior variance assigned by boosting to the noiseless output
V TUθ .

Equation (15) shows that boosting builds a kernel on the basis of the output signal-to-noise

ratios SN Ri = λd2i
σ 2 , which then enter

(
λd2i
σ 2 + 1

)ν

. All diagonal kernel elements with di > 0

grow to ∞ as ν increases; therefore asymptotically, data will be perfectly interpolated but
with growth rates controlled by the SN Ri . If SN Ri is large, the prior variance increases
quickly and after a few iterations the estimator is essentially unbiased along the i th direction.
If SN Ri is close to zero, the i th direction is treated as though affected by ill-conditioning,
and a large ν is needed to remove the regularization on ẑi (ν).

This perspective makes it clear when boosting can be effective. When solving inverse
problems, θ in (2) often represents the unknown input to a linear system whose impulse
response defines the regression matrix U . For simplicity, assume that the kernel K is set to
the identity matrix, so that the weak learner (3) becomes ridge regression and the d2i in (15)
reflect the power content of the impulse response at different frequencies. Then, boosting
can outperfom standard ridge regression if the system impulse response and input share a
similar power spectrum. Under this condition, boosting can inflate the prior variances (15)
along the right directions. For instance, if the impulse response energy is located at low
frequencies, as ν increases boosting will amplify the low pass nature of the regularizer. This
can significantly improve the estimate if the input is also low pass. A numerical example
is given in Sect. 3.3, while Sect. 3.4 shows the consequences of our findings for function
reconstruction (estimation of θ from direct noisy measurements).

3.2 Hyperparameter estimation

In the classical scheme described in Sect. 2.1, ν is an iteration counter that only takes integer
values, and the boosting scheme is sequential: to obtain the estimate ŷ(m), one has to solvem
optimization problems. Using (10) and (13), we can interpret ν as a kernel hyperparameter,
and let it take real values. In the following we estimate both the scale factor λ and ν from the
data, and restrict the range of ν to ν ≥ 1.

123



Machine Learning (2019) 108:1951–1974 1957

The resulting boosting approach estimates (λ, ν) byminimizing fit measures such as cross
validation or SURE (Hastie et al. 2001a). In particular, this accelerates the tuning procedure,
as it requires solving a single problem instead of multiple boosting iterations. Consider
estimating (λ, ν) using the SURE method. Given σ 2 (e.g. using an unbiased estimator), such
approach is based on optimization of the objective

‖y − ŷ(ν)‖2 + 2σ 2trace(Sλ,ν). (16)

After performing just a single SVD, then interpreting ν as a kernel real hyperparameter,
straightforward computations show that SURE estimates are given by

(λ̂, ν̂) = arg min
λ≥0,ν≥1

n∑
i=1

z2i σ
4ν

(
λd2i + σ 2

)2ν + 2σ 2n −
n∑

i=1

2σ 2ν+2

(λd2i + σ 2)ν
, (17)

which is a smooth 2-variable problem over a box, and can be easily optimized.
We can also extract some useful information on the nature of the optimization problem

(17). In fact, denoting J the objective, we have

∂ J

∂ν
= 2

n∑
i=1

log(αi )z
2
i α

2ν
i − 2σ 2

n∑
i=1

log(αi )α
ν
i

= 2
n∑

i=1

log(αi )α
ν
i (z

2
i α

ν
i − σ 2) , (18)

where we have defined αi := σ 2

λd2i +σ 2 . Simple considerations on the sign of the derivative

then show that

– if

λ < min
i=1,...,n

z2i − σ 2

d2i
, (19)

then ν̂ = +∞. This means that we have chosen a learner so weak that SURE suggests
an infinite number of boosting iterations as optimal solution;

– if

λ > max
i=1,...,n

z2i − σ 2

d2i
, (20)

then ν̂ = 1. This means that the weak learner is instead so strong that SURE suggests
not to perform any boosting iterations.

3.3 Numerical illustration: ridge regression

Consider (2),where θ ∈ R
50 represents the input to a discrete-time linear system. In particular,

the signal is taken from Wahba (1990) and displayed in Fig. 1 (thick red line). The system
is represented by the regression matrix U ∈ R

200×50 whose components are realizations of
either white noise or low pass filtered white Gaussian noise with normalized band [0, 0.95].
The measurement noise is white and Gaussian, with variance assumed known and set to the
variance of the noiseless output divided by 10.

123



1958 Machine Learning (2019) 108:1951–1974

0 5 10 15 20 25 30 35 40 45 50
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

True

Ridge

Boosting

Fig. 1 True signal (thick red line), Ridge estimate (solid blue) and Boosting estimate (dashed black) obtained
in the first Monte Carlo run. The system impulse response is a low pass signal (Color figure online)

70

72

74

76

78

80

82

84

86

88

90
Fits - WN input

Ridge Boosting Ridge Boosting
30

40

50

60

70

80

90
Fits - LP input

Fig. 2 Boxplot of the percentage fits obtained by Ridge regression and Boosting, using SURE to estimate
hyperparameters; system impulse response is white noise (left) and low pass (right)

We use a Monte Carlo of 100 runs to compare the following two estimators

– Boosting boosting estimator with K set to the identity matrix and with (λ, ν) estimated
using the SURE strategy (16).

– Ridge ridge regression (which corresponds to boosting with ν fixed to 1).

Figure 2 displays the box plots of the 100 percentage fits of θ , 100
(
1 − ‖θ−θ̂‖

‖θ‖
)
, obtained

by Boosting and Ridge. When the entries of U are white noise (left panel) one can see that
the two estimators have similar performance. When the entries of U are filtered white noise
(right panel) Boosting performs significantly better than Ridge. Furthermore, 36 out of the
100 fits achieved by Boosting under the white noise scenario are lower than those obtained
adopting a low pass U , even though the conditioning of latter problem is much worse. The
unknown θ represents a smooth signal. In Bayesian terms, setting K to the identity matrix
corresponds to modeling it as white noise, which is a poor prior. If the nature ofU is low pass,
the energy of the d2i are more concentrated at low frequencies. So, as ν increases, Boosting
can inflate the prior variances associated to the low-frequency components of θ . The prior

123



Machine Learning (2019) 108:1951–1974 1959

0

0.5

1

1.5

2
Gaussian kernel main diagonal

0 2 4 6 8 10 0 2 4 6 8 10
0

1

2

3

4

5
Boosted Gaussian main diagonal

=200
=190
=180
=160
=100

Fig. 3 Diagonal elements of the Gaussian kernel (left) and of the boosted Gaussian kernel as a function of
boosting iterations ν (right). Under a Bayesian perspective, the right panel illustrates how boosting changes
the prior variances of the components of θ . Exploiting boosting, the stationarity feature of the Gaussian kernel
is lost and more variability is allowed to the signal (in particular in its central part) as ν increases

variances associated to high-frequencies induce low SN Ri , so that they increase slowly with
ν. This does not happen in the white noise case, since the random variables d2i have similar
distributions. Hence, the original white noise prior for θ can be significantly refined only in
the low pass context: it is reshaped so as to form a regularizer, inducing more smoothness.
Figure 1 shows this effect by plotting estimates from Ridge and Boosting in a Monte Carlo
run where U is low pass.

3.4 Numerical illustration: Gaussian kernel

Consider nowa situationwhere directmeasurements of θ are available, so thatU is the identity
matrix. This problem can be interpreted as function estimation where each θi corresponds to
the function f evaluated at the input location xi . The observation model is yi = f (xi ) + vi .

In function estimation, the kernel is often used to include smoothness information on f .
The radial basis class of kernes is widely used, with the Gaussian kernel a popular choice:

K(x, a) = exp(−|x − a|2), | · | = Euclidean norm. (21)

This kernel describes functions known to be somewhat regular and, under a Bayesian per-
spective, it models f as a stationary Gaussian process. These features are illustrated in the
left panel of Fig. 3, which shows the constant variance of f , and of Fig. 4, which shows
normal and independent realizations drawn from the covariance (21). These realizations are
examples of functions a priori preferred by the Gaussian kernel, before seeing data y.

We now consider the following key question: when can we expect better results using the
Gaussian kernel as weak learner, compared to classical least squares estimates regularized
with the same kernel? We can answer this question using the proposed boosting kernel.

Assume that xi = i/10, i = 1, . . . , 100, and that the noise variance is σ 2 = 0.12. Take K
to be the 100×100 matrix with (i, j)-entry Ki, j = K(xi , x j )whereK is the Gaussian kernel
(21).2 Furthermore, let the weak learner be λK with λ = 1e − 4. The effect of boosting on
the Gaussian kernel can now be understood by computing first the SVD of K (see left and
right panels of Fig. 5) and then the boosting kernel (13) for different values of ν. Using the
Bayesian perspective, the right panel of Fig. 3 shows the (linearly interpolated) variances of

2 Matrices K constructed this way are called Gram or kernel matrices in the machine learning literature.

123



1960 Machine Learning (2019) 108:1951–1974

0 10
-6

-4

-2

0

2

4

6
Realizations from Gaussian kernel

02 4 6 8 2 4 6 8 10
-6

-4

-2

0

2

4

6
Realizations from Boosted Gaussian with =200

Fig. 4 Realizations from the Gaussian kernel (left) and the boosted Gaussian kernel with ν = 200 (right)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
First 4 Gaussian kernel eigenvectors

0 2 4 6 8 10 0 5 10 15 20
0

5

10

15

20
First 20 Gaussian kernel eigenvalues

Fig. 5 Some eigenvectors and eigenvalues of the kernel matrix obtained from the Gaussian kernel (21) on the
input locations xi = i/10, i = 1, . . . , 100. More regular eigenvectors are associated to larger eigenvalues

f as a function of the xi . While the Gaussian kernel describes stationary processes (left panel
of Fig. 3), its boosted version now models nonstationary phenomena. In particular, more
variability is allowed to the signal in its central part as ν increases. The right panel of Fig. 4
shows normal realizations from the boosting kernel for ν = 200. In comparison with the
profiles in the left panel, more regular functions are now preferred, because we see from (13)
that, as ν increases, boosting givesmoreweight variance to thefirst eigenvectors,whose power
is located at low frequencies, see Fig. 5. The candidates also tend to assume larger values
around the central part of the input space since, overall, the prior variance is made larger.

This example is simple but significant and can be repeated under any experimental
condition using any kernel of interest. It shows how the boosting kernel and its Bayesian
interpretation can be used to get a clear picture of the function class that can be reconstructed
by boosting with high fidelity.

4 Boosting algorithms for general loss functions and RKHSs

In this section, we combine the boosting kernel with piecewise linear-quadratic (PLQ) losses
to obtain tractable algorithms for more general regression and classification problems. We
also consider estimation in Reproducing Kernel Hilbert (RKHS) spaces.

123



Machine Learning (2019) 108:1951–1974 1961

(a) quadratic (b) huber (d) hinge

(e) quantile (f) vapnik (h) elastic net

Fig. 6 Six common piecewise-linear quadratic losses

4.1 Boosting kernel-based estimation with general loss functions

Weconsider a kernel-basedweak learner (1), basedon ageneral (convex) penaltyV . Important
examples include Vapnik’s epsilon insensitive loss (Fig. 6f) used in support vector regression
(Vapnik 1998; Hastie et al. 2001b; Schölkopf et al. 2000; Schölkopf and Smola 2001), hinge
loss (Fig. 6d) used for classification (Evgeniou et al. 2000; Pontil and Verri 1998; Schölkopf
et al. 2000), Huber and quantile huber (Fig 6b, e), used for robust regression (Huber 2004;
Maronna et al. 2006; Bube and Nemeth 2007; Zou andYuan 2008; Koenker and Geling 2001;
Koenker 2005; Aravkin et al. 2014), and elastic net (Fig. 6f), a sparse regularizer that also
finds correlated predictors (Zou and Hastie 2005; Li and Lin 2010; De Mol et al. 2009). The
resulting boosting scheme is computationally expensive: ŷ(ν) requires solving a sequence
of ν optimization problems, each of which must be solved iteratively. In addition, since the
estimators ŷ(ν) are no longer linear, deriving a boosting kernel is no longer straightforward.

We combine general loss V with the regularizer induced by the boosting kernel from
the linear case to define a new class of kernel-based boosting algorithms. More specifically,
given a kernel K , let V DV T be the SVD ofUKUT . First, assume Pλ,ν invertible. Then, the
boosting output estimate ŷ(ν) is

ŷ(ν) = argmin
f

V(y − f ) + σ 2 f T P−1
λ,ν f

= argmin
f

V(y − f ) + f T V

[(
λD + σ 2 I

σ 2

)ν

− I

]−1

V T f , (22)

where the last line is obtained using (13). The solution depends on λ and σ 2 only through
the ratio γ = σ 2/λ. Problem (22) is strongly convex since the loss V is convex and Pλ,ν has
been assumed invertible.

123



1962 Machine Learning (2019) 108:1951–1974

Next, if Pλ,ν is not invertible, we can use (13) to obtain the factorization

Pλ,ν = σ 2Aλ,ν A
T
λ,ν,

where Aλ,ν is full column rank and contains the columns of the matrix

Aλ,ν = V

[(
λD + σ 2 I

σ 2

)ν

− I

]1/2

associated to the di > 0. The evaluation of Aλ,ν for different λ and ν is efficient. Now the
output estimate is ŷ(ν) = Aλ,ν â(ν), where â(ν) solves the strongly convex optimization
problem

â(ν) = argmin
a

{
V(y − Aλ,νa) + aT a

}
. (23)

The estimate of θ is given by θ̂ = U † ŷ(ν), where U † is the pseudo-inverse of U .
The new class of boosting kernel-based estimators defined by (23) keeps the advantages

of boosting in the quadratic case. In particular, the kernel structure can decrease bias along
directions less exposed to noise. The use of a general loss V allows a range of applications,
with e.g. penalties such as Vapnik and Huber, guarding against outliers in the training set.
Finally, the algorithm has clear computational advantages over the classic scheme described
in Sect. 2.1. Whereas in the classic approach, ŷ(m) require solvingm optimization problems,
in the new approach, given any positive λ and m ≥ 1, the prediction ŷ(m) is obtained by
solving the convex optimization problem (22). This is illustrated in Sect. 5.

4.2 New boosting algorithms in RKHSs

We extend the new boosting algorithms to regularization in RKHSs. Consider reconstructing
a function from n sparse and noisy data yi collected on input locations xi taking values on
the input space X . We want the function estimator to assume values in infinite-dimensional
spaces, introducing suitable smoothness regularization to circumvent ill-posedness. We use
K denote a kernel functionK : X ×X → R to capture smoothness properties of the unknown
function. We can then use �2 Boost, with weak learner

argmin
f ∈H

n∑
i=1

Vi (yi − f (xi )) + γ ‖ f ‖2H, (24)

where Vi is a generic convex loss and H is the RKHS induced by K with norm denoted
by ‖ · ‖H. From the representer theorem of Schölkopf et al. (2001), the solution of (24) is∑n

i=1 ĉiK(xi , ·) where the ĉi are the components of the column vector

argmin
c∈Rn

n∑
i=1

Vi (yi − Ki,·c) + γ cT Kc, (25)

and K is the kernel (Gram) matrix, with Ki, j = K(xi , x j ) and Ki,· is the i th row of K .
Using (25), we extend the boosting scheme from Sect. 2.1 with (24) as the weak learner. In
particular, repeated applications of the representer theorem ensure that, for any value of the
iteration counter ν, the corresponding function estimate belongs to the subspace spanned by
the n kernel sections K(xi , ·). Hence, �2 Boosting in RKHS can be summarized as follows.

Boosting scheme in RKHS

1. Set ν = 1. Solve (25) to obtain ĉ and f̂ for ν = 1, call them ĉ(1) and f̂ (·, 1).

123



Machine Learning (2019) 108:1951–1974 1963

2. Update c by solving (25) with the current residuals as the data vector:

ĉ(ν + 1) = ĉ(ν) + argmin
c∈Rn

n∑
i=1

Vi (yi − Ki ĉ(ν) − Kic) + γ cT Kc,

and set the new estimated function to

f̂ (·, ν + 1) =
n∑

i=1

ĉi (ν + 1)K(xi , ·).

3. Increase ν by 1 and repeat step 2 for a prescribed number of iterations.

There is a fundamental computational drawback related to this scheme which we have
already encountered in the previous sections. To obtain f̂ (·, ν) we need to solve ν opti-
mization problems, each of them requiring an iterative procedure. Now, we define a new
computationally efficient class of regularized estimators in RKHS. The idea is to obtain the
expansion coefficients of the function estimate through the new boosting kernel. Letting
γ = σ 2/λ and Pλ = λK , with K the kernel matrix, define the boosting kernel Pλ,ν as in
(13). Then, we can first solve

b̂(ν) = argmin
b

{
V(y − Pλ,νb) + bT Pλ,νb

}
, (26)

with V defined as the sum of the Vi . Then, we compute

c̃ = K † ỹ(ν) with ỹ(ν) = Pλ,ν b̂(ν),

and the estimated function becomes

f̂ (·, ν) =
n∑

i=1

c̃i (ν)K(xi , ·).

Note that the weights c̃(ν) coincide with ĉ(ν) only when the Vi are quadratic. Nevertheless,
given any loss, (26) preserves all advantages of boosting outlined in the linear case. Further-
more, as in the finite-dimensional case, given any ν and kernel hyperparameter, the estimator
(26) can compute c̃(ν) by solving a single problem, rather than iterating the boosting scheme.
Classification with the hinge lossAnother advantage related to the use of the boosting kernel
w.r.t. the classical boosting scheme arises in the classification context. Classification tries to
predict one of two output values, e.g. 1 and −1, as a function of the input. �2 Boost could
be used using the residual yi − f (xi ) as misfit, e.g. equipping the weak learner (24) with
the quadratic or the �1 loss. However, in this context one often prefers to use the margin
mi = yi f (xi ) on an example (xi , yi ) to measure how well the available data are classified.
For this purpose, support vector classification is widely used (Schölkopf and Smola 2002).
It relies on the hinge loss

Vi (yi , f (xi )) = |1 − yi f (xi )|+ =
{
0, m > 1
1 − m, m ≤ 1

, m = yi f (xi ),

which gives a linear penalty whenm < 1. Note that this loss assumes yi ∈ {1,−1}. However,
the classical boosting scheme applies the weak learner (24) repeatedly, and residuals will
not be binary for ν > 1. This means that �2 Boost cannot be used for the hinge loss.

123



1964 Machine Learning (2019) 108:1951–1974

This limitation does not affect the new class of boosting-kernel based estimators: support
vector classification can be boosted by plugging in the hinge loss into (26):

b̂(ν) = argmin
b

n∑
i=1

|1 − yi [Pλ,νb]i |+ + bT Pλ,νb, (27)

where we have used [Pλ,νb]i to denote the i th component of Pλ,νb.

4.3 More general boosting kernels class and convergence rate issues

So far, we have introduced boosting kernels Pλ,ν of the type (13) which correspond to
symmetric positive-semidefinite matrices. In the previous subsections we have shown that
such kernels allow the reconstruction of functions over general domains, and, using the
representer theorem, estimation is reduced to solving the finite-dimensional Problem (26)
which is regularized by the boosting kernel Pλ,ν . Below, we discuss how to directly define
boosting kernels over the entire domain X × X . This generalized class, denoted below by
Pλ,ν , allows new RKHSs and a new kernel-based perspective on boosting learning rates.

Assume we are given a kernel K and let μx be a nondegenerate σ -finite measure on X .
Define also the integral operator associated to the kernel as follows

LK[g](·) :=
∫

X
K(·, u)g(u)dμx (u). (28)

Under general conditions related to Mercer theorem (Mercer 1909; Hochstadt 1973; Sun
2005), we can find eigenfunctions ρi and eigenvalues ζi of the integral operator induced by
K, i.e. ∫

X
K(·, x)ρi (x)dμx (x) = ζiρi (·), 0 < ζ1 ≤ ζ2 ≤ . . . (29)

Then, the kernel can be diagonalized as follows

K(a, x) =
∞∑
i=1

ζiρi (a)ρi (x), ζi > 0 ∀i . (30)

We can now define a new class of boosting kernels over generic domains by extending (13)
as follows:

Pλ,ν(a, x) = σ 2
∞∑
i=1

(
(λζi + σ 2)ν

σ 2ν − 1

)
ρi (a)ρi (x). (31)

The abovedefinition leads to (13)whenU is the identitymatrix andμx concentrates uniformly
the probability only on a finite set of input locations xi . More generally, the entire class (31)
inherits all the properties discussed in the finite-dimensional case. In particular, for function
estimation one can now consider estimators

f̂ = argmin
f ∈Hλ,ν

n∑
i=1

Vi (yi − f (xi )) + γ ‖ f ‖2Hλ,ν
(32)

whereHλ,ν is the RKHS induced by (31) and γ is a parameter independent of λ and σ 2. As
ν increases, the estimator f̂ relies more strongly on the first eigenfunctions of K. In fact, on
the basis of the ratio λ/σ 2, the kernel Pλ,ν can assign most of the prior variance to the ρi
associated to the largest eigenvalues ζi , for the same reasons as described in Sect. 3.4.

123



Machine Learning (2019) 108:1951–1974 1965

The introduction of the generalized boosting kernel means also that learning rates and
consistency analysis on kernel machines (Wu et al. 2006; Smale and Zhou 2007; Steinwart
2002) apply immediately to our boosting context. For example, consider quadratic losses
with

Vi (yi − f (xi )) = (yi − f (xi ))2

n

and fix σ 2, ν and λ. Then, we can make γ suitably depend on the data set size n to guarantee
the consistency of f̂ and to obtain non asymptotic bounds around the estimate. In particular,
if we replace the integral operator LK used in Smale and Zhou (2007) with that induced by
the boosting kernel, i.e.

LPλ,ν [g](·) :=
∫

X
Pλ,ν(·, u)g(u)dμx (u), (33)

all the bounds in Smale and Zhou (2007, Corollary 5) immediately apply.3 For instance,
suppose data {xi , yi } are i.i.d. with input locations drawn fromμx . If the regression function,
i.e. the optimal predictor of future data, is in the range of Lr

Pλ,ν
for 0.5 < r ≤ 1, the error,

as measured by the norm in the Lebesgue space equipped with μx , will decrease as 1
n

r
1+2r .

Hence, our kernel-based perspective clarifies that, under Smale and Zhou’s integral operator
framework, boosting significantly improves the convergence rate if ν can make r as close as
possible to 1.

5 Numerical experiments

5.1 Boosting kernel regression: temperature prediction real data

To test boosting on real data, we use a case study in thermodynamic modeling of buildings.
Eight temperature sensors produced by Moteiv Inc were placed in two rooms of a small
two-floor residential building of about 80m2 and 200m3. The experiment lasted for 8days
starting from February 24th, 2011; samples were taken every 5min. A thermostat controlled
the heating systems and the reference temperature was manually set every day depending
upon occupancy and other needs. The goal of the experiment is to assess the predictive
capability of models built using kernel-based estimators.

We considerMultiple Input-Single Output (MISO)models. The temperature from the first
node is the output (yi ) and the other 7 represent the inputs (u

j
i , j = 1, .., 7). Themeasurements

are split into a training set of size Nid = 1000 and a test set of size Ntest = 1500. The notation
ytest indicates the test data, which is used to test the ability of our estimator to predict future
data. Data are normalized so that they have zero mean and unit variance before identification
is performed.

The model predictive power is measured in terms of k-step-ahead prediction fit on ytest ,
i.e.

100 ×
⎛
⎝1 −

√√√√
Ntest∑
i=k

(ytesti − ŷi |i−k)2/

√√√√
Ntest∑
i=k

(ytesti )2

⎞
⎠ .

3 In Smale and Zhou (2007), λ denotes the regularization parameter. Hence, λ in Smale and Zhou (2007,
Corollary 5) corresponds to the γ introduced in (32).

123



1966 Machine Learning (2019) 108:1951–1974

Hours

P
re

di
ct

io
n 

fit

76

78

80

82

84

86

88

90

92

94
Boosting SS
SS

Hours
0 2 4 6 8 0 10 20 30 40

T
em

pe
ra

tu
re

 C
 (

de
vi

at
io

n)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
30 min ahead prediction

Test data
Boosting prediction

Fig. 7 Left: prediction fits obtained by the stable spine estimator (SS) and by Boosting equipped with the
stable spline kernel (Boosting SS). Right: 30-min ahead temperature prediction from Boosting SS on a portion
of the test set

We consider ARX models of the form

yi = (g1 ⊗ y)i +
7∑
j=1

(g j+1 ⊗ u j )i + vi ,

where ⊗ denotes discrete-time convolution and the {g j } are 8 unknown one-step ahead
predictor impulse responses, each of length 50. Note that when such impulse responses are
known, one can use them in an iterative fashion to obtain any k-step ahead prediction. We
can stack all the {g j } in the vector θ and form the regression matrix U with the past outputs
and the inputs so that the model becomes y = Uθ + v. Then, we consider the following two
estimators:

– Boosting SS this estimator regularizes each g j introducing information on its smoothness
and exponential decay by the stable spline kernel (Pillonetto and De Nicolao 2010). In
particular, let P ∈ R

50×50 with (i, j) entry αmax(i, j), 0 ≤ α < 1. Then, we recover θ by
the boosting scheme (23) with K = blkdiag(P, . . . , P), and V set to the quadratic loss.
Note that the estimator contains the three unknown hyperparameters ν, α and γ = σ 2/λ.
To estimate them the training set is divided in half and hold-out cross validation is used.

– Classical Boosting SS the same as above except that ν can assume only integer values.
– SS this is the stable spline estimator described in Pillonetto and De Nicolao (2010) (and

corresponds to Boosting SS with ν = 1) with hyperparameters obtained via marginal
likelihood optimization.

For Boosting SS, we obtained γ = 0.02, α = 0.82 and ν = 1.42; note that it is not
an integer. For Classical Boosting SS, we obtained γ = 0.03, α = 0.79 and ν = 1. In
practice, this estimator gives the same results achieved by SS so that our discussion below
just compares the performance of Boosting SS and SS.

The left panel of Fig. 7 shows the prediction fits, as a function of the prediction horizon
k, obtained by Boosting SS and SS. Note that the non-integer ν gives an improvement in
performance. This means that in this experiment using a continuous ν improves also over
the classical boosting. The right panel of Fig. 7 shows sample trajectories of half-hour-ahead
boosting prediction on a part of the test set.

123



Machine Learning (2019) 108:1951–1974 1967

Time

-4

-2

0

2

4

6

8

10

12

14
Training set

Time

0 100 200 300 400 500 600 0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

2
Test set
Boosting simulation

Fig. 8 Left: training set. Right: test set simulation from Boosting SS with �1 loss

5.2 Boosting kernel regression using the �1 loss: real data water tank system
identification

We test our new class of boosting algorithms on another real data set obtained from a water
tank system [see also Bottegal et al. (2016)]. In this example, a tank is fed with water by
an electric pump. The water is drawn from a lower basin, and then flows back through a
hole in the bottom of the tank. The system input is the voltage applied, while the output is
the water level in the tank, measured by a pressure sensor at the bottom of the tank. The
setup represents a typical control engineering scenario, where the experimenter is interested
in building a mathematical model of the system in order to predict its behavior and design a
control algorithm (Ljung 1999). To this end, input/output samples are collected every second,
comprising almost 1000 pairs that are divided into a training and test set. The signals are
de-trended, removing their means. The training and test outputs are shown in the left and
right panel of Fig. 8. One can see that the second part of the training data are corrupted by
outliers caused by pressure perturbations in the tank; these are due to air occasionally being
blown into the tank. Our aim is to understand the predictive capability of the boosting kernel
even in presence of outliers.

We consider a FIR model of the form

yi = (g ⊗ u)i + vi ,

where the unknown vector g ∈ R
50 contains the impulse response coefficients. It is estimated

using a variation of the estimator Boosting SS described in the previous section: while the
stable spline kernel is still employed to define the regularizer, the key difference is that V in
(23) is now set to the robust �1 loss. The hyperparameter estimates obtained using hold-out
cross validation are γ = 17.18, α = 0.92 and ν = 1.7. The right panel of Fig. 8 shows the
boosting simulation of the test set. The estimate from Boosting SS predicts the test set with
76.2% fit. Using the approach V equal to the quadratic loss, the test set fit decreases to 57.8%.

5.3 Boosting in RKHSs: classification problem

Consider the problem described in Section 2 of Hastie et al. (2001a). Two classes are intro-
duced, each defined by a mixture of Gaussian clusters; the first 10 means are generated from

123



1968 Machine Learning (2019) 108:1951–1974

a Gaussian N ([1 0]T , I ) and remaining ten means from N ([0 1]T , I ) with I the identity
matrix. Class labels 1 and −1 corresponding to the clusters are generated randomly with
probability 1/2. Observations for a given label are generated by picking one of the ten means
mk from the correct cluster with uniform probability 1/10, and drawing an input location
from N (mk, I/5). A Monte Carlo study of 100 runs is designed. At any run, a new data set
of size 500 is generated, with the split given by 50% for training and 25% each for valida-
tion and testing. The validation set is used to estimate through hold-out cross-validation the
unknown hyperparameters, in particular the boosting parameter ν. Performance for a given
run is quantified by computing percentage of data correctly classified.

We compare the performance of the following two estimators:

– Boosting+�1 loss this is the boosting scheme in RKHS illustrated in the previous section
(ν may assume only integer values) with the weak learner (24) defined by the Gaussian
kernel

K(x, a) = exp(−10|x − a|2), | · | = Euclidean norm

setting each Vi to the �1 loss and using γ = 1000.
– Boosting kernel+�1 loss this is the estimator using the new boosting kernel. The latter is

defined by the kernel matrix built using the same Gaussian kernel reported above, with
σ 2 = 1, λ = 0.001 so that one still has γ = 1000. The function estimate is achieved
solving (26) using the �1 loss.

Note that the two estimators contain only one unknown parameter, i.e. ν which is estimated
by the cross validation strategy described above. The top left panel of Fig. 9 compares their
performance. Interestingly, results are very similar, see also Table 1. This supports the fact
that the boosting kernel can include classical boosting features in the estimation process.
In this example, the difference between the two methods is mainly in their computational
complexity. In particular, the top right panel of Fig. 9 reports some cross validation scores as
a function of the boosting iterations counter ν for the classical boosting scheme. The score
is linearly interpolated, since ν can assume only integer values. On average, during the 100
Monte Carlo runs the optimal value corresponds to ν = 340, so on average, problems (24)
must be solved 340 times. After obtaining the estimate of ν, to obtain the function estimate
using the union of the training and validation data, another 340 problems must be solved.

In contrast, the boosting kernel used in (26) does not require repeated optimization of
the weak learner. Using a golden section search, estimating ν by cross validation on average
requires solving 20 problems of the form (26). Once ν is found, only one additional optimiza-
tion problem must be solved to obtain the function estimate. Summarizing, in this example
the boosting kernel obtains results similar to those achieved by classical boosting, but requires
solving only 20 optimization problems rather than nearly 700. The computational times of
the two approaches are reported in the bottom panel of Fig. 9.

Table 1 also shows the average fit obtained by other two estimators. The first estimator is
denoted by Boosting SVC: it coincides with Boosting kernel+�1 loss, except that the hinge
loss replaces the �1 loss in (26). The other one is SVC and corresponds to the classical support
vector classifier. It uses the same Gaussian kernel defined above with the regularization
parameter γ determined via cross validation on a grid containing 20 logarithmically spaced
values on the interval [0.01, 100]. One can see that the best results are obtained by boosting
support vector classification. Recall also that the hinge loss cannot be adopted using the
classical boosting scheme as discussed at the end of the previous section.

123



Machine Learning (2019) 108:1951–1974 1969

55 60 65 70 75 80 85 90 95 100
55

60

65

70

75

80

85

90

95

100
Classification prediction fit

B
oo

st
in

g 
+

 l 1 lo
ss

Boosting kernel + l
1
 loss

0 100 200 300 400 500 600 700
7

8

9

10

11

12

13

14

15

Boosting iteration counter 

C
V

 s
co

re
 b

y 
B

oo
st

in
g 

+
 l 1 lo

ss

0.5 1 1.5 2 2.5 3

Boosting kernel + l1 loss

20

30

40

50

60

70

80

90

100

B
oo

st
in

g 
+ 

l 1 lo
ss

Computational time (seconds)

Fig. 9 Classification problem. Top left Fits obtained by the new boosting kernel (x-axis) vs fits obtained by the
classical boosting scheme (y-axis). Both the estimators use the �1 loss. Top right Some cross validation scores
computed using the classical boosting scheme equipped with the �1 loss as a function of the boosting iteration
counter ν. Each curve corresponds to a different run. Bottom Computational times to solve a classification
problem needed by the new boosting kernel (x-axis) and by the classical boosting scheme (y-axis)

Table 1 Average percentage classification fit

Boosting + �1 Boosting kernel + �1 Boosting SVC SVC

78.91 % 79.15 % 79.73 % 78.12 %

5.4 Boosting in RKHSs: classification using the UCI machine learning repository

The new classifierBoosting SVC, which combines boosting and the hinge loss, is now tested
using binary classification problems from theUCImachine learning repository.4 We consider
the following data sets from the Statlog project: breast cancer, ionosphere, monk 1, heart,
sonar and Australian credit. Prediction performance of Boosting SVC (as defined in the
previous section) is compared with that obtained by the classifiers introduced in Bühlmann
and Yu (2003), which consider the same datasets. We compare with L2 Boost, a weighted
version of L2 Boost called L2WCBoost and LogitBoost. For details on these three classical
boosting algorithms, see Bühlmann and Yu (2003). These approaches use an integer number

4 http://www.ics.uci.edu/~mlearn/MLRepository.

123

http://www.ics.uci.edu/~mlearn/MLRepository


1970 Machine Learning (2019) 108:1951–1974

Table 2 Average percentage classification fit with UCI data

L2 Boost L2 WCBoost (%) LogitBoost (%) Boosting SVC (%)

Breast cancer 96.4 96 96.2 96.1

Ionosphere 82.2 83.2 85.2 88.2

Monk 1 91.2 92.1 93 92.4

Hearth 83.3 82.5 84.1 83.9

Sonar 87.7 87.7 86.9 89.2

Credit 99.8 99.6 100 99.8

of boosting iterations ν, exploiting tree learners, stumps or componentwise smoothing splines,
as described in Section 4.1 of Bühlmann and Yu (2003). These three estimators proved to
have excellent prediction capability on the UCI data sets, outperforming two versions of
CART based on trees (Hastie et al. 2001a).

As in Bühlmann and Yu (2003), the estimated percentage classification fit is calculated
using an average of 50 random divisions into training set (90% of the data) and test set (10%
of the data). The estimators L2 Boost, L2 WCBoost and LogitBoost use an oracle-based
procedure to tune complexity, selecting the number of boosting iterations ν to maximize the
test set fit. In addition, we report the best performance that can be obtained from these three
methods, selecting either stumps or component smoothing splines. The proposed Boosting
SVC is implemented using the Gaussian kernel

K (x, a) = exp(−β|x − a|2), | · | = Euclidean norm.

The estimator’s structure contains three unknown parameters: the regularization parameter,
the kernel width β and the (real-valued) ν. These parameters are estimated without resorting
to the oracle, but using only the training set. We use hold-out cross validation (CV) with
a random split that defines a validation set including 1/3 of the available data. Gradient
descent is used to optimize the CV score. We emphasize that Boosting SVC, can tune
regularization by solving only a single optimization problem on a continuous domain, thanks
to the parametrization using a real-valued rather than integer ν.

Results for the four estimators are show in Table 2. Even without using an oracle to tune
complexity, the prediction performance of Boosting SVC is very similar to those of L2
Boost, L2 WCBoost and LogitBoost in breast cancer, monk 1, heart and Australian credit
datasets. For ionosphere and sonar, Boosting SVC significantly outperforms the other three
algorithms.

5.5 Boosting in RKHSs: regression problem

Consider now a regression problemwhere only smoothness information is available to recon-
struct the unknown function from sparse and noisy data. As in the previous example, our aim
is to illustrate how the new class of proposed boosting algorithms can solve this problem
using a RKHS with a great computational advantage w.r.t. the traditional scheme. For this
purpose, we just consider a classical benchmark problem where the unknown map is the
Franke’s bivariate test function f given by the weighted sum of four exponentials (Wahba
1990). Data set size is 1000 and is generated as follows. First, 1000 input locations xi are
drawn from a uniform distribution on [0, 1] × [0, 1]. The data are divided in the same way
described in the classification problem. The outputs in the training and validation data are

123



Machine Learning (2019) 108:1951–1974 1971

55 60 65 70 75 80 85 90
55

60

65

70

75

80

85

90
Regression prediction fit

B
oo

st
in

g 
+

 l 1 lo
ss

Boosting kernel + l
1
 loss

0 50 100 150 200 250
12

13

14

15

16

17

18

Boosting iteration counter ν

C
V

 s
co

re
 b

y 
B

oo
st

in
g 

+ 
l 1 lo

ss

0 0.5 1 1.5 2

Boosting kernel + l1 loss

0

5

10

15

20

25

30

35

B
oo

st
in

g 
+ 

l 1 lo
ss

Computational time (seconds)

Fig. 10 Regression problem. Top left Fits obtained by the new boosting kernel (x-axis) vs fits obtained by
the classical boosting scheme (y-axis). Both the estimators use the �1 loss. Top right Some cross validation
scores computed using the classical boosting scheme equipped with the �1 loss as a function of the boosting
iteration counter ν. Bottom Computational times to solve a regression problem needed by the new boosting
kernel (x-axis) and by the classical boosting scheme (y-axis)

yi = f (xi ) + vi

where the errors vi are independent, with distribution given by the mixture of Gaussians

0.9N (0, 0.12) + 0.1N (0, 1).

The test outputs ytesti are instead given by noiseless outputs f (xtesti ). AMonte Carlo study of
100 runs is considered, where a new data set is generated at any run. The test fit is computed
as

100

(
1 − |ytest − ŷtest |

|ytest − mean(ytest )|
)

,

where ŷtest is the test set prediction.
Note that the mixture noise can model the effect of outliers which affect, on average, 1

out of 10 outputs. This motivates the use of the robust �1 loss. Hence, the function is still
reconstructed by Boosting+�1 loss and Boosting kernel+�1 loss which are implemented
exactly in the same way as previously described. Figure 10 displays the results with the same
rationale adopted in Fig. 9. The fits are close each other but, at any run, the classical boosting
scheme requires solving hundreds of optimization problems, while the boosting kernel-based

123



1972 Machine Learning (2019) 108:1951–1974

Table 3 Average percentage regression fit

Boosting + �1 Boosting kernel + �1 Gaussian kernel + �1

76.62 % 76.75 % 75.19 %

approach needs to solve around 15 problems on average. The computational times of the two
approaches are reported in the bottom panel of Fig. 10.

Finally, Table 3 reports the average fits including those achieved by Gaussian kernel+�1
loss, which is implemented as the estimator SVC described in the previous section except
that the hinge loss is replaced by the �1 loss. The best results are achieved by boosting kernel
with �1.

6 Conclusion

In this paper, we presented a connection between boosting and kernel-based methods. We
showed that in the context of regularized least-squares, boosting with a weak learner is
equivalent to using a boosting kernel. This connection also implies that learning rates and
consistency analysis on kernel based methods (Wu et al. 2006; Smale and Zhou 2007; Stein-
wart 2002) can be immediately used in the boosting context.

In the paper, we also developed three specific applications of the theoretical relationship
between classical boosting and the boosting kernel. (1) Better understanding of boosting esti-
mators and when they work effectively; (2) efficient hyperparameter estimation for boosting
(3) development of a general class of boosting schemes for misfit measures, including �1,
Huber and Vapnik, for both Euclidean and Reproducing Kernel Hilbert Spaces.

Hyperparameter tuning avoids sequential application of weak learners, which is crucial
for boosting with general losses V , as each boosting run would itself require an iterative
algorithm. When working over RKHS, the boosting kernel has equal or better performance
than classical methods at a dramatically reduced computational cost.

In addition to computational efficiency, treating boosting iterations ν as a continuous
hyperparameter (rather than a discrete iteration) can improve prediction. In some of the
experiments we obtained ν = 1.42 as estimate of ν, with better prediction performance than
an integer ν of 1 or 2.

Acknowledgements Funding was provided by Washington Research Foundation.

References

Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. Englewood Cliffs, NJ: Prentice-Hall.
Aravkin, A., Burke, J., Ljung, L., Lozano, A., & Pillonetto, G. (2017). Generalized Kalman smoothing.

Automatica, 86, 63–86.
Aravkin, A., Kambadur, P., Lozano, A., & Luss, R. (2014). Orthogonal matching pursuit for sparse quantile

regression. In International conference on data mining (ICDM) (pp. 11–19). IEEE.
Avnimelech, R., & Intrator, N. (1999). Boosting regression estimators. Neural Computation, 11(2), 499–520.
Bissacco, A., Yang, M. H., & Soatto, S. (2007). Fast human pose estimation using appearance and motion

via multi-dimensional boosting regression. In 2007 IEEE conference on computer vision and pattern
recognition (pp. 1–8). IEEE.

123



Machine Learning (2019) 108:1951–1974 1973

Bottegal, G., Aravkin, A., Hjalmarsson, H., & Pillonetto, G. (2016). Robust EM kernel-based methods for
linear system identification. Automatica, 67, 114–126.

Breiman, L. (1998). Arcing classifier (with discussion and a rejoinder by the author). The Annals of Statistics,
26(3), 801–849.

Bube, K., & Nemeth, T. (2007). Fast line searches for the robust solution of linear systems in the hybrid �1/�2
and huber norms. Geophysics, 72(2), A13–A17.

Bühlmann, P., & Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Sta-
tistical Science, 22, 477–505.

Bühlmann, P., & Yu, B. (2003). Boosting with the L2 loss: Regression and classification. Journal of the
American Statistical Association, 98(462), 324–339.

Cao, X., Wei, Y., Wen, F., & Sun, J. (2014). Face alignment by explicit shape regression. International Journal
of Computer Vision, 107(2), 177–190.

Champion, M., Cierco-Ayrolles, C., Gadat, S., & Vignes, M. (2014). Sparse regression and support recovery
with L2-boosting algorithms. Journal of Statistical Planning and Inference, 155, 19–41.

Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., & Yang, S. (2017) AdaNet: Adaptive structural learning
of artificial neural networks. In International conference on machine learning (pp. 874–883).

Cortes, C., Mohri, M., & Syed, U. (2014). Deep boosting. In International conference on machine learning
(pp. 1179–1187).

De Mol, C., De Vito, E., & Rosasco, L. (2009). Elastic-net regularization in learning theory. Journal of
Complexity, 25(2), 201–230.

Evgeniou, T., Pontil,M., & Poggio, T. (2000). Regularization networks and support vectormachines.Advances
in Computational Mathematics, 13, 1–150.

Fan, W., Stolfo, S., & Zhang, J. (1999). The application of AdaBoost for distributed, scalable and on-line
learning. In Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 362–366). ACM.

Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of Computer and System Sciences, 55(1), 119–139.

Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal—Japanese Society for
Artificial Intelligence, 14(771–780), 1612.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting
(with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), 337–407.

Gao, T., & Koller, D. (2011). Multiclass boosting with hinge loss based on output coding. In Proceedings of
the 28th international conference on machine learning (ICML-11) (pp. 569–576).

Hansen, M., & Yu, B. (2001). Model selection and the principle of minimum description length. Journal of
the American Statistical Association, 96(454), 746–774.

Hastie, T., Tibshirani, R., & Friedman, J. (2001a). The elements of statistical learning. Springer series in
statistics (Vol. 1). Berlin: Springer.

Hastie, T., Tibshirani, R., & Friedman, J. (2001b). The elements of statistical learning. Data mining, inference
and prediction. Canada: Springer.

Hochstadt, H. (1973). Integral equations. New York: Wiley.
Huber, P. J. (2004). Robust statistics. New York: Wiley.
Hurvich, C., Simonoff, J., & Tsai, C. L. (1998). Smoothing parameter selection in nonparametric regres-

sion using an improved Akaike information criterion. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 60(2), 271–293.

Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.
Koenker, R., & Geling, O. (2001). Reappraising medfly longevity: A quantile regression survival analysis.

Journal of the American Statistical Association, 96, 458–468.
Lemmens, A., & Croux, C. (2006). Bagging and boosting classification trees to predict churn. Journal of

Marketing Research, 43(2), 276–286.
Li, Q., & Lin, N. (2010). The Bayesian elastic net. Bayesian Analysis, 5(1), 151–170.
Ljung, L. (1999). System identification, theory for the user. Upper Saddle River: Prentice Hall.
Maronna, R., Martin, D., & Yohai, V. (2006). Robust statistics. Wiley series in probability and statistics. New

York: Wiley.
Mercer, J. (1909). Functions of positive and negative type and their connection with the theory of integral

equations. Philosophical Transactions of the Royal Society London, 209(3), 415–446.
Oglic, D., & Gärtner, T. (2016). Greedy feature construction. In Advances in neural information processing

systems (pp. 3945–3953).
Pillonetto, G., & De Nicolao, G. (2010). A new kernel-based approach for linear system identification. Auto-

matica, 46(1), 81–93.
Pontil, M., & Verri, A. (1998). Properties of support vector machines. Neural Computation, 10, 955–974.

123



1974 Machine Learning (2019) 108:1951–1974

Rätsch, G., & Warmuth, M. K. (2005). Efficient margin maximizing with boosting. Journal of Machine
Learning Research, 6(Dec), 2131–2152.

Schapire, R. (2003). The boosting approach to machine learning: An overview. In Nonlinear estimation and
classification (pp. 149–171). Springer.

Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.
Schapire, R., & Freund, Y. (2012). Boosting: Foundations and algorithms. Cambridge: MIT Press.
Schölkopf, B., Herbrich, R., & Smola, A. J. (2001). A generalized representer theorem. Neural Networks and

Computational Learning Theory, 81, 416–426.
Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization, opti-

mization, and beyond (adaptive computation and machine learning). Cambridge: MIT Press.
Schölkopf, B., & Smola, A. (2002). Learning with kernels: Support vector machines, regularization, opti-

mization, and beyond. Cambridge: MIT Press.
Schölkopf, B., Smola, A., Williamson, R., & Bartlett, P. (2000). New support vector algorithms. Neural

Computation, 12, 1207–1245.
Smale, S., & Zhou, D. (2007). Learning theory estimates via integral operators and their approximations.

Constructive Approximation, 26, 153–172.
Solomatine, D., & Shrestha, D. (2004) AdaBoost.RT: A boosting algorithm for regression problems. In Pro-

ceedings of the 2004 IEEE international joint conference on neural networks (Vol. 2, pp. 1163–1168).
IEEE.

Steinwart, I. (2002). On the influence of the kernel on the consistency of support vector machines. Journal of
Machine Learning Research, 2, 67–93.

Sun, H. (2005). Mercer theorem for RKHS on noncompact sets. Journal of Complexity, 21(3), 337–349.
Temlyakov, V. (2000). Weak greedy algorithms. Advances in Computational Mathematics, 12(2–3), 213–227.
Tokarczyk, P., Wegner, J., Walk, S., & Schindler, K. (2015). Features, color spaces, and boosting: New insights

on semantic classification of remote sensing images. IEEE Transactions on Geoscience and Remote
Sensing, 53(1), 280–295.

Tu, Z. (2005). Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and
clustering. In Tenth IEEE international conference on computer vision, 2005. ICCV 2005 (Vol. 2, pp.
1589–1596). IEEE.

Tutz, G., & Binder, H. (2007). Boosting ridge regression. Computational Statistics and Data Analysis, 51(12),
6044–6059.

Vapnik, V. (1998). Statistical learning theory. New York, NY: Wiley.
Viola, P., & Jones,M. (2001). Fast and robust classification using asymmetricAdaBoost and a detector cascade.

Advances in Neural Information Processing System, 14, 1311–1318.
Wahba, G. (1990). Spline models for observational data. Philadelphia: SIAM.
Wu, Q., Ying, Y., & Zhou, D. (2006). Learning rates of least-square regularized regression. Foundations of

Computational Mathematics, 6, 171–192.
Zhang, T. (2003). Sequential greedy approximation for certain convex optimization problems. IEEE Transac-

tions on Information Theory, 49(3), 682–691.
Zhu, J., Zou, H., Rosset, S., & Hastie, T. (2009). Multi-class AdaBoost. Statistics and Its Interface, 2(3),

349–360.
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.
Zou, H., & Yuan, M. (2008). Regularized simultaneous model selection in multiple quantiles regression.

Computational Statistics and Data Analysis, 52(12), 5296–5304.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Boosting as a kernel-based method
	Abstract
	1 Introduction
	2 Boosting as a kernel-based method
	2.1 Boosting: notation and overview
	2.2 Using regularized least squares as weak learner
	2.3 The boosting kernel

	3 Consequences
	3.1 Insights on the nature of boosting
	3.2 Hyperparameter estimation
	3.3 Numerical illustration: ridge regression
	3.4 Numerical illustration: Gaussian kernel

	4 Boosting algorithms for general loss functions and RKHSs
	4.1 Boosting kernel-based estimation with general loss functions
	4.2 New boosting algorithms in RKHSs
	4.3 More general boosting kernels class and convergence rate issues

	5 Numerical experiments
	5.1 Boosting kernel regression: temperature prediction real data
	5.2 Boosting kernel regression using the ell1 loss: real data water tank system identification
	5.3 Boosting in RKHSs: classification problem
	5.4 Boosting in RKHSs: classification using the UCI machine learning repository
	5.5 Boosting in RKHSs: regression problem

	6 Conclusion
	Acknowledgements
	References




