Machine Learning (2019) 108:2113-2157
https://doi.org/10.1007/510994-019-05816-z

®

Check for
updates

The kernel Kalman rule

Efficient nonparametric inference by recursive least-squares and
subspace projections

Gregor H. W. Gebhardt'® - Andras Kupcsik? - Gerhard Neumann?3

Received: 4 September 2017 / Revised: 16 May 2019 / Accepted: 20 May 2019 / Published online: 18 June 2019
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2019

Abstract

Enabling robots to act in unstructured and unknown environments requires versatile state
estimation techniques. While traditional state estimation methods require known models and
make strong assumptions about the dynamics, such versatile techniques should be able to deal
with high dimensional observations and non-linear, unknown system dynamics. The recent
framework for nonparametric inference allows to perform inference on arbitrary probability
distributions. High-dimensional embeddings of distributions into reproducing kernel Hilbert
spaces are manipulated by kernelized inference rules, most prominently the kernel Bayes’
rule (KBR). However, the computational demands of the KBR do not scale with the number of
samples. In this paper, we present two techniques to increase the computational efficiency of
non-parametric inference. First, the kernel Kalman rule (KKR) is presented as an approximate
alternative to the KBR that estimates the embedding of the state based on a recursive least
squares objective. Based on the KKR we present the kernel Kalman filter (KKF) that updates
an embedding of the belief state and learns the system and observation models from data.
We further derive the kernel forward backward smoother (KFBS) based on a forward and
backward KKF and a smoothing update in Hilbert space. Second, we present the subspace
conditional embedding operator as a sparsification technique that still leverages from the
full data set. We apply this sparsification to the KKR and derive the corresponding sparse
KKF and KFBS algorithms. We show on nonlinear state estimation tasks that our approaches
provide a significantly improved estimation accuracy while the computational demands are
considerably decreased.

Keywords Nonparametric inference - Kernel methods - State estimation - Model learning

Editor: Scott Sanner.

B Gregor H. W. Gebhardt
mail @ gregor-gebhardt.de

Extended author information available on the last page of the article

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05816-z&domain=pdf
http://orcid.org/0000-0002-8575-069X

2114 Machine Learning (2019) 108:2113-2157

1 Introduction

The ability to reason about past, current and future states in continuous, partially observable
stochastic processes is a fundamental stepstone towards fully autonomos and intelligent
systems. Such models are required in many applications as for example state estimation in
case of incomplete sensory data, smoothing noisy data from mediocre sensors, or predicting
future states from past and current observations.

Traditional state estimation techniques usually require analytical models of the underlying
system, are often limited to a set of models with a special structure, and require knowledge
about the moments of the stochstic processes. When assuming linear Gaussian models with
known mean and covariance for instance, the Kalman filter (Kalman 1960) yields the optimal
solution. However, the required linear Gaussian models with known statistics impose a strong
limitation to the applicability of this method. For more complex processes, approximate
solutions have to be used instead. Examples are the extended Kalman filter (McElhoe 1966;
Smith et al. 1962) or the unscented Kalman filter (Julier and Uhlmann 1997; Wan and Van
Der Merwe 2000). These solution inherit the Gaussian representation of the belief state to
which they apply the non-linear system dynamics. However, the Gaussian distribution with
its unimodal nature is a strong assumption about the belief state which leads to poor results
for systems that require a more complex distribution over possible states. Moreover, both the
Kalman filter but also it’s extensions to non-linear systems, require that the dynamics of the
systems are given as analytical models. Yet, these analytical models are often hard to obtain
or make simplifying assumptions about the system.

The recently introduced framework for nonparametric inference (Song et al. 2013; Fuku-
mizu et al. 2013) alleviates the problems of traditional state estimation methods for nonlinear
systems. The basic idea of these methods is to embed the probability distributions into
reproducing kernel Hilbert spaces (RKHS). These embeddings allow the representation of
arbitrary probability distributions using empirical estimators. Inference on the embedded
distribution can then be performed efficiently and entirely in the RKHS using the kernel-
ized versions of the sum rule, the chain rule, and the Bayes’ rule. Additionally, Song et al.
(2013) use the kernel sum rule and the kernel Bayes’ rule to construct the kernel Bayes’
filter (KBF). The KBF learns the transition and observation models from observed samples
and can be applied to nonlinear systems with high-dimensional observations. However, the
computational complexity of the KBR update does not scale well with the number of sam-
ples such that hyper-parameter optimization becomes prohibitively expensive. Moreover, the
KBR requires mathematical tricks that may cause numerical instabilities and also render the
objective that is optimized by the KBR unclear.

In this paper, we present two approaches to overcome the limitations named above. First,
we introduce the subspace conditional embedding operator. In contrast to the conditional
embedding operator (Song et al. 2009), this operator allows to estimate its empirical estimator
with a much larger data set while maintaining computational efficiency. We further apply
the subspace conditional embedding operator to the kernel sum rule, kernel chain rule and
kernel Bayes rule to derive their subspace versions. We have presented these results at the
large-scale kernel learning workshop at ICML 2015 (Gebhardt et al. 2015).

Furthermore, we present the kernel Kalman rule (KKR) as an approximate alternative to
the kernel Bayes’ rule. Our derivations closely follow the derivations of the innovation update
used in the Kalman filter and are based on a recursive least squares minimization objective in
a reproducing kernel Hilbert space (RKHS). The KKR does not perform an exact Bayesian
update as it uses a regularization term in the least squares objective and assumes constant

@ Springer



Machine Learning (2019) 108:2113-2157 2115

noise on the conditioning variable. While the update equations are formulated in a potentially
infinite dimensional RKHS, we derive through application of the kernel trick and by virtue of
the representer theorem an algorithm that uses only operations of finite kernel matrices and
vectors. We employ the kernel Kalman rule together with the kernel sum rule for filtering,
which results in the kernel Kalman filter (KKF). In contrast to filtering techniques that rely
on the KBR, the KKF allows to precompute expensive matrix inversions which significantly
reduces the computational complexity and which also allows us to apply hyper-parameter
optimization for the KKF. This work has been presented at AAAI 2017 (Gebhardtet al. 2017).

In addition to the KKF, we introduce the kernel forward backward smoother (KFBS) which
computes the embedding of the belief state given all available observations from the past and
the future. The kernel forward backward smoother combines the belief state embeddings of a
forward pass and a backward pass into smoothed embeddings using Hilbert space operations.
Both, the forward and the backward pass are realized by a KKF, where the backward KKF
operates backwards in time starting at the last observation. To scale gracefully with larger data
sets, we rederive the KKR, the KKF and the KFBS with the subspace conditional operator
(Gebhardt et al. 2015).

We compare our approach to different versions of the KBR and demonstrate its improved
estimation accuracy and computational efficiency. Furthermore, we evaluate the KKR on a
simulated 4-link pendulum task, on a human motion capture data set (Wojtusch and von Stryk
2015) and on data from a table-tennis setup (Gomez-Gonzalez et al. 2016).

1.1 Related work

To the best of our knowledge the kernel Bayes’ rule exists in three different versions. It was
first introduced in its original version by Fukumizu et al. (2013). Here, the KBR is derived,
similar to the conditional operator, using prior modified covariance operators. These prior-
modified covariance operators are approximated by weighting the feature mappings with
the weights of the embedding of the prior distribution. Since these weights are potentially
negative, the covariance operator might become indefinite, and thus, rendering its inversion
impossible. To overcome this drawback, the authors have to apply a form of the Tikhonov
regularization that decreases accuracy and increases the computational costs. A second ver-
sion of the KBR was introduced by Song et al. (2013) in which they use a different approach
to approximate the prior-modified covariance operator. In the experiments conducted for this
paper, this second version often leads to more stable algorithms than the first version. Boots
et al. (2013) introduced a third version of the KBR where they apply only the simple form of
the Tikhonov regularization. However, this rule requires the inversion of a matrix that is often
indefinite, and therefore, high regularization constants are required, which again degrades
the performance. In our experiments, we refer to these different versions with KBR(b) for
the first, KBR(a) for the second (order adapted from the literature), and KBR(c) for the
third version. Song et al. (2013) propose in their framework for nonparametric inference
to combine the KBR with the kernel sum rule to obtain the kernel Bayes filter (KBF). The
kernel Kalman filter presented in this work is closely related to this, as we simply replace the
KBR with the KKR. We compare to the KBF in our experiments. Nishiyama et al. (2016)
recently proposed the nonparametric kernel Bayes smoother. This approach builds on top of
the kernel Bayes filter, which is used to compute the estimates of a normal forward pass.
The smoothing update is then obtained by propagating the embeddings backwards in time
without performing a second filtering pass.

For filtering tasks with known linear system equations and Gaussian noise, the Kalman
filter (KF) yields the solution that minimizes the squared error of the estimate to the true state.

@ Springer



2116 Machine Learning (2019) 108:2113-2157

Two widely known and applied approaches to extend the Kalman filter to non-linear systems
are the extended Kalman filter (EKF) (McElhoe 1966; Smith et al. 1962) and the unscented
Kalman filter (UKF) (Wan and Van Der Merwe 2000; Julier and Uhlmann 1997). Both, the
EKF and the UKF, assume that the non-linear system dynamics are known and use them to
update the prediction mean. Yet, updating the prediction covariance is not straightforward. In
the EKF the system dynamics are linearized at the current estimate of the state, and in the UKF
the covariance is updated by applying the system dynamics to a set of sample-points (sigma
points). While these approximations make the computations tractable, they can significantly
reduce the quality of the state estimation, in particular for high-dimensional systems.

Hsu et al. (2012) recently proposed an algorithm for learning Hidden Markov Models
(HMMs) by exploiting the spectral properties of observable measures to derive an observable
representation of the HMM (Jaeger 2000). An RKHS embedded version thereof was presented
by Song et al. (2010). While this method is applicable for continuous state spaces, it still
assumes a finite number of discrete hidden states.

Other closely related algorithms to our approach are the kernelized version of the Kalman
filter and Kalman smoother by Ralaivola and d’Alche Buc (2005) and the kernel Kalman
filter based on the conditional embedding operator (KKF-CEO) by Zhu et al. (2014). The
former approach formulates the Kalman filter in a sub-space of the infinite feature space that
is defined by the kernels. Hence, this approach does not fully leverage the kernel idea of
using an infinite feature space. In contrast, the KKF-CEO approach embeds the belief state
also in an RKHS. However, they require that the observation is a noisy version of the full
state of the system, and thus, they cannot handle partial observations. Moreover, they also
deviate from the standard derivation of the Kalman filter, which—as our experiments show—
decreases the estimation accuracy. The full observability assumption is needed in order to
implement a simplified version of the innovation update of the Kalman filter in the RKHS.
The KKF does not suffer from this restriction. It also provides update equations that are
much closer to the original Kalman filter and outperforms the KKF-CEO algorithm as shown
in our experiments. Another approach to state estimation is presented in (Kawahara et al.
2007), where the authors propose to estimate low-dimensional state vectors based on kernel
canonical correlation analysis and then regress a linear transition model of the estimated state
vectors and the nonlinear features of the input.

Learning predictors in the space of predictive state representations to perform filtering has
been proposed in Sun et al. (2016b) and later extended to smoothing in Sun et al. (2016a).
They introduce predictive state inference machines (PSIM) which are (nonlinear) regressors
on predictive states learned from data to perform filtering. With the smoothing machine
(SMACH) they extend this concept for smoothing.

1.2 Structure of the paper

The remainder of the paper is structured as follows: in Sect. 2, we discuss the framework for
non-parametric inference (Song et al. 2013) and the Kalman filter as foundations for the work
we present in this paper; in Sect. 3 we introduce the subspace conditional embedding operator
and show its application to the framework for non-parametric inference; in Sect. 4 we present
the kernel Kalman rule and the subspace kernel Kalman rule; in Sect. 5 we introduce the
(subspace) kernel Kalman filter (Sect. 5.1) and the (subspace) kernel forward backward
smoother (Sect. 5.4) before we conclude the paper in Sect. 6. Experimental evaluations of
all proposed methods are shown and discussed directly in the respective sections.

@ Springer



Machine Learning (2019) 108:2113-2157 2117

2 Preliminaries

Our work is based on the recent formulations of embedding distributions into reproduc-
ing kernel Hilbert spaces (Smola et al. 2007; Song et al. 2013). These embeddings allow
to represent arbitrary probability distributions non-parametrically by a potentially infinite
dimensional feature vector. Through the application of derived operators (Song et al. 2009;
Fukumizu et al. 2013) it is furthermore possible to apply inference rules entirely in the Hilbert
space. In the first part of this section, we want to give the reader an introduction into this
technology and define the notation we will use throughout this article.

One of the main contributions of our paper is a novel method for performing approximate
Bayesian updates on a distribution embedded into an RKHS. The derivations of this update
rule are based on a least-squares objective and inspired by the derivations of the Kalman filter
update, thus we name this method kernel Kalman rule. In the second part of this section,
we will recapitulate the classical Kalman filter equations and review the derivations of the
innovation update based on the least-squares objective.

2.1 Nonparametric inference with Hilbert space embeddings of distributions

Intuitively, a Hilbert space is an extension of the well known two- or three-dimensional
Euclidean vector space to arbitrary many dimensions, specifically including infinite dimen-
sional vector spaces. Such infinite dimensional Hilbert spaces include spaces where the single
elements are functions, i.e., infinite dimensional vectors that contain for each element of the
domain the corresponding function value in the image. In addition, a Hilbert space has an
inner product that allows to measure distances and angles between its elements. For a repro-
ducing kernel Hilbert space Hj, this inner product (-, -) is implicitly defined by a reproducing
kernel k(x, x") = (p(x), ¢(x’)), where ¢(x) is a feature mapping into a possibly infinite
dimensional space, intrinsic to the kernel function. For example the Gaussian kernel com-
putes the inner product of the feature mappings of its inputs where the feature mappings itself
cannot be written down explicitly as they are into an infinite dimensional space. Due to the
reproducing property of the kernel, all elements f of the RKHS can be reproduced by k in
the sense that the outcome f(x) of the function for a specific value x can obtained by an
evaluation of the kernel function (Aronszajn 1950), i.e., f(x) = (f, ¢(x)) for any f € H;.

In a practical setting, we want to embed probability distributions in an RKHS spanned by
samples Dy = {x1, ..., x,}. Based on the representer theorem (Scholkopf et al. 2001) and
the reproducing property, the elements f of an RKHS Hj can then be written as

O =) aik(xi, ) =Y ailp), p()) = aTYTp(), o)
i=1 i=1

with the weights «; € R and where we denote the feature matrix of samples x; by ¥, =
[p(x1), ..., ¢(x,)]. In the following paragraphs we will show how probability distributions
can be represented as an embedding in such a reproducing kernel Hilbert space and how the
operators for performing inference in the RKHS can be derived.

2.1.1 Embeddings of marginal and joint distributions
The embedding of a marginal density P(X) over the random variable X is defined as the

expected feature mapping nx = Ex [¢(X)], also called the mean map (Smola et al. 2007).
Using a finite set of samples {x1, ..., x,} from P(X), the mean map can be estimated as

@ Springer



2118 Machine Learning (2019) 108:2113-2157

. 1 1
fix =~ ¢ =TT, @)

i=l1

where 1, € R” is an n dimensional vector of ones. Because of the reproducing property of
the kernel function, computing the expectation of a function which is an element of the same
RKHS resolves to simple matrix operations. On the other hand, the probability of a single
outcome or higher order statistics of the distributions are not straight forward to obtain.

Alternatively, a distribution can be embedded in a tensor product RKHS Hj x Hy as the
expected tensor product of the feature mappings (Smola et al. 2007)

Cxx =Exx[oX) ® o(X)] — nx ® ux, 3)

where we use ® to denote the tensor product (or outer product) of two vectors. This embedding
is also called the centered covariance operator. The finite sample estimator is given by

1 m
Cxx = — > 9(xi) ® ¢(xi) — fix ® fux. “
i=1

Similarly, we can define the uncentered cross-covariance operator for a joint distribution

p(X,Y) of two variables X and Y as Cxy = % T e(x) ® ¢(y;). Here, we have used

a data set of tuples Dxy = {(xl, Y1), ooy (Xn, yn)} sampled from p(X, Y) and a second
RKHS H,, with kernel function g(y, y') =: (¢ (), ¢ (¥)).

2.1.2 The conditional embedding operator

The embedding of a conditional distribution P(Y|X) is not like the mean map a single
element of the RKHS, but rather a family of embeddings that yields a mean embedding for
each realization of the conditioning variable X. To obtain the conditional distribution for a
specific value X = x,, Song et al. (2009) defined the conditional embedding operator Cy|x
which, if applied to the feature mapping of x, returns the embedding of P(Y|X = x.)

pyx = Eyx [¢#(Y)] = Cyixp(x). )

Using the data set Dyy from the joint distribution, an estimator of the conditional embedding
operator can be derived from a least-squares objective (Griinewilder et al. 2012) as

Cyix = ® (K, 4+ A1,) 7' YT, (©6)

with the feature matrices ® := [¢(y;),....d(y,)] and Y, = [p(x1), ..., @(x,)], the
Gram matrix K, = YJ Y, € R*™" the regularization parameter A, and the identity matrix
I, € R™"" With the feature mapping of the realization x this results in

fyix, = Crix@(xs) = ®(Kox + A1) " YTp(x,) = @Ky + A1) ke, (7

where ky, = [k(x1,x4), ..., k(x,,x,)]T is the kernel vector of the samples x; and the
realization x.. As the kernel matrices in the inverse and the kernel vector of the realization
are finite, the embedding of the conditional distribution can be represented as a weighted
sum of feature mappings

Ayie, = B =) aip(y), ®)

i=1

@ Springer



Machine Learning (2019) 108:2113-2157 2119

with the finite weight vector & € R". Based on the two definitions for Hilbert space embed-
dings of probability distributions and the conditional embedding operator discussed above,
all the rules of the framework for non-parametric inference (Song et al. 2013) can be derived.

2.1.3 The kernel sum rule

The embedding of Q(Y) = )y P(Y|X)7(X) can be obtained from the kernel sum rule
(Song et al. 2013). To that end, the conditional operator is applied to the embedding iy =
Y a of the prior distribution 7 (X),

127)1/ = éYlX/)j)t( =0 (K, + )\In)_]Kxx“n- ©

Again, the result can be represented as a weighted sum over feature mappings. In order to
obtain the distribution Q(Y) as a covariance operator instead of a mean map, Song et al.
(2013) also proposed the kernel sum rule for tensor product features which yields the prior
modified covariance operator C, as

Cyy = Carryx iy (10)
CA;Y = ®diag((Kyx + )»In)ilexa)q)Tv (11)

where C(yy)|x is the conditional operator for tensor product features.

2.1.4 The kernel chain rule

The kernel chain rule (Song et al. 2013) yields an embedding of the joint distribution
0(X,Y) = P(Y|X)m(X) as a prior modified covariance operator. There are two versions of
the kernel chain rule. Both apply the conditional embedding operator of P (Y| X) to an embed-
ding of the prior distribution 7 (X). In the first version the conditional operator is applied to
a covariance embedding of the prior distribution. This covariance operator is not estimated
directly from samples but approximated from the weight vector a;; of the embedding of the
prior distributions as C} x = Y, diag(et; ) Y. This yields Version (a) of the kernel chain rule
as

Cly = CyixC%y = ® (K + A1) ' K, diag(a,)YT. 12)

Version (b) of the kernel chain rule first computes the mean map % conditioned on the prior
distribution 7 (X) py appl}fmg the C(?ndltlonal embedding pperatgr t.o the mean map Wk
Afterwards, the prior-modified covariance operator of the joint distribution is constructed
from the resulting weight vector which results in

CA;X = ®diag((Kxx +)Lln)71Kxxan)TI~ (13)
Both versions of the kernel chain rule have been used to derive different versions of the kernel

Bayes’ rule as we will depict below.

2.1.5 The kernel Bayes’ rule
Given the embedding of a prior distribution 7 (X) and the feature mapping of an observation

¢ (y.,.), the kernel Bayes’ rule (KBR) infers the mean embedding of the posterior distribution
Or(X|Y = y,). The idea is to construct a prior-modified conditional embedding operator

@ Springer



2120 Machine Learning (2019) 108:2113-2157

that yields the mean map of the posterior if applied to the feature mapping of the observation
(Fukumizu et al. 2013)

l/j)T(\y =C§\y¢(y*)- (14)

This prior-modified conditional operator is constructed from two prior-modified covariance
operators C}, and C¥ ,, obtained from the kernel sum and the kernel chain rule, respectively,
using the relation

Chy = Chy (CFy) (15)

In the first version, which we denote by KBR(b) following the notation of Song et al. (2013),
Fukumizu et al. (2013) derived the kernel Bayes’ rule using the tensor product conditional
operator in the kernel chain rule (c.f. Eq. 13) and arrived at

~ -1
%y =Y, DGy, (DGyy)* +xl,)" Dg, . (16)

with the diagonal D := diag((Ky, + XIn)_lexaﬂ), the gram matrix G,, = ®T®, the
kernel vector g, = [g(¥1, ¥:),---, 8y, y,)]T and « as regularization parameter. Song
et al. (2013) derived the KBR using the first formulation of the kernel chain rule shown in
Eq. 12 which results in

~ -1
%), =Y, AT ((DGy))* +«l,) G, Dg, , (17)

with A := (K, + AL,) 'K xxdiag(ee;). This second version of the kernel Bayes’ rule is
denoted by KBR(a). As the matrix DG, is typically not invertible, both of these versions
of the KBR use a form of the Tikhonov regularization in which the matrix in the inverse is
squared. Boots et al. (2013) use a third form of the KBR which is derived analogously to the
first version but does not use the squared form of Tikhonov regularization, i.e.,

R —1
Wy =T (DG yy +«1,) Dg, . (18)

Since the product DGy, is often not positive definite, a strong regularization parameter is
required to make the matrix invertible. We denote this third version of the kernel Bayes’ rule
consequently by KBR(c).

2.2 The Kalman filter

The Kalman filter is a well known technique for state estimation, prediction, and smoothing
in environments with linear system dynamics that are subject to zero-mean Gaussian noise
with known covariances (Kalman 1960). The system equations can be formulated as

X1 =Fx,+v, y, =Hx;+ wy, (19)

where x; is the latent state of the system at time 7 and y, is the corresponding observation.
The linear Gaussian model is defined by the system matrix F, the observation matrix H, and
noise vectors v, and w, which are sampled from A'(0, P) and N'(0, R), respectively.

From the assumption of Gaussian transition noise and Gaussian observation noise, it
follows that the belief state over the latent state x, is as well a Gaussian distribution with
mean 1, , and covariance Xy ;. The Kalman filter applies iteratively two update procedures
to the belief state to which we will refer to as prediction and innovation update. During

@ Springer



Machine Learning (2019) 108:2113-2157 2121

the prediction update the Kalman filter propagates the belief state in time by applying the
transition model, i.e.,

Myl = Fn;,, o= F):j,tFT + P. (20)

On new observations y,, the innovation update applies Bayes’ theorem to the a-priori belief
state {5, ,, X ,} to obtain the a-posteriori mean and covariance as

0y, =105, + Q.(y, — Huy ), 1)
i, =%, - QHZ, (22)

x,t°

with the Kalman gain matrix
Q, =% HT(HS ,H" + R

Another approach to derive the Kalman filter equations follows from a least-squares objective
between the state estimator a-priori and a-posteriori to the observation (Simon 2006). This
second approach does not make the explicit assumption that the belief state can be represented
as a Gaussian random variable. Rather this representation follows from the objective to
minimize the variance of the error between the a-priori and a-posteriori estimators. We will
take this second approach as inspiration to derive the kernel Kalman rule in Sect. 4.

3 Efficient nonparametric inference in a subspace

A general drawback of kernel methods is that the complexities of the algorithms scale poorly
with the number of samples in the kernel matrices. As the conditional embedding operator
and the kernel inference rules require the inversion of a kernel matrix, the complexity scales
cubically with the number of data points. To overcome this drawback, several approaches exist
that aim to find a good trade-off between a compact representation and leveraging from a large
data set. Examples are the sparse Gaussian processes that use pseudo-inputs (Snelson and
Ghahramani 2006; Csat6 and Opper 2002), or a sparse subset of the data which is selected by
maximizing the posterior probability (Smola and Bartlett 2001). Other techniques are based
on approximating the kernel matrices using the Nystrom method (Williams and Seeger 2000)
or random Fourier features (Rahimi and Recht 2007). We approach this problem by proposing
the subspace conditional embedding operators (Gebhardt et al. 2015). The basic idea is to
use only a subset of the available training data as representation for the embeddings but the
full data set to learn the conditional operators. In the following sections, we will recapitulate
this approach and show how it can be applied to the framework for nonparamteric inference.

Given the feature matrices ® := [¢(y),....¢(y,)] and Y, = [p(x1), ..., @(xp)],
we can define the respective subsets ¥ C ® and I' C Y., where |¥| = [T'| = m < n.
We assume that the subsets are representative for the embedded distributions. Similar to the
conditional operator discussed in Sect. 2.1.2, we define the subspace conditional operator
ClS’I x as the mapping from an embedding ¢(x) € Hy to the mean embedding uyx € H,
of the conditional distribution P (Y |x) conditioned on the variate x. To obtain this subspace
conditional operator, we first introduce an auxiliary conditional operator C;l,‘f’)‘( which maps
from the subspace projection of the embedding I'T¢(x) to the mean map of the conditional
distribution, i.e.,

fiyie = CExTTo(x). (23)

@ Springer



2122 Machine Learning (2019) 108:2113-2157

We can then derive this auxiliary conditional operator by minimizing the squared error on
the full data set

A?,‘f}‘( = argming | ® —CTTY, |, (24)
= ®YIT (CTY,YTT +4l,,) " (25)

with the identity I,, € R™*". Substituting this result for the auxiliary conditional operator
in Eq. 23 gives us the subspace conditional operator as

é§|x = A?flf))((rT
— @K,z (KT, Kz + A1) ' T, (26)

where K,z = YT e R™ ™ is the kernel matrix of the sample feature set Y, and the subset
I'. Since we assume that m < n, the inverse in the subspace conditional operator is in R”*"
and, thus, of a much smaller size than the inverse in the standard conditional operator shown
in Eq. 6. Additionally, we can use the feature matrix I'T on the right hand side in Eq. 26
to represent the mean embedding always in the subspace spanned by the features I'. This
allows to avoid representations and computations in the high-dimensional space spanned by
the features of the full sample set. Before we will rederive the non-parametric inference rules
analogously to Song et al. (2013) but based on the subspace conditional embedding operator,
we will discuss the selection of the samples for spanning the subspace and the relation of the
subspace conditional operator to other sparsification approaches in the next sections.

3.1 Selecting the sample set to span the subspace

To learn the subspace conditional embedding operator, we need to choose m points for
the representation of the embedding from a data set of n data points, where m < n. The
selection of these data points is a crucial step as we want a subset that is descriptive enough
to represent the belief state well. We propose two approaches to address this problem which
aim at different characteristics of the subset.

The first approach simply samples uniformly without replacement from the full data set.
The result is a subset that resembles statistically the full data set, i.e., regions that have a high
density in the full data set will have a high density in the subset and vice versa.

The goal of the second approach is to get a subset with an optimal coverage of the sample
space. We select the first sample randomly from the full data set into the subset. Afterwards,
we iteratively extend the subset by adding samples according to the following criterion: we
compute the maximum kernel activation for each sample in the full data set with the samples
in the current subset, then we extend the current subset by taking the sample from the full data
set with the minimal maximum activation. We call this second strategy the kernel activation
heuristic.

3.2 Relation to other sparsification approaches

Many other sparsification techniques for kernel methods exist. The two most important tech-
niques among these are probably the Nystrom method (Williams and Seeger 2000; Drineas
and Mahoney 2005) and the random Fourier features (Rahimi and Recht 2007). Both methods
are closely related to our approach.

Williams and Seeger (2000) approximate the Gram matrix K based on the eigendecom-
position K = UAUT, where U are the eigenvectors and A is a diagonal of the eigenvalues

@ Springer



Machine Learning (2019) 108:2113-2157 2123

Als ..., Aq. By taking only the first m < n eigenvectors as U™ and the first m eigenvalues
as diagonal A", K can be approximated as K ~ U™ A" (U™)T. However, since the
eigendecomposition is computationally costly and more efficient methods only significantly
decrease the running time for m < n, Williams and Seeger (2000) propose to use instead the
Nystrom approximation of the eigenvectors which can be computed in only O (m?n) instead
of O(n?) for the true eigenvectors. The resulting approximation of the Gram matrix K has
the form K = K nmK,, lm K, ». Using the Nystrom method to approximate the conditional
embedding operator would result in the following equations

Crixitx = @ (KnmKy Kn + A1) " Ky Ky, K x 27)
=K, K, (KnnKnmKpyy + 0 1) " Ko x, (28)

where K, x is the approximator of the kernel mean embedding i x using the m samples of
the Nystrom approximation. Thus, if we would assume K, ,, = I, the subspace conditional
operator is equivalent to the Nystrom approximation. This assumption requires that features
of the selected data points are orthogonal, i.e., ¢(x;)T¢(x;) = §;;. Note that the kernel
activation heuristic presented in the previous sections selects the data points by minimizing
this inner product for all points that are already in the subset.

The idea of the random Fourier features (Rahimi and Recht 2007) is to compute the
Fourier transform p of the kernel method k. Random samples are drawn from the distribution
over frequencies p which are then used to construct a feature function z(x). Rather than
using a projection of the high dimensional feater as in our approach, the random features
directly transform the samples into a finite dimensional feature space whose inner product
approximates the kernel function, i.e., z(x)Tz(y) ~ k(x, y). Let Z € R be the feature
matrix of the n data points with m random features. We could approximate the conditional
embedding operator as

Crixfix = ®(ZZT + M) "' ZZTmy (29)
=®Z(ZTZ+11,) ' ZTmy. (30)

Again, it is easy to observe the similarity to our approach if we replace Z by K ;. Note
that this representation, in contrast to our approach and to the Nystrom method, does not
allow to derive an operator in the reproducing kernel Hilbert space but directly uses finite
vector/matrix representations.

3.3 The subspace kernel sum rule

Analogously to Song et al. (2013), the subspace kernel sum rule is the application of the
subspace conditional operator to the embedding of a distribution 7 (X), i.e.,

~ 5 ~ —1
(5 =Cxiy = ®K oz (KT Koz + L) TTY 0y, 31)

where % = Y,a; is the embedding of the prior distribution 7 (X). We construct the sub-
space kernel sum rule for tensor product features differently than Song et al. (2013). Instead
of applying the conditional operator to the mean embedding and then approximating the
covariance operator with the resulting weights (c.f. Eq. 11), we first approximate the covari-
ance operator C%  from the weights &, and then apply the subspace conditional operator to
both sides, i.e.,

@ Springer



2124 Machine Learning (2019) 108:2113-2157

A5, TN A T . N T
Cyy = C§|XC§X (Q%X) = C;\X’Y‘x diag(a;) YT (Cg\x)
= ®K ;L diag(a;)LTKT_®7. (32)
Here, we denote L = (KL; K,z + AIW,)_I KLE € R™*" to keep the notation uncluttered.
This definition of the subspace kernel sum rule follows from the kernel chain rule for tensor
product features, where the conditional operator Cyx is applied to the covariance embedding
C%X x to obtain the covariance embedding C7 (c.f. Eq. 12). The subspace kernel sum rule

follows from applying the transpose of the condition operator a second time from the right-
hand side.

3.4 The subspace kernel chain rule

The subspace kernel chain rule is a straight forward modification of the kernel chain rule by
Song et al. (2013). We simply apply the subspace conditional operator CI;I x from the left

side to a covariance operator C% , = Y diag(at;) YT approximated from the weights a,; of
the prior mean map p%

Cyy =Cf xChx = ®K L diag(or) YT (33)

With the subspace kernel sum rule and the subspace kernel chain rule we can now construct
the subspace kernel Bayes’ rule.

3.5 The subspace kernel Bayes’ rule

The Bayes’ rule computes a posterior distribution P (X|Y) from a prior distribution 7 (X) and
alikelihood function P (Y| X). Fukumizu et al. (2013) derive a conditional operator C% 0% from
the prior modified covariance operators C¥, and Cf, . We follow this approach and construct

the subspace kernel Bayes’ rule (subKBR) from the prior modified covariance operators C)S(;,T

and C;E;T which we obtain from the subspace kernel chain rule and the subspace kernel sum
rule for tensor product features, respectively. When applied to the embedding of a variate y,,
the subspace kernel Bayes’ rule returns the mean embedding of the conditional distribution
P(X|y,) as

Wy = Cxie () (34)

~TT _éS,rr éS,Jr -1

Hx)y = bxy YY D (Y.)- (35)
From the subspace kernel chain rule, we obtain

58w (AS sr \T

Cxy = CY\XCXX (36)

=Y, diag(oy)LTKT_®T 37

and from the subspace kernel sum rule

]
el = CfixCix (Chix) (38)
= @K, ;L diag(e, )LTKT @7, (39)

@ Springer



Machine Learning (2019) 108:2113-2157 2125

To keep the notation of the subspace kernel Kalman rule uncluttered, we define the following
matrices

A := diag(a;)LT (40)
D := L diag(a;)LT € R"*", (41)
E:=KT.Gy K, e R, 42)

where Gy, = ®T® is the kernel matrix of the samples y;. Using the same form of the
Tikhonov regularization as the kernel Bayes’ rule in Fukumizu et al. (2013) and substituting
the prior modified subspace covariance operators from Eqs. 37 and 39 results in

-1

AT 58,1 58,1 2 58,

Wy =G |(GF) +vin| G0 43)
=Y, AK . ®T[(®K ;DK . ®") ®K ;DK . ®T + y1,| ®K,: DK . ®T¢(y,)

(44)

" A 12 Y

=Y, AE[(DE)"+yIl,]| DKl.g,, (45)

with kernel vector 8y, =18y, ¥ &8s )17, and where we apply the matrix iden-
tity A(BA+AI)"! = (AB+1I)"" A with A = ® K ; to obtain a finite matrix in the

inverse. Since E and D are both in R”*™  the matrix inversion has complexity O (m?) instead
of O(n?). The entire subspace kernel Bayes’ rule has complexity O (nm?) and, thus, scales
linearly with the number of sample points (given a fixed reference set) instead of cubically
as for the original kernel Bayes’ rule.

3.6 Experimental evaluation

We compare the performance, learning time and run time of the subspace kernel Bayes’
filter in comparison to the standard kernel Bayes’ filter on a simple toy task. We simulate
a pendulum which we randomly initialize in the ranges [0.17, 0.47r] for the angle 6 and
[— 0.5, 0.57] for the angular velocity 6. The pendulum has a mass of 5kg and a friction
coefficient of 1. We apply Gaussian white noise to the system with a variance of 1, and to the
observations with a variance of 0.1. Additionally, the observed angles are randomly perturbed
by an offset of 7 /4. These random perturbations occur with a probability of 0.1 in every time
step. Each episode consists of 30 time steps with Az = 0.1.

Figure 1 shows that the subspace KBF has a slightly better performance when the train-
ing set equals the subspace set and maintains the performance of the standard KBF with
an increasing number of training samples while the subspace set is fixed to 100 samples.
However, at the same time the learning time of the subspace KBF increases at a much lower
magnitude and the run time is nearly constant while the learning and run time of the standard
KBR grow cubically. The samples for the subspace kernel Bayes rule are drawn uniformly
without replacement from the full sample set.

4 The kernel Kalman rule
All three versions of the kernel Bayes’ rule discussed in Sect. 2.1.5 have drawbacks. First,

due to the approximation of the prior modified covariance operators, these operators are not
guaranteed to be positive definite and, thus, their inversion requires either a harsh form of

@ Springer



2126 Machine Learning (2019) 108:2113-2157

seconds
Y
seconds

100 150 300 450 600 100 150 300 450 600 100150 300 450 600
# training samples # training samples # training samples

Fig. 1 The subspace variant of the kernel Bayes’ filter outperforms the standard kernel Bayes’ filter in both,
the tarining time depicted in the left plot and the run time depicted in the middle plot, while maintaining a
similar performance to the standard kernel Bayes’ rule as depicted in the right plot. The size of the subspace
is fixed to 100 samples. The plots show median and the [0.25, 0.75] quantiles over 20 evaluations

the Tikhonov regularization or a strong regularization factor and are often still numerically
instable. Furthermore, the inverse is dependent on the embedding of the prior distribution
and, hence, needs to be recomputed for every Bayesian update of the mean map. This recom-
putation significantly increases the computational costs, for example, if we want to optimize
the hyper-parameter.

In this section we will present the kernel Kalman rule (KKR) as an approximate alternative
to the kernel Bayes’ rule (Fukumizu et al. 2013). We assume a prior belief state over a variable
X embedded in a Hilbert space Hy as

'u’)_(,t = EXt\.Y]:t—l[w(X)]

and new measurement y, embedded in a Hilbert space H, as ¢ (y,). With the kernel Kalman
rule we want to infer the embedding of the posterior belief state

MJXC,! =Ex,y,, [o(X)] € Hk

from the prior belief and the new measurement. The derivations for the KKR are inspired by
the ansatz from recursive least squares (Gauss 1823; Sorenson 1970; Simon 2006), and thus
the resulting update equations follow from a clear optimality criterion.

4.1 Estimating the posterior mean embedding from a least squares objective

LetCy y be a conditional embedding operator of the observation model P (Y|X) that yields
for a given belief state embedded in the Hilbert space H, the distribution over possible obser-
vations embedded into the Hilbert space H,. We call this conditional embedding operator
also observation operator. For a single sample (x;, y,), the observation operator yields the
relation

o(y) = Cy|x¢’(xt) + &, (46)

where ¢; is zero mean noise with covariance R. Let us assume that the distribution p(x) is
unknown and we can only observe the samples y,. The objective of the KKR is then to find
the mean embedding py that minimizes the squared error

L =Exy [(600) = Cyxnx) R (600 = €y xnx) |- @)

Note that the use of R~! as metric for the least squares is somewhat arbitrary (it works
with any invertible matrix). This definition becomes more important once we regularize the

@ Springer



Machine Learning (2019) 108:2113-2157 2127

estimate of wyx (see below). We assume that R is constant for all samples x:.! We do not
assume that the noise is constant if we use a mean embedding on the operator Cy, .

To show that uxy = Ex[¢(x)], i.e., that ux is indeed the mean embedding of the distri-
bution p(x), we can solve for pux by setting the derivative of L to zero, i.e.,

I By [0 — G TR Gy @
dix Y|X Y|X
=Ey [p()T]R™'Cypy — nkCT xRy 1y (49)
—o. (50)

Assuming that C)T,| XR"CY‘  1s invertible, this yields

px = € xR7'Cy )7l xR Ey [¢(3))] (51)
= (€] xR™'Cy )7 CT xR Cy yBx [p(x1)] = Ex [p(x)], (52)

where we have used the kernel sum rule Ey[¢(y,)] = CY|XEX[‘P(xt)]~ Hence, under the
assumption that C;‘ XR_lc' y|x is invertible, 11y indeed estimates the mean embedding of the
unobserved distribution p(x). Note that the derivations hold for a constant x, i.e, x; = x as
well as for samples x; drawn from the distribution p(x).

In practice, inverting C ;‘ XR’ICY| x 18, however, not always feasible. Hence, we can intro-
duce an additional regularization objective, i.e.,

Lieg = L+ (ux — px)T(Cxx) ™ (ux — 1), (53)

where uy and Cyy denote a prior belief embedded as mean embedding and covariance
operator, respectively. The solution of this optimization problem is given by

-1
ix = (PR Gy + Cx07") (TR Er [00] + Cr0 7 z) . (54

Note that this regularization is the only approximation we make in the derivation of the kernel
Kalman rule.

4.2 Using recursive least squares to estimate the posterior embedding

Since we want to update our estimate j y iteratively with each new observation y,, we assume
aprior mean map (y ,.Ineachiteration, we update the prior mean map with the measurement

¥, to obtain the posterior mean map /L; ;- From the recursive least squares solution, we know
that the update rule for obtaining the posterior mean map //L; .18

Ky, =y, + <¢(y,) - Cy|x,u;’t> , (55)

where O, is the Hilbert space Kalman gain operator that is applied to the correction term
8 =¢(y,) — CY|X“},[' We call this rule the kernel Kalman rule (KKR). It remains to find
an optimal value for the Kalman gain operator. In the next section, we will show that this
rule is an unbiased estimator of the posterior mean map. Thus, we cannot obtain the optimal
O, by minimizing directly the error. Instead, we will show in Sect. 4.2.2, how we can find
an optimal Q; by minimizing the covariance of the error instead.

! This assumption can be relaxed to R being constant for a single sample x for the derivations on this page.

@ Springer



2128 Machine Learning (2019) 108:2113-2157

4.2.1 The kernel Kalman update is an unbiased estimator of the posterior mean map

The embedding of the observation ¢ (y,) in the correction term §; is a single-sample estimator
of the embedding of the true distribution over observations ;L;| v = CY| x9(x7). Let us
assume for now that we have access to the true embedding ¢(x;). Thus, we have for the
embedding of the observation

Py, = 'u;\x,t +&= CY|X‘P(xt) + &, (56)

where ¢; denotes the error of the single sample estimator ¢ (y,) to the embedding of the true
distribution /L;l ¢+ By taking the expectation it is easy to show that the error of the single-

sample estimator is zero-mean and thus ¢ (y,) is an unbiased estimator for M;I Xt We refer
to “Appendix B.1” for a more detailed derivation. We further assume that ¢; is independent
from the state x; and has constant covariance R. Following from the delta method (Agresti
2002), this assumption is a reasonable choice as we assume i.i.d, zero mean observation
noise. Similarly, the error of the a-posteriori mean embedding to the embedding of the true
state is given as

& = p(x) — uy, (57)
= 0(x0) — iy, — Q@) = Cyix ) (58)

where we use Eq. 55 to substitute the embedding of the posterior belief. By substituting
¢ (y,) with Eq. 56 and defining the error of the a-priori mean embedding analogously as
& =o(x;) — u;(’t, we arrive at

& = () =y, = QCyxPE) + 5 = Cypyity,) (59)
= (T- 9y o) =z, — 2t (60)
=(T- ¢, ) e - 2a 1)

with identity operator Z. We can now apply the expectation operator and exploit its linearity
to obtain

B[] =E[(T-QcCyy) e - 2]
= (- ¢y x ) E[e] - QELa]. (62)

Since the residual of the observation operator is zero mean (E[¢;] = 0), we see that, given an
unbiased a-priori mean embedding (E[e, ] = 0), the a-posteriori mean embedding obtained
from the kernel Kalman update is unbiased (]E[e;r ] = 0) independent of the choice of Q.
Thus, we cannot use the expected error as an optimality criterion for the Kalman gain operator.

4.2.2 Finding the optimal kernel Kalman gain operator

If the expected error—or the first moment of the error distribution—is already zero, taking the
covariance of the error—or the second moment—is a consequent choice. Hence, we chose
the kernel Kalman gain operator Q; which minimizes the expected squared loss E [ (¢;7) " &/ ]
or equivalently the variance of the estimator. The objective for minimizing the variance can
also be reformulated as minimizing the trace of the a-posteriori covariance operator C;X’t

of the state x; at time ¢, i.e., ming, E [(sf)T ef] =ming, Tr C;X ;- Using the formulation

@ Springer



Machine Learning (2019) 108:2113-2157 2129

of the posterior error from Eq. 61 and the independence assumption of ¢; and &; allows us to
reformulate the a-posteriori covariance operator as

C)JEX,t = (I— Q,CYlX) Cxx.s (I - QIC”X)T + RO/, (63)

where R = E[¢; (,T] is the covariance of the residual of the observation operator. Taking the
derivative of the trace of the covariance operator and setting it to zero leads to the solution
for the kernel Kalman gain operator

—1
Q= CXX,tC;|X (CY|XCXX,zC)T'\X + R) . (64)

We provide a detailed derivation of the optimal Kalman gain operator in “Appendix B.2”.
From Eqgs. 63 and 64, we can also see that it is possible to recursively estimate the covariance
embedding operator independently of the mean map and of the observations. This property
will allow us later to precompute the covariance embedding operator as well as the kernel
Kalman gain operator to further improve the computational complexity of our algorithm.
Following Simon (2006), the update of the covariance operator can be further simplified to

C)J(rx,t :C;x,z - thy|xc)?x,z' (65)

The derivations of this simplification can be found in “Appendix B.3”. In the following section
we will show how to obtain the empirical Kalman update rule from a finite data set.

4.3 Empirical kernel Kalman rule

The equations for the kernel Kalman rule that we derived in the previous section are based
on embeddings in infinite dimensional Hilbert spaces and operators that map between these
spaces. In practice, these embeddings and operators are estimated from a finite set of samples
Dxy = {(xl, Y1), ooy (Xn, yn)}. In this section we will show how we can reformulate the
kernel Kalman rule to manipulations of finite matrices by applying the kernel trick (i.e.,
matrix identities). Based on the data set Dxy and the corresponding feature matrices Y
and @, the finite sample estimators of the prior mean embedding and the prior covariance
operator are given as

fix,="m;  and A);X,t =T,8 1], (66)

respectively, with weight vector m;” and positive definite weight matrix S; . Using this finite
sample estimator of the covariance operator, the finite sample estimator of the conditional
operator from Eq. 6, and by approximating the covariance of the residual of the observation
operator with a diagonal R = «Z, we can rewrite the kernel Kalman gain operator as

O =Y, 0TOT (905, 0TOT +47) ", (67)

with the observation matrix O = (K, +A1 Y"1 K . Here, the approximation of R = «7 also
acts as a small regularization in the inverse to ensure its positive definiteness and to improve
the numerical stability of the kernel Kalman rule. However, Q, still requires the inversion
of an infinite dimensional matrix. Using matrix identities, we can solve this problem and
arrive at

O =7Y,807(G,,0S70T +«I,)”" &7, (68)
2,

@ Springer



2130 Machine Learning (2019) 108:2113-2157

where we defined Q, = S; OT(G,,0S8; OT +«I)~' € R where Gy, = ®T® is the
Gram matrix of the observations. Based on this reformulation of the kernel Kalman gain
operator, we can obtain finite vector/matrix representations of the update equations for the
estimator of the mean embedding (Eq. 55) and the estimator of the covariance operator
(Eq. 65). For the weight vector m;, we arrive at

mf =m; + 0, (g, — Gy om;). (69)

where g, = [g(y1, Y1), ... 8(¥,, ¥)IT is the kernel vector of the measurement at time 7.
Similarly, we can also obtain the update equation for the weight matrix S; as

S =S8 -0,G,,08,. (70)

The algorithm requires the inversion of a m X m matrix in every iteration for computing the
kernel Kalman gain matrix Q,. Hence, similar to the kernel Bayes’ rule, the computational
complexity of a straightforward implementation would scale cubically with the number of
data points m. However, in contrast to the KBR, the inverse in @, is only dependent on
time and not on the estimate of the mean map. Thus, the kernel Kalman gain matrix can be
precomputed since it is identical for multiple parallel runs of the algorithm. Furthermore, if the
stream of incoming measurements is reliable (no time steps without incoming measurement),
S; will converge to a stationary matrix and by that Q, will become stationary as well. While
many applications do not require to perform state estimations in parallel, it is a huge advantage
for hyper-parameter optimization as we can evaluate multiple trajectories from a validation set
simultaneously. As for most kernel-based methods, hyper-parameter optimization is crucial
for scaling the approach to complex tasks. So far, the hyper-parameters of the kernels for the
KBF have typically been set by heuristics as optimization would be too expensive.

Besides the hyper-parameters in the kernel functions (e.g. bandwidths) and the regulariza-
tion constants of the conditional operators, we also treat the approximation of the covariance
operator R &~ kZ as a hyper-parameter which we optimize. Note that the selection of the min-
imization objective, e.g., mean squared error (MSE) or negative log-likelihood (NLL), has a
substantial effect on the selection of this parameter. For the MSE objective, the parameters
are chosen to only optimize the expectation of the filter output. Consequently the parameter
k acts more as a regularizer and is chosen as small as possible. In contrast, using the NLL
objective also respects the variance of the filter output and thus the role as approximation to
the variance R is more important for choosing the parameter value.

4.4 The subspace kernel Kalman rule

In Sect. 3 we have already shown how we can apply the subspace conditional embedding
operator to leverage from large data sets but at the same time maintain the computational
tractability of the learned models. In this section, we will now show how we can apply this
technique to the kernel Kalman rule to obtain the subspace kernel Kalman rule (subKKR).

A core difference between the KKR and the subKKR is the representation of the embedded
distributions. While we represent the embeddings for the kernel Kalman rule as weight vector
m; and weight matrix S, , we use the projections into a subspace

n, =TT, =TTY m, = Kl.m,, (71)
P, =TTCxx, T =TTY, S, YIT = K'_S,K,5. (72)

to represent the distribution for the subspace kernel Kalman rule. These projections will
later allow us to express all operations in the lower dimensional subspace instead of the

@ Springer



Machine Learning (2019) 108:2113-2157 2131

space spanned by the full data set. Matrix manipulations with the full data set are then only
necessary during the learning phase of the KKR not while performing inference.

We use a slightly modified version of the kernel Kalman gain from Eq. 64 where we
approximate the covariance operator R with a diagonal operator xZ. With the subspace
conditional embedding operator C§| x of the distribution P(Y|X), as derived in Sect. 2.1.2
we obtain the subspace kernel Kalman gain operator as

a N ~ T /rc A N T -1

Q) =Cix (C)qu) (Cg\xcxx,z (C)S'|x) + "I) (73)
We can further derive a finite matrix representation of the operator using matrix identities
and the projection into the subspace spanned by the features T'T as

~ —1
rTof = Pt_(OS)T(KL;GWKX,;OSP,‘(OS)T + I(Im> KT &7, (74)

0}

where we define the subspace kernel Kalman gain matrix Qts using the short hand 05 =
(KLEK,@ + AI,)~'. A detailed derivation can be found in “Appendix B.5”. Note that
0 ,S € R™ and not R”*™_ however when applying the subspace KKR in an inference algo-
rithm, we can use the matrix K ;)-C on the right side as a projection for the high-dimensional
embedding of the distribution over the variable Y to which the gain is applied (see Algo-
rithm 2 for an example). From here, the update equation for the projection of the mean map
becomes

"},f =ny,+ 0} (gy[ — GyyKysx OSnt‘) , (75)
And similarly, we can derive the update equation for the covariance embedding as
P} =P - 0/G,K:0°P; (76)

In contrast to the kernel Kalman gain presented in the previous section, but also in contrast
to the variants of the kernel Bayes rule discussed in Sect. 2.1.5, the subspace kernel Kalman
gain requires only the inversion of an m x m matrix instead of an n x n matrix, where m < n.
Still, the full data set of n samples can be used to learn the Kalman gain operator.

4.5 Experimental comparison of (sub)KKR and (sub)KBR

We compare the performance of the (subspace) kernel Kalman rule to the performance of
the (subspace) kernel Bayes rule on a simple stationary filtering task for estimating the
expectation of a Gaussian distribution. The graphical model that we assume for this task
is depicted in Fig. 2. We sample N = 500 latent context variables ¢; uniformly from the
interval [—5, 5] as the mean of the Gaussian distributions. Afterwards we draw one single
(M = 1) observed sample s; for each context from N (c;, %) and learn the kernel Kalman
rule and the different versions of the kernel Bayes rule with the context variables as states
and the samples as observations. For the performance comparison (Fig. 3), the KKR and the
KBR are learned with a kernel size of 200 samples, subKKR and subKBR are both learned
with 200 samples to span the subspace and the full set of 500 samples to learn the operators.
The comparison of time efficiency is summarized in Table 1 where the respective kernel size
and subspace size is denoted as column header. The subKKR and subKBR have always been
learned with the full data set of 500 samples. The data points for the subspace have been
drawn uniformly without replacement from the full data set.

@ Springer



2132 Machine Learning (2019) 108:2113-2157

Fig.2 Graphical model for
comparing KKR to KBR

Flg 3 Performance of the KKR m== KKR  weees SUDKKR msmsems KKR(a) «=w=r: KKR(b)
updates versus the KBR updates |- KBR(c) SUbKBR - - - - ML

for estimating the mean of a
Gaussian distribution with 1-10
seen samples. The ML estimate
serves as a baseline. Depicted are
the median and the

(0.15, 0.85)-quantiles of the MSE
to the true mean over 20 runs 2 4 6 8 10

MSE to context

# seen samples

For the optimization of the hyper-parameters and for the evaluation, we have respectively
generated a data set with N = 10 latent context variables from the same uniform distribution.
These context variables are not be observed by the the filter methods. Next, we draw M =
10 samples from the Gaussian distribution around each context and update each method
iteratively with these ten samples. For each update we compute the squared error to the true
context and take the mean over all ten context variables. We use squared exponentials as kernel
functions and optimize their bandwidths as well as the regularization parameters using CMA-
ES (Hansen 2006). Figure 3 shows the median and the (0.15, 0.85)-quantiles of the MSE to
the true context over the number of seen samples. As a baseline we depict the maximum-
likelihood (ML) estimate of the expectation. We see that while in the beginning all methods
perform similar to the ML estimate, with more seen samples KKR and subKKR outperform all
variants of the KBR. Moreover the choice to depict the median and (0.15, 0.85)-quantiles over
mean and standard deviation is due to the instable optimization behavior of the KBR which
produced a lot of outliers. In Table 1 we state the time consumed to perform ten KKR/KBR
updates on 10 estimation tasks for different kernel sizes. Here, the KKR/subKKR methods
benefit from their ability to process the updates for all 10 estimation tasks in parallel. Yet,
the ability to precompute Q,/ Q,S and S;/P; has not even been exploited.

In a second experiment, we have investigated how sensible the KKR is to non-constant
noise in comparison to the KBR. We have sampled data similar to the previous experiment
with a context variable ¢; in the range [—5, 5] and observations s; ; from the distribution
N (ci, 0(c;)). The variance of the Gaussian distribution is dependent on the context variable
by o(ci) = exp(c;). Again, we sample N = 500 context and one observation (M = 1)
for each context for learning the models. For the optimization of the hyper-parameters, we
have sampled a data set of N = 10 context variables with M = 10 observations for each
context. And for the evaluation of the methods, we have chosen the context variables at the
integers [—5, —4, ..., 5] and have sampled again M = 10 observations per context. For
each sampled context, we perform updates with all ten observations. The plots in Fig. 4 show
mean and min/max of the estimated mean relative to the true mean (context) from which
the observations have been sampled for both cases, constant noise 0 = % and variable noise

@ Springer



Machine Learning (2019) 108:2113-2157 2133

Table 1 Time consumptions of

the KKR and KBR upawe.  * 200 300 400 S0

methods for different kernel sizes  ggRr 0.1110 0.3360 0.7155 1.3965
subKKR 0.1820 0.4655 0.9130 1.6075
KBR(a) 2.9395 9.2395 21.5035 41.6955
KBR(b) 0.8695 2.5840 5.7580 10.9900
KBR(c) 0.5455 1.5575 3.3695 6.4465
subKBR 2.3530 4.7625 7.6540 12.7960

The update was performed on 10 samples from 10 different distributions.
The subspace KKR and KBR updates are trained with 500 samples in the
full data set. Both KKR methods outperform the KBR methods clearly
as they are able to process the update on the 10 different distributions in

parallel
~F- KKR subKKR - KBR(b) -3~ subKBR v ML-estimates -« trainsamples - evalsamples
constant observation noise variance variable observation noise variance

relative mean absolute error

context context

Fig.4 Comparison of the performances of the KKR, subKKR, KBR(b), and subKBR on the estimation of the
mean ¢; of a Gaussian random variable, left with constant variance and right with variable variance exp(c;).
The y-axis depicts the mean absolute error relative to the context using a log-scale. Because of the exponential
relation between the observation noise and the context variable, we get the linear slope in the distribution of
the samples in the right plot (Color figure online)

o = exp(c;). As expected from the previous experiment, it can be clearly seen that all models
perform similarly well for the case of a constant noise variance. In the case of variable noise
variance, all models perform worse for smaller variances where the impact is larger in the
performances of the KKR and the subKKR. Note, however, that the KBR methods suffered
from numerical instabilities for large noise variances. For instance, KBR(b) was the only
KBR method that yielded results for the largest variance o = exp(5).

5 Applications of the kernel Kalman rule

In Sect. 4, we have shown how we can derive the KKR as an operator for approximate
Bayesian updates in the framework for nonparametric inference. In this section we will
present two applications of the kernel Kalman rule. In Sect. 5.1 we will first present the kernel
Kalman filter (KKF) and discuss details about the implementation. A subspace variate of the
KKEF is presented in Sect. 5.2 and experimental results of both are shown in Sect. 5.3. The
kernel forward backward smoother (KFBS) is presented as another application of the KKR
in Sect. 5.4 and a subspace variate is discussed in Sect. 5.5. We finally show experimental
evaluations of the KFBS and the subKFBS in Sect. 5.6.

5.1 The kernel Kalman filter

Similar to the kernel Bayes’ filter (Fukumizu etal. 2013; Song et al. 2013), we can combine the
kernel Kalman rule with the kernel sum rule to formulate the kernel Kalman filter (KKF). To

@ Springer



2134 Machine Learning (2019) 108:2113-2157

learn the models of the KKF, we assume adataset Dy zp = {1, X1, ¥1). ..., Fn, X5, ¥,)}
consisting of triples with preceding state x;, state x;, and measurement y; as given. We further
assume the states to be Markov, i.e., the state x; is only dependent on its predecessor X;.
Based on this data set we define the feature matrices Y, = [p(x1), ..., @(x,)], Y. =
[p1), ..., 0X,)], and ® := [¢(y}), - .-, ®(y,)]. In contrast to the KBF, we represent the
belief state as mean map 1y ; = Y m; and as covariance operator éX x.0 = YxS; YT

The forward model P (X |X) that propagates the posterior belief state at time ¢ to the prior
belief state at time # + 1 can then be learned as conditional embedding operator

Cog =T Kz + A1)~ YL, (77)

which we also call transition operator. Here, K ;3 is the Gram matrix of the features of the
preceding states Y ... The posterior belief state at time ¢ is then propagated to the prior belief
state at time ¢ + 1 time by applying the kernel sum rule. That is, we apply the transition
operator to the posterior mean map and the posterior covariance embedding at time ¢ and
obtain prior mean map and prior covariance embedding at time t 4 1, i.e.,

fiy 41 = éxp"('&;t =Y, Tm/, & m,=Tm} (78)
Cxxat1 = CyxCoxaChyz tV & S, =TSTT+V. (19

Note that the propagation of the covariance embedding is slightly different to the kernel sum
rule by Song et al. (2013), however this formulation follows directly from the kernel chain
rule (c.f. Egs. 32 and 11). Analog to the observation matrix O (c.f. Sect. 4.3), we denote the
transition matrix T = (Kzz + ArI) "' Kz, where K3, = T; Y, is the kernel matrix of
the preceding states and the current states. The covariance of the transition residual V and its
finite matrix representation V can be obtained as

1 /4 A T
V= (CX|XT; - Tx) (cx‘grf _ TX) (80)
1
=— (T, (Kzz +2L) " YT, —Y) (Y, (Kiz + A1) YIY. —Y,)" (8D
1
=Y, — (K + AT Key — 1) (Kiz + A1) 7 Kez — 1,)T YT (82)
L ]
|4

On the new prior belief state that we obtain from the transition update, we can afterwards
apply the kernel Kalman rule as observation update. Before we give a condensed summary
of the kernel Kalman filter in Algorithm 1, we will discuss how we obtain the embedding
of the distribution over the initial states in the next section. To extract some meaningful
information from the RKHS-embedded distributions, we furthermore need to find a mapping
of the embedded distribution back into the state space. In Sect. 5.1.2, show how we approached
the so-called preimage problem and shortly discuss other solutions.

5.1.1 Embedding the initial state distribution

Before running the filter on incoming measurements y;, we need to initialize the belief state
with an initial mean map px o and an initial covariance operator Cy x o. We can obtain these
initial embeddings from a data set Dy = {x?, o, x(},} which consists in general of samples
from the initial distribution of the system. Practically, we can obtain this data set by taking the
initial states from multiple training episodes or—if we assume a stationary distribution—we

@ Springer



Machine Learning (2019) 108:2113-2157 2135

can also take all training samples for the initialization. We can obtain the initial mean map by
first embedding a uniform distribution into the RKHS spanned by the features of the initial
states Y, . Afterwards, we apply a conditional operator to map this distribution into the

Hilbert space spanned by the features Y as

A _ 1
fixo =Xumo =Y, (Kux + 210" XTY ol (83)

_ 1
< my= (Kxx + )‘In) IKXOINN~ (84)

where Ko = Y1 Y x,0 18 the kernel matrix of the training samples and the samples in Dy, and
1x denotes the N-dimensional all-ones vector. Similarly, we can obtain the initial covariance
embedding operator as

. 1 _ N
Cxx.0=",SoYT = NTX(K” + L) T K (KT (K yx + A1)~ 'YT — X mym] YT
(85)

Hence, we can obtain the initial weight vector m and the initial weight matrix So by comput-
ing the mean and the covariance over the columns of the matrix Co = (K x + A1 DK .

5.1.2 The pre-image problem/recovering the state-space distribution

Recovering a distribution in the state space that is a pre-image of a given mean map is still
a topic of ongoing research. There are several approaches to this problem, such as fitting a
Gaussian mixture model (Mccalman et al. 2013), or sampling from the embedded distribution
by optimization (Chen et al. 2010). In the experiments conducted for this paper, we approach
the pre-image problem by matching a Gaussian distribution, which is a reasonable choice if
the recovered distribution is unimodal. Since we embed the belief state for the kernel Kalman
rule as a mean map and as a covariance operator, we can obtain the mean and covariance
of a Gaussian approximations by simple matrix manipulations. The space of the samples
R4 together with the linear kernel k(x1, x2) = (x1,x3) = xlsz forms an RKHS as well.
Therefore, we can simply define a conditional embedding operator that maps from the Hilbert
space of the feature vectors to the Hilbert space of the samples as

Core = X (Kx +21,)7'YT. (86)

By applying this conditional operator now to the belief state, we obtain the mean of the
embedded distribution in the sample space

1 = Corettx.t = CoreBp, [0(X)] = Ep, [Corep(X)] = Ep, [X]. (87)

Similarly, we can also apply this operator to the covariance embedding to obtain the covari-
ance of the belief state in the sample space

2 = CoreCrxiChe
= Cpre (Ep, [9(X) ® 9(X)] — pxs ® x.s) Cle

= By, [Coreg (X) ® 00OCT | = Coretix.s ® pix.1Che

=Ep [XQ@X]—n,®n] (88)

However, also any other approach from the literature can be used in the kernel Kalman filter
algorithm.

@ Springer



2136 Machine Learning (2019) 108:2113-2157

Algorithm 1: The Kernel Kalman Filter
input: triples {(X1, X1, ¥1)s -+, Cms Xm, Y)}s
kernel functions k and g, regularization parameters A and «,
let X be the matrix of all x; as columns, X and Y analogously,
let X be the matrix of all data points used to compute the initial embeddings

compute kernel matrices .
Kxx =k(X,X), Kzz =k(X,X), Kz, =k(X, X),and Gy, =g(Y,Y)

compute model matrices
T=(Kg; +Mm) 'K;yand O = (Kxx +ALn) "' Kix

compute initial embeddings
kernel matrix with samples of the initial distribution: Ko = k(X, X)), Co = (Kxx + A1 m) LK 0»
compute mean and variance over the columns: mq = mean(Cg), So = var(Cy)

loop

if new observation y, available then
compute kernel Kalman gain
Q, =8, 0T(Gy,0S; 0T +xl)~!
innovation update
mt =m; + Q,(gy, — GyyOm,)
S§ =587~ 0:Gy,08;

transition update

- _ + - _ +orT
m;_ =Tm;, St+1 =TS/ TT+V
project into state space

nt:XOm;, Z[:XOSIOTXT

5.1.3 Embedding observation windows

So far, we assumed that we have access to the latent states x; in our training set. However,
in many setups we only have access to the partial observations y; which do not have the
Markov property. Yet, we can still learn a KKR model from the provided data by embedding
time windows y, ., of size k as internal state representation. Similar approaches have
been used by auto-regressive HMMs (Shannon et al. 2013). With longer data windows, the
transitions become more and more Markov. How many observation each data window has to
contain depends on two factors: on the dimensionality of the underlying system and on the
signal-to-noise ratio of the measurements y;.

5.2 The subspace kernel Kalman filter

The subspace kernel Kalman filter (subKKF) is an extension of the KKF that applies the
subspace conditional embedding operator presented in Eq. 26 as well as the subspace formu-
lation of the kernel Kalman rule derived in Sect. 4.4. In contrast to the KKF, we assume for
the subKKF a data set of triples {(x1, X}, y{), ..., (Xn, X},, y,)}, where x} is the successor
state to x;. The representation of the belief state changes from weight vector m, and weight
matrix S; to the subspace projections of the embeddings n; = T'TY,m;, = Klim, and
P, =TTY,S,YIT = K L? S: K .z, respectively. Additionally, both update procedures of
the kernel Kalman filter, the transition update and the innovation update, have to be substi-
tuted by their subspace counterparts. The transition update is realized by the subspace kernel
sum rule and the innovation update by the subspace kernel Kalman rule. The equations are
depicted in Algorithm 2.

@ Springer



Machine Learning (2019) 108:2113-2157 2137

Fig.5 Graphical model that we
assume for the pendulum — ¥
experiment

Since we represent the belief state as a projection into the subspace defined by I', we
can directly obtain the initial belief state by projecting the uniform embedding in the RKHS
spanned by the samples from the initial distribution as

1 1
ny = I‘TX’OINN = K);()INN, (89)
P—]FT TTrT—lK— K:)7 90
0=y TV oYrol" =5 70 (Kz0) ' . (90)

Here, K x is the feature matrix of the subset and the samples from the initial state distribution.
For the mapping back into the state space, we can similarly to the KKF define a subspace
conditional operator as

(3= XK.z (KT K.z +A1,) ' TT. ©1)

pre

By applying this operator to mean map and covariance embedding, we obtain the mean and
variance in state space from the subspace projections as

-1

N, = XKy (KL;KXJE + )\Im) ni, 92)
-1 -1

= XK (K Kz +201y)" P (KT Kye+A1,) K1 XT. (93)

A concise description of the subspace kernel Kalman filter can be found in Algorithm 2.

5.3 Experimental evaluation of the kernel Kalman filter

We evaluate the performance of the KKF and the subKKF on two experiments on simulated
environments, a pendulum and a quad-link, and one experiment on real-world data from a
human motion tracking data set (Wojtusch and von Stryk 2015). For all kernel based methods,
we use the squared exponential kernel, where we choose the kernel bandwidths according to
the median trick (Jaakkola et al. 1999) and scale the median distances with a single optimized
parameter.

5.3.1 Pendulum

In this experiment, we use a simulated pendulum as system dynamics. The state so =
(g0, go) of the pendulum is initialized uniformly in the range [0.17, 0.47] for the angle go
and in the range [— 0.5%, 0.5%] for the angular velocity go. We simulate the pendulum with
a frequency of 10,000 Hz and add normally distributed process noise with o = 0.1. The filter
methods observe the joint positions with additive Gaussian noise, i.e., o; ~ N (g, 0.01) ata
rate of 10Hz. A graphical model of the pendulum is depicted in Fig. 5.

We compare the KKF, the subspace KKF (subKKF) and the KKF learned with the full
data set (fullKKF) to version (a) of the kernel Bayes filter (KBF(a)) (Song et al. 2013) (the

@ Springer



2138 Machine Learning (2019) 108:2113-2157

Algorithm 2: The Subspace Kernel Kalman Filter

input: triples {(x1, X}, y), ..., (0. %, )},
kernel functions k and g, regularization parameters A and «,
let X be the matrix of all x; as columns, X” and ¥ analogously,
let X be the matrix of all data points used to compute the initial embeddings

select subset of n samples
X g ~ random strategy, or X g ~ kernel activation heuristic

compute kernel matrices
K,z =k(X,Xg), Kz =k(X',Xg),and Gyy = g(Y.,Y)
compute model matrices

s T T -1 S (KT K.- -
T° =K %K (K[ K :+My,)  and 0° := (K] K,z +11;)
compute initial embeddings
kernel matrix with samples of the initial distribution: K g =k(Xgs, X0)

1

compute mean and variance over the columns: my = mean (K g ), So = var (K g )

loop
if new observation y, available then
compute subspace kernel Kalman gain

0f = 7 (05)" (KI.Gy K05 P (0%)] +,<1,1)_]K;)E

X
note that you can apply the matrix K Ij to the kernel matrix G in the innovation update already
at learning time to increase computational efficiency.

innovation update
nf =n; + Q;g (gyt - GyyKyx OSnf)
Pf =P - 0/GyyK.;05P;

transition update
- _ S+ - _pSpt(ps\T
ey =T5nf, Po =T5Pf (15) + Vs

project into state space
n = XK,:05n,, %, =XK.;;05P,05KT_XT

other versions, KBF(b) and KBF(c), have yielded worse results in this experiment) and the
kernel Kalman filter with covariance embedding operator (KKF-CEO) (Zhu et al. 2014), as
well as to standard filtering approaches such as the EKF (Julier and Uhlmann 1997) and the
UKF (Wan and Van Der Merwe 2000) (which require a model of the system dynamics). To
learn the models, we simulate 10 episodes with a length of 30 steps (3 s), i.e., 300 samples in
total. Instead of the true state s, of the pendulum, we use a window of 4 samples to represent
the latent state. For the KKF and all KBF models, we use a kernel size of 100 samples, for
the fullKKF, we use all available training samples and for the subKKF we use a set of 100
samples to span the subspace and the full data set to learn the operators. The samples for
the subspace are selected from the full data set using the kernel activation heuristic. The
results are shown in Fig. 6. The KKF and subKKF show clearly better results than all other
non-parametric filtering methods and reach a performance level close to the EKF and UKF.

5.3.2 Quad-link

In this experiment, we use a simulated 4-link pendulum where we observe the 2-D end-
effector positions. The state s, of the pendulum consists of the four joint angles g, and joint
velocities ¢,. The first and the last joints go ;—0, ¢3,;=0 are initialized uniformly in the range

@ Springer



Machine Learning (2019) 108:2113-2157 2139

Fig.6 Comparison of KKF to 150 1072 KKE WbKKE
KBF(b), KKF-CEO, EKF and : — FUlKKF  eeoeeen KBF()
UKE. All kernel methods (except .= .- EKF/UKF e KKF-CEO

fullKKF) use kernel matrices of

100 samples. The subKKF 2 1.00
method uses a subset of 100 =
samples and the whole data set to
learn the conditional operators. 0.50 -
Depicted is the median MSE to ’ ‘ ‘ ‘ ‘ ‘
the ground-truth of 20 trials with 10 20 30' .40 50
the [0.25, 0.75] quantiles # of sample trajectories
0.10
0.08
@ 0.06 [
2]
= 0.04
0.02
0‘00---\-"""\ """ /et i

10 20 30 40 50

# of sample trajectories

Fig.7 Graphical model that we
assume for the quad-link — b —»
experiment. The states s; contain

the joint angles and velocities, x;
is the position of the endeffector,

and o; the noise observation
thereof

[—0.55m, — 0.457] for go,;=0, and [— 0.5, 0.57] for g3 ;=0. The remaining joints and the
joint velocities have all been initialized at 0.0. We simulate with Gaussian process noise with
o = 0.01. The filter methods observe the end-effector positions x; with Gaussian observation
noise as o; ~ N(x;, 0.001) at a rate of I0Hz. As we assume, that we have no access to the
true states, we use data windows of size 4 as representation of the latent state to learn the
models. A graphical model of the system is depicted in Fig. 7.

We evaluate the prediction performance of the subKKF in comparison to the KKF-CEO,
the EKF and the UKF. All other non-parametric filtering methods could not achieve a good
performance or are not feasible due to the very high computation times. As the subKKF
outperformed the KKF in the previous experiments and is also computationally much cheaper,
we skip the comparison to the standard KKF in this and also the following experiments. We
use a subspace of 500 samples, which is selected according to the kernel activation heuristic,
and learn the subKKF with the full data set of 3000 samples.

In a first qualitative evaluation, we compare the long-term prediction performance of the
subKKF in comparison to the UKF, the EKF and the Monte—Carlo filter (MCF) as a baseline.
This evaluation is shown in Fig. 8. The first five steps of of the end-effector trajectories are
observed by the filters, the following 30 steps are predicted. The UKF is not able to predict

@ Springer



2140 Machine Learning (2019) 108:2113-2157

sam

(a) anim. QL (b) MCF (¢) UKF (d) subKKF

Fig.8 Example trajectory of the quad-link end-effector. The filter outputs in black, where the ellipses enclose
90% of the probability mass. All filters were updated with the first five measurements (yellow marks) and
predicted the following 30 steps. a Animation of the trajectory, b-d depict the outputs of Monte-Carlo filter,
unscented Kalman filter, and subspace kernel Kalman filter, respectively (Color figure online)

Fig.9 1, 2 and 3 step prediction 0.6 ¢,
performances in mean euclidean [ et =
distances (MED) to the true a 0.4 == v UKF
end-effector positions of the = 021 . _ ;‘JEI;IE};O
quad-link 0 FarazazAngIAIAIAIAIAIAIAlALA

t t+1 t+2 t+3

prediction steps

the movements of the quad-link end-effector due to the high non-linearity, while the subKKF
is able to predict the whole trajectory.

We also compared the 1, 2 and 3-step prediction performance of the subKKF to the KKF-
CEO, EKF and UKF (Fig. 9). The KKF-CEO provides poor results already for the filtering
task. The EKF performs equally bad, since the observation model is highly non-linear. The
UKEF already yields a much better performance as it does not suffer from the linearizion of
the system dynamics. The subKKF performs slightly better than the UKF.

5.3.3 Human motion data

The human motion dynamics (HuMoD) database by Wojtusch and von Stryk (2015) con-
sists of the data sets of several motions executed by two subjects. All data sets contain the
recordings from a motion capture system with 36 markers as well as the recordings of the
electrical activity of 14 muscles in the legs. Additionally, data from the treadmill such as
ground reaction forces and velocities are available. The x-, y-, and z-locations of the markers
were recorded at 500 Hz, the muscle activities at 2000 Hz, and the data from the treadmill
at 1000 Hz. Furthermore, the database contains joint positions and joint trajectories derived
from the marker positions via kinematic models of the human body. In our experiments, we
use the marker locations, the derived locations of the joints and the muscle activities. We
subsample all data to a common frame rate of 50 Hz and transpose the x- and z-position of all
markers such that the T12-marker (marker at the 12th thoracic vertebra) has (x = 0,z = 0)
in all frames. Note that in the HuMoD database, the x-axis points in the motion direction (i.e.,
along the treadmill), the y-axis points upwards and the z-axis forms a right-hand coordinate
system towards the right side of the treadmill. We used walking motions at 1.0m/s, 1.5m/s,
2.0m/s, and running motions at 2.0m/s, 3.0 m/s, and 4 m/s, captured from one subject. For
evaluating the trained model, we used a test data-set in which the subject transitions linearly
from Om/s up to 4 m/s and back to O m/s.

@ Springer



Machine Learning (2019) 108:2113-2157 2141

Fig. 10 Example sequence of 4 postures and the measured muscle activities. The marker and skeleton in green
depict the ground-truth, the estimates from the models are depicted in black/blue. The learned models estimate
the marker and joint positions from the muscle activities. The first row shows the estimated positions from
the subKKEF, the second row shows the estimated positions from the subKBF and the third row shows the
estimated positions from a sparse GP. For all three models, we use a sample set of 2000 samples and a sparse
subset of 500 samples (Color figure online)

Fig. 11 Performance of the 9
subKKF and the subKBF on the = = = subKKR subKBR
HuMoD transition data for E 8
different sizes of the subspace E
m 7
¥ 6 e N e o o o —
5

T T T
200 400 600 800 1,000
size subspace

In the experiment, we compare the performance of subKKEF, subKBF, and sparse Gaussian
process (SGP) in restoring the marker and joint positions from the muscle activities. We learn
all three models using the marker and joint positions as state variables (or outputs) x; and
the muscle activities as observations (or inputs) y,;. We use a set of 2000 samples to learn the
kernel matrices and a subset of 500 samples to define the subspace (or as inducing inputs).

@ Springer



2142 Machine Learning (2019) 108:2113-2157

Table2 Top: performance of subKKF, subKBF, and SGP for the HuMoD transition data for different sizes of
the subspace. Bottom: time consumptions of subKKF and subKBF for filtering 100 test sequences of length
50 from the HuMoD data set

# 200 400 600 800 1000
subKKF 6.66 591 5.94 5.87 5.92
subKBF 7.48 6.73 6.63 6.55 6.70
SGP 76.33 70.15 68.46 63.13 58.97
subKKF 0.61£0.10s 1.71£0.17 s 3.84+£0.40s 7.21+£0.85s 11.72 £ 041 s
subKBF 59+13s 170+ 11.3s 352+15s 620 £ 15s 927+ 174 s
Fig. 12 Performance of the 35
subKKF on HuMoD test
sequences after 0, 10, 20, 30 and E
40 iterations of the CMA-ES E 30 k-
optimizer m Tteell
17 T T
=
a4
25
0 10 20 30 40

size subspace

For subKKF and subKBF, we use a window size of 2. While we could easily carry out the
optimization of the parameters for the subKKF and for the SGP, the optimization of the
parameters for the subKBF was not feasible in a considerable amount of time.

Figure 10 depicts marker and joint positions of four exemplary postures together with the
muscle activities during that period of time. The locations of the exemplary postures in the
time line are depicted by vertical lines in the plot of the muscle activities. While this is only
a qualitative example, it depicts how the subKKF outperforms the subKBF and the SGP in
restoring the positions of the markers and the joints.

We compare the performance of subKKF, subKBF and SGP for different sizes of the
subspace (inducing inputs). Figure 11 depicts the performance of subKKF and subKBF. The
results of the SGP can be seen in Table 2 which are clearly worse in comparison to the filtering
approaches which take the temporal correlation of the data into account. Furthermore, Table 2
also depicts the time consumption of subKKF and subKBF for filtering 100 test sequences
of length 50. The gain in efficiency of the subKKF over the subKBF which is around the
factor 100 can be seen clearly. In Fig. 12, we depict the performance gain of the subKKF
over the number of iterations of the CMA-ES optimizer. We see that in this case, the first 10
iterations yield a bigger jump in performance than the following 40 steps. However, from
our experience, this is very specific to the problem and the initial setting of the parameters,
which were in this experiment already very close to the optimal parameters.

5.4 The kernel forward-backward smoother

Smoothing is in contrast to filtering a post-processing routine. While filtering refers to a
routine where the current state is estimated recursively from all past observations, smoothing
computes the best state estimates given all available observations from the past and the
future. Hence, for a given time series of observations [y, ..., yr], we want to obtain the
belief p(x/|yy,...,yp) foralll <z <T.

@ Springer



Machine Learning (2019) 108:2113-2157 2143

One well-known and simple approach to smoothing is the forward—backward smoother.
During a forward pass the standard filtering algorithm is applied to the observations. After-
wards, during the backward pass, an inverse filter is applied to the same time series of
observations. The filter estimates of forward and backward pass are finally combined into
the smoothed estimates. Since the information from the observation should be incorporated
only once into the smoothed estimates, we need to combine the posterior estimates of the
forward pass with the prior estimates of the backward pass (or vice versa). For the case of
ordinary Kalman filters, the backward pass is hard to realize because of two problems. First,
it requires an inverse model of the underlying system for the backward pass, and second,
an initialization of the belief at the final state is necessary. These issues are however not
applicable for the KKF as we can learn both, the inverse models and the embedding of initial
distribution of the final states from data.

5.4.1 Computing the smoothed belief state as a weighted average

Assuming that we have the a-posteriori belief states from the forward pass and the a-priori
belief states from the backward pass as

{(era)oo(uirctn))  and (w50 Gn) oo (o Cor) | 0%

respectively, we can combine the mean maps into a smoothed belief state as the weighted
average

Ms,p = Zf,tl/v}_,t + 21ty - 95)

Since both, the estimator from the forward pass and the estimator from the backward pass,
are unbiased, the weighting operators Zy ; and 2 ; need to satisfy 7 = Zr ; + 2 ; in order
to get an unbiased estimator of the smoothed mean map, i.e.,

E[p(X) — ;] =0 (96)

E [w(x,) —zZrul T+ zb,tuﬁ”] L0 97)
Ele(X0] - 2. [w! 7]+ 2B "] £ 0 (98)
e — (Zpa+ Zpa) s =0 (99)

= Zp 4 E =T (100)

Thus, the weighting operators can be expressed by each other as Z;, ; = 7 — Z¢ ; and vice
versa. We substitute this representation back into the smoothing update in Eq. 95 to obtain

tse = Zpan, + (T = Zp0) 1y, (101)
5.4.2 Finding the optimal weighting operators

We obtain the optimal weighting operators by minimizing the squared error of the smoothing
mean map which is equivalent to minimizing the trace of the smoothed covariance embedding
operator Cs 4, i.€.,

min E [(¢(X0) — ;)" (¢(X,) — )] = min E [Tr (¢(X) — 1) (¢(X,) — 1) 7] (102)
=minTr C; ;. (103)

@ Springer



2144 Machine Learning (2019) 108:2113-2157

We can then use Eq. 101 to rewrite the covariance operator as

Cor =E[ (o) - 2ruf, + @ - 2r) 05, ) ()] (104)

=E[(Zres—en+ea) ()], (105)

where €7 = @(x;) — ,u}rt is the error of the a-posteriori estimate of the forward pass and

€r = ¢(x1) — u,, , is the error of the a-priori estimate of the backward pass and where we
used the relation ¢(X;) = Zo(X,) = (Z7, + Zp)e (X)) = (27, + T — Z7,)e(Xy).
By expanding the square and since the cross-covariances of the errors from forward and the
backward pass are zero (i.e., E[Efeg] = 0), we arrive at

_ T T) 2T T T 2T T
Cr=E [Zf’, <efef +€,€, ) Zf,; - Zf’tebeh — €,€) Zf,t + ebeh] . (106)

Lastly, we can take the derivative and set it to zero to obtain the optimal Zr ; as

1 0TrCy
0= = (21 (/] + ) — ] ] (107)
0= 211 (E[eef ]+ Elepe]]) ~ ] (108)
0= 2, (c;’, + CE,:) —Cp (109)
-1
210 = Cou (C;t * Cb_,z) : (110)

From the condition on the weighting operators stated in Eq. 100, it furthermore follows that

— + _ -1
Zu=C5,(ct +¢,)

5.4.3 Smoothing the covariance embedding operator

Taking the representation of the smoothed covariance in Eq. 106 and substituting the covari-
ance operators and the optimal weighting operator Z; gives us the following smoothed
covariance operator

-1
Cor =Cp =G (CF+Gr) Gy (111)
-1
—c;, - <I ~ci.(cf+¢) ) ¢, (112)
—1
=c (¢t +¢) cn (113)

From the optimal solution of the weighting operator, we can now see that the smoothing
update of the covariance embedding operator can be expressed as

Csi = Zp1Cy, = Z7.4CF, (114)

In the following section, we will show how the smoothing update can be expressed with finite
samples using vector/matrix operations.

@ Springer



Machine Learning (2019) 108:2113-2157 2145

5.4.4 The empirical kernel forward-backward smoother

We assume that we are given the weight vectors and weight matrices from the forward and the
backward pass as {(m;?,l, S;l), e (mer’T, S?’T)} and {(m;l, S;l), e (m;T, S;T)},
respectively. Since the weighting operator Z; ; can be expressed by Z ; and vice versa, we
only need to compute one of the weighting operators which we choose to be Z f.t- We add
the identity operator with a small scalar y in the inverse to improve the numerical stability
and obtain

2, =65, (c?, +C;, +yI)71 (115)
=Y, Y] (Tx (s}j, + S;,) YT+ )/Z)_l (116)
~1,S;, (T;Tx (s;,,+s,;’,) +y1,,)_11r; (117)
=, S5, (Kee (S, +57,) +yl,,>_] YT, (118)

Zr

where we use the matrix identity A(BA + I )=l = (AB + I)"' A and defined the finite
weighting matrix Z y ;. With this weighting matrix we can now combine the mean maps of
the forward and the backward pass as

A =20t + (T— 200) iy, (119)
=X, Zp XI5, + (T =0 ZpXT) 1y, (120)
=Y. Zs Koomy, +X,my =YX Zs Komy, (121)
Y m$ =1, (m;_, +Zp Koy (mj;, - m@)) . (122)
And similarly we can obtain the smoothed estimate of the covariance operator as
G =Zp.C, (123)
=Y, Zs XIY, S}, YT (124)
Y SYT =Y, Z7 KuST YT (125)

A concise description of the kernel forward—backward smoothing algorithm can be found in
Algorithm 3.

5.4.5 Initialization of the backward kernel Kalman filter

A critical aspect of the classical forward—backward smoothing algorithm is the initialization
of the belief state for the backward pass. Often the distribution over the initial state is well
known but not a distribution over the terminal state, where it is often not even clear how a
terminal state is defined. For the backward kernel Kalman filter, two approaches can be used
to initialize the belief state. The first approach assumes that we have multiple episodes in
the training data, where each episode terminates in a terminal state of the system. We can
then compute the initialization for the backward pass analogously to the initialization for
the KKF described in Sect. 5.1.1. The second approach simply assumes that the system has

@ Springer



2146 Machine Learning (2019) 108:2113-2157

Algorithm 3: The Kernel Forward-Backward Smoother

input: data set Dy y vy = {F1, 21, %7, ¥1), - os @, X0, %0, ¥}
kernel functions k and g, regularization parameters A and k,
let X be the matrix of all x; as columns, X, X' "and Y analogously,
let X be the matrix of all data points used to initialize the forward pass
let X7 be the matrix of all data points used to initialize the backward pass
learn the forward filter 5
See Algorithm 1 with data matrices X¢, X, X, and Y.
learn the backward filter
See Algorithm 1 with data matrices X7, X, X’, and Y, note that you need to learn the transition model
from X’ to X.
apply forward filter

Compute filtered estimates {(mj{l S}L’l> R (m}r,T, S}L4T>}
apply backward filter and compute smoothed estimates
loop

if observation y, available then
compute kernel Kalman gain

0y =S;,07(Gyy (08,07 +Ry) +xD!
innovation update
my, =my + Qp gy, — GyyOm;)
Sy =S, 25:Gyy0S,,
transition update
my,_ =Tpmj . Sy, | =TpS§,T)+V)
compute smoothed estimate
Zsi=S,, (Kux (ST, +55,) + yI,,)_l
m} = ml:,z +Zy Kxx (m';t - mljr)
55 = Zf,thxS}r”

project into state space
w=X0m!, =¥=X0S0TXT

a stationary distribution which is covered by the training data. The initialization is then the
embedding of the distribution over all the samples in the training set.

5.5 The subspace kernel forward—-backward smoother

If we use the subspace kernel Kalman filter to perform the forward and the backward pass, we
obtain as outcome the subspace projections n; of the mean map and P, covariance embedding
instead of the weight vectors m; and weight matrices S;, respectively. To perform smoothing
on these subspace projections, we need to find the weighting matrices for the smoothing
update analog to Eq. 101. Though, as the representation is already in a finite domain, we
can directly apply the optimal solution found in Eq. 110 to the subspace projections of the
covariance operator. Hence, the weighting matrix for the subspace kernel forward—backward
smoother (subKFBS) becomes

75 =P (P+ + P )_1 (126)
fit — % bt fit b,t

@ Springer



Machine Learning (2019) 108:2113-2157 2147

Algorithm 4: The Subspace Kernel Forward—Backward Smoother

input: dataset Dy vy = {F1, X1, X1, ¥1), ooy Fns Xns X0, ¥

kernel functions k and g, regularization parameters A and k,

let X be the matrix of all x; as columns, f(, X’ and Y analogously,

let X be the matrix of all data points used to initialize the forward pass

let X 7 be the matrix of all data points used to initialize the backward pass
learn forward and backward filter
See Algorithm 1 with data matrices X, X, X ’ and Y for the forward filter and data matrices X X,
and Y for the backward filter. Note that you need to learn the transition model for the backward filter
from X to X.

apply forward filter

. + p+ + +
Compute filtered estimates nf s Pf 1)seees nf T Pf T
apply backward filter and compute smoothed estimates
loop

if observation y, available then
compute subspace kernel Kalman gain

of =Py, (OS)T (K;;nyKxXOSP;.z (OS)T +"Im)71KI;

innovation update

i, =n,, + 0 (gyt - nyKx;oSn,;,), P/, =P, ~ 056G, K,z05P},
transition update
ny,_ =TSnf, P, _ =TSP/, (TS>T +VS
compute smoothed estimate
z8, =ry, (PJffJ + P;I)

_ 7S + S - _ 78 +
ng = Zf,t”f,t + (I”’ - Zf,t) Ryt Py, = ZfJPfJ

-1

project into state space
N, =XK,505n,,, %, =XK;05P 05KT_XT

From here, we can obtain the equations for the smoothing update of the subspace kernel
forward—backward smoother easily by

ne =255, +(1-25,)ny,,  and (127)
Py, =7} P}, (128)

Algorithm 4 gives a compact description of the subKFBS.

5.6 Experimental evaluation of the kernel forward backward smoother

We evaluate the kernel forward backward smoother with two experiments. In the first exper-
iment on data from a simulated pendulum, we show the performance gain of the KFBS
over the KKF. In the second experiment, we apply the KFBS on data of a table tennis ball
recorded with a camera-based tracking system and show how the KFBS and subKFBS are
able to restore the full trajectory of the ball while only having observations at the first four
and at the last time step.

@ Springer



2148 Machine Learning (2019) 108:2113-2157

5.6.1 Pendulum

We simulate a pendulum similar to the one from Sect. 5.3.1, however we initialize the
pendulum in the range [—0.257, 0.257] and with a angular velocity sampled from the range
[-2%,2%]. During the simulation, we apply Gaussian process noise with o = 0.01 and
as observations we use the angular displacement and add Gaussian observation noise with
o = 0.2. To learn the KFBS models, we sample 100 episodes with each 30 steps where
a step corresponds to 0.1s. The training samples are 200 windows of four observations,
which we select by the kernel activation heuristic explained in Sect. 3.1. To find the optimal
parameters, we apply CMA-ES (Hansen 2006) where we use the negative log-likelihood of
the ground-truth to the smoothed estimate as optimality criterion. During the optimization,
we use a test data set of 10 episodes, where we still observe at each time step. Later, we
evaluate the smoothing performance on an evaluation data set where we do not observe at
each time step but only at t+ = [1—4,6, 11, 16,21, 27—30]. This optimization procedure
yielded better results than directly optimizing with only partial observations.

In Fig. 13, we show a qualitative comparison of the forward and the backward pass to
the smoother. The results are as expected: the forward pass yields better results in the first
half of the episode, and the backward pass yields better results in the second half. The
smoother combines both estimates and outperforms the filter results. The smoothing can
also be observed in the profiles of the standard deviation. While the variance from the filters
increases at each time step without observation until the next measurement, the variance of
the smoother is much smaller and only rises slightly between the observations.

In Fig. 14, we compare the performance of a standard KKF to the KFBS and the subKFBS
for different kernel sizes on the same state estimation task for a simulated pendulum. The
subKFBS has been learned with 300 samples in the full data set. Depicted are the median
and the [0.15, 0.85]-quantiles of the MSE over 20 repetitions. The KFBS and the subKFBS
clearly outperform the KKF for small kernel sizes (50, 100) and also yield better results for
larger kernel sizes (i.e., 150 and 200 samples). The subKFBS yields slightly better results
than the KFBS. In addition, we see from the quantiles of the MSE that the KFBS and the
subKFBS have a more stable behavior in the optimization process than the KKF.

5.6.2 Tabletennis

In a second experiment, we perform smoothing on observations of a table tennis ball (Gomez-
Gonzalez et al. 2016). The data set contains 54 trajectories of a table tennis ball tracked with
a camera system, where each trajectory contains 51 observations which are recorded with
a frequency of 100Hz. We train the subKFBS with the data of 34 trajectories and use 10
trajectories for optimizing the parameters using CMA-ES (Hansen 2006). The remaining
10 trajectories are used for evaluating the results. For the smoothing task, the ball has been
observed at the first five time steps and then again at the last time step.

Figure 15 shows qualitative examples of smoothed trajectories using the subKFBS in
comparison the output of the subKKF. Here, we used data windows of size 4 and learned
the models with 300 samples in the training data set and 100 samples in the subset. We
optimized the regularization parameters and all bandwidths with CMA-ES (Hansen 2006).
The plot shows how the subKFBS can estimate accurately the path of the ball only from
observations at the beginning and at the end of the trajectory, while the subKKF diverges
from the actual trajectory over time. Especially the impact position of the ball on the table
can be estimated much better by the subKFBS than by the subKKF.

@ Springer



Machine Learning (2019) 108:2113-2157 2149

5 10 15 20 25 30 5 10 15 20 25 30
time step time step
4 —
=l
g
2
smoothed
weeees pendulum
o O observations
0 T T T
0.5 -
0 fEEeE 8 8 B gy

T
5 10 15 20 25 30
time step

Fig. 13 Qualitative comparison of the forward and the backward pass to the smoothed estimates of the KFBS
on a simulated pendulum. The upper plots show the mean and variance output of the filter/smoother, the lower
plots show the profiles of the standard deviation. While the forward pass already yields good estimates in the
first half of the time series, the smoother incorporates the good estimates from the backward pass in the second
half and outperforms the filters. In addition, the smoother yields a more confident about its estimate

Fig. 14 The KFBS and the sub 0.8

KFBS outperform the KKF — KFBS - - - subKFBS —-- KKF
. 0.6 [~

clearly for small kernel sizes but m | Tl

also with more samples in the E 041 Tl

gram matrices. The task was to 02
estimate the state of a pendulum

from noisy partial observations. ‘ ‘

Depicted are the median and the 50 100 150 200
[0.15, 0.85]-quantiles of the MSE kernel size / subspace size

over 20 repetitions

We also compare the KFBS to the subKFBS for different kernel sizes with the same
smoothing task on recorded table tennis ball data. Figure 16 shows a comparison of the
MSE, depicting the median and the [0.05, 0.95]-quantiles over 20 repetitions. The KFBS
has been learned with a varying kernel size of 50, 100, 150, and 200 samples. The subKFBS
uses the same number of samples to span the subspace but learns the models always with
400 samples in the full training set. While the subKFBS outperforms the KFBS for all kernel
sizes, the KFBS achieves a similar performance to the KFBS when learned with 200 samples.

@ Springer



2150 Machine Learning (2019) 108:2113-2157

Fig. 15 In comparison to the
KKEF, the KFBS is able to
reconstruct the trajectories of a S
table tennis ball from -0.5 T e
observations at the first five and at -1
the last two time steps. The plot
shows the z-coordinate of two R
trajectories of a table tennis ball _0.5 g T
recorded with a camera-based 14 S TN e
tracking system. We learned the o Observm‘ons ‘ ‘
subKFBS/subKKF with 100 0 10 20 30
samples in the subspace and 300 time step

points in the training set

- - - subKFBS ---~ subKKF - data

S,
M.""""r.:."'a f

x [m]

Fig. 16 The subKFBS performs _1073 - - - subKFBS —— KFBS
better than the KFBS in the table
tennis ball smoothing task. This
difference in the MSE between
the estimates and the noisy
recorded data is more prevalent
for small kernel sizes and
decreases with the number of
samples in the Gram matrices.
Depicted is the median and the f T T
[0.05, 0.95]-quantiles of the MSE 50 100 150 200

over 20 repetitions kernel size / subspace size

MSE

6 Conclusion and future work

In this paper, we have presented the kernel Kalman rule (KKR) as an alternative to the kernel
Bayes’ rule (KBR) in the framework for nonparametric inference Song et al. (2013). In
contrast to the KBR, the KKR is computationally more efficient, numerically more stable
and follows from a clear optimization objective. We have further combined the KKR as
Bayesian update with the kernel sum rule to formulate the kernel Kalman filter (KKF).
The kernel Kalman filter can be applied to nonlinear state estimation tasks as it learns the
probabilistic transition and observation dynamics as linear functions on embeddings of the
belief state in high-dimensional Hilbert spaces from data. In difference to existing kernel
Kalman filter formulations, the KKF also provides a more general formulation that is much
closer to the original Kalman filter equations and can also be applied to partially observable
systems.

While the KKF can be applied to state estimation and prediction based on past observa-
tions, we extend this work by introducing the kernel forward backward smoother (KFBS)
which infers the belief state from current, past, and future information. We have shown in
an experimental evaluation how this additional information leads to a performance gain of
the KFBS over the KKF. As kernel methods typically scale poorly with the number of data
points in the kernel matrices, we have introduced a sparsification technique that leverages
from the full training set while representing the embeddings only with a small subset of the
data. This technique leads to significant gains of the computational efficiency while yielding
similar or even slightly better results than whithout the sparsification.

We have shown that it is possible to learn the kernel Kalman rule and other kernelized
inference methods also from partial observations if sliding windows of the time series pro-
vide sufficient statistics. However in future work, we want to concentrate on learning the
transition dynamics in the RKHS with an expectation-maximization algorithm in case of

@ Springer



Machine Learning (2019) 108:2113-2157 2151

missing information about the latent state as we think that this leads to better models of the
dynamics and also improves the accuracy of the estimated variance.

A Derivations for the subspace conditional operator

We define the subspace conditional operator Cgl x as the mapping from an embedding ¢ (x) €
H x to the mean embedding jty|x € Hy of the conditional distribution P (Y|x) conditioned on
acertain variate x. To obtain this subspace conditional operator, we first introduce an auxiliary
conditional operator C';l,‘l”‘x which maps from the subspace projection of the embedding I' T (x)
to the mean map of the conditional distribution, i.e.,

fye = CYXTTo(x). (129)

We can then derive this auxiliary conditional operator by minimizing the squared error on
the full data set

7% = argming |® — CTTY, |, (130)
_ 0 5auX T
0_@ ‘«p—cmr T (131)
0=-2(@ - CyxITY,) YIT (132)
G TTY YIT = &YIT (133)
s — SYTT (TTY,YIT + A1) (134)

We can then substitute this result for the auxiliary conditional operator in Eq. 23 and obtain
the subspace conditional operator as

Cyix = CYxTT (135)
= ®YIT (ITY,YIT + 1) TT (136)
= ®K,; (KT K:+11)7'TT, (137)

where K,z = YIT € R"™™ is the kernel matrix of the sample feature set Y and its subset
r.

B Derivations for the kernel Kalman rule and its applications

B.1 The residual of the observation operator is unbiased

We can easily show that the residual of the observation operator is unbiased by taking the
expectation

Ey[§,] =Eylo(y,) = Cyxox)] (138)
=Ey x[¢(y) — Cyxo(x1)] (139)
=Ey x[¢(y)] = Cyxux. (140)
= Ex[Eyx[¢(y)]] — Ex[Eyx[¢(y)]] = 0. (141)

@ Springer



2152 Machine Learning (2019) 108:2113-2157

Here, we used the definition of the conditional embedding operator found in Song et al.
(2013).

B.2 Derivation of the optimal Kalman gain operator

We want to find the kernel Kalman gain operator Q; which minimizes the expected squared
loss E[(e) T &;"] or equivalently the variance of the estimator. The objective for minimizing
the variance can also be reformulated as minimizing the trace of the a-posteriori covariance
operator C;th of the state x; at time ¢, i.e.,

min E [(e;r)T ef] = Hci)in Tr E [e;r (e;r)T] (142)

QO
= minTr E[ (o) — 3., ) (o0x0) - wt)' ] e
= minTr CYyxr (144)

By substituting the posterior error with ef =T - chy| )€ — Q:¢,, we can now rewrite
this a-posteriori covariance operator as

Cxx, =E[ef ()] (145)
=E[((T-acyy)er —t) ((T-2cyy)e —as))'] (146)

= (T- 2y ) Eler €] (T- ¢y x) (147)

— Qg (- Q,CY‘X)T — (- acyy)Elerel1ar  a4s)
+QE[¢,¢]]Qf (149)

Since the residual of the observation operator ¢, is assumed to be independent from the
estimation error and since we assume the a-priori estimate to be zero mean we get

E[¢,(e)T]=E[¢]E[(e)T]=E[)T]|E[¢,] =E[e;¢]]=0. (150)
With this insight the posterior covariance operator can be reformulated as
_ T
Cirxa = (T Q1) Gy, (T - thy|x> + QRO (151)
where R = E[¢; ;tT] is the covariance of the residual of the observation operator. Taking the

derivative of the trace of the covariance operator and setting it to zero leads to the solution
for the kernel Kalman gain operator as

0=2(T - QCyx) Cry, (~Clix) +20R (152

ACyxCxx.Crix + QR = Cxx. Cyix (153)

o (Cy|xc;x,zC)T'|x + R) = C;x,zC)qu (154)
-1

Q= Cxx.Cyix (CYlX'C;X,tC;lX + R) . (155)

@ Springer



Machine Learning (2019) 108:2113-2157 2153

B.3 Simplifying the update of the covariance operator

Following the derivations in Simon (2006), we can find a simpler formulation for the update
of the covariance operator in Eq. 63. First, we substitute the kernel Kalman gain from Eq. 64

using the notation & = (Cy\xc)?x,zc;\x + ’R) which yields

Cx. = (I - C;(X,rc%xu_lcmx) Cix,r(m)T +C;(X,tC;|Xu_1R<"')T (156)

By expanding both terms we obtain

— — —1 — — —1 —

Cj(_X,t = cxx,r - Cxx,rc;p(u Cy|xcxx,z - Cxx,tC)quu Cy\xcxx.t (157)
— _1 — _1 —

+ CXX,tC;\Xu CYlXcXX,tC;lXu CY|XCXX,t (158)

+ ch,,c;‘xu—lnu—lcmc;“ (159)

If we now combine the second and third as well as the last two terms in this equation, we
arrive at

C;(-X,t = C)?x,z - 2C;X,t6;|Xu71CY\XC;X,t (160)
+ Cirx CT U™ (CynCiox  Cix + R) Uy Cy (161)

= Cyx.s — 2Cxx.CF xU ™ Cy xCix.s + Cxx Coixd ' UUT'Cy Cy,  (162)

= C;x,z - c;x,zc;wuilcnxc;x,z (163)
=Cxx,— 2CyxCxx, (164)

With this update equation for the estimator covariance, which is more concise and more
similar to the original equations of the Kalman filter, we can summarize the kernel Kalman
rule as follows: 1. compute the kernel Kalman gain operator Q; (Eq. 64), II. update the
estimator of the mean embedding /L; , (Eq. 55), II1. update the estimator of the covariance

embedding C¥, , (Eq. 65).

B.4 Derivations for the sample-based kernel Kalman rule

The Kalman gain operator can be rewritten with the sample estimators of mean embedding,

covariance embedding and conditional embedding operator as
O, =Y,5 0T®T (®0S; 0T®T +«7) ", (165)

However, this formulation still has the inversion of a potentially infinite dimensional operator.
To this end, we can apply the matrix identity A(BA 4+ I)~' = (AB + I)~' A to the kernel
Kalman gain matrix as follows

n B _ -1
O =71, 0T|<1>_T,[<1>os, 0T|<I>_T'+KI] (166)
A /A
=Y,5;0T(@T @08, 0T +«I)”' @T (167)
A= A
=Y, 8 07(G,,0S 07 +«I)"' @T, (168)
o,

@ Springer



2154 Machine Learning (2019) 108:2113-2157

where we defined @, = S; O0T(Gy,0S; OT +«I)~! € R"™" with the Gram matrix of the
observations G,, = ®T®. Based on this formulation of the kernel Kalman gain operator,
we can now derive finite vector/matrix formulations for the update equations of the estimator
of the mean embedding (Eq. 55) and the estimator of the covariance operator (Eq. 65). For
the estimator of the mean embedding, we obtain

A%, =g, + 9 (000 - 6y xix,) (169)
Y.m =Y m  +Y, 0,87 (p(y,) — @ (Kux +1L) ' YIY m)), (170)
=Y.m; +Y,0, (®TP(y,) — ®T® (K, + L) ' YIY m]), (171)

mi =m; + 0, (g, — GpOm; ), (172)

where g., = ®T¢(y,) is the embedding of the measurement at time 7. And the estimator
for the covariance operator gets

C;x,z = C;X,t -7, Qt(DTCY\XC);X,z (173)

Y S YT =Y, 8 YT —Y,0,®T® (K, +1L,) ' YIY S YT (174)
=Y, 5 YT —Y,0,Gyy (Kyx +AL,) ' K, S7YT (175)

S: =S, - 0,G,,08;. (176)

B.5 Derivation of the subspace kernel Kalman gain operator/matrix

To derive the gain operator of the subspace kernel Kalman rule, we apply the subspace
conditional operator

CSx = @K (KT Koz +41) ' TT, (177)

to the kernel Kalman gain from Eq. 64 and obtain

—1

A A N T /ne A N T
QzS = Cxx,r (CIS’\X) <C§|chx,z (C§|x> + KI) (178)
-1
=Y,8 K.z (0)TKT. T <<I>KX; OSKT_-S; K. (05T KT.&T +KI> . (179)
L A ] L B I A ]
Here, we denote 05 := (K ;i K, +11 )_1. To obtain a finite dimensional matrix in the

inverse, we apply again the matrix identity A(BA + I)~! = (AB + I)~! A and arrive at

~ -1
of = TXS;KX,;(OS)T(K;XN ®K,z0°KI S, K.:(0°)7 +/<1) KT -®T (180)
L ] 1 L 1
A B A

-1
:TXS,‘KX;(OS)T<K;XGWK“;OSKLES,‘KX,;(OS)T+/<I> KT.®T. (181)

Using the projecting the subspace kernel Kalman gain into the subspace spanned by the
features I'T leads to

N -1
705 = TTY,S; Kox (057 (K16, K OSKT ST K (05)T + k1) K1 @7

(182)

@ Springer



Machine Learning (2019) 108:2113-2157 2155

-1
= P (0%)T(KTG KOS P (05T +xI) K] @T, (183)

0}

where we define the subspace kernel Kalman gain matrix Q,S . Using this representation, we
can obtain the update equations for the subspace projections of mean embedding as

i, =7 (g, + 9F (6000 — Cixix.,)) (184)
i, =ny,+ 0 (g;y, —GyyK.x OSn,‘) ; (185)

and similarly for the covariance operator as

[7C5y T =TT (Cry, = O5¢H xCrx, ) T (136)
P/ =P, — Q’®T®K ;0°TTCy, T (187)
=P - 0/G,,K.:0°P; (188)

References

Agresti, A. (2002). Deriving standard errors with the delta method. In Categorical data analysis, Wiley series
in probability and statistics (p. 73ff). New York: Wiley.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society,
68(3), 337-404.

Boots, B., Gretton, A., & Gordon, G. J. (2013). Hilbert space embeddings of predictive state representations.
In Proceedings of the 29th international conference on uncertainty in artificial intelligence (UAI).
Chen, Y., Welling, M., & Smola, A. (2010). Super-samples from kernel herding. In Proceedings of the twenty-

sixth conference on uncertainty in artificial intelligence (UAI). AUAI Press.

Csato, L., & Opper, M. (2002). Sparse on-line Gaussian processes. Neural Computation, 14(3), 641-668.

Drineas, P., & Mahoney, M. W. (2005). On the Nystrom method for approximating a Gram matrix for improved
kernel-based learning. Journal of Machine Learning Research, 6, 23.

Fukumizu, K., Song, L., & Gretton, A. (2013). Kernel Bayes’ rule: Bayesian inference with positive definite
kernels. Journal of Machine Learning Research, 14(1), 3683-3719.

Gauss, C. F. (1823). Theoria combinationis observationum erroribus minimis obnoxiae. Gottingen: H.
Dieterich.

Gebhardt, G. H. W., Kupcsik, A., & Neumann, G. (2015). Learning subspace conditional embedding operators.
Workshop on large-scale kernel learning at ICML 2015.

Gebhardt, G. H. W., Kupcsik, A., & Neumann, G. (2017). The kernel kalman rule—Efficient nonparametric
inference with recursive least squares. In AAAI conference on artificial intelligence.

Gomez-Gonzalez, S., Neumann, G., Scholkopf, B., & Peters, J. (2016). Using probabilistic movement primi-
tives for striking movements. In IEEE-RAS international conference on humanoid robots (pp. 502-508).

Griinewilder, S., Lever, G., Baldassarre, L., Patterson, S., Gretton, A., & Pontil, M. (2012). Conditional mean
embeddings as regressors. In Proceedings of the 29th international conference on machine learning.

Hansen, N. (2006). The CMA evolution strategy: A comparing review. InJ. A. Lozano, P. Larraiiaga, I. Inza, &
E. Bengoetxea (Eds.), Towards a new evolutionary computation. Studies in fuzziness and soft computing
(Vol. 192). Berlin, Heidelberg: Springer.

Hsu, D., Kakade, S. M., & Zhang, T. (2012). A spectral algorithm for learning hidden Markov models. Journal
of Computer and System Sciences, 78(5), 1460-1480.

Jaakkola, T., Diekhans, M., & Haussler, D. (1999). Using the Fisher kernel method to detect remote protein
homologies. In Proceedings of the international conference on intelligent systems for molecular biology.
ISMB.

Jaeger, H. (2000). Observable operator models for discrete stochastic time series. Neural Computation, 12(6),
1371-1398.

Julier, S. J., & Uhlmann, J. K. (1997). A new extension of the Kalman filter to nonlinear systems. In Interna-
tional symposium on aerospace/defense sensing, simulation, and controls.

@ Springer



2156 Machine Learning (2019) 108:2113-2157

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engi-
neering, 82(1), 35-45.

Kawahara, Y., Yairi, T., & Machida, K. (2007). A kernel subspace method by stochastic realization for learning
nonlinear dynamical systems. Advances in Neural Information Processing Systems, 19, 665-672.
Mccalman, L., O ’callaghan, S., & Ramos, F. (2013). Multi-modal estimation with kernel embeddings for
learning motion models. In 2013 IEEE international conference on robotics and automation (ICRA) (pp.

2845-2852). Karlsruhe: IEEE.

McElhoe, B. A. (1966). An assessment of the navigation and course corrections for a manned flyby of mars
or venus. In IEEE transactions on aerospace and electronic systems AES-2.

Nishiyama, Y., Afsharinejad, A., Naruse, S., Boots, B., & Song, L. (2016). The nonparametric kernel Bayes
smoother. International Conference on Artificial Intelligence and Statistics, 41, 547-555.

Rahimi, A., & Recht, B. (2007). Random features for large-scale kernel machines. In Advances in neural
information processing systems (pp. 1-8).

Ralaivola, L., & d’Alche Buc, F. (2005). Time series filtering, smoothing and learning using the kernel Kalman
filter. In Proceedings 2005 IEEE international joint conference on neural networks (Vol. 3, pp. 1449—
1454).

Scholkopf, B., Herbrich, R., Smola, A. J. (2001). A generalized representer theorem. In: D. Helmbold & B.
Williamson (Eds.), Computational learning theory (COLT), 2001. Lecture Notes in Computer Science
(Vol. 2111). Berlin, Heidelberg: Springer.

Shannon, M., Zen, H., & Byrne, W. (2013). Autoregressive models for statistical parametric speech synthesis.
IEEE Transactions on Audio, Speech and Language Processing, 21(3), 587-597.

Simon, D. (2006). Optimal state estimation. Hoboken, NJ, USA: Wiley.

Smith, G. L., Schmidt, S. F., & McGee, L. A. (1962). Application of statistical filter theory to the optimal esti-
mation of position and velocity on board a circumlunar vehicle. Washington D.C.: National Aeronautics
and Space Administration.

Smola, A. J., & Bartlett, P. P. (2001). Sparse greedy Gaussian process regression. Advances in Neural Infor-
mation Processing Systems, 13(13), 619-625.

Smola, A. J., Gretton, A., Song, L., & Scholkopf, B. (2007). A Hilbert space embedding for distributions.
In Proceedings of the 18th international conference on algorithmic learning theory, lecture notes in
computer science (Vol. 4754, pp. 13-31). Berlin: Springer.

Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. Y. Weiss, B. Scholkopf,
& J. C. Platt (Eds.), Advances in neural information processing systems (Vol. 18, pp. 1257-1264). MIT
Press.

Song, L., Boots, B., Siddiqi, S. M., Gordon, G. J., & Smola, A. J. (2010). Hilbert space embeddings of hidden
Markov models. In Proceedings of the 27th international conference on machine learning (ICML-10)
(pp- 991-998).

Song, L., Huang, J., Smola, A., & Fukumizu, K. (2009). Hilbert space embeddings of conditional distributions
with applications to dynamical systems. In Proceedings of the 26th annual international conference on
machine learning—ICML’09 (pp. 1-8). New York, USA: ACM Press.

Song, L., Fukumizu, K., & Gretton, A. (2013). Kernel embeddings of conditional distributions: A unified
kernel framework for nonparametric inference in graphical models. IEEE Signal Processing Magazine,
30(4), 98-111.

Sorenson, H. W. (1970). Least-squares estimation: From Gauss to Kalman. IEEE Spectrum, 7(7), 63-68.

Sun, W., Capobianco, R., Gordon, G. J., Bagnell, J. A., & Boots, B. (2016a). Learning to smooth with bidi-
rectional predictive state inference machines. In The conference on uncertainty in artificial intelligence
(UAI 2016).

Sun, W., Venkatraman, A., Boots, B., & Bagnell, J. A. (2016b). Learning to filter with predictive state inference
machines. In International conference on machine learning (pp. 1197-1205).

Wan, E. A. E., & Van Der Merwe, R. (2000). The unscented Kalman filter for nonlinear estimation. In
Proceedings of the IEEE 2000 adaptive systems for signal processing, communications, and control
symposium (pp. 153-158). IEEE.

Williams, C. K. 1., & Seeger, M. (2000). Using the Nystrom method to speed up Kernel machines. In Pro-
ceedings of the 13th international conference on neural information (pp. 661-667).

Wojtusch, J., & von Stryk, O. (2015). Humod—A versatile and open database for the investigation, modeling
and simulation of human motion dynamics on actuation level. In I[EEE-RAS international conference on
humanoid robots (humanoids). IEEE.

Zhu, P., Chen, B., & Principe, J. C. (2014). Learning nonlinear generative models of time series with a Kalman
filter in RKHS. IEEE Transactions on Signal Processing, 62(1), 141-155.

@ Springer



Machine Learning (2019) 108:2113-2157 2157

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Gregor H. W. Gebhardt'® - Andras Kupcsik? - Gerhard Neumann?3

Andras Kupcsik

andrasgabor.kupcsik @de.bosch.com

Gerhard Neumann

geri@robot-learning.de

Technische Universitit Darmstadt, Computational Learning for Autonomous Systems,
Hochschulstr. 10, 64285 Darmstadt, Germany

Bosch Center for Artificial Intelligence, Robert-Bosch-Campus 1, 71272 Renningen, Germany

University of Lincoln, Lincoln Centre for Autonomous Systems, Brayford Pool, LN6 7TS Lincoln,
UK

@ Springer


http://orcid.org/0000-0002-8575-069X

	The kernel Kalman rule
	Efficient nonparametric inference by recursive least-squares and subspace projections
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Structure of the paper

	2 Preliminaries
	2.1 Nonparametric inference with Hilbert space embeddings of distributions
	2.1.1 Embeddings of marginal and joint distributions
	2.1.2 The conditional embedding operator
	2.1.3 The kernel sum rule
	2.1.4 The kernel chain rule
	2.1.5 The kernel Bayes' rule

	2.2 The Kalman filter
	3 Efficient nonparametric inference in a subspace
	3.1 Selecting the sample set to span the subspace
	3.2 Relation to other sparsification approaches
	3.3 The subspace kernel sum rule
	3.4 The subspace kernel chain rule
	3.5 The subspace kernel Bayes' rule
	3.6 Experimental evaluation

	4 The kernel Kalman rule
	4.1 Estimating the posterior mean embedding from a least squares objective
	4.2 Using recursive least squares to estimate the posterior embedding
	4.2.1 The kernel Kalman update is an unbiased estimator of the posterior mean map
	4.2.2 Finding the optimal kernel Kalman gain operator

	4.3 Empirical kernel Kalman rule
	4.4 The subspace kernel Kalman rule
	4.5 Experimental comparison of (sub)KKR and (sub)KBR

	5 Applications of the kernel Kalman rule
	5.1 The kernel Kalman filter
	5.1.1 Embedding the initial state distribution
	5.1.2 The pre-image problem/recovering the state-space distribution
	5.1.3 Embedding observation windows

	5.2 The subspace kernel Kalman filter
	5.3 Experimental evaluation of the kernel Kalman filter
	5.3.1 Pendulum
	5.3.2 Quad-link
	5.3.3 Human motion data

	5.4 The kernel forward–backward smoother
	5.4.1 Computing the smoothed belief state as a weighted average
	5.4.2 Finding the optimal weighting operators
	5.4.3 Smoothing the covariance embedding operator
	5.4.4 The empirical kernel forward–backward smoother
	5.4.5 Initialization of the backward kernel Kalman filter

	5.5 The subspace kernel forward–backward smoother
	5.6 Experimental evaluation of the kernel forward backward smoother
	5.6.1 Pendulum
	5.6.2 Tabletennis


	6 Conclusion and future work
	A Derivations for the subspace conditional operator
	B Derivations for the kernel Kalman rule and its applications
	B.1 The residual of the observation operator is unbiased
	B.2 Derivation of the optimal Kalman gain operator
	B.3 Simplifying the update of the covariance operator
	B.4 Derivations for the sample-based kernel Kalman rule
	B.5 Derivation of the subspace kernel Kalman gain operator/matrix
	References









