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Abstract
Rankboost is a well-known algorithm that iteratively creates and aggregates a collection of
“weak rankers” to build an effective ranking procedure. Initial work onRankboost proposed
two variants. One variant, that we call Rb-d and which is designed for the scenario where
all weak rankers have the binary range {0, 1}, has good theoretical properties, but does not
perform well in practice. The other, that we callRb-c, has good empirical behavior and is the
recommended variation for this binaryweak ranker scenario but lacks a theoretical grounding.
In this paper, we rectify this situation by proposing an improved Rankboost algorithm for
the binary weak ranker scenario that we call Rankboost+. We prove that this approach is
theoretically sound and also show empirically that it outperforms both Rankboost variants
in practice. Further, the theory behind Rankboost+ helps us to explain why Rb-dmay not
perform well in practice, and why Rb-c is better behaved in the binary weak ranker scenario,
as has been observed in prior work.

Keywords Ranking · Boosting · Ensemble methods · Rankboost

1 Introduction

In a ranking task, a learner is given a set of preferences, often organized pairwise, over
instances. For instance, in a movie recommendation task, the learner might be told that Alice
likes “2001: A Space Odyssey” better than “Interstellar,” and similar facts. The learner needs
to produce a function that then correctly ranks novel instances. In this example, this function
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would be expected to rank new movies in Alice’s order of preference. Ranking has many
applications in areas such as drug design (Agarwal et al. 2010), information retrieval (Nuray
and Can 2006) and of course recommendation systems (Freund et al. 2003).

An elegant way to solve the ranking task is through a “boosting” algorithm. In classi-
fication, algorithms such as Adaboost (Freund and Schapire 1995) iteratively learn and
aggregate a collection of “base learners” into a solution that is very accurate. Base learners
are only required to satisfy a “weak learning” criterion, which means they only need to be
slightly better than chance on the learning task. This is attractive for at least two reasons.
First, for many domains, finding a classifier that satisfies weak learning can be easier than
finding one that is very accurate. Second, boosting algorithms for classification are known to
possess desirable theoretical properties (Freund and Schapire 1995). We may hope to extend
these characteristics to the ranking problem if a suitable boosting algorithm for ranking can
be designed.

Indeed, Adaboost was directly extended to the ranking problem by a framework called
Rankboost (Freund et al. 2003), which is our focus in this paper.Rankboost shows how to
combine a collection of weak rankers into an effective ranking procedure, as described below.
A version of Rankboost, which we call Rb-d in this paper, has been shown to possess good
theoretical properties (Freund et al. 2003; Mohri et al. 2012). A different version, which we
call Rb-c in this paper, has been used to solve many ranking tasks with good results (Cortes
and Mohri 2004; Cao et al. 2007; Zheng et al. 2008; Agarwal et al. 2012; Aslam et al. 2009).
These implementations are described in the next section.

WhileRankboost is awell-established algorithm for boosting for ranking, there is a gap in
our understanding of the approach. In particular, the theoretical understanding ofRankboost
applies to Rb-d; however, experiments in the original paper show it underperforms Rb-c,
which does not have a similar theoretical justification, on the very ranking scenarios for
which Rb-d was designed. We verify this behavior in our experiments on real data. Thus
the version that has a theoretical justification does not work very well in practice, while the
version that works better in practice has limited theoretical support.

In this paper, we address this gap. We propose an approach we call Rankboost+, which
is built on the Rankboost framework. We show that Rankboost+ has the good theoretical
properties of Rb-d. However, we show that Rankboost+ is also closely related to Rb-c,
and our experiments show that it significantly outperforms both Rb-d and Rb-c in a number
of real-world ranking tasks. Further, the theory of Rankboost+ also gives insight into why
Rb-d underperforms in practice, and explains why Rb-c outperforms Rb-d in the ranking
scenario and metric that Rb-d was designed to optimize.

In the following sections, we first describe Rankboost and the two variants, Rb-d and
Rb-c. Next we motivate and present the Rankboost+ algorithm. Then we discuss the
theoretical properties of Rankboost+ and explain whyRb-c outperformsRb-d in practice.
Finally, we evaluate these approaches empirically on several real-world ranking problems
and show that the empirical results are in excellent agreement with what the theory predicts.

2 RANKBOOST

Let X be an instance space, and let c : X × X → {−1, 0, 1} be a target labeling function
defined as:

c(x, x ′) =
⎧
⎨

⎩

+1 if x ′ is ranked higher than x,
−1 if x is ranked higher than x ′, and
0 if no preference.

(1)
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Note that this ranking scenario does not permit us to specify that x and x ′ should be ranked
the same. Also note that we do not assume that the order induced by c is transitive.

Let H be the set of ranking functions h : X → R. If h(x) > h(y) we state that h ranks
x higher than y. Let D be the distribution over X × X . The original Rankboost paper
(Freund et al. 2003) defines the generalization error of ranker h on distribution D to be the
probability that, given a pair of elements, we have a preference about how they are ranked
but h does not correctly rank the pair.

R1(h) = Pr
(x,x ′)∼D

[(c(x, x ′) �= 0) ∧ (c(x, x ′)(h(x ′) − h(x)) ≤ 0)]. (2)

Rankboost is a supervised learning algorithm that is trained on a subset of data
drawn from X × X using distribution D, and Rankboost is given the correct rank-
ing for this subset. More formally, consider the labeled sample S defined as S =
{(x1, x ′

1, y1), . . . , (xm, x ′
m, ym)} where, for each i ∈ {1, . . . ,m}, yi = c(xi , x ′

i ), and (xi , x ′
i )

is drawn i.i.d. according to distribution D. Any pair (xi , x ′
i ) with yi �= 0 is called a critical

pair. As is standard in the literature, we simplify the presentation by assuming S contains
only critical pairs.

Next we define rank loss functions on the sample that are analogous to the generalization
error. The original Rankboost paper (Freund et al. 2003) defines two different rank loss
functions for ranker h on sample S. We denote these functions as R̂1 and R̂2.

R̂1(h) = 1

m

m∑

i=1

1yi (h(x ′
i )−h(xi ))≤0. (3)

R̂2(h) = 1

m

m∑

i=1

1yi (h(x ′
i )−h(xi ))<0 + 1

2
1yi (h(x ′

i )−h(xi ))=0. (4)

R̂1 treats ties as equally bad as reverse rankings. The justification for R̂1 is that it is the sample
estimate of R1 on ranker h, and in Freund et al. (2003) the authors design Rankboost to
minimize R̂1. We highlight in this paper some advantages to minimizing R̂1 as well some
issues that result from this choice. R̂2, on the other hand, gives ties half the error as a reverse
ranking. The intuition, given in Freund et al. (2003), for why R̂2 is also a good rank loss
function is that if we break tie pairs randomly in our output ranking, we expect half of the
tied critical pairs to receive the correct ranking. Therefore, R̂2 is the sample estimate of R1

on the ranking produced by h if we break ties randomly. While Rankboost is designed to
minimize R̂1, Freund et al. (2003) uses R̂2 to evaluate Rankboost on real world datasets.

Both R̂1 and R̂2 are non-convex functions, and minimizing either is an NP-complete
problem (Cohen et al. 1999). Rankboost is a direct adaptation of the seminal classification
boosting algorithm Adaboost (Freund and Schapire 1995), and R̂1 is a direct analog to the
empirical loss function used with Adaboost. Just as with Adaboost, Rankboost does
not minimize R̂1 directly. Instead, it minimizes an upper bound on R̂1 that is the following
exponential loss function.

Ê1(h) = 1

m

m∑

i=1

e−yi (h(x ′
i )−h(xi )). (5)

Although (5) is a better behaved function than R̂1, it is typically difficult to find the element
of H that minimizes (5). Instead, we assume that we have access to a routine that can only
findweak rankers, elements ofH so named because the ranking they produce is only weakly
correlated to the desired ranking. The goal of Rankboost is to learn a linear combination
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of these weak rankers that is highly accurate. A common ranking scenario, and the one
considered in this paper, is to further restrict the weak rankers used by Rankboost to be
binary weak rankers: members ofH that map each element ofX to only two values, {0, 1}.
Formally, let f1, . . . , fN be the finite set of binary weak rankers of H that Rankboost
considers during its execution. Let η = [η1, . . . , ηN ] be an element of R

N . We define the
function F1 : R

N → R as:

F1(η) = Ê1

(
N∑

s=1

ηs fs

)

= 1

m

m∑

i=1

e
∑N

s=1 yiηs ( fs (x
′
i )− fs (xi )). (6)

As (6) is a convex function, it has a uniqueminimum. The goal ofRankboost is to iteratively
adjust the ηs values in order to quickly converge to η∗, the vector that achieves the minimum
of (6).

Rankboost achieves this minimization by iteratively building an ensemble ranker that
is a linear combination of binary weak rankers. At iteration t , the ensemble ranker is
gt−1 = ∑t−1

j=1 α j h j , where h j ∈ { f1, . . . fN } is the weak ranker chosen at iteration j . During
the execution, Rankboost maintains a distribution Dt (i) over the critical pairs (x ′

i , xi ) at
iteration t . The idea is for critical pairs not correctly ranked by gt−1 to have higher probability
in Dt than those pairs correctly ranked. Rankboost learns a weak ranker ht : X → {0, 1}
with small expected error over Dt . Ranker ht is added to the ensemble ranker with weight
αt . Then a new distribution Dt+1 is created by multiplying the probability for each pair by
a scaling function ωt , that will be defined later, that increases the probability of the pairs ht
misranks and decreases the probability of the pairs ht correctly ranks:

Dt+1(i) = Dt (i)ωt (i)

Zt
. (7)

Zt is a normalizing factor to insure that the probabilities add to one.
Rankboost is an algorithm framework, listed below as Algorithm 1, and it can be instan-

tiated in multiple ways. In this paper, we focus on two proposed versions from prior work
(Freund et al. 2003). We denote as Rb-d, for discrete Rankboost, the version of Rank-
boost where the only weak rankers considered by the algorithm are binary weak rankers.
This version uses Eq. (14) on line 7 of Algorithm 1 to calculate the appropriate weight αi

for weak ranker hi . Rb-d is the version of Rankboost used in the theoretical analysis of
ranking in prior work (Freund et al. 2003). We denote as Rb-c, for continuous Rankboost,
the version of Rankboost where the weak rankers map each element of X to [0, 1]. This
version uses Eq. (19) on line 7 to calculate the appropriate weight αi for weak ranker hi . As
mentioned above, this paper is focused on the ranking scenario where we only have binary
weak rankers, but even in this scenarioRb-c generally outperformsRb-d.Rb-c is the version
of Rankboost most often used in practice.

2.1 The discrete variation ofRANKBOOST

As noted above, Rb-d is the version of Rankboost about which we have theoretical results,
and the values assigned in lines 6, 7, and 9 of Rb-d minimize Ê1

(∑t
s=1 αshs

)
. We define

the values ε+1
t , ε0t , and ε−1

t as

ετ
t =

m∑

i=1

Dt (i)1yi (ht (x ′
i )−ht (xi ))=τ , (8)
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Algorithm 1 Template Pseudocode for Rb-d, Rb-c and Rankboost+
1: function RANKBOOST((x1, x

′
1, y1), · · · , (xm , x ′

m , ym ))

2: for i = 1 to m do
3: D1(i) = 1

m
4: end for
5: for t = 1 to T do
6: ht = best weak ranker (Eq. (13) for Rb-d, Rb-c or Eq. (32) for Rankboost+)
7: Compute αt (Eq. (14) for Rb-d, Eq. (19) for Rb-c, or Eq. (34) for Rankboost+)
8: for i = 1 to m do
9: Compute Dt+1(i) (Eq. (10) for Rb-d, Rb-c, or Eq. (26) for Rankboost+)
10: end for
11: end for
12: g = ∑T

t=1 αt ht
13: return g
14: end function

and we let ε+
t and ε−

t stand for ε+1
t and ε−1

t , respectively. Line 9 of Rb-d uses Eq. (7) to
set Dt+1. Just as with Adaboost, the Rb-d scaling function maps the i th critical pair to its
contribution to Ê1(αt ht ).

ωt (i) =
⎧
⎨

⎩

e−αt if pair i correctly ranked by ht ,
eαt if pair i reverse ranked by ht ,
1 if pair i tied by ht .

(9)

Thus, Eq. (7) is equivalent to

Dt+1(i) = Dt (i) exp (−αt yi (ht (x ′
i ) − ht (xi )))

Zt
(10)

where Zt , the normalization factor, is

Zt = ε0t + ε+
t e

−αt + ε−
t e

αt . (11)

A simple induction argument with (10) gives

Ê1

(
t∑

s=1

αshs

)

=
t∏

s=1

Zs . (12)

Equation (12) is fundamental to Rb-d. It proves that if we can minimize each Zt , the hypoth-
esis output by Rb-d minimizes Ê1. Therefore, at line 6 Rb-d chooses the weak ranker that
minimizes the expression δ(ht ) = ε−

t − ε+
t ,

ht = argmin
h∈H ′

δ(h) (13)

where H ′ is the set of weak rankers, and at line 7, Rb-d defines

αt = 1

2
log

ε+
t

ε−
t

. (14)

Such an ht and αt produce the minimum Zt value.
Ê1 has a nice mathematical property exploited by Rb-d. The error contribution of pair i

is exp[−yi (h(x ′
i ) − h(xi ))], and

e−yi ((α1h1+α2h2)(x ′
i )−(α1h1+α2h2)(xi )) = e−yiα1h1(x ′

i )e−yiα2h2(x ′
i )eyiα1h1(xi )eyiα2h2(xi ). (15)
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This property allows Rb-d to be simple. For example, Rb-d can reuse the same ranker in
different iterations without any adjustments to the algorithm. Also, this property is used in
the bipartite ranking scenario where X is partitioned into two sets X0 and X1 where all
elements ofX0 are ranked above all elements ofX1, and the ranking makes no distinction on
pairs otherwise. In this ranking scenario, we exploit (15) to replace the distribution over pairs
with distributions over instances, and the result is an efficient algorithm that gives the same
result as Rb-d. See Freund et al. (2003) for details. This paper, though, is not considering
the bipartite ranking scenario.

We present two important theoretical properties of Rb-d. Observation 1 is from Rudin
et al. (2005), and it follows from the fact that Ê1 is a convex function and thus has a unique
global minimum. Theorem 1, found in Mohri et al. (2012), is a direct analog of an equivalent
theorem for Adaboost of Freund and Schapire (1995). The theorem states that the ranking
loss of Rb-d decreases exponentially with respect to boosting rounds.

Observation 1 (Rudin et al. 2005) Assuming that Rb-d allows negative α values and
assuming that (14) is well-defined in all rounds of the algorithm, Rb-d is a coordinate
descent algorithm that converges to the global minimum of Ê1 on the vector space spanned
by the weak rankers of H .

Theorem 1 (Mohri et al. 2012) Assuming that (14) is well-defined in all rounds of the
algorithm, the empirical error of the hypothesis g returned by Rb-d satisfies

R̂1(g) ≤ exp

[

−2
T∑

t=1

(
δ(ht )

2

)2
]

= exp

[

−2
T∑

t=1

(
ε+
t − ε−

t

2

)2]

. (16)

It is useful to note that the assumptions in boldface above are often unstated in the literature,
or in some cases do not hold (for example, p. 6 of Rudin et al. 2005 and p. 218 and Fig. 9.1,
line 4 of Mohri et al. 2012 assume nonnegative α values for Rb-d). If the assumptions do
not hold, we can create ranking scenarios that would violate the theoretical guarantees. We
provide these counterexamples in Sect. B in the appendix for completeness.

2.2 Opportunities for improvement

We noted above that Freund et al. (2003) identifies two rank loss functions. The fact that
Freund et al. (2003) uses R̂2 to evaluate the performance ofRb-d suggests that there aremany
ranking scenarios for which R̂2 may be a better measure of rank loss than R̂1. In addition,
there are issues with using Ê1 as an upper bound for R̂1. Note that Ê1 treats ties differently
than R̂1. Specifically, Ê1 decreases the weight of ties relative to both reverse ranked and
correctly ranked pairs. This causes R̂1 and Ê1 to order the weak rankers differently.

The functions R̂1 and Ê1 each give a quasiordering on the rankers of H . Ideally, we
would like them to induce the same ordering. It may be unrealistic for an exponential loss
function to give the same ordering as its corresponding rank loss function for all rankers in
H . However, since Algorithm 1 is iteratively finding a minimal binary weak ranker to add
to the ensemble, we argue that a reasonable property for the exponential loss function is for
it to give the same ordering on binary weak rankers as the rank loss function. Because R̂1

and Ê1 treat ties differently, there are natural datasets for which R̂1 and Ê1 do not induce the
same quasiordering on the set of all binary weak rankers. The proof of this proposition is in
Sect. A in the appendix.
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Proposition 1 There exist datasets and binary weak rankers h1 and h2 such that R̂1(h1) >

R̂1(h2) but Ê1(h1) < Ê1(h2), Ê1(αh1h1) < Ê1(αh2h2) where αh1 and αh2 are the weights
assigned by Rb-d given distribution D1, and Ê1(α

c
h1
h1) < Ê1(α

c
h2
h2) where αc

h1
and αc

h2
are the weights assigned by Rb-c given distribution D1.

2.3 The continuous variation ofRANKBOOST

While Rb-d is the version of Rankboost used in theoretical analysis, Rb-c is the version
most often used in practice. In Rb-c, the weak rankers can map elements to the range [0, 1],
and the only change in Algorithm 1 is in the computation of αt on line 6. While we know of
no theorems explicitly about the behavior of Rb-c, Rb-c generally outperforms Rb-d even
in the scenario of binary weak rankers for which RB-D was designed (Freund et al. 2003).

Rb-c still has Ê1 as the error approximation that should be minimized. However, to find
the value for αt , Rb-c does not minimize Zt but an upper bound on Zt . Let,

rt =
m∑

i=1

Dt (i)yi (ht (x
′
i ) − ht (xi )). (17)

The upper bound for Zt used by Rb-c is

Zt ≤
(
1 − rt
2

)

eαt +
(
1 + rt
2

)

e−αt , (18)

and the αt that minimizes the right hand side of (18) is

αt = 1

2
log

1 + rt
1 − rt

. (19)

A nice property of Rb-c is that (19) is well defined in all but perfect rankers. However,
the theoretical guarantees of Observation 1 and Theorem 1 are not known to hold for Rb-c.
Rb-c generally outperforms Rb-d in practice, and in Sect. 3.4 below we give mathematical
intuition for why we see this behavior.

3 Improving RANKBOOST

In this section, we propose Rankboost+, an improvement to Rankboost. The inspiration
for Rankboost+ comes from the issues observed above with using Ê1 as an upper bound
for R̂1 and the observation in Freund et al. (2003) that in many ranking scenarios R̂2 may
be a better loss function for ranking. In this section, we first derive Ê2, an exponential loss
function that orders the weak rankers the same as R̂2. We then follow the same Rankboost
framework and identify the weak ranker, the weight to give it, and the distribution update rule
that minimizes Ê2. Doing this gives us the same theoretical guarantees as Rb-d, but without
the often unstated assumptions and without the issues of Ê1. In addition, this work pro-
vides mathematical justification for why Rb-c outperforms Rb-d. In the next section we test
Rankboost+ on real world data sets and demonstrate that Rankboost+ outperforms both
Rb-d and Rb-c. To keep the presentation in this section clean, the proofs of the propositions
and theorems are placed in Sect. A of the appendix.
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3.1 Defining Ê2

In designing Rankboost+, we keep to the framework of Rankboost. Equation (6) above
defines F1 on the vector η = {η1, . . . , ηN }. We define an analogous loss function F2 on
η, and then from F2 we get an equivalent loss function Ê2 defined on the ensemble ranker
∑N

s=1 ηs fs . For the purpose of defining F2, we write F1 in an equivalent but slightly different
manner:

F1 (η) = 1

m

m∑

i=1

e
∑N

s=1 lnω∗
1(i, fs ,ηs ) (20)

where

ω∗
1(i, fs, ηs) =

⎧
⎨

⎩

e−ηs if pair i correctly ranked by fs,
eηs if reverse ranked by fs , and
1 if tied by fs .

(21)

We use (20) as our template to define F2, andwe define F2 to use the same exponential loss
values as F1 for pairs ηs fs either correctly ranks or reverse ranks: e−ηs and eηs , respectively.
The only difference between F2 and F1 is on tied pairs. For ties F2 follows the behavior of
R̂2 and sets the exponential rank loss to be the average of the correct and reverse rank values:
1
2

(
e−ηs + eηs

) = cosh(ηs). It is straightforward to see that using this average is necessary

for F2, and by extension Ê2, to induce the same order on the weak rankers as R̂2. Suppose
some weak ranker makes a reverse rankings and b ties. Another ranker with a − c reverse
rankings and b + 2c ties, for any c, will have the same R̂2 error. However, any loss function
that does not assign to ties the average of the misranking and correct ranking values will give
a different loss to these two rankers. In Proposition 3 below, we prove that using the average
is also sufficient.

Using the same form as (21), we have

F2 (η) = 1

m

m∑

i=1

e
∑N

s=1 lnω∗
2(i, fs ,ηs ) (22)

where function ω∗
2 is defined as

ω∗
2(i, fs, ηs) =

⎧
⎨

⎩

e−ηs if pair i correctly ranked by fs,
eηs if reverse ranked by fs , and
cosh(ηs) if tied by fs .

(23)

Note that just like F1, F2 is a convex function. Therefore, once we define Rankboost+,
we can use convexity and Eq. (29) below, the analogous equation to (12) for Rb-d, to prove
that Rankboost+ has theoretical properties analogous to Observation 1 and Theorem 1.

We can now define Ê2 as a function on the ensemble ranker produced at each iteration of
Algorithm 1. Given ensemble g = ∑t

s=1 αshs , let η′ = [η′
1, . . . , η

′
N ] be the element of R

N

where η′
i is the sum of α j for which fi = h j . Then,

Ê2

(
t∑

s=1

αshs

)

= F2
(
η′) . (24)

For completeness, the next proposition proves that Ê2 is an upper bound for R̂2. The fol-
lowing proposition proves that Ê2 has the nice property that it induces the same quasiordering
on the weak rankers as R̂2.
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Proposition 2 Let g = ∑N
s=1 ηs fs . Then Ê2(g) ≥ R̂2(g).

Proposition 3 For all weak rankers h1 and h2, if R̂2(h1) < R̂2(h2), then Ê2(h1) < Ê2(h2).

Proposition 3 is also only concerned with the ordering of weak rankers. Minimizing R̂2 is
NP-complete (Cohen et al. 1999), and we are therefore unlikely to have an exponential loss
function that induces the same ordering as R̂2 on all possible rankers.

3.2 TheRANKBOOST+ algorithm

Rankboost+ has the same framework as Rankboost (Algorithm 1). To describe it, we
reuse the notations Zt , αt , and Dt but change their definitions.

Just as with Rankboost, Rankboost+ maintains a distribution Dt on the critical pairs,
and after choosing a weak ranker ht and weight αt to add to the ensemble ranker, Rank-
boost+ updates the distribution weight for pair i by multiplying the weight by a scaling
function that we denote ω+

t .
Recall that the scaling function for Rb-d, Eq. (9), maps pair i to its contribution to

Ê1(αt ht ). In defining the scaling function ω+
t for Rankboost+, we note that when running

Algorithm 1 the same weak ranker may be chosen in multiple iterations. Consider the ensem-
ble ranker created after iteration t − 1: gt−1 = ∑t−1

s=1 αshs and the ensemble ranker created
after iteration t : gt = ∑t

s=1 αshs . Let η′ ∈ R
N be the vector such that F2(η′) = Ê2(gt−1),

and let η ∈ R
N be the vector such that F2(η) = Ê2(gt ). Using this notation, η′

j is the cumu-
lative weight of ranker f j in the ensemble at the start of iteration t and η j is the cumulative
weight after iteration t . Suppose that weak ranker f j is chosen at iteration t : ht = f j , and
suppose that f j was chosen at earlier iterations. The contribution of f j to F2, and thus to Ê2,
for pair i is ω∗

2(i, f j , η′
j ) before iteration t and ω∗

2(i, f j , η j ) after. We define ω+
t , the scaling

function for Rankboost+ in iteration t , such that ω+
t (i) · ω∗

2(i, f j , η′
j ) = ω∗

2(i, f j , η j ). To

be consistent with our use of η for a vector of R
N and α for the weights of the ensemble, we

define α′
t to be the total weight assigned to f j in the ensemble at the start of iteration t . Thus,

α′
t = η′

j , and

ω+
t (i) =

⎧
⎪⎨

⎪⎩

e−αt if pair i correctly ranked by ht ,
eαt if reverse ranked by ht , and
cosh(αt+α′

t )

cosh(α′
t )

if tied by ht .
(25)

Defining ω+
t in this manner gives us Eq. (29) below that is analogous to Eq. (12). Recall

that (12) is fundamental to Rb-d. In fact, (12) is used to prove Theorem 1, and (12) and the
convexity of Ê1 is needed for Observation 1.

Line 9 of Rankboost+ is very similar to line 9 of Rankboost:

Dt+1(i) = Dt (i)ω
+
t (i)

Zt
(26)

with

Zt = ε+
t e

−αt + ε−
t e

αt + ε0t
cosh(αt + α′

t )

cosh α′
t

. (27)

Just as with Rb-d, Rankboost+ chooses the weak ranker ht and weight αt that minimizes
Ê2. At iteration t we have gt−1 = ∑t−1

s=1 αshs . We calculate the derivative of gt−1 + αt ht
with respect to αt .

123



60 Machine Learning (2020) 109:51–78

Using induction on (26) gives

t∏

s=1

Zs = D1(i)
t∏

s=1

ω+
s (i), (28)

Combining (28) with (24), the definition of Ê2, gives

Ê2

(
t∑

s=1

αshs

)

=
t∏

s=1

Zs . (29)

Therefore, we have the derivative

d Ê2(gt−1 + αt ht )

dαt
= dZt

dαt

t−1∏

s=1

Zs

=
(

−ε+
t e

−αt + ε−
t e

αt + ε0t
sinh(αt + α′

t )

cosh α′
t

) t−1∏

s=1

Zs (30)

where sinh(α) = 1
2

(
eα − e−α

)
.

At iteration t , we want to add the weak ranker ht that will cause the greatest decrease in
Ê2. Consider the directional derivative

d Ê2(gt−1 + αt ht )

dαt

∣
∣
∣
∣
∣
αt=0

=
[

−ε+
t + ε−

t + ε0t
sinh α′

t

cosh α′
t

] t−1∏

s=1

Zs . (31)

As we are not restricting αt to be positive, the ht that achieves the greatest decrease in Ê2

corresponds to the direction in (31)with the greatest slope. Therefore, on line 6 ofAlgorithm1
Rankboost+ chooses ht such that

ht = argmax
h∈H ′

|δ(h)| , (32)

where H ′ is the set of binary weak rankers and

δ(ht ) = ε−
t − ε+

t + ε0t
sinh α′

t

cosh α′
t
. (33)

Setting d Ê2(gt−1+αt ht )
dαt

= 0 and solving for αt gives line 7 of Rankboost+:

αt = 1

2
log

ε+
t + ε0t

exp(−α′
t )

2 cosh α′
t

ε−
t + ε0t

expα′
t

2 cosh α′
t

. (34)

Now that we have defined the weights αt used by Rankboost+, we give a corollary
to Proposition 3 to show that, in contrast to Rb-d and Rb-c (see Proposition 1 above), the
weighted weak rankers used by Rankboost+ in the first iteration of the algorithm have the
same quasiordering with respect to both R̂2 and Ê2.

Corollary 1 For all weak rankers h1 and h2, if R̂2(h1) < R̂2(h2) < 1
2 , then Ê2(αh1h1) <

Ê2(αh2h2) where αh1 and αh2 are the weights assigned by Rankboost+ given distribution
D1.

123



Machine Learning (2020) 109:51–78 61

In Corollary 1, it is sufficient to consider weak rankers h with R̂2(h) < 1
2 . Suppose we

have ranker h with R̂2(h) > 1
2 and the “inverse ranker” h′ that reverses every ranking

choice in h. Let D be any distribution on the critical pairs. Then R̂2(h′) = 1 − R̂2(h) and
Ê2(α

′h′) = Ê2(αh) where α′ and α are the weights selected by Rankboost+ for h′ and h,
respectively, given distribution D [see Eq. (34)].

We close this section by noting some subtle issues that arise from using cosh(αt ) for
the exponential loss of tied pairs. One change from Rankboost, as indicated by the scal-
ing function (25), is that Rankboost+ will need to keep track of the accumulated weight
assigned to each unique weak ranker. For a second difference from Rankboost, letH ′ be a
set of binary weak rankers and let G be a proper subset ofH ′. G induces a different convex
function F2 thanH ′ does. On the other hand, the convex function F1 is only different when
span(G ) �= span(H ′). For example, consider the simple scenario where we have three weak
rankers f1, f2, and f3 where f2 = f3. As noted above, F2 is a convex function and The-
orem 3 below proves that Rankboost+ converges to the unique minimum of this convex
function. While the rankers η1 f1 + η2 f2 + η3 f3 and η1 f1 + (η2 + η3) f2 are identical, the
convex function defined by F2 on f1, f2, and f3 is different than that defined on f1 and f2.
In particular, the former is

a1e
−η1−η2−η3 + a2e

−η1−η2+η3 + a3e
−η1+η2−η3 + a4e

−η1+η2+η3

+ a5e
η1−η2−η3 + a6e

η1−η2+η3 + a7e
η1+η2+η3 + a8e

η1+η2−η3

where a1, . . . , a8 are constants defined by the behavior of f1, f2, and f3. If we instead,
restrict the weak rankers to be just f1 and f2, and if we assign the weight η2 + η3 to weak
ranker f2, then F2 defines a different convex function

(a1 + a2)e
−η1−η2−η3 + (a3 + a4)e

−η1+η2+η3 + (a5 + a6)e
η1−η2−η3 + (a7 + a8)e

η1+η2+η3 .

This leads to the question: what is the effect on F2 of having a linearly dependent set of
weak rankers? Recall that the only difference between F1 and F2 is the treatment of ties.
Adding a weak ranker that is a linear combination of other weak rankers has the effect of
replacing a cosh(x) term in F2 with a cosh(x1) cosh(x2) term where x = x1 + x2. The
minimum of cosh(x1) cosh(x2) occurs where x1 = x2 = x

2 , and cosh2(x/2) < cosh(x). As
a result, adding a linearly dependent weak ranker has the effect of decreasing the weight of
ties. As cosh(x) ≥ 1, F2(η) ≥ F1(η) for all η, and as limk→∞ coshk(x/k) = 1, we see that
as we add more linearly dependent weak rankers to our set, the vector that minimizes F2 will
converge to the vector that minimizes F1.

This analysis suggests that, in the ranking scenarios where R̂2 is a better loss function for
ranking than R̂1, we should get optimal behavior if we define F2 on a linearly independent set
of weak rankers. Doing so will achieve two benefits. It will maximize the difference between
F1 and F2, and thus the difference between the behavior of Rankboost and Rankboost+.
Also, it will have F2 most closely match the property of R̂2 where the weight of a tied pair
is equal to the average of the weights of the correctly ranked and incorrectly ranked pairs.

3.3 Theoretical properties ofRANKBOOST+

The following two theorems show that Rankboost+ has similar theoretical guarantees as
those described above for Rb-d: its ranking loss decreases exponentially in the number of
boosting rounds, and it converges to the global minimum of Ê2 on the space of all linear
combinations of weak rankers. Please see Sect. A of the appendix for the proofs.
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Theorem 2 The empirical error of the hypothesis g returned by Rankboost+ satisfies

R̂2(h) ≤ exp

[

−2
T∑

t=1

(
δ(ht )

2

)2
]

= exp

⎡

⎢
⎣−2

T∑

t=1

⎛

⎝
ε+
t − ε−

t − ε0t
sinh(α′

t )

cosh(α′
t )

2

⎞

⎠

2
⎤

⎥
⎦ . (35)

Furthermore, if there exists γ such that for all t ∈ [1, T ], 0 < γ ≤ δ(ht )
2 , then

R̂2(g) ≤ exp(−2γ 2T ) (36)

Theorem 3 Let H ′ be a set of binary weak rankers. Rankboost+ is a coordinate descent
algorithm that converges to the global minimum of F2 on the vector space spanned by H ′.

3.4 Why doesRB-C outperformRB-D in practice?

Our analysis of Rankboost+ sheds light on why Rb-c performs better than Rb-d in the
binary weak ranker scenario, and why we expect Rankboost+ to perform better than Rb-c.

Recall that Rb-c minimizes (18), and the αt value is chosen with Eq. (19). Let

r+
t = ∑

i∈{ j |y j (ht (x ′
j )−ht (x j ))>0} Dt (i)yi (ht (x ′

i ) − ht (xi )),

r−
t = −∑

i∈{ j |y j (ht (x ′
j )−ht (x j ))<0} Dt (i)yi (ht (x ′

i ) − ht (xi )), and

r0t = ∑
i∈{ j |y j (ht (x ′

j )−ht (x j ))=0} Dt (i).

(37)

If we restrict ourselves to the binary weak ranker scenario of Rb-d, ht (x ′
j ) − ht (x j ) ∈

{−1, 0, 1}, then r+
t + r−

t + r0t = 1. Plugging this equation into (18) shows that the value
Rb-c minimizes is

(
1 − rt
2

)

eαt +
(
1 + rt
2

)

e−αt = r+
t e−αt + r−

t eαt + r0t cosh(αt ), (38)

and the αt value of (19) for Rb-c is

1

2
log

1 + rt
1 − rt

= 1

2
log

r+
t + 1

2r
0
t

r−
t + 1

2r
0
t

. (39)

Note that the right hand side of (38) is equivalent to (27)withα′
t = 0, and (19) for determining

Rb-c’s αt value is equivalent to (34) with α′
t = 0. Furthermore, Eq. (13) used by Rb-c to

choose ranker ht is equivalent to (32) with α′
t = 0. Thus in the binary weak ranker scenario,

Rb-c is finding the weak ranker and weight that minimizes Ê2 instead of Ê1. Under our
hypothesis that minimizing Ê2 is a better metric for ranking than minimizing Ê1 we expect
Rb-c to perform better than Rb-d.

However, Rb-c does not achieve the minimum for Ê2 because of two reasons. First, it
uses distribution update rule (10) rather than (26) so it is not scaling the pairs by the error
contribution to Ê2. Second, on reusing a ranker from the ensemble ranker or when using a
ranker that is a linear combination of rankers already used in the ensemble,Rb-c is calculating
an α value that is larger in magnitude than the corresponding directional derivative of E2.
As a result, in this situation Rb-c may not find the weak ranker and weight that minimizes
Ê2, and may even choose a ranker and weight pair that increases Ê2.

As noted above, to have the maximal separation between the minimizers of F2 and F1, and
thus Ê2 and Ê1, we need to define F2 on a maximal linearly independent set of weak rankers.
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In the limit, adding linearly dependent rankers to the ensemble will cause Rankboost+ and
Rb-d to converge to the same ensemble ranker. This behavior is unlikely to be observed in
practice because it requires a very large number of linearly dependent rankers and rounds
of the algorithm. In practice, we expect the behavior of Rankboost+ to converge to the
behavior of Rb-c as we include more linearly dependent weak rankers in the ensemble.
Anytime Rankboost+ chooses to add a new weak ranker to the ensemble that is linearly
dependent to rankers already in the ensemble, it will haveα′

t = 0 in that round.Rankboost+
will effectively be using Rb-c’s (19) to assign the weights to the rankers. Even with the
extreme case of α′

t = 0 in all rounds of the algorithm, the behavior of Rankboost+ should
not be exactly the same as Rb-c because the two algorithms use different distribution update
rules.

To summarize, we develop our approach using a different rank loss function, R̂2. We
derive an exponential loss function Ê2 that produces consistent orderings on weak rankers
as R̂2. We then develop the Rankboost+ algorithm that minimizes Ê2, and we prove that
Rankboost+ has good theoretical properties: it exponentially decreases R̂2 and converges
to the global minimum of Ê2.

4 Implementing RANKBOOST+
In this section we describe some differences in howRankboost+ is implemented relative to
Rb-d and Rb-c. While all the algorithms share the same template (Algorithm 1), to achieve
the best results with Rankboost+ requires that the set of rankers chosen should be linearly
independent, as discussed in the end of Sect. 3.2.

We start by considering each h j to be a vector

h j =

⎛

⎜
⎜
⎜
⎝

y0(h j (x ′
0) − h j (x0))

y1(h j (x ′
1) − h j (x1))

...

ym(h j (x ′
m) − h j (xm))

⎞

⎟
⎟
⎟
⎠

At iteration t , we will have a set of linearly independent weak rankers St already chosen
by the model, as well as a set R of candidate rankers, which represent all possible directions
for the next step of boosting. We can imagine St to be a matrix, with each column being some
h j , allowing us to give weights ηt to each member of St , so the overall model prediction on
training data at iteration t is Stηt . For each candidate ranker h at iteration t + 1, we check
if it is in the span of S. If it is not, we compute the score defined in Eq. (32) with α′

s = 0.
If it is, then for some vector β, Stβ = h. Then, rather than minimizing Ê2(gt + αt+1ht+1)

over αt+1, we must minimize Ê2(gt + αt+1
∑|(St )i |

i=1 (St )iβi ). If we consider Ê2 to be a func-
tion of the weights and rankers separately, we can write this as F2(ηt + αt+1β), where the
underlying set of rankers is St . To select the best ranker [Eq. (32)] for dependent h, we must
take the derivative of F2 at αt = 0 in the direction specified by β:

∣
∣∇βF2(ηt + αt+1β)

∣
∣ =∣

∣
∣∇F2(ηt ) · β

‖β‖2
∣
∣
∣. We can compute ∇ Ê2 as specified in Eq. (30) without significant compu-

tational cost, but the cost of determining which rankers are dependent and then computing
the β vector has a complexity of O(m|St |2), as this step requires a least squares solve every
iteration.
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Fig. 1 Comparison of speed for implementations of Rankboost+ on synthetic data. We call Rankboost+
using all possible directions “Optimal Rb+” and Algorithm 2 we call “Efficient Rb+”

Because of this, we have an alternative, faster version that does not as significantly affect
the convergence speed or generalization, which is described in Algorithm 2. This imple-
mentation still maintains the independent set St , but does not consider descent over rankers
linearly dependent to the set of already used rankers. To do this, we compute the gradients
over each direction in St , the set of rankers already selected (line 8), and then separately
compute gradients over every direction in R, the set of all candidate rankers, while making
the assumption that no ranker in R is in the span of St (line 10). We select the candidate that
has the highest gradient, and if it is not in the span of St , we check to see if it is linearly
independent, and add it to S if it is. The ranker can then be removed from R (line 13), as it
is now known to be a linear combination of some rankers in St . This removal can be done
by setting the column to be zero in R, meaning it cannot be reselected. As the size of S
grows, we still have the issue of the cost of a least squares solve. However, since the highest
weights are assigned to the first several rankers, so, after several iterations, we prune R by
selecting an independent set of rankers from it. In this operation, we ensure that the chosen
subset contains St , as we have determined that the rankers in St can account for the greatest
decrease in loss. This also has a one-time cost of O(m|R|2), which will be more efficient than
potentially requiring an O(m|St |2) computation every iteration. The iteration when we prune
R is once the first dependent ranker is chosen by the algorithm. On larger datasets, this step
could be done after a set number of iterations to limit the number of least squares solves per-
formed. This can be seen in line 14 of Algorithm 2. The function select-independent-subset
chooses a maximal linearly independent subset T ⊆ R which has no elements that lie in the
span of S, and has span(T ) ⊆ span(R) − span(S). We implement this by examining the QR
decomposition (Q′, R′) of the concatenation [S, permute(R)], and discarding any element
from the set where diag(R′) = 0. Here permute(R) randomly permutes the columns of R.
This operation will produce a set that is maximal with high probability.

The main added costs of this method over Rb-d or Rb-c are choosing a linearly indepen-
dent subset of R ∪ S, and checking if a ranker is in the span of St . The latter will only be
needed for the first few iterations, until S is fixed, so there is not significant computational
cost. In Fig. 1, we show a comparison of the speeds of the two different implementations of
Rankboost+ on synthetic data. At around 30 iterations, the more efficient implementation
has one iteration that takes longer, which is the step where a linearly independent subset is
chosen, but then it runs at the approximately the same speed as Rb-d or Rb-c.
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Algorithm 2 Pseudocode for efficient Rankboost+ implementation
1: function RankboostPlus(R)

2: R ∈ {−1, 0, 1}m×n is the set of all candidate rankers (in a matrix), with no duplicate columns

3: D0 ←
(
1
m , . . . , 1

m

)T ∈ R
m

4: Set η0 to be an empty vector, and S0 to be an empty matrix
5: greedy-regime ← True {Tracks whether or not we are considering directions outside those in S}
6: for t = 1 to T do
7: Create matrix Mt with (Mt )i j = I[(St )i j = 0]
8: gradient-over-S ←

∣
∣
∣−DT

t St + DT
t Mt ◦ tanh(ηt )

∣
∣
∣ {◦ denotes elementwise multiplication}

9: if greedy-regime then

10: gradient-over-R ←
∣
∣
∣−DT

t R
∣
∣
∣

11: if max(gradient-over-R) > max(gradient-over-S) then
12: α′

t ← 0 {Adding a new ranker}
13: Set ht to the best ranker in R, and set the corresponding column of R to be zero.
14: if ht ∈ span(St ) then
15: St ← [St , select-independent-subset(R, St )] {Making S static}
16: Append zeros to ηt
17: Create matrix Mt with (Mt )i j = I[(St )i j = 0]
18: gradient-over-S ←

∣
∣
∣−DT

t St + DT
t Mt ◦ tanh(ηt )

∣
∣
∣

19: greedy-regime ← False
20: end if
21: end if
22: end if
23: if ¬greedy-regime or max(gradient-over-R) ≤ max(gradient-over-S) then
24: i ← argmax(gradient-over-S)

25: ht ← (St )i , α
′
t ← (ηt )i

26: end if
27: Compute αt [Eq. (34)]
28: if ht /∈ St then
29: St+1 ← [St , ht ], ηt+1 ← [ηt , αt ]
30: else
31: St+1 ← St , ηt+1 ← ηt
32: (ηt+1)i ← (ηt+1)i + αt
33: end if
34: Update D according to Eq. (26)
35: end for
36: Define g(x) = ∑|ST+1|

k=1 (ηT+1)k (ST+1)k (x)
37: return g
38: end function

5 Empirical evaluation

In this section, we empirically study the behavior of Rb-d, Rb-c and Rankboost+ on real
ranking problems. While our theoretical analysis indicates that Rankboost+ should be the
most “well-behaved” of the three, this analysis is on training samples, so we still need to
verify that it is reflected in the generalization performance. Our empirical hypothesis is that
Rankboost+ will significantly outperform Rb-d on real data. We hypothesize that it will
also outperform Rb-c but possibly with a smaller margin.1

1 Our implementations of Rankboost+, Rb-c, and Rb-d can be found at https://github.com/rail-cwru/
rankboostplus.
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The ranking tasks we use are as follows.2 MovieLens (Harper and Konstan 2016; Weimer
et al. 2008; Guiver and Snelson 2009) is a movie recommendation task where users rate
movies using a scale of 1 (lowest) to 5 (highest). It contains 943 users, 1682 movies and
100,000 ratings. Each user induces a separate ranking task using the movie ratings from
other users as features. To get meaningful results, we only consider users who have rated at
least 100 movies, from which we run experiments on 367 ranking tasks. In each such task,
we select features a priori by removing other users (features) that have over 50% missing
ratings on the movies in the task under consideration. The rationale is that such features are
likely to have low information with respect to the target, and unlikely to be selected by the
base learner.

LETOR (Qin and Liu 2013; Qin et al. 2010; Xia et al. 2008; Valizadegan et al. 2009) is a
benchmark collection for research on learning to rank, released by Microsoft Research Asia.
We use the version of MSLR-WEB10K with 10,000 queries. In this dataset, queries and
URLs are represented by IDs, and 136-dimensional continuous feature vectors are extracted
from query-URL pairs along with relevance judgment labels. The relevance judgments are
obtained from a retired labeling set of a commercial web search engine (Microsoft Bing),
which take 5 values from 0 (irrelevant) to 4 (perfectly relevant). For our experiments, we
use 300 queries as separate datasets. These are selected by taking the 300 queries that would
produce the most critical pairs, but have less than 50,000 critical pairs in total.

For the third set of tasks, we use the datasets MQ2007 (about 10,000 critical pairs) and
MQ2008 (about 37,500 critical pairs) from LETOR 4.0 (Qin and Liu 2013). These datasets
come from the Million Query track of TREC 2007 and TREC 2008. Each has 46 continuous
features, as well as a relevance judgment, which is used to extract critical pairs.

The base ranker we use for all tested algorithms is a decision stump, which is a common
choice (Freund et al. 2003). For each ranker, the leaf node labels are chosen using weighted
majority vote. Missing feature values are given a value lower than all known values of the
feature in their column. In the case that there are more than 255 candidate thresholds for a
single feature, we randomly subsample them to determine a set of 255, as suggested by Qin
et al. (2010).

A final detail is in the computation of Ê2 over training data for Rb-d and Rb-c. To
measure Ê2, we track F2(η) over a linearly independent set of weak rankers accumulated in
each iteration. A new ranker introduced in a succeeding iteration may either be in the span of
the accumulated set, or not. If it is independent, we add it to the accumulated set, and update
the η vector accordingly. If it lies in the span of the existing rankers, we find the update to
η such that the resulting prediction by the independent ensemble is equal to the prediction
made by the original, linearly dependent ensemble at that iteration. F2 is calculated with
these η values.

5.1 Results and discussion

We perform 5-fold cross validation on each of the 667 ranking tasks from MovieLens and
LETOR (MSLR-WEB10K). For each task, we compute test ranking errors R̂1 and R̂2 (aver-
aged over 5 folds) for Rankboost+, Rb-d and Rb-c, as well as Normalized Discounted
Cumulative Gain (NDCG) (Järvelin and Kekäläinen 2002) at positions 3, 5, and 7. For each
fold of a task, we take three folds for training, one fold for validation, and one for testing.
Then, when reporting results, for each metric, we choose the iteration at which that metric

2 Unfortunately, the datasets used in the paper introducing Rankboost Freund et al. (2003) are no longer
available.
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Fig. 2 Convergence rates onMovieLens (top: test R̂1 and R̂2,middle: train Ê1 and Ê2, bottom:TestNDCG@5)
R̂1 and Ê1 are denoted by solid lines, and R̂2 and Ê2 are dashed lines

Fig. 3 Critical difference diagram for test R̂2 on WEB10K
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Table 1 Ranks of algorithms on real-world domains w.r.t R̂1, R̂2 and NDCG

Dataset Metric Algorithm CD

Rankboost+ Rb-c Rb-d

MovieLens R̂1 1.314 (32) 1.938 (31) 2.748 (26) 0.1754

R̂2 1.356 (25) 1.952 (21) 2.692 (18)

NDCG@3 1.696 (4) 2.125 (2) 2.179 (3)

NDCG@5 1.559 (7) 2.211 (2) 2.230 (4)

NDCG@7 1.476 (11) 2.268 (2) 2.256 (4)

Web10k R̂1 1.543 (33) 1.907 (37) 2.550 (28) 0.1914

R̂2 1.652 (20) 1.922 (20) 2.427 (16)

NDCG@3 2.038 (6) 1.942 (7) 2.020 (10)

NDCG@5 1.952 (9) 1.955 (11) 2.093 (17)

NDCG@7 1.927 (12) 1.963 (16) 2.110 (20)

The columnCD contains the critical difference length based on the Nemenyi test. Performances that are at least
one critical difference length better than the second best are boldfaced. Median stopping iteration is indicated
by the number in parentheses

Table 2 Ranks of various metrics (by fold) on LETOR 4.0

Dataset Metric Algorithm CD

Rankboost+ Rb-c Rb-d

LETOR 4.0 R̂1 1.3 1.9 2.8 1.048

R̂2 1.1 2.1 2.8

NDCG@3 1.9 1.8 2.3

NDCG@5 1.7 1.6 2.7

NDCG@7 1.7 1.5 2.8

was minimized on the validation set, and then for each task, we average these over all 5
folds. To summarize the results across the tasks from each domain, we rank these algorithms
in increasing order of test ranking errors on each task, i.e. the algorithm with smallest test
error gets rank 1 and the one with largest test error gets rank 3. We then average scores from
all datasets to get a final average rank for each algorithm. These are shown in Table 1. For
MQ2007 and MQ2008, we use the QueryLevelNorm version with the specified folds, and
rank algorithms using NDCG as suggested in Qin and Liu (2013), using the Mean Average
Precision to select the optimal iteration when NDCG is measured. These results are shown in
Table 2. The average performance measures for different datasets are shown in Appendix C.

From Table 1, we observe that, over the two domains, Rankboost+ has the smallest
average rank while Rb-d has the largest average rank, with Rb-c in between, but generally
closer to Rankboost+ than to Rb-d. This occurs for both R̂1, optimized by Rb-d, and R̂2,
optimized by Rankboost+ and (imperfectly) by Rb-c. A hypothesis test at a significance
level of 0.05 on the results for WEB10K for R̂2 using a critical difference diagram (Demšar
2006) is shown in Fig. 3.We see that Rankboost+ significantly outperforms bothRb-d and
Rb-c on R̂2, indicated by the absence of connecting bars between algorithms. The same figure
is obtained forMovieLens and also if R̂1 is used, indicating that Rankboost+ outperforms
the baselines under all conditions. These results align well with the theoretical analysis above
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and confirm our empirical hypothesis. Our results also confirm the observation that Rb-c
indeed performs better in practice than Rb-d, as suggested by the authors of the Rankboost
paper (Freund et al. 2003); however, it still does not outperform Rankboost+ because,
as explained above, it only approximately optimizes Ê2. Table 2 shows that for MQ2007
and MQ2008, again, both Rankboost+ and Rb-c generally outperform Rb-d. In these
two datasets, Rankboost+ is generally as good as or better than Rb-c with the exception
of NDCG on MQ2008. However, since we used the single specified train/test/validation
partitions for these datasets, these differences are not statistically significant.

In Fig. 2, we show the rates of convergence for R̂1, R̂2, and NDCG@5 averaged over
the test sets, as well as Ê1 and Ê2 averaged over the train sets on MovieLens. On the train
sets, we observe that Rankboost+ reduces Ê2 quickly, as the theory suggests. Rb-d in fact
increases Ê2, though it does minimize Ê1. Rb-c decreases Ê2 initially; however, because it
does not minimize Ê2 exactly, eventually Ê2 starts increasing. As expected, on Ê1,Rb-d and
Rb-c are better minimizers than Rankboost+. On the test sets, Rankboost+ produces
the smallest R̂1 and R̂2, and Rb-d the largest, with Rb-c in between. The figures also shows
that when measuring test set R̂2, Rankboost+ converges around the same speed as Rb-d
and Rb-c, but the average error does not significantly increase after a certain point, which
indicates that Rankboost+ overfits less severely than Rb-d or Rb-c. The same effect is
observed in the NDCG results. Rankboost+ achieves a high NDCG on the test set and
tends not to overfit, while both Rb-d and Rb-c start overfitting after a few iterations.

Finally, one might wonder why Rankboost+ outperforms Rb-d on R̂1 when it is opti-
mizing an upper bound of R̂2. From the figure, we observe that this is because R̂2 and R̂1

converge over boosting iterations. This happens because they differ only on ties. Recall that
the datasets only have critical pairs and as an ensemble grows, we may expect the number of
ties to decrease. Thus, a lower R̂2 also means a lower R̂1.

Taken together, these results show that the theoretical results for Rankboost+ also have
an impact in practice.

6 Conclusion

In this paper, we addressed a gap in the literature for the Rankboost framework. Prior work
proposed two variants:Rb-d, which was theoretically well motivated but did not work well in
practice, andRb-c, which outperformedRb-d in practice but had limited theoretical support.
We have proposed Rankboost+, which has good theoretical support and outperforms Rb-
d and Rb-c in practice. Further, the theory behind the approach helps explain why Rb-d
underperforms in practice and why Rb-c is more competitive. We have also clarified some
assumptions made in previous theoretical results for Rankboost. Finally, we demonstrate
empirically that the theoretical conclusions carry over to improvements on real ranking tasks.
In future work, we plan to look at the bipartite version of Rankboost, as well as study the
generalization properties of Rankboost+ theoretically.

A Proofs of the theorems and propositions in the paper

Proof of Proposition 1 Let the dataset be the set of all subsets of {a, b, c}, and the true ordering
on the dataset is the partial ordering defined by the subset operation. Specifically, the critical
pairs are (x, y) where x � y. Let h1 and h2 be weak rankers. h1 maps the set {a, b} to
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1 and it maps all other sets to 0. h2 maps the sets ∅, {a, c}, and {a, b, c} to 1 and it maps
all other sets to 0. h1 correctly orders 3 of the critical pairs of subsets, misorders 1 of
the pairs, and ties 15. h2 correctly orders 7 of the critical pairs of subsets, misorders 5 of
the pairs, and ties 7. Straightforward calculation shows R̂1(h1) = 16

19 and R̂1(h2) = 12
19 .

However, Ê1(h1) ≈ 0.990627 and Ê1(h2) ≈ 1.21929. Likewise, Ê1(αh1h1) ≈ .971795 and
Ê1(αh2h2) ≈ .991166. Also, Ê1(α

c
h1
h1) ≈ .990034 and Ê1(α

c
h2
h2) ≈ .992386. ��

Proof of Proposition 2 To show that Ê2(g) is an upper bound to R̂2(g), we will consider the
contribution of a single pair (x ′

i , xi ) to both Ê2 and R̂2. Assume w.l.o.g. that yi = 1. The case

that
∑N

s=1 ηs fs(x ′
i ) >

∑N
s=1 ηs fs(xi ) is trivial so assume

∑N
s=1 ηs fs(x ′

i ) ≤ ∑N
s=1 ηs fs(xi ).

0 ≤
N∑

s=1

ηs fs(xi ) −
N∑

s=1

ηs fs(x
′
i )

=
N∑

s=1

−ηs( fs(x
′
i ) − fs(xi ))

=
∑

s: fs (x ′
i )�= fs (xi )

−ηs( fs(x
′
i ) − fs(xi ))

≤
∑

s: fs (x ′
i )�= fs (xi )

−ηs( fs(x
′
i ) − fs(xi )) +

∑

s: fs (x ′
i )= fs (xi )

ln cosh(ηs)

=
N∑

s=1

lnω∗
2(i, fs, ηs).

Thus, e
∑N

s=1 lnω∗
2(i, fs ,ηs ) ≥ 1 for each critical pair misranked by g, and Ê2(g) ≥ R̂2(g). ��

Proof of Proposition 3 Consider ranker h1 with weight α1.

R̂2(α1h1) = 1

m

m∑

i=1

ω∗
2(i, h1, α1) − e−α1

eα1 − e−α1

=
1
m

∑m
i=1 ω∗

2(i, h1, α1) − 1
m

∑m
i=1 e

−α1

eα1 − e−α1

= Ê2(α1h1) − e−α1

eα1 − e−α1
. (40)

If R̂2(α1h1) < R̂2(α2h2), from (40), we have Ê2(α1h1)−e−α1

eα1−e−α1
<

Ê2(α2h2)−e−α2

eα2−e−α2
. If we let

α1 = α2 = 1, then R̂2(h1) < R̂2(h2) implies Ê2(h1) < Ê2(h2). ��
Proof of Corollary 1 From Eq. (34), the weights assigned by Rankboost+ to h1 distribution

D1 is αh1 = 1
2 ln

(
1−R̂2(h1)
R̂2(h1)

)
. If R̂2(h1) < 1

2 then αh1 > 0 and R̂2(αh1h1) = R̂2(h1).

Combining these equalities with (40) gives

Ê2(αh1h1) = R̂2(αh1h1)
(
eαh1 − e−αh1

) + e−αh1 (41)

= R̂2(h1)

⎛

⎝

√

1 − R̂2(h1)

R̂2
−
√

R̂2(h1)

1 − R̂2(h1)

⎞

⎠ +
√

R̂2(h1)

1 − R̂2(h1)
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= R̂2(h1) − 2R̂2(h1)2 + R̂2(h1)
√

R̂2(h1)(1 − R̂2(h1))

= 2
√

R̂2(h1)(1 − R̂2(h1)). (42)

If R̂2(h1) < R̂2(h2) < 1
2 , then 2

√

R̂2(h1)(1 − R̂2(h1)) < 2
√

R̂2(h2)(1 − R̂2(h2)), and

from (42), Ê2(αh1h1) < Ê2(αh2h2). ��
Proof of Theorem 2 First note that if there exists a round t with ε−

t = 0 and ε0t = 0, then we
have a perfect ranker, that ranker will get infinite weight, and R̂2(g) = 0.

Otherwise, using Eq. (29) we have R̂2(g) ≤ Ê2(g) = ∏T
t=1 Zt and

T∏

t=1

Zt =
T∏

t=1

(

ε+
t e

−αt + ε−
t e

αt + ε0t
cosh(αt + α′

t )

cosh α′
t

)

=
T∏

t=1

1

cosh α′
t

(
ε+
t cosh(α′

t )e
−αt + ε−

t cosh(α′
t )e

αt + (1 − ε+
t − ε−

t ) cosh(αt + α′
t )
)

=
T∏

t=1

1

2 cosh α′
t

(
ε+
t

(
e−αt+α′

t − eαt+α′
t

)

+ ε−
t

(
eαt−α′

t − e−αt−α′
t

)
+ eαt+α′

t + e−αt−α′
t

)

=
T∏

t=1

1

2 cosh(α′
t )

(
eαt

(
(1 − ε+

t )eα′
t + ε−

t e
−α′

t

)
+ e−αt

(
ε+
t e

α′
t + (1 − ε−

t )e−α′
t

))
.

Note that

αt = 1

2
ln

ε+
t + ε0t

exp(−α′
t )

2 cosh α′
t

ε−
t + ε0t

exp(α′
t )

2 cosh α′
t

= 1

2
ln

(eα′
t + e−α′

t )ε+
t + e−α′

t (1 − ε+
t − ε−

t )

(eα′
t + e−α′

t )ε−
t + eα′

t (1 − ε+
t − ε−

t )

= 1

2
ln

eα′
t ε+

t + e−α′
t (1 − ε−

t )

eα′
t (1 − ε+

t ) + e−α′
t ε−

t

.

Thus

T∏

t=1

Zt =
T∏

t=1

1

cosh(α′
t )

√(
(1 − ε+

t )eα′
t + ε−

t e
−α′

t

) (
ε+
t e

α′
t + (1 − ε−

t )e−α′
t

)

=
T∏

t=1

1

cosh(α′
t )

√(
(1 − ε+

t )(cosh(α′
t ) + sinh(α′

t )) + ε−
t (cosh(α′

t ) − sinh(−α′
t ))
)

×
√(

ε+
t (cosh(α′

t ) + sinh(α′
t )) + (1 − ε−

t )(cosh(α′
t ) − sinh(α′

t ))
)

=
T∏

t=1

1

cosh(α′
t )

√(
(1 − ε+

t + ε−
t ) cosh(α′

t ) + (1 − ε+
t − ε−

t ) sinh(α′
t )
)
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×
√(

(1 + ε+
t − ε−

t ) cosh(α′
t ) − (1 − ε+

t − ε−
t ) sinh(α′

t )
)

=
T∏

t=1

√(

1 − ε+
t + ε−

t + ε0t
sinh(α′

t )

cosh(α′
t )

)(

1 + ε+
t − ε−

t − ε0t
sinh(α′

t )

cosh(α′
t )

)

≤
T∏

t=1

√
√
√
√exp

[

−
(

ε+
t − ε−

t − ε0t
sinh(α′

t )

cosh(α′
t )

)2
]

=
T∏

t=1

exp

[

−1

2

(

ε+
t − ε−

t − ε0t
sinh(α′

t )

cosh(α′
t )

)2
]

= exp

⎡

⎢
⎣−2

T∑

t=1

⎛

⎝
ε+
t − ε−

t − ε0t
sinh(α′

t )

cosh(α′
t )

2

⎞

⎠

2
⎤

⎥
⎦

��

Proof of Theorem 3 The proof uses the framework of Rudin et al. (2005) and shows conver-
gence for F2. Convergence of Ê2 trivially follows. Let H ′ be the finite set of weak rankers
Rankboost+ considers during its execution. Let N = |H ′|, and let η = [η1, . . . , ηN ] be
an element of R

N . From Eq. (24),

F2 (η) = 1

m

m∑

i=1

N∏

s=1

1

2

(
e−ηs yi rs (x ′

i ) + eηs yi rs (xi )
)

(43)

where rs(x) = 2 fs(x) − 1. We can think of Rankboost+ as starting with η0 = [0, . . . , 0],
and at each iteration it chooses one of the coordinates, η j , to adjust in order to minimize
F2. Let ηt = [η1, . . . , ηN ] represent the accumulated weights for each weak ranker after
iteration t of Rankboost+. Let e j be the elementary unit vector of R

N that has a one in the
j th coordinate.

∂F2(ηt + λe j )
∂λ

=
(

−ε+
j e

−λ + ε−
j e

λ + ε0j
sinh(λ + η j )

cosh η j

)

F2(ηt ). (44)

As

∂F2(ηt + λe j )
∂λ

∣
∣
∣
∣
λ=0

=
[

−ε+
t + ε−

t + ε0t
sinh η j

cosh η j

]

F2(ηt ), (45)

and
∂F2(ηt+λe j )

∂λ
= 0 at

λ = 1

2
log

ε+
t + ε0t

exp(−η j )

2 cosh η j

ε−
t + ε0t

exp η j
2 cosh η j

, (46)

we see that Rankboost+ at iteration t + 1 finds the weak ranker and weight that achieves
the largest decrease in F2 at ηt . Since F2 is convex and thus does not have any local minima,
Rankboost+ is equivalent to a coordinate descent that algorithm that converges to the global
minimum of F2. ��
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Fig. 4 An example of early stopping by Rb-d on a real dataset

B Analysis of the theory for Rb-d

In Sect. 2, we present two well known theoretical guarantees for Rb-d: that the rank loss of
the ensemble produced byRb-d decreases exponentially with each iteration ofRb-d and that
Rb-d converges to the globalminimumof Ê1.We give these asObservation 1 and Theorem 1.
We noted that there are assumptions needed for these guarantees, and the assumptions are
not always included in the literature. In this section, we prove that these assumptions are
required.

First, we show that the theoretical results may not hold if (14) is not well-defined. Equation
(14) is not well-defined if we have a weak ranker that makes no reverse rankings, but it is not
a perfect ranker because it ties some pairs. In the proofs below, we give synthetic ranking
scenarios in order to create a situation where (14) is undefined. However, this situation does
occur in practice. Figure 4 demonstrates a real dataset inwhich there exists a ranker thatmakes
no reverse rankings, and Rb-d chooses that ranker. In Fig. 4, we halt Rb-d and return the
ensemble ranker that existed prior to the iteration that makes (14) undefined. This ensemble
is clearly not at the minimum Ê1 value as the plot for Rb-c demonstrates.

With (14) undefined, it is not clearwhatRb-d should do. Figure 4 demonstrates that halting
Rb-d and returning the ensemble without this ranker violates Observation 1 and Theorem 1.
We now show that the other options for dealing with this situation are also problematic. One
possible trick is to haltRb-d and give the ranker with ε−

t = 0 infinite weight in the ensemble.
This is what we do with Adaboost. Recall that Theorem 1 states that the rank loss of the

ensemble is upper bounded by exp

[

−2
∑T

t=1

(
ε+
t −ε−

t
2

)2
]

.

Lemma 1 Let g be the ensemble ranker produced byRb-d after T iterations of the algorithm.

Let U (g) = exp

[

−2
∑T

t=1

(
ε+
t −ε−

t
2

)2
]

. Suppose ε−
t > 0 for t < T and ε−

T = 0. If we define
(∑T−1

t=1 αt ht + ∞hT
)

(x) = (∞hT ) (x), then R̂1(g) can exceed U (g) by �(1).

Proof Let H = {h1, h2}. The input to Rb-d will be (n + 1)2 critical pairs drawn from
2n + 2 elements, and we set T = 2. Figure 5 shows the counterexample. In Fig. 5 elements
a1 . . . , an+1 are represented as red circles and elementsb1, . . . , bn+1 as blue stars. The critical
pairs are {(ai , b j ), i ∈ {1, . . . , n + 1}, j ∈ {1, . . . , n + 1}}, and any element ai should be
ranked higher than any element b j .
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Fig. 5 Counterexample used in Lemma 1

We depict the two weak rankers h1 and h2 ofH in Fig. 5. The arrows indicates the subset
of elements mapped to 1 by the weak ranker. h1 has n2 critical pairs correctly ranked, 1
critical pair ranked in the reverse order, and 2n critical pairs tied. h2 has n+1 pairs correctly
ranked, 0 pairs reverse ranked, and n2 + n pairs tied.

On line 6 of Algorithm 1, Rb-d will choose the ranker with the minimal ε− − ε+ value.

For h1, this value is 1−n2

n2+2n+1
, and for h2 this value is −n−1

n2+2n+1
. If n > 2 Rb-d will choose

h1. We have ε+
1 = n2

(n+1)2
, ε−

1 = 1
(n+1)2

, and ε01 = 2n
(n+1)2

. As a result,

α1 = 1

2
log

ε+
1

ε−
1

= log n.

Now, the algorithm creates the new distribution D2. Note that

Z1 = ε01 + 2
√

ε+
1 ε−

1 = 2n

(n + 1)2
+ 2

√

n2

(n + 1)4
= 4n

(n + 1)2
.

For each pair (ai , b j ) correctly ranked by h1, D2(·) =
(

1
(n+1)2

1
n

)
÷
(

4n
(n+1)2

)
= 1

4n2
. For

the pair (an+1, bn+1) reverse ranked by h1, D2(·) =
(

1
(n+1)2

n
)

÷
(

4n
(n+1)2

)
= 1

4 . For each

pair (an+1, b j ) and (ai , bn+1) tied by h1, D2(·) =
(

1
n+1

)
÷
(

4n
(n+1)2

)
= 1

4n .

In the second round, Rb-d will again choose the ranker with minimal ε− − ε+. For h1,
this value is 0. Since h2 has no reverse ranked pairs, its value is negative. Rb-d will choose
h2 as the minimal ranker for distribution D2. h2 will give n+1 critical pairs correct rankings,
and of those pairs one was reverse ranked by h1 and the rest were tied by h1. h2 reverse ranks
no critical pair. Therefore, ε+

2 = n
4n + 1

4 = 1
2 and ε−

2 = 0. Rb-d now halts.

U (h) = exp

⎧
⎨

⎩
−1

2

⎡

⎣

(
n2

(n + 1)2 − 1
(n+1)2

)2

+
(
1

2

)2
⎤

⎦

⎫
⎬

⎭

= exp

{

−1

2

[(
n − 1

n + 1

)2

+ 1

4

]}

, (47)

R̂1(h) = R̂1(log n h1 + ∞ h2)
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= 1 − n + 1

(n + 1)2
= n

n + 1
. (48)

As limn→∞ R̂1(h) = 1 and limn→∞ U (h) = exp(− 5
8 ), R̂1(h) could be �(1) greater than

the upper bound. In addition, plugging values for n into (47) and (48) shows that Theorem 1
can be violated on as few as 10 elements. ��

A second common option for dealing with the log 1
0 values is to replace log 1

0 with a large
constant in line 12 of Algorithm 1. This option will fix the specific situation of Lemma 1.
However, if there are multiple weak rankers with ε−

t = 0, then we could violate both The-
orem 1 and Eq. (12). Recall that Eq. (12) is the key property used to prove the theoretical
results of Rb-d.

Lemma 2 Let g and U be defined as in Lemma 1. Suppose that whenever we have ε−
t = 0

we give ht weight ∞̂ in g, for some large positive constant ∞̂. Then R̂1(g) can exceed U (g)
by �(1), and Ê1(g) can exceed

∏T
t=1 Zt by �(1).

Proof Assume we have 10n elements and 25n2 critical pairs of the form (ai , b j ) for 1 ≤
i, j ≤ 5n. As before, the ground truth has element ai ranked higher than each element b j .
LetH = {h1, h2}. Let h1 assign 1 to a1, . . . , a4n and 0 to all other elements. Let h2 assign 1
to a4n+1, . . . , a5n and b1, . . . , b4n and 0 to all other elements. h1 has 20n2 correctly ranked
pairs, no reverse ranked pairs, and 5n2 tied pairs. h2 has n2 correctly ranked pairs, 16n2

reverse ranked pairs, and 8n2 tied pairs.
We will set T = 2. Rb-d will choose h1 as the weak ranker in the first iteration, and since

α1 is undefined, we assume Rb-d uses ∞̂ as the weight for h1 in g. We have R̂1(∞̂h1) =
Ê1(∞̂h1) = Z1 = 1

5 .
In the second round, the 20n2 critical pairs correctly ranked by h1, which includes all

16n2 pairs reverse ranked by h2, have probability 0. The remaining critical pairs each has
probability 1

5n2
. Rb-d will choose h2 as the weak ranker in second iteration, and α2 will be

undefined. Z2 is the proportion of critical pairs with positive probability that are tied by h2.
Z2 = 4

5 .
Let g = ∞̂h1 + ∞̂h2. Note that g(ai ) = ∞̂ for all i ∈ {1, . . . , 5n}, g(b j ) = ∞̂ for all

j ∈ {1, . . . , 4n}, and g(b j ) = 0 for all j ∈ {4n + 1, . . . , 5n}. Thus g correctly ranks 1
5 of

the critical pairs, and ties the remaining pairs.

R1(g) = Ê1(g) = 4

5
, but

Z1Z2 = 4

25
, and

U (g) = exp

[

−2

((
4/5

2

)2

+
(
1/5

2

)2
)]

= exp(−17/50) ≈ 0.712.

��
A trick that will allow Theorem 1 is to change the definition of g in Theorem 1 and in line

12 of Algorithm 1 from g = ∑T
t=1 αt ht to

g = lim
(d1,...,dt )→(ε−

1 ,...,ε−
T )

T∑

t=1

(
1

2
ln

ε+
t

dt

)

ht . (49)
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The change needed for the proof of Theorem 1 is straightforward, but the change needed for
Rb-d is non-trivial and, in our opinion, not elegant. However, any trick that gives ht finite
weight when ε−

t = 0 violates Observation 1.

Observation 2 If ε−
t = 0, and if we give ht a finite weight in the ensemble, then Rb-d does

not converge to the global minimum of Ê1.

Proof Note that if ε−
t = 0 then Ê1 does not contain any terms of the form eαt . Thus the

minimum of Ê1 occurs as αt goes to ∞. ��
Finally, we demonstrate that if Rb-d does not allow the α weights to be negative, then

Rb-d will not converge to the minimum of Ê1 in all ranking scenarios. We note that Mohri
et al. (2012) suggests that Rankboost gets better generalization results if the α values are
restricted to be positive, and ifH contains at least one weak ranker that makes more correct
rankings than reverse rankings, then equation (13), used to choose the next weak ranker, will
not choose a ranker that requires negative α.

Lemma 3 If Rb-d is restricted to only allow positive α values, then there exists a set of weak
rankers such that Rb-d does not converge to the global minimum of Ê1 on the vector space
spanned by the weak rankers.

Proof Consider the set {1, . . . , 6}with the true order being 1 > · · · > 6. Let h1 and h2 be our
only two weak rankers. Suppose h1 partitions the set as {{1, 2, 3, 6}, {4, 5}} and h2 partitions
the set as {{2}, {1, 3, 4, 5, 6}}. In both cases, the left subset elements are ranked above the
right subset elements. So, h2(2) = 1 and h2(x) = 0 for x �= 2.

In the first iteration of Rb-d, Rb-dwill choose ranker h1 and assign it weight α1 = 1
2 ln 3.

In the second iteration, Rb-d will choose ranker h2 and assign it weight 1
2 ln

2+2
√
3√

3
. Rb-d

will halt after the second iteration because for both rankers we now have ε+ ≤ ε−. Therefore
Rb-d outputs the ensemble ranker 1

2

(
ln 3h1 + 2+2

√
3√

3
h2
)

≈ .54931h1 + .57445h2.

Ê1(α1h1 + α2h2) = 1

15

(
2eα1 + 4e−α1 + eα2 + 2e−α2 + 2e−α1−α2 + 4

)
.

Thus, Ê1

(
1
2

(
ln 3h1 + 2+2

√
3√

3
h2
))

≈ .888387. However, the minimum of Ê1(α1h1 +
α2h2) is .88703 . . . with α1 = .46894 . . . and α2 = .58953 . . .. ��

C Result tables

See Tables 3 and 4.
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Table 3 Raw mean performance
of algorithms over all datasets

Dataset Metric Algorithm

Rankboost+ Rb-c Rb-d

MovieLens R̂1 0.3100 0.3218 0.3394

R̂2 0.3114 0.3218 0.3376

NDCG@3 0.7920 0.7642 0.7620

NDCG@5 0.8019 0.7684 0.7675

NDCG@7 0.8104 0.7744 0.7749

Web10k R̂1 0.3763 0.3804 0.3918

R̂2 0.3762 0.3790 0.3880

NDCG@3 0.4628 0.4667 0.4847

NDCG@5 0.4836 0,4847 0.4881

NDCG@7 0.4972 0.4989 0.4911

Table 4 R̂1, R̂2, and NDCG
measured on LETOR 4.0

Dataset Metric Algorithm

Rankboost+ Rb-c Rb-d

MQ2007 R̂1 0.2974 0.2980 0.3049

R̂2 0.2985 0.2978 0.3098

NDCG@3 0.4121 0.4104 0.4034

NDCG@5 0.4186 0.4169 0.4126

NDCG@7 0.4280 0.4276 0.4218

MQ2008 R̂1 0.2082 0.2153 0.2190

R̂2 0.2027 0.2161 0.2192

NDCG@3 0.4190 0.4250 0.4185

NDCG@5 0.4684 0.4702 0.4582

NDCG@7 0.4887 0.4899 0.4819

R̂1 and R̂2 are measured at the best validation iteration of the specific
metric, andNDCG ismeasured at the iterationwith lowestMeanAverage
Precision
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