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Abstract
Bayesian optimization and Lipschitz optimization have developed alternative techniques for
optimizing black-box functions. They each exploit a different formof prior about the function.
In this work, we explore strategies to combine these techniques for better global optimization.
In particular, we propose ways to use the Lipschitz continuity assumption within traditional
BO algorithms, which we call Lipschitz Bayesian optimization (LBO). This approach does
not increase the asymptotic runtime and in some cases drastically improves the performance
(while in the worst case the performance is similar). Indeed, in a particular setting, we prove
that using the Lipschitz information yields the same or a better bound on the regret compared
to using Bayesian optimization on its own. Moreover, we propose a simple heuristics to
estimate the Lipschitz constant, and prove that a growing estimate of the Lipschitz constant
is in some sense “harmless”. Our experiments on 15 datasets with 4 acquisition functions
show that in the worst case LBO performs similar to the underlying BOmethodwhile in some
cases it performs substantially better. Thompson sampling in particular typically saw drastic
improvements (as the Lipschitz information corrected for its well-known “over-exploration”
pheonemon) and its LBO variant often outperformed other acquisition functions.

Keywords Bayesian optimization · Global optimization · Lipschitz optimzation ·
Optimization

1 Introduction

Bayesian optimization (BO) has a long history and has been used in a variety of fields (see
Shahriari et al. 2016), with recent interest from the machine learning community in the
context of automatic hyper-parameter tuning (Snoek et al. 2012; Golovin et al. 2017). BO is
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an example of a global black-box optimization algorithm (Hendrix et al. 2010; Jones et al.
1998; Pintér 1996; Rios and Sahinidis 2013) which optimizes an unknown function that may
not have nice properties such as convexity. In the typical setting, we assume that we only
have access to a black box that evaluates the function and that it is expensive to do these
evaluations. The objective is to find a global optimum of the unknown function with the
minimum number of function evaluations.

The global optimization of a real-valued function is impossible unless we make assump-
tions about the structure of the unknown function. Lipschitz continuity assumes that the
function can’t change arbitrarily fast as we change the inputs. This is one of the weak-
est assumptions under which optimizing an unknown function is still possible. Lipschitz
optimization (Piyavskii 1972; Shubert 1972) (LO) exploits knowledge of a bound on the
Lipschitz constant L of the function. This constant L specifically gives a bound on the maxi-
mum amount that the function can change (as the parameters change). This bound allows LO
to prune the search space in order to locate the optimum. In contrast, Bayesian optimization,
makes the assumption that the unknown function belongs to a known model class (typically
a class of smooth functions), the most common being a Gaussian process (GP) generated
using a Gaussian or Matérn kernel (Stein 2012). We review LO and BO in Sect. 2.

Under their own specific sets of additional assumptions, both BO (Bull 2011, Theorem 5)
and LO (Malherbe and Vayatis 2017) can be shown to be exponentially faster than random
search strategies. If the underlying function is close to satisfying the stronger BO assump-
tions, then typically BO is able to optimize functions faster than LO. However, when these
assumptions are not reasonable, BO may converge slower than simply trying random val-
ues (Li et al. 2016; Ahmed et al. 2016). On the other hand, LO makes minimal assumptions
(not even requiring differentiability1) and simply prunes away values of the parameters that
are not compatible with the Lipschitz condition and thus cannot be solutions. This is useful
in speeding up simple algorithms like random search. Given a new function to optimize, it is
typically not clear which of these strategies will perform better.

In this paper, we propose to combine BO and LO to exploit the advantages of both meth-
ods. We call this Lipschitz Bayesian Optimization (LBO). Specifically, in Sect. 3, we design
mixed acquisition functions that use Lipschitz continuity in conjunction with existing BO
algorithms. We also address the issue of providing a “harmless” estimate of the Lipschitz
constant (see Sect. 2.3), which is an important practical issue for any LO method. Our
experiments (Sect. 4) indicate that in some settings the addition of estimated Lipschitz infor-
mation leads to a huge improvement over standard BO methods. This is particularly true
for Thompson sampling, which often outperforms other standard acquisition functions when
augmented with Lipschitz information. This seems to be because the estimated Lipschitz
continuity seems to correct for the well-known problem of over-exploration (Shahriari et al.
2014). Further, our experiments indicate that it does not hurt to use the Lipschitz information
since even in the worst case it does not change the runtime or the performance of the method.

2 Background

We consider the problem of maximizing a real-valued function f with parameters x over
a compact set X . We assume that on iteration t , an algorithm chooses a point xt ∈ X and
then receives the corresponding function value f (xt ). Typically, our goal is to find the largest

1 The absolute value function f (x) = |x | is an example of a simple non-differentiable butLipschitz-continuous
function.
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possible f (xt ) across iterations.Wedescribe two approaches for solving this problem, namely
BO and LO, in detail below.

2.1 Bayesian optimization

BO methods are typically based on Gaussian processes (GPs), since they have appealing
universal consistency properties over compact sets and admit a closed-form posterior dis-
tribution (Rasmussen and Williams 2006). BO methods typically assume a smooth GP
prior on the unknown function, and use the observed function evaluations to compute
a posterior distribution over the possible function values at any point x . At iteration t ,
given the previously selected points {x1, x2, . . . xt−1} and their corresponding observations
yt = [y1, y2, . . . , yt−1], the algorithm uses an acquisition function (based on the GP pos-
terior) to select the next point to evaluate. The value of the acquisition function at a point
characterizes the importance of evaluating that point in order to maximize f . To determine
xt , we usually maximize this acquisition function over all x using an auxiliary optimization
procedure [(typically we can only approximately solve this maximization (Wilson et al. 2018;
Kim and Choi 2019)].

We now formalize the above high-level procedure. We assume that f follows a
GP(0, k(x, x ′)) distribution where k(x, x ′) is a kernel function which quantifies the sim-
ilarity between points x and x ′. Throughout this paper, we use the Matérn kernel for which

k(x, x ′) = σ0
2 exp

(
−√

5r2
) (

1 + √
5r + 5r2

3

)
where r = ∑d

j=1
(x j−x ′

j )
2

� j
. Here the hyper-

parameter � j is referred to as the length-scale for dimension j and dictates the extent of
smoothness we assume about the function f in direction j . The hyper-parameter σ0 repre-
sents the scale of the signal.

Wedenote themaximumvalue of the function until iteration t as y∗
t and the set {1, 2, . . . , t}

as [t]. Let kt (x) = [k(x, x1), k(x, x2), . . . , k(x, xt )] and let us denote the t × t kernel matrix
as K (so Ki, j = k(xi , x j ) for all i, j ∈ [t]). Given the function evaluations (observations),
the posterior distribution at point x after t iterations is given as P( ft (x))=N (μt (x), σt 2(x)).
Here, the mean and standard deviation of the function at x are given as:

μt (x) = kt (x)T
(
K + σ 2 It

)−1
yt ,

σt
2(x) = k(x, x) − kt (x)T

(
K + σ 2 It

)−1
kt (x). (1)

As alluded to earlier, an acquisition function uses the above posterior distribution in order
to select the next point to evaluate the function at. A number of acquisition functions have
been proposed in the literature, with the most popular ones: (UCB) (Srinivas et al. 2010),
Thompson sampling (TS) (Thompson 1933), expected improvement (EI) (Močkus 1975),
probability of improvement (PI) (Kushner 1964), and entropy search (Villemonteix et al.
2009; Hennig and Schuler 2012; Hernández-Lobato et al. 2014). In this work, we focus on
four simple widely-used acquisition functions: UCB, TS, EI, and PI. However, we expect
that our conclusions would apply to other acquisition functions. For brevity, when defining
the acquisition functions, we drop the (t − 1) subscripts from μt−1(x), σt−1(x), and y∗

t−1.
UCB: The acquisition function UCB(x) is defined as:

UCB(x) = μ(x) + β
1/2
t σ(x). (2)

Here, βt is positive parameter that trades off exploration and exploitation.
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TS: For TS, in each iteration we first sample a function f̃t (x) from the GP posterior, f̃t ∼
GP(μt (x), σt (x)). TS then selects the point xt which maximizes this deterministic function
f̃t .
PI: We define the possible improvement (over the current maximum) at x as I (x) =
max{ fx (x) − y∗, 0} and the indicator of improvement u(x) as

u(x) =
{
0, if fx (x) < y∗

1, if fx (x) ≥ y∗ ,

where fx (x) ∼ P( fx ). PI selects the point x which maximizes the probability of improving
over y∗. If φ(·) and Φ(·) are the probability density function and the cumulative distribu-
tion function for the standard normal distribution, then the PI acquisition function is given
as (Kushner 1964):

P I (x) =
∫ ∞

−∞
u(x)φ( fx (x))d fx = Φ

(
z(x, y∗)

)
. (3)

where we have defined z(u, v) = μ(u)−v
σ(u)

.
EI: EI selects an x that maximizes E[I (x)], where the expectation is over the distribution
P( ft (x)). If φ(·) is the pdf of the standard normal distribution, the expected improvement
acquisition function can be written as (Močkus 1975):

E I (x) =
∫ ∞

−∞
I (x)φ( fx (x))d fx

=
∫ ∞

y∗
( fx (x) − y∗)φ( fx (x))d fx

= σ(x) · [
z(x, y∗) · Φ(z(x, y∗)) + φ(z(x, y∗))

]
.

(4)

2.2 Lipschitz optimization

As opposed to assuming that the function comes from a specific family of functions, in LO
we simply assume that the function cannot change too quickly as we change x . In particular,
we say that a function f is Lipschitz-continuous if for all x and x ′ we have

| f (x) − f (x ′)| ≤ L||x − x ′||2, (5)

for a constant L which is referred to as the Lipschitz constant. Note that unlike the typical
priors used in BO (like the Gaussian or Matérn kernel), a function can be non-smooth and
still be Lipschitz continuous.

Lipschitz optimization methods consider the deterministic (noiseless) case, where yi =
f (xi ). In this setting, Lipschitz optimization uses this Lipschitz inequality in order to test
possible locations for the maximum of the function. In particular, at iteration t the Lipschitz
inequality implies that the function’s value at any x can be upper and lower bounded for any
i ∈ [t − 1] by

f (xi ) − L||x − xi ||2 ≤ f (x) ≤ f (xi ) + L||x − xi ||2.
Since the above inequality holds simultaneously for all i ∈ [t − 1], for any x the function
value f (x) can be bounded as:

f lt−1(x) ≤ f (x) ≤ f ut−1(x), where,
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f lt−1(x) = max
i∈[t−1] { f (xi ) − L||x − xi ||2}

f ut−1(x) = min
i∈[t−1] { f (xi ) + L||x − xi ||2} (6)

Notice that if f ut−1(x) ≤ y∗
t−1, then x cannot achieve a higher function value than our current

maximum y∗
t−1.

To exploit these bounds, at each iteration of a typical Lipschitz optimization (LO) method,
Malherbe and Vayatis (2017) might sample points xp uniformly at random from X until it
finds an xp that satisfies f ut−1(xp) ≥ y∗

t−1. If we know the Lipschitz constant L (or use a
valid upper bound on the minimum L value), this strategy may prune away large areas of
the space while guaranteeing that we do not prune away any optimal solutions. This can
substantially decrease the number of function values needed to come close to the global
optimum compared to using random points without pruning.

A major drawback of Lipschitz optimization is that in most applications we do not know
a valid L . We discuss this scenario in the next section, but first we note that there exist
applications where we do have access to a valid L . For example, Bunin and François (2016)
discuss cases where L can be dictated by the physical laws of the underlying process (e.g.,
in heat transfer, solid oxide fuel-cell system, and polymerization). Alternately, if we have
a lower and an upper bound on the possible values that the function can take, then we can
combine this with the size of X to obtain an over-estimate of the minimum L value.

2.3 Harmless Lipschitz optimization

When our black-box functions arises from a real world process, a suitable value of L is
typically dictated by physical limitations of the process. However, in practice we often do
not know L and thus need to estimate it. A simple way to obtain an under-estimate Llb

t of
L at iteration t is to use the maximum value that satisfies the Lipschitz inequality across all
pairs of points,

Llb
t = max

i, j∈[t];xi 
=x j

{ | f (xi ) − f (x j )|
||xi − x j ||2

}
. (7)

Note that this estimate monotonically increases as we see more examples, but that it may
be far smaller than the true L value (and recall that we are considering the noiseless case
where f (xi ) = yi ). A common variation is to sample several points on a grid (or randomly)
to use in the estimate above. Unfortunately, without knowing the Lipschitz constant we do
not know how fine this grid should be so in general this may still significantly under-estimate
the true quantity.

A reasonable property of any estimate of L that we use is that it is “harmless” in the
sense of Ahmed et al. (2016). Specifically, the choice of L should not make the algorithm
converge to the global optimum at a slower speed than random guessing (in the worst case).
If we have an over-estimate for the minimum possible value of L , then the LO algorithm is
harmless as it can only prune values that cannot improve the objective function (although
if we over-estimate it by too much then it may not prune much of the space). However, the
common under-estimates of L discussed in the previous paragraph are not harmless since
they may prune the global optima.

We propose a simple solution to the problem that LO is not harmless if we don’t have
prior knowledge about L: we use a growing estimate of L . The danger in using a growing
strategy is that if we grow L too slowly then the algorithm may not be harmless. However, in
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the “Appendix” we show that LO is “harmless” for most reasonable strategies for growing
L . This result is not prescriptive in the sense that it does not suggest a practical strategy for
growing L (since it depends on the true L), but this result shows that even for enormous
values of L that an estimate would have to be growing exceedingly slowly in order for it to
not be harmless (exponentially-slow in the minimum value of L , the dimensionality, and the
desired accuracy). In our experiments we simply use Lub

t = κt · Llb
t , the under-estimator

multiplied by the (growing) iteration number and a constant κ (a tunable hyper-parameter).
In Sect. 4, we observe that this choice of Lub

t with κ = 10 consistently works well across 14
datasets with 4 different acquisition functions.

3 Lipschitz Bayesian optimization

In this section, we show how simple changes to the standard acquisition functions used in
BO allow us to incorporate the Lipschitz inequality bounds. We call this Lipschitz Bayesian
Optimization (LBO). LBO prevents BO from considering values of xt that cannot be global
maxima (assuming we have over-estimated L) and also restricts the range of f (xt ) values
considered in the acquisition function to those that are consistent with the Lipschitz inequal-
ities. Figure 1 illustrates the key features of BO, LO, and LBO. It is important to note that
the Lipschitz constant L has a different interpretation than the length-scale � of the GP. The
constant L specifies an absolute maximum rate of change for the function, while � specifies
how quickly a parameterized distance between pairs of points changes the GP. We also note
that the computational complexity of using the Lipschitz inequalities is O(n2) which is the
same cost as (exact) inference in the GP (using matrix factorization updates).

We can use the Lipschitz bounds to restrict the limits of the unknown function value for
computing the improvement. The upper bound U f will always be f u(x), while the lower
bound L f will depend on the relative value of y∗. In particular, we have the following two
cases:

L f =
{
y∗, if y∗ ∈ (

f l(x), f u(x)
)

f u(x), if y∗ ∈ ( f u(x),∞)
.

The second case represents points that cannot improve over the current best value (that are
“rejected” by the Lipschitz inequalities).
Truncated-PI We can define a similar variant for the PI acquisition function as:2

TPI(x) = Φ
(
z(x, L f )

) − Φ
(
z(x,U f )

)
. (8)

Truncated-EI Using the above bounds, the truncated expected improvement for point x is
given by:

TEI(x) = − σ(x) · z(x, y∗)
[
Φ(z(x, L f )) − Φ(z(x,U f )

]

+ σ(x) · [
φ(z(x, L f ) − φ(z(x,U f )

]
. (9)

Note that removing the Lipschitz bounds corresponds to using f l(x) = −∞ and f u(x) =
∞, and in this case we recover the usual PI and EI methods in Eqs. (3) and (4), respectively.
Truncated-UCB The same strategy can be applied to UCB as follows:

TUCB(x) = min
{
μ(x) + β

1/2
t σ(x), f u(x)

}
. (10)

2 Note that the only difference between the usual PI/EI and the truncated version is changing the integral
limits to (L f ,U f ) instead of (−∞, ∞).
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Fig. 1 Visualization of the effect of incorporating the Lipschitz bounds to BO. a Shows the posterior mean
and confidence interval of the conventional BO. b The red color represents the regions of the space that are
excluded by the Lipschitz bounds. c Shows the effect of LBO. The grey color represents the uncertainty.
Using LBO helps cuts off regions where the posterior variance is high, which prevents over-exploration in
unnecessary parts of the space (Color figure online)

Accept–Reject An alternative strategy to incorporate the Lipschitz bounds is to use an
accept–reject based mixed acquisition function. This approach uses the Lipschitz bounds as
a sanity-check to accept or reject the value provided by the original acquisition function,
similar to LOmethods. Formally, if g(x) is the value of the original acquisition function (e.g.
g(x) = UCB(x) or g(x) = f̃ (x) for TS), then the mixed acquisition function g(x) is given
as follows:

g(x) =
{
g(x), if g(x) ∈ [ f l(x), f u(x)] (Accept)
−∞, othewise (Reject)

.

We refer to the accept–reject based mixed acquisition functions as AR-UCB and AR-TS,
respectively. Note that the accept–reject method is quite generic and can be used with any
acquisition function that has values on the same scale as that of the function. When using
an estimate of L it is possible that a good point could be rejected because the estimate of L
is too small, but using a growing estimate ensures that such points can again be selected on
later iterations.

3.1 Regret bound for AR-UCB

In this section, we show that under reasonable assumptions, AR-UCB is provably “harmless”,
in the sense that it retains the good theoretical properties of GP-UCB.We prove the following
theorem under the following assumptions:

1 The GP is correctly specified and with infinite observations, the posterior distribution
will collapse to the “true” function f .

2 The noise in the observations σ is small enough for the Lipschitz bounds in Eq. 6 to hold.
3 The Lipschitz constant L is known or has been over-estimated using the techniques

described in Sect. 2.3.

Assumption 1 is a common assumption made for providing theoretical results for GP-
UCB (Srinivas et al. 2010). Under these assumptions, we obtain the following theorem
(proved in “Appendix B”):
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Theorem 1 Let D be a finite decision space and σ be the standard deviation of the noise in
the observations. Let πt be a positive scalar such that

∑
t π

−1
t = 1 and δ ∈ (0, 1). If we use

the AR-UCB algorithm with β
1/2
t = 2 log(|D|πt/δ) assuming that the above conditions 1–3

hold, then the expected cumulative regret R(T ) can be bounded as follows:

R(T ) ≤ (
8/ log(1 + σ−2)

)
βT γT

√
T .

Here, γT refers to the information gain for the selected points and depends on the kernel
being used. For the squared exponential kernel, we obtain the following specific bound:

R(T ) ≤ (
8/ log(1 + σ−2)

)
βT (log(T ))d+1

√
T .

The γT term can also be bounded for the Matérn kernel following Srinivas et al. (2010).
The above theorem shows that under reasonable assumptions, using the Lipschitz bounds in
conjunction with GP-UCB cannot result in worse regret. We empirically show that if L is
over-estimated, then AR-UCB matches the performance of GP-UCB in the worst case.

Note that the above theorem assumes that the GP is correctly specified with the correct
hyper-parameters. It also assumes that we are able to specify the correct value of the trade-
off parameter β

1/2
t . These assumptions are not guaranteed to hold in practice and this may

result in worse performance of the GP-UCB algorithm. In such cases, our experiments show
that using the Lipschitz bounds can lead to better empirical performance than the original
GP-UCB.

4 Experiments

DatasetsWeperform an extensive experimental evaluation and present results on twelve syn-
thetic datasets and three real-world tasks. For the synthetic experiments, we use the standard
global-optimization benchmarks namely the Branin, Camel, Goldstein Price, Hartmann (2
variants), Michalwicz (3 variants) and Rosenbrock (4 variants). The closed form and domain
for each of these functions is given in Jamil and Yang (2013). As examples of real-world
tasks, we consider tuning the parameters for a robot-pushing simulation (2 variants) (Wang
and Jegelka 2017) and tuning the hyper-parameters for logistic regression (Wu et al. 2017).
For the robot pushing example, our aim is to find a good pre-image (Kaelbling and Lozano-
Pérez 2017) in order for the robot to push the object to a pre-specified goal location. We
follow the experimental protocol from Wang and Jegelka (2017) and use the negative of the
distance to the goal location as the black-box function to maximize. We consider tuning the
robot position rx , ry , and duration of the push tr for the 3D case. We also tune the angle of
the push θr to make it a 4 dimensional problem. For the hyper-parameter tuning task, we
consider tuning the strength of the �2 regularization (in the range [10−7, 0.9]), the learning
rate for stochastic gradient descent (in the range [10−7, 0.05]), and the number of passes
over the data (in the range [2, 15]). The black-box function is the negative loss on the test set
(using a train/test split of 80%/20%) for the MNIST dataset.

Experimental setup For Bayesian optimization, we use a Gaussian Process prior with the
Matérn kernel (with a different length scale for each dimension). We modified the publi-
cally available BO package pybo of Hoffman and Shahriari (2014) to construct the mixed
acquisition functions. All the prior hyper-parameters were set and updated across iterations
according to the open-source Spearmint package.3 In order tomake the optimization invariant

3 https://github.com/hips/spearmint.
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to the scale of the function values, similar to Spearmint, we standardize the function values;
after each iteration, we centre the observed function values by subtracting their mean and
dividing by their standard deviation. We then fit a GP to these rescaled function values and
correct for our Lipschitz constant estimate by dividing it by the standard deviation. We use
DIRECT (Jones et al. 1993) in order to optimize the acquisition function in each iteration.
This is one of the standard choices in current works on BO (Eric et al. 2008; Martinez-Cantin
et al. 2007; Mahendran et al. 2012), but we expect that Lipschitz information could improve
the performance under other choices of the acquisition function optimization approach such
as discretization (Snoek et al. 2012), adaptive grids (Bardenet and Kégl 2010), and other
gradient-based methods (Hutter et al. 2011; Lizotte et al. 2012). In order to ensure that
Bayesian optimization does not get stuck in sub-optimal maxima (either because of the aux-
iliary optimization or a “bad” set of hyper-parameters), on every fourth iteration of BO (or
LBO) we choose a random point to evaluate rather than optimizing the acquisition func-
tion. This makes the optimization procedure “harmless” in the sense that BO (or LBO) will
not perform worse than random search (Ahmed et al. 2016). This has become common in
recent BO methods such as Bull (2011), Hutter et al. (2011), and Falkner et al. (2017), and
to make the comparison fair we add this “exploration” step to all methods. Note that in the
case of LBO we may need to reject random points until we find one satisfying the Lipschitz
inequalities (this does not require evaluating the function). In practice, we found that both
the standardization and iterations of random exploration are essential for good performance.4

All our results are averaged over 10 independent runs, and each of our figures plots the mean
and standard deviation of the absolute error (compared to the global optimum) versus the
number of function evaluations. For functions evaluated on log scale, we show the 10th and
90th quantiles.
Algorithms compared We compare the performance of Random search, BO, and LBO
methods (using both estimated and True Lipschitz constant L) for the EI, PI, UCB and TS
acquisition functions. The True L was estimated offline using a large number of random
points. For UCB, we set the trade-off parameter β according to Kandasamy et al. (2017). For
EI and PI, we use Lipschitz bounds to truncate the range of function values for calculating
the improvement and use the LBO variants TEI and TPI respectively. For UCB and TS, we
use the accept–reject strategy and evaluate the LBO variants AR-UCB and AR-TS respec-
tively. In addition to these, we use random exploration as another baseline. We chose the
hyper-parameter κ (that controls the extent of over-estimating the Lipschitz constant) on the
Rosenbrock-4D function and use the best value of κ for all the other datasets and acquisition
functions for both BO and LBO. In particular, we set κ = 10.

Results Tomake the results easier to read, we divide the results into the following groups:

1. LBO provides huge improvements over BO shown in Fig. 2. Overall, this represents 21%
of all the test cases.

2. LBO provides improvements over BO shown in Fig. 3a. Overall, this represents 9% of
all the test cases.

3. LBO performs similar to BO shown in Fig. 3b. Overall, this represents 60% of all the
test cases.

4. LBO performs slightly worse than BO shown in Fig. 3c. Overall, this represents 10% of
all the test cases.

A comparison of the performance across different acquisition functions (for both BO and
LBO) on some of the functions is shown in Fig. 4, where we also show an example of UCB

4 Note that we verified that our baseline version of BO performs better than or equal to Spearmint across
benchmark problems.
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(a) Michalwicz 5D-TS (b) Rosenbrock 3D-TS (c) Robot pushing 3D-TS

(d) Goldstein 2D-EI (e) Hartmann 3D-EI (f) Rosenbrock 5D-UCB

Fig. 2 Examples of functions where LBO provides huge improvements over BO for the different acquisition
functions. The figure also shows the performance of random search and LBO using the True Lipschitz constant

(a) Rosenbrock 2D-UCB (b) Robot pushing 4D-UCB (c) Rosenbrock 4D-PI

Fig. 3 Examples of functions where LBO provides some improvement over BO (case a), LBO performs
similar to BO (case b), and BO performs slightly better than LBO (case c)

where β is misspecified. The plots for all functions and methods are available in “Appendix
C”. From these experiments, we can observe:

– LBO can potentially lead to large gains in performance across acquisition functions and
datasets, particularly for TS.

– Across datasets, we observe that the gains for EI are relatively small, they are occasionally
large for PI and UCB and tend to be consistently large for TS. This can be explained as
follows: using EI results in under-exploration of the search space, a fact that has been
consistently observed and even theoretically proven by Qin et al. (2017). As a result of

123



Machine Learning (2020) 109:79–102 89

(a) Michalwicz 5D (b) Rosenbrock 2D (c) Camel 2D-UCB

Fig. 4 a, b Examples of functions where LBO boosts the performance of BO with TS (better seen in color). c
Example where LBO outperforms BO with UCB when the β parameter is too large (β = 1016) (Color figure
online)

this, BO does not tend to explore “bad” regions when using EI which results in smaller
gains from LBO (on the other hand, it may under-explore).

– TS suffers from exactly the opposite problem: it results in high variance leading to over-
exploration of the search space and poor performance. This can be observed in Fig. 2a–c
where the performance of TS is near random. This has also been observed and noted
by Shahriari et al. (2016). For the discrete multi-armed bandit case, Chapelle and Li
(2011) multiply the obtained variance estimate by a small number to discourage over-
exploration and show that it leads to better results. LBO offers a more principled way of
obtaining this same effect and consequently results in making TS more competitive with
the other acquisition functions.

– The only functions where LBO slightly hurts are Rosenbrock-4D and Goldstein with
UCB and PI.

– ForMichalwicz-5D (Fig. 4a), we see that there is no gain for EI, PI, or UCB.However, the
gain is huge for TS functions. In fact, even though TS is the worst performing acquisition
function on this dataset, its LBO variant AR-TS gives the best performance across all
methods. This demonstrates the possible gain that can be obtained from using mixed
acquisition functions.

– We observe a similar trend in Fig. 4b where LBO improves TS from near-random perfor-
mance to being competitivewith the best performingmethods (while it does not adversely
affect the methods performing well).

– For the cases where BO performs slightly better than LBO, we notice that the True
estimate of L provides compararble performance to BO, so the problem can be narrowed
down to finding a good estimate of L .

– Figure 4c shows examples where LBO saves BO with UCB when the parameter β is
chosen too large (β = 1016). In this case BO performs near random, but using LBO
leads to better performance than random search.

In any case, our experiments indicate that LBO methods rarely hurt the performance
of the original acquisition function. Since they have minimal computational or memory
requirements and are simple to implement, these experiments support using the Lipschitz
bounds.
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5 Related work

The Lipschitz condition has been used with BO under different contexts in two previous
works (González et al. 2016; Sui et al. 2015). The aim of Sui et al. (2015) is to design a
“safe” BO algorithm. They assume knowledge of the true Lipschitz constant and exploit
Lipschitz continuity to construct a safety threshold in order to construct a “safe” region
of the parameter space. This is different than our goal of improving the performance of
existing BO methods, and also different in that we estimate the Lipschitz constant as we
run the algorithm. On the other hand, González et al. (2016) used Lipschitz continuity to
model interactions between a batch of points chosen simultaneously in every iteration of BO
(referred to as “Batch” Bayesian optimization). This contrasts with our work where we are
aiming to improve the performance of existing sequential algorithms (it is possible that our
ideas could be used in their framework).

6 Discussion

In this paper, we have proposed simple ways to combine Lipschitz inequalities with some of
the most common BO methods. Our experiments show that this often gives a performance
gain, and in the worst case it performs similar to a standard BO method. Although we have
focused on four of the simplest acquisition functions, it seems that these inequalities could
be used within other acquisition functions. For example, information-theoretic acquisition
functions such as entropy search and their recent extensions rely on sampling a function from
the GP and hence the techniques we used for Thompson sampling can be used. We leave a
systematic study of these information-theoretic acquisition functions to future study. Further,
we expect that the Lipschitz inequalities could also be used in other settings like BO with
constraints (Gelbart et al. 2014; Hernández-Lobato et al. 2016; Gardner et al. 2014), BO
methods based on other model classes like neural networks (Snoek et al. 2015) or random
forests (Hutter et al. 2011), andmethods that evaluatemore than one xt at a time (Ginsbourger
et al. 2010; Wang et al. 2016). Finally, there has been recent interest in first-order Bayesian
optimization methods (Ahmed et al. 2016; Wu et al. 2017). If the gradient is Lipschitz
continuous then it is possible to use the descent lemma (Bertsekas 2016) to obtain Lipschitz
bounds that depend on both function values and gradients.
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A Proof for Lipschitz constant estimation

In this sectionwe analyze theminimumnumber of iterations required beforewe can guarantee
(in expectation) that we’ll have a point x satisfying

f (x) − f (x∗) ≤ ε, (11)

for a given accuracy tolerance ε. Here we assume that x∗ is a globally-optimal solution
(assumed to exist), the domain of x is a hyper-cube X in Rd , and f is Lipschitz-continuous.
We use L as the minimum value we can use for the Lipschitz constant of f . We first consider
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the case of random selection, followed by random selection with pruning based on any upper
bound on L , and finally random selection with pruning based on a growing estimate of the
Lipschitz constant.

A.1 Random selection

Our first result gives a lower bound on the volume of the solution space where the x sat-
isfy (11).

Lemma 1 For a Lipschitz-continuous function f defined on a hyper-cube X , the volume of
X satisfying (11) is Ω((ε/L)d).

Proof By the Lipschitz inequality we have for any solution x∗ that

| f (x) − f (x∗)| ≤ L
∥∥x − x∗∥∥ ,

for any x ∈ X . Choose some particular solution x∗, and let B be the set of x satisfying
L ‖x − x∗‖ ≤ ε. Notice that all x ∈ B ∩ X satisfy (11), so it is sufficient to show that
|B ∩ X | = Ω((ε/L)d).

Since B is the set of points satisfying ‖x − x∗‖ ≤ ε/L , it is a hyper-shere of radius ε/L

which means its volume is πd/2(ε/L)d

(d/2)! . The case where B has the smallest intersection with
X is when x∗ is at a vertex in the hyper-cube; in this case we have that exactly one orthant of
B intersecting with X . Since there are 2d orthants (of equal size), in the worst case we have

|B ∩ X | ≥ |B|/2d = πd/2(ε/L)d

2d (d/2)! = Ω((ε/L)d) (for fixed dimension d). 
�

Next we give a lower bound on the probability that a random iterate x is a point satisfy-
ing (11)

Lemma 2 For a Lipschitz-continuous function f defined on a hyper-cubeX , a point x chosen
uniformly at random from X satisfies (11) with probability Ω((ε/L)d).

Proof The previous lemma shows that there is a volume of size Ω((ε/L)d) in X containing
solutions. Thus, the probability that random point in X is a solution is Ω((ε/L)d/|X |) =
Ω((ε/L)d) (for a fixed hyper-cube size). 
�

Finally, we can give an upper bound on the expected number of iterations before we have
an xt satisfying (11).

Lemma 3 For a Lipschitz-continuous function f defined on a hyper-cube X , if we indepen-
dently sample points {x1, x2, . . . } uniformly at random from X , then in expectation we find
a point x satisfying (11) after O((L/ε)d) samples.

Proof From the previous lemma, each independent sample finds a solution with probability
Ω((ε/L)d . Viewing each sample as a Bernoulli trial, the expected number of iterations before
we find a solution is a geometric random variable with success probability Ω((ε/L)d . Since
the expectation of a geometric random variable is the inverse of its success probability, in
expectation we find a solution after O((L/ε)d) samples. 
�

Instead of “number of samples t to reach accuracy ε”, we could equivalently state the
result in terms “expected error at iteration t” (simple regret) by inverting the relationship
between t and ε. This would give an expected error on iteration t of O(L/t1/d).
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A.2 Random selection, pruning based on the true Lipschitz constant

In the previous section, we considered choosing points xt uniformly from X . Consider the
case where we are given L (or an upper bound on it), and instead sample uniformly from X
intersected with the points that are not ruled out by the Lipschitz inequalities. Note that this
restriction cannot rule out points in B unless we already have an ε-optimal solution, and thus
the arguments from the previous section still apply.

A.3 Random selection, pruning based on a growing Lipschitz constant estimate

Unfortunately, ifwe use an estimate L̂ t of L instead of an L satisfying theLipschitz inequality,
we could reject an approximate solution. However, if L̂ t grows with t then eventually it is
sufficiently large that we will not reject an approximate solution (unless we already have an
ε-optimal solution). Thus, a crude bound on the expected number of iterations before we
find a solution with accuracy ε is given by O((L/ε)d + T ), where T is the first iteration
t beyond which we always have L̂ ≥ L . Thus, if we choose the sequence L̂ t such that
T = O((L/ε)d), then LO with an estimated L̂ t is harmless as it requires the same expected
number of iterations as random guessing. A simple example of a sequence of L̂ values
satisfying this property would be to choose L̂ t = t L(ε/L)d , which grows extremely-slowly
(for small ε and non-trivial d or L). Larger sequences would imply a smaller T and hence
also would be harmless.

B Regret bound

Theorem 1 Let D be a finite decision space and σ be the standard deviation of the noise in
the observations. Let πt be a positive scalar such that

∑
t π

−1
t = 1 and δ ∈ (0, 1). If we use

the AR-UCB algorithm with β
1/2
t = 2 log(|D|πt/δ) assuming that the above conditions 1-3

hold, then the expected cumulative regret R(T ) can be bounded as follows:

R(T ) ≤ (
8/ log(1 + σ−2)

)
βT γT

√
T .

Here, γT refers to the information gain for the selected points and depends on the kernel
being used. For the squared exponential kernel, we obtain the following specific bound:

R(T ) ≤ (
8/ log(1 + σ−2)

)
βT (log(T ))d+1

√
T

Proof By definition of Lipschitz bounds and assuming we know the true Lipschitz constant
L , at iteration t , for all x ,

f lt−1(x) ≤ f (x) ≤ f ut−1(x). (12)

We now use the following lemma from Srinivas et al. (2010):

Lemma 4 (Lemma 5.1 in Srinivas et al. (2010)) Denoting D as a finite decision space, let
πt > 0 and

∑
t π

−1
t = 1. Choose β

1/2
t = 2 log(|D|πt/δ) where δ ∈ (0, 1). Then, for all

x ∈ D and t ≥ 1, with probability 1 − δ,

| f (x) − μt−1(x)| ≤ β
1/2
t σt−1(x). (13)
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From Eqs. (12) and (13),

f (x∗) ≤ min{ f ut−1(x
∗), μt−1(x

∗) + β
1/2
t σt−1(x

∗)}. (14)

For the point xt selected at round t , the following relation holds because of the accept–reject
condition:

f lt−1(xt ) ≤ μt−1(xt ) + β
1/2
t σt−1(xt ) ≤ f ut−1(xt ). (15)

The following holds because of the definition of the UCB rule:

μt−1(xt ) + β
1/2
t σt−1(xt ) ≥ μt−1(x

∗) + β
1/2
t σt−1(x

∗). (16)

From Eqs. (13) and (15)

μt−1(xt ) + β
1/2
t σt−1(xt ) ≤ min{ f (xt ) + 2β1/2

t σt−1(xt ), f ut−1(xt )}. (17)

Let rt be the instantaneous regret in round t . Then,

rt = f (x∗) − f (xt )

≤ min{ f ut−1(x
∗), μt−1(x

∗) + β
1/2
t σt−1(x

∗)} − f (xt ) (From Eq. 14)

≤ min{ f ut−1(x
∗), μt−1(xt ) + β

1/2
t σt−1(xt )} − f (xt ) (From Eq. 16)

= min{ f ut−1(x
∗) − f (xt ), μt−1(xt ) + β

1/2
t σt−1(xt ) − f (xt )}

(min{a, b} − c = min{a − c, b − c})
≤ μt−1(xt ) + β

1/2
t σt−1(xt ) − f (xt ) (min{a, b} ≤ b)

≤ min{ f (xt ) + 2β1/2
t σt−1(xt ), f ut−1(xt )} − f (xt ) (From Eq. 17)

= min{2β1/2
t σt−1(xt ), f ut−1(xt ) − f (xt )} (min{a, b} − c = min{a − c, b − c})

�⇒ rt ≤ min{2β1/2
t σt−1(xt ), f ut−1(xt ) − f lt−1(xt )}. (From Eq. 12)

Let us now consider the term f ut−1(xt ) − f lt−1(xt ).

f ut−1(xt ) − f lt−1(xt ) = min
i∈[t−1] { f (xi ) + L||xt − xi ||2} − max

i∈[t−1] { f (xi ) − L||xt − xi ||2}
(By Eq.6)

= min
i∈[t−1] { f (xi ) + L||xt − xi ||2} + min

i∈[t−1] {− f (xi ) + L||xt − xi ||2}
(−max{a, b} = min{−a,−b})

≤ min
i∈[t−1] { f (xi ) + L||xt − xi ||2 − f (xi ) + L||xt − xi ||2}
(min{ai + bi } ≥ min{ai } + min{bi })

�⇒ f ut−1(xt ) − f lt−1(xt ) ≤ 2L min
i∈[t−1] {||xt − xi ||2} .

From the above equations,

rt ≤ min

{
2β1/2

t σt−1(xt ), 2L min
i∈[t−1] {||xt − xi ||2}

}
.
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Let R(T ) be the cumulative regret after T rounds.

R(T ) =
T∑
t=1

rt ≤
T∑
t=1

[
min

{
2β1/2

t σt−1(xt ), 2L min
i∈[t−1] {||xt − xi ||2}

}]

R(T ) ≤ min

{
2

T∑
t=1

β
1/2
t σt−1(xt ), 2L

T∑
t=1

min
i∈[t−1] {||xt − xi ||2}

}
(min{

∑
i

ai } ≥
∑
i

min{ai })

We now bound the term 2
∑T

t=1 β
1/2
t σt−1(xt ) using the lemma in Srinivas et al. (2010)

which we restate next:

Lemma 5 (Lemma 5.4 in Srinivas et al. (2010)) Choosing β
1/2
t = 2 log(|D|πt/δ),

2
T∑
t=1

β
1/2
t σt−1(xt ) ≤ C1γT

√
T .

where C1 = (
8/ log(1 + σ−2)

)
βT . Here γT refers to the information gain for the selected

points.

Using the above lemma, we obtain the following bound:

R(T ) ≤ min

{
C1γT

√
T , 2L

T∑
t=1

min
i∈[t−1] {||xt − xi ||2}

}

�⇒ R(T ) ≤ (
8/ log(1 + σ−2)

)
βT γT

√
T .


�

C Additional experimental results

Below we show the results of all the experiments for all the datasets as follows:

– Figure 5 shows the performance of Random search, BO, and LBO (using both estimated
and True L) for the TS acquisition function.

– Figure 6 shows the performance of Random search, BO, and LBO (using both estimated
and True L) for the UCB acquisition function.

– Figure 7 shows the performance of Random search, BO, and LBO (using both estimated
and True L) for the EI acquisition function.

– Figure 8 shows the performance of Random search, BO, and LBO (using both estimated
and True L) for the PI acquisition function.

– Figure 9 shows the performance of BO and LBO using the estimated L for the all
acquisition function.

– Figure 10 shows the performance of Random search, BO, and LBO (using both estimated
and True L) for the UCB acquisition function with very large β = 1016.
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(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Fig. 5 Comparing the performance of the conventional BO acquisition function, corresponding LBO mixed
acquisition function, Lipschitz optimization and random exploration for the TS acquisition functions
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(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Fig. 6 Comparing the performance of the conventional BO acquisition function, corresponding LBO mixed
acquisition function, Lipschitz optimization and random exploration for the UCB acquisition functions
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(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Fig. 7 Comparing the performance of the conventional BO acquisition function, corresponding LBO mixed
acquisition function, Lipschitz optimization and random exploration for the EI acquisition functions
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(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Fig. 8 Comparing the performance of the conventional BO acquisition function, corresponding LBO mixed
acquisition function, Lipschitz optimization and random exploration for the PI acquisition functions
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(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Fig. 9 Comparing the performance across the four BO and the corresponding LBO acquisition functions
against Lipschitz optimization and random exploration on all the test functions (better seen in color) (Color
figure online)
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(a) Branin 2D (b) Camel 2D (c) Goldstein Price 2D

(d) Michalwicz 2D (e) Michalwicz 5D (f) Michalwicz 10D

(g) Rosenbrock 2D (h) Hartmann 3D (i) Hartmann 6D

(j) Rosenbrock 3D (k) Rosenbrock 4D (l) Rosenbrock 5D

(m) Robot pushing 3D (n) Robot pushing 4D (o) Logistic Regression

Fig. 10 Comparing the performance of the conventional BO acquisition function, corresponding LBO mixed
acquisition function, Lipschitz optimization and random exploration for the UCB acquisition functions when
using very large β = 1016
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