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Abstract
We study a bad arm existence checking problem in a stochastic K-armed bandit setting, in
which a player’s task is to judge whether a positive arm exists or all the arms are negative
among given K arms by drawing as small number of arms as possible. Here, an arm is
positive if its expected loss suffered by drawing the arm is at least a given threshold θU ,
and it is negative if that is less than another given threshold θL(≤ θU ). This problem is
a formalization of diagnosis of disease or machine failure. An interesting structure of this
problem is the asymmetry of positive and negative arms’ roles; finding one positive arm is
enough to judge positive existence while all the arms must be discriminated as negative to
judgewhole negativity. In the casewithΔ = θU −θL > 0,we propose elimination algorithms
with arm selection policy (policy to determine the next arm to draw) and decision condition
(condition to conclude positive arm’s existence or the drawn arm’s negativity) utilizing this
asymmetric problem structure and prove its effectiveness theoretically and empirically.
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1 Introduction

In the diagnosis of disease or machine failure, the test object is judged as “positive” if some
anomaly is detected in at least one of many parts. In the case that the purpose of the diagnosis
is the classification into one of the two classes, “positive” or “negative”, then the diagnosis
can be terminated right after the first anomaly part has been detected. Thus, fast diagnosis
will be realized if one of anomaly parts can be detected as fast as possible in the positive
case.

The fast diagnosis of anomaly detection is particularly important in the case that the
judgment is done based on measurements using a costly or slow device. For example, a
Raman spectral image has been known to be useful for cancer diagnosis (Haka et al. 2009),
but its acquisition time is 1–10 seconds per point (pixel)1 resulting in an order of hours or days
per one image (typically 10,000–40,000 pixels), so it is critical to measure only the points
necessary for cancer diagnosis in order to achieve fast measurement. A Raman spectrum of
each point is believed to be converted to a cancer index, which indicates how likely the point
is inside a cancer cell, and we can judge the existence of cancer cells from the existence of
area with a high cancer index.

The above cancer cell existence checking problem can be formulated as the problem of
checking the existence of a grid with a high cancer index for a given area that is divided into
grids. By regarding each grid as an arm, we formalize this problem as a loss-version of a
stochastic K -armed bandit problem in which the existence of positive arms is checked by
drawing arms and suffering losses for the drawn arms. In our formulation, given an acceptable
error rate 0 < δ < 1/2 and two thresholds θL and θU with 0 < θL ≤ θU < 1, a player
is required to, with probability at least 1 − δ, answer “positive” if positive arms exist and
“negative” if all the arms are negative. Here, an arm is defined to be positive if its loss mean
is at least θU , and defined to be negative if its loss mean is less than θL . We call player
algorithms for this problem as (θL , θU , δ)-BAEC (Bad Arm Existence Checking) algorithms.
The objective of this research is to design a (θL , θU , δ)-BAEC algorithm that minimizes the
number of arm draws, that is, an algorithm with the lowest sample complexity. The problem
of this objective is said to be a Bad Arm Existence Checking Problem.

The bad arm existence checking problem is closely related to the thresholding bandit
problem (Locatelli et al. 2016), which is a kind of pure-exploration problem such as the best
arm identification problem (Even-Dar et al. 2006; Audibert et al. 2010). In the thresholding
bandit problem, provided a threshold θ and a required precision ε > 0, the player’s task is
to classify each arm into positive (its loss mean is at least θ + ε) or negative (its loss mean is
less than θ − ε) by drawing a fixed number of samples, and his/her objective is to minimize
the error probability, that is, the probability that positive (resp. negative) arms are wrongly
classified into negative (resp. positive). Apart from whether fixed confidence (constraint on
error probability to achieve) or fixed budget (constraint on the allowable number of draws),
positive and negative arms are treated symmetrically in the thresholding bandit problem
while they are dealt with asymmetrically in our problem setting; judgment of one positive arm
existence is enough for positive conclusion though all the armsmust be judged as negative for
negative conclusion. This asymmetry has also been considered in the good arm identification
problem (Kano et al. 2017), and our problem can be seen as its specialized version though
their problem deal with the case with θL = θU only. In their setting, the player’s task is
to output all the arms of above-threshold means with probability at least 1 − δ, and his/her
objective is to minimize the number of drawn samples until λ arms are outputted as arms

1 http://www.horiba.com/en_en/raman-imaging-and-spectroscopy-recording-spectral-images-profiles/.
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with above-threshold means for a given λ. In the case with λ = 1, algorithms for their
problem can be used to solve our existence checking problem. Their proposed algorithm,
however, does not utilize the asymmetric problem structure. Kaufmann et al. (2018) studied
the problem of sequential test for the lowest mean, which is basically the same problem as the
bad arm existence checking problem except the difference in the number of thresholds; they
also treat the case with θL = θU only. They proposed an algorithm to utilize the asymmetric
problem structure: Murphy Sampling and asymmetric stopping condition. Our approach to
utilize the asymmetric problem structure is different from their approach; our algorithm is
an elimination algorithm and asymmetric conditions are used not only to stop but also to
eliminate the drawn arm.

We consider elimination algorithmsBAEC[ASP,LB,UB] that aremainly composed of an
arm-selection policy arg maxiASP(t, i) and a decision condition LB(t) ≥ θL or UB(t) < θU
at time t . The arm-selection policy decides which arm is drawn at each time t based on loss
samples obtained so far. The decision condition is used to conclude positive arm’s existence
if LB(t) ≥ θL holds or the drawn arm’s negativity if UB(t) < θU holds. If the conclusion
is positive arm’s existence, then the algorithms stop immediately by returning “positive”. In
the case that the conclusion is the drawn arm’s negativity, the arm is eliminated from the
set of positive-arm candidates, which is composed of all the arms initially, and will not be
drawn any more. If there remains no positive-arm candidate, then the algorithms stop by
returning “negative”. To utilize our asymmetric problem structure, we propose a decision
condition that uses Δ-dependent asymmetric confidence bounds μ(t) and μ(t) of estimated
loss means as LB(t) and UB(t) in the case withΔ = θU −θL > 0. Here, asymmetric bounds
mean that the width of the upper confidence interval is narrower than the width of the lower
confidence interval. As an arm selection policy, we propose policy APTP that is derived by
modifying policy APT (Anytime Parameter-free Thresholding) (Locatelli et al. 2016) so as to
favor arms with sample means larger than a single threshold θ (rather than arms with sample
means closer to θ as the original APT does). Here, as the single threshold θ used by policy
APTP, we use not the center between θL and θU but the value closer to θU by utilizing the
asymmetry of our confidence bounds.

By usingΔ-dependent asymmetric confidence bounds as the decision condition, theworst-

case bound on the number of samples for each arm is shown to be improved byΩ
(

1
Δ2 ln

√
K

Δ2

)

compared to the case using the conventional symmetric confidence bounds of the successive
elimination algorithm (Even-Dar et al. 2006).

Our sample complexity results regarding the asymptotic behavior as δ → 0 is summarized
as Table 1. Reflecting the asymmetric structure of the problem, the existence of a positive
arm makes the sample complexity higher. In the case with negative arms only, algorithm
BAEC[∗, μ, μ], our elimination algorithm with any arm selection policy and Δ-dependent
asymmetric confidence bounds, is proved to achieve almost optimal sample complexity. In
the case with positive arm existence, the upper bound on the expected number of samples for
algorithmBAEC[APTP, μ, μ] is proved to be almost optimal when all the positive arms have
the same loss mean while that for algorithm BAEC[UCB, μ, μ] using UCB (Upper Confi-
dence Bound) (Auer et al. 2002) as the arm selection policy like HDoC (Hybrid algorithm
for the Dilemma of Confidence) (Kano et al. 2017) is proved to be almost optimal when just
one positive arm has the largest loss mean.

The effectiveness of our decision condition using theΔ-dependent asymmetric confidence
bounds is demonstrated in simulation experiments. The algorithm using our Δ-dependent
asymmetric confidence bounds stops drawing an arm about two times faster than the algo-
rithm using the symmetric confidence bounds when its loss mean is around the center of the
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Table 1 Our asymptotic lower and upper bounds on the expected stopping times E[T ] divided by ln 1
δ as

δ → +0, that is, limδ→+0
E[T ]
ln 1

δ

, for bad arm existence checking problem

Case At least one positive Negative only

Lower bound
(Bernoulli dis-
tribution case)

1

d(μ1, θL )

(
≤ 1

2Δ2
1

)
(Th. 1)

K∑
i=1

1

d(μi , θU )⎛
⎝≤

K∑
i=1

1

2Δ2
i

⎞
⎠

(Th. 1)

Upper bound BAEC[∗, μ, μ]
K∑
i=1

1

2Δ2
i

(Th. 6)

K∑
i=1

1

2Δ2
i

(Th. 6)

BAEC[APTP, μ, μ] 1

2Δ2
m

(Cor. 1)

BAEC[UCB, μ, μ] |{i | μi = μ1}|
2Δ2

1

(Cor. 2)

Without loss of generality, arms i with mean loss μi are assumed to be sorted as μ1 ≥ · · · ≥ μK . Function
d is Kullback–Leibler divergence for Bernoulli distribution defined as d(x, y) = x ln x

y + (1 − x) ln 1−x
1−y ,

and the parenthesized upper bounds can be obtained by Pinsker’s Inequality, which is known to be tight in
the worst case. For θ defined by Eq. (6), Δi is defined to be μi − θL if μi ≥ θ and θU − μi otherwise, and
m = |{i | μi ≥ θ}|

thresholds. Our algorithm BAEC[APTP, μ, μ] almost always stops faster than the algorithm
BAEC[UCB, μ, μ], and our algorithm’s stopping time is faster or comparable to the stop-
ping time of the algorithm BAEC[ASP, μ, μ] using LUCB (Lower and Upper Confidence
Bounds) (Kalyanakrishnan et al. 2012), Thompson Sampling (Thompson 1933) andMurphy
Sampling (Kaufmann et al. 2018) as ASPs in almost all the our simulations using Bernoulli
loss distribution with synthetically generated means and means generated from a real-world
dataset.

Related work

The bad arm existence checking problem is a kind of multi-armed bandit problem, which is
a classical problem studied by Thompson (1933) and Robbins (1952). A bandit problem is
an online learning problem (Littlestone and Warmuth 1994), but a player can obtain partial
information only in its setting. In our study, loss (or reward) distribution is assumed to be
stochastic, which is easier to deal with than the adversarial setting (Auer et al. 2003). For
the bandit problem, depending on problem objectives, two kinds of settings exist: regret-
minimization setting (Auer et al. 2002) and pure-exploration setting (Bubeck et al. 2011).
Most pure-exploration problems are best arm identification problems (Even-Dar et al. 2006;
Audibert et al. 2010; Kalyanakrishnan et al. 2012; Kaufmann and Kalyanakrishnan 2013)
which are the problems to identify the arms with the maximum reward means. There are the
fixed budget version and the fixed confidence version of best arm identification problems,
and algorithms for the fixed confidence version have an arm selection policy and a stopping
condition. Some best arm identification algorithms eliminate arms that are estimated not to

123



Machine Learning (2020) 109:327–372 331

be the best, and most of those algorithms use uniform sampling as an arm selection policy
(Even-Dar et al. 2006;Bubeck et al. 2013).Non-eliminationbest arm identification algorithms
use a more sophisticated adaptive sampling as an arm selection policy (Gabillon et al. 2012;
Kalyanakrishnan et al. 2012). Comparison analysis between elimination and non-elimination
algorithms was performed by Kaufmann and Kalyanakrishnan (2013). Identification of the
above-or-below-threshold arms (Locatelli et al. 2016;Kano et al. 2017;Kaufmann et al. 2018)
is a variant of best arm identification, and among these algorithms, only ours andHDoC (Kano
et al. 2017) are elimination algorithms using adaptive sampling. This combination is effective
for checking existence of above-or-below-threshold arm setting.

2 Preliminaries

For given thresholds 0 < θL ≤ θU < 1, consider the following bandit problem. Let K (≥ 2)
be the number of arms, and at each time t = 1, 2, . . . , a player draws arm it ∈ {1, . . . , K }.
For i ∈ {1, . . . , K }, Xi (n) ∈ [0, 1] denotes the loss for the nth draw of arm i , where
Xi (1), Xi (2), . . . are a sequence of i.i.d. random variables generated according to a proba-
bility distribution νi with mean μi ∈ [0, 1]. We assume independence between {Xi (t)}∞t=1
and {X j (t)}∞t=1 for any i, j ∈ {1, . . . , K } with i 	= j . For a distribution set ν = {νi } of K
arms, Eν and Pν denote the expectation and the probability under ν, respectively, and we
omit the subscript ν if it is trivial from the context. Without loss of generality, we can assume
that μ1 ≥ · · · ≥ μK and the player does not know this ordering. Let ni (t) denote the number
of draws of arm i right before the beginning of the round at time t . After the player observed
the loss Xit (nit (t) + 1), he/she can choose stopping or continuing to play at time t + 1. Let
T denote the stopping time.

The player’s objective is to check the existence of some positive arm(s) with as small
a stopping time T as possible. Here, arm i is said to be positive if μi ≥ θU , negative if
μi < θL , and neutral otherwise. We consider a bad arm existence checking problem, which
is a problem of developing algorithms that satisfy the following definition with as small
number of arm draws as possible.

Definition 1 Given2 0 < θL ≤ θU < 1 and δ ∈ (0, 1/2), consider a game that repeats
choosing one of K arms and observing its loss at each time t . A player algorithm for this
game is said to be a (θL , θU , δ)-BAEC (Bad Arm Existence Checking) algorithm if it stops in
a finite time outputting “positive” with probability at least 1 − δ in the case that at least one
arm is positive, and “negative” with probability at least 1− δ in the case that all the arms are
negative.

Note that the definition of BAEC algorithms requires nothing when arm 1 is neutral. Our
problem definition coincides with the highest-mean version problem of sequential testing for
the lowest mean (Kaufmann et al. 2018) in the case with θL = θU . Table 2 is the table of
notations used throughout this paper.

2 Thresholds θL and θU correspond to θ −ε and θ +ε, respectively, in thresholding bandit problem (Locatelli
et al. 2016) with one threshold θ and precision ε, but we use the two thresholds due to convenience for our
asymmetric problem structure.
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Table 2 Notation list

K : Number of arms

θU , θL : Upper and lower thresholds. (0 < θL ≤ θU < 1)

Δ : Gray zone width (Δ = θU − θL )

δ : Acceptable error rate. (δ ∈ (0, 1/2))

νi : Loss distribution of arm i

ν : Set {νi } of loss distributions of K arms

μi : Loss mean (expected loss) of arm i . (μi ∈ [0, 1])

Arm i is

⎧⎪⎨
⎪⎩

positive if μi ≥ θU ,

neutral if θL ≤ μi < θU ,

negative if μi < θL

Δ1i = μ1 − μi

Eν : Expectation of some random variable w.r.t. ν

Pν : Probability of some event w.r.t. ν (ν is omitted when it is trivial from the context)

it : Drawn arm at time t

Xi (n) : Loss suffered by the nth draw of arm i

ni (t) : Number of draws of arm i at the beginning of the round at time t

T : Stopping time

μ̂i (n) = 1
n
∑n

s=1 Xi (s)

μ′
i (n) = μ̂i (n) −

√
1
2n ln 2Kn2

δ
μ′
i (n) = μ̂i (n) +

√
1
2n ln 2Kn2

δ

NΔ =
⌈

2e
(e−1)Δ2 ln 2

√
K

Δ2δ

⌉
TΔ =

⌈
2

Δ2 ln
√
K NΔ

δ

⌉

α =
√
1 + ln K

ln NΔ

δ

θ = θU − 1
1+α

Δ = θL + α
1+α

Δ

Δi =
{

μi − θL (μi ≥ θ)

θU − μi (μi < θ)
TΔi

=
⌈

2
Δ2
i
ln

√
K NΔ

δ

⌉

Δi = |μi − θ |
m : Number of arms i with μi ≥ θ

μi (n) = μ̂i (n) −
√

1
2n ln K NΔ

δ
μi (n) = μ̂i (n) +

√
1
2n ln NΔ

δ

τi : Number n of draws of arm i until algorithm BAEC[∗, μ, μ]’s decision condition
(μi (n) ≥ θL or μi (n) < θU ) is satisfied.

î1 : First arm that is drawn τi times by algorithm BAEC[APTP, μ,μ]
E+ = ⋃

i :μi≥θU

⋂TΔ

n=1

{
μi (n) ≥ μi

}
E− = ⋂K

i=1
⋂TΔ

n=1

{
μi (n) < μi

}

EPOSi : Event that arm i is judged as positive

3 Sample complexity lower bound

In this section, we derive a lower bound on the expected number of samples needed for a
(θL , θU , δ)-BAEC algorithm. The derived lower bound is used to evaluate algorithm’s sample
complexity upper bound in Sects. 5.3 and 6.2.
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We let KL(ν, ν′) denote Kullback–Leibler divergence from distribution ν′ to ν and define
d(x, y) as

d(x, y) = x ln
x

y
+ (1 − x) ln

1 − x

1 − y
.

Note that KL(ν, ν′) = d(μi , μ
′
i ) holds if ν and ν′ are Bernoulli distributions with means μi

and μ′
i , respectively.

The following theorem is an extension3 of Lemma 1 in Kaufmann et al. (2018) to the case
with two thresholds.

Theorem 1 Let {νi } be a set of Bernoulli distributions with means {μi }. Then, the stopping
time T of any (θL , θU , δ)-BAEC algorithm with θU and θL is bounded as

E(T ) >
1 − 2δ

d(μ1, θL)
ln

1 − δ

δ
(1)

if some arm is positive, and

E(T ) >

K∑
i=1

1 − 2δ

d(μi , θU )
ln

1 − δ

δ
(2)

if all the arms are negative.

Proof See “Appendix A”. ��

Remark 1 Identification is not needed for checking existence, however, in terms of asymptotic
behavior as δ → +0, the shown expected sample complexity lower bounds of both the tasks
are the same; limδ→+0 E(T )/ ln(1/δ) ≥ 1/d(μ1, θL) for both the tasks in the case with
some positive arms. The bounds are tight considering the shown upper bounds, so the bad
arm existence checking is not more difficult than the good arm identification4 (Kano et al.
2017) with respect to asymptotic behavior as δ → +0.

4 Algorithm

4.1 BAEC[ASP, LB,UB] algorithm framework

As (θL , θU , δ)-BAEC algorithms, we consider algorithm BAEC[ASP,LB,UB] shown in
Algorithm 1 that, at each time t , chooses an arm it from the set At of positive-candidate arms
by an arm-selection policy ASP

it ← arg max
i∈At

ASP(t, i)

3 The original lemma treats the problem to decide whether the lowest mean is less than a given one threshold
for one-parameter canonical exponential family of K distributions.
4 The lower bound on the stopping time under the decision of no more positive arm is not analyzed in Kano
et al. (2017), and the stopping time in the case with no positive arm is the time of its special case. In good
arm identification, the algorithm must stop without falsely identifying any arm as positive in such case with
probability at least 1 − δ, so its task is the same as our bad arm existence checking problem in the case with
no positive arm.
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Algorithm 1 BAEC[ASP,LB,UB]
Parameter Function:

ASP(t, i): index value of arm i at time t for arm selection
LB(t), UB(t): lower and upper confidence bounds of arm it ’s estimated loss mean

Input: K : the number of arms
0 < θL ≤ θU < 1: thresholds
δ ∈ (0, 1/2): acceptable error rate

1: A1 ← {1, 2, . . . , K }, ni (1) ← 0 for i = 1, . . . , K
2: t ← 1
3: while At 	= ∅ do
4: it ← arg max

i∈At
ASP(t, i)

5: ni (t + 1) ←
{
ni (t) + 1 (i = it )

ni (t) (i 	= it )
6: Draw it and suffer a loss Xit (nit (t + 1)).

7: μ̂it (nit (t + 1)) ← μ̂it (nit (t))×nit (t)+Xit (nit (t+1))
nit (t+1)

8: if LB(t) ≥ θL then
9: return “positive” � Conclude positive arm’s existence
10: else if UB(t) < θU then
11: At+1 ← At \ {it } � Conclude Arm it ’s negativity
12: end if
13: t ← t + 1
14: end while
15: return “negative”

using some index value ASP(t, i) of arm i at time t (Line 4), suffers a loss Xit (nit (t + 1))
(Line 6) and then checks whether a decision condition

LB(t) ≥ θL or UB(t) < θU

is satisfied (Lines 8 and 10). Here, LB(t) andUB(t) are lower and upper confidence bounds of
an estimated lossmean of the current drawn arm it , and condition LB(t) ≥ θL is the condition
for the decision of positive arm’s existence , and condition UB(t) < θU is the condition for
concluding the drawn arm’s negativity and eliminating arm it from the set At+1 of positive-
candidate arms of time t + 1. In addition to the case with positive conclusion, algorithm
BAEC[ASP,LB,UB] also stops with negative conclusion when At becomes empty.

Define sample loss mean μ̂i (n) of arm i with n draws as

μ̂i (n) = 1

n

n∑
s=1

Xi (s),

and we use μ̂it (nit (t + 1)) as an estimated loss mean of the current drawn arm it at time t .

4.2 Asymmetric1-dependent confidence bounds

Aswe use the samplemean μ̂i (n) as an estimated lossmean, LB(t) andUB(t) are determined
by defining lower and upper bounds of a confidence interval of μ̂i (n) for i = it and n =
nit (t + 1).

As lower and upper confidence bounds of μ̂i (n),

μ′
i
(n) = μ̂i (n) −

√
1

2n
ln

2Kn2

δ
and μ′

i (n) = μ̂i (n) +
√

1

2n
ln

2Kn2

δ
, (3)
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respectively, are generally used5 in successive elimination algorithms (Even-Dar et al. 2006).
Define μ′(t) and μ′(t) as μ′(t) = μ′

it
(nit (t + 1)) and μ′(t) = μ′

it
(nit (t + 1)) for use as

LB(t) and UB(t).
Consider the case with θL < θU , namely, the case that θL is strictly smaller than θU . In

this case, we propose asymmetric bounds μ
i
(n) and μi (n) defined using a gray zone width

Δ = θU − θL as follows:

μ
i
(n) = μ̂i (n) −

√
1

2n
ln

K NΔ

δ
and μi (n) = μ̂i (n) +

√
1

2n
ln

NΔ

δ
, (4)

where

NΔ =
⌈

2e

(e − 1)Δ2 ln
2
√
K

Δ2δ

⌉
.

We also let μ(t) and μ(t) denote LB(t) and UB(t) using these bounds, that is, μ(t) =
μ
it
(nit (t + 1)) and μ(t) = μit (nit (t + 1)).

Note that μi (n) < μ′
i (n) for n >

√
NΔ/2K and μ

i
(n) > μ′

i
(n) for n >

√
NΔ/2, so

μi (n)−μ
i
(n) < μ′

i (n)−μ′
i
(n) holds for n ≥ √

NΔ/2. Bothμi (n)−μ
i
(n) andμ′

i (n)−μ′
i
(n)

decrease as n increases, and LB(t) ≥ θL or UB(t) < θU is satisfied for BAEC[∗, μ, μ] and
BAEC[∗, μ′, μ′] when they become at most Δ for n = ni (t + 1), where ASP = ∗ means
that any index function ASP(t, i) can be assumed.

Remark 2 Conditionμ(t) ≥ θL essentially identifies non-negative arm it . Is there real-valued
functionLB that can check existence of a non-negative armwithout identifying it? The answer
is yes. Consider a virtual arm at each time t whose mean loss μt is a weighted average over
the mean losses μi of all the arms i (i = 1, . . . , K ) defined as μt = 1

t

∑K
i=1 ni (t + 1)μi . If

μt ≥ θL , then at least one arm i must be non-negative. Thus, we can check the existence of
a non-negative arm by judging whether μt ≥ θL or not. Since μt (t) defined as

μt (t) = 1

t

K∑
i=1

ni (t + 1)μ̂i (t + 1) −
√

1

2t
ln

2t2

δ

can be considered to be a lower bound of the estimated value of μt , μt can be used as LB
for checking the existence of a non-negative arm without identifying it. Instead of the set
of all arms, any arm subset can be considered to be a virtual arm as the stopping condition
proposed by Kaufmann et al. (2018) in the case with θL = θU . However, the increase of the
number of subsets to be considered also makes the required number of each subset’s samples
increase due to the property of union bound. In this paper, we do not pursue in this direction,
and instead focus on the effect investigation of the decision condition using Δ-dependent
asymmetric confidence bounds.

The ratio of the width of our upper confidence interval
[
μ̂i (n), μi (n)

]
to the width of our

lower confidence interval
[
μ
i
(n), μ̂i (n)

]
is
√
ln NΔ

δ
:
√
ln K NΔ

δ
= 1 :

√
1 + ln K

ln NΔ
δ

. Thus, we

5 Precisely speaking, μ̂i (n) ±
√

1
2n ln 4Kn2

δ
is used in successive elimination algorithms for best arm iden-

tification problem. A narrower confidence interval is enough to judge whether expected loss is larger than a
fixed threshold.
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define θ as

θ = θU − 1

1 + α
Δ where α =

√
1 + ln K

ln NΔ

δ

.

This θ can be considered to be the balanced center between the thresholds θL and θU for our
asymmetric confidence bounds.

4.3 Arm selection policy APTP

As arm selection policy ASP, we consider policy APTP that uses index function

APTP(t, i) = √
ni (t)

(
μ̂i (ni (t)) − θ

)
, (5)

where we use μ̂i (ni (t)) = θ when ni (t) = 0. This arm-selection policy is a modification of
the policy of APT (Anytime Parameter-free Thresholding algorithm) (Locatelli et al. 2016), in which
an arm

arg min
i

√
ni (t)

(∣∣μ̂i (ni (t)) − θ
∣∣ + ε

)
(6)

is chosen for given threshold θ and accuracy ε. In the original APT, arm i with the sample
mean μ̂i (ni (t)) closest to θ is preferred to be chosen no matter whether μ̂i (ni (t)) is larger
or smaller than θ . In APTP, there is at most one arm i whose sample mean μ̂i (ni (t)) is
larger than θ at any time t because of the above our definition of μ̂ j (n j (t)) for arms j with
n j (t) = 0 and mathematical induction in t , and such unique arm i is always chosen as long
as μ̂i (ni (t)) > θ .

5 Theoretical analyses of algorithm BAEC[∗, �, �]
In the following sections, we consider the case with θL < θU (Δ > 0). We first analyze arm’s
sample complexity for any arm, then analyze algorithm’s sample complexity.

5.1 Worst case sample complexity upper bound for any arm

One merit of the two threshold setting with θL < θU is that the number of drawn samples
until the decision condition is satisfied, is upper-bounded for any arm by a common constant
depending onΔ = θU −θL and δ. In this subsection, we prove such common constant bound
for our Δ-dependent asymmetric confidence bounds and compare it with the corresponding
number of samples for the conventional symmetric confidence bounds.

Let τi denote the smallest number n of draws of arm i for which the decision condition

is met, that is, either μ
i
(n) ≥ θL or μi (n) < θU holds. Define TΔ as TΔ =

⌈
2

Δ2 ln
√
K NΔ

δ

⌉
.

Then, τi can be upper-bounded by TΔ for any arm i as the following theorem.

Theorem 2 Inequality τi ≤ TΔ holds for i = 1, . . . , K.

Proof See “Appendix B”. ��
How good is the worst case bound TΔ on the number of samples for each arm compared to
the case with LB = μ′ and UB = μ′ (Eq. 3)? It is shown by the following theorem that,
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in BAEC[∗, μ′, μ′], the number of arm draws τ ′
i for some arm i , which is corresponding

to τi , can be larger than T ′
Δ

= � 2
Δ2 ln

448K
Δ4δ

�, which means τ ′
i − τi = Ω

(
1

Δ2 ln
√
K

Δ2

)
if

1
δ

= o
(
e
√
K/Δ2

)
.

Theorem 3 Consider algorithm BAEC[∗, μ′, μ′] and define τ ′
i = min{n | μ′

i
(n) ≥

θL or μ′
i (n) < θU } for i = 1, . . . , K. Then, event τ ′

i > T ′
Δ
can happen for i = 1, . . . , K,

where T ′
Δ
is defined as T ′

Δ
= � 2

Δ2 ln
448K
Δ4δ

�. Furthermore, the difference between the worst
case decision times τ ′

i − τi is lower-bounded as

τ ′
i − τi > T ′

Δ
− TΔ >

2

Δ2

(
ln

52
√
K

Δ2 − ln ln
3
√
K

Δ2δ

)
.

Proof See “Appendix C”. ��
Remark 3 Theorem 3 says that the difference between the worst case decision times τ ′

i

and τi of arm i is Ω
(

1
Δ2 ln

√
K

Δ2

)
for δ = ω

(√
K

Δ2 e
− 52

√
K

Δ2

)
under the condition that

δ > 3
√
K

Δ2 e− 52
√
K

Δ2 . In the experimental setting of Sect. 7.1, in which parameters K = 100,
(Δ, δ) = (0.2, 0.01), (0.2, 0.001), (0.02, 0.01), (0.02, 0.001) are used, the lower bounds of
τ ′
i −τi calculated using the above inequality are 352.7, 343.4, 56579.7, 55900.7, respectively,
which seem relatively large compared to the corresponding TΔ = 684, 808, 93098, 105307.
The range of δwhich guarantees that the lower bound of τ ′

i −τi is positive, is> 1.11×10−5643

for Δ = 0.2 and 1.12 × 10−564578 for Δ = 0.02.

Remark 4 Instead of μ′
i (n) defined in Eq. (3), μ′′

i (n) = μ̂i (n) +
√

1
2n ln

2n2
δ

can be used
because an union bound is not necessary for a positive arm as μi (n) defined in Eq. (4). For
the algorithm BAEC[∗, μ′, μ′′] using this upper confidence bound μ′′

i (n) (i = 1, . . . , K ),

the decision time difference from τi is still lower-bounded by 2
Δ2

(
ln 2

K
1
4 Δ2

− ln ln 3
√
K

Δ2δ

)
by

Theorem 9 in “Appendix D”. The values of this lower bound for the experimental setting of
Sect. 7.1, that is, K = 100, (Δ, δ) = (0.2, 0.01), (0.2, 0.001), (0.02, 0.01), (0.02, 0.001),
are 17.13, 7.80, 23020.3, 22341.3, respectively. Compared to the corresponding TΔ =
684, 808, 93098, 105307, the difference seems still large for Δ = 0.02 though it becomes
small for Δ = 0.2. The range of δ guaranteeing positiveness of the lower bound is
> 1.03 × 10−5 for Δ = 0.2 and 1.63 × 10−682 for Δ = 0.02.

5.2 Algorithm’s correctness

In this subsection, we prove that algorithm BAEC[∗, μ, μ] is a (θL , θU , δ)-BAEC algorithm.
We define events E+ and E−as

E+ =
⋃

i :μi≥θU

TΔ⋂
n=1

{
μi (n) ≥ μi

}
, E− =

K⋂
i=1

TΔ⋂
n=1

{
μ
i
(n) < μi

}
.

Note that algorithm BAEC[∗, μ, μ] returns “positive” under the event E+ and returns “neg-
ative” under the event E−. For any event E , we let 1{E} denote an indicator function of E ,
that is, 1{E} = 1 if E occurs and 1{E} = 0 otherwise.

The following proposition is used to prove Lemma 1.

123



338 Machine Learning (2020) 109:327–372

Proposition 1 TΔ ≤ NΔ.

Proof See “Appendix E”. ��
The next lemma says that algorithm’s output is correct with probability at least 1 − δ in

the cases that at least one positive arm exists or all the arms are negative.

Lemma 1 For the complementary events E+, E− of events E+, E−, inequality P{E+} ≤ δ

holds when μ1 ≥ θU and inequality P{E−} ≤ δ holds when μ1 < θL .

Proof Assume that μ1 ≥ θU . Using De Morgan’s laws, E+ can be expressed as

E+ =
⋂

i :μi≥θU

TΔ⋃
n=1

{
μi (n) < μi

}

=
⋂

i :μi≥θU

TΔ⋃
n=1

{
μ̂i (n) < μi −

√
1

2n
ln

NΔ

δ

}
.

So, the probability that event E+ occurs is bounded by δ using Hoeffding’s inequality:

P{E+} ≤ max
i :μi≥θU

TΔ∑
n=1

P

{
μ̂i (n) < μi −

√
1

2n
ln

NΔ

δ

}

≤
TΔ∑
n=1

δ

NΔ

= TΔ

NΔ

δ ≤ δ. (by Proposition 1)

Assume that μ1 < θL . Using De Morgan’s laws, E− can be expressed as

E− =
K⋃
i=1

TΔ⋃
n=1

{
μ
i
(n) ≥ μi

}

=
K⋃
i=1

TΔ⋃
n=1

{
μ̂i (n) ≥ μi +

√
1

2n
ln

K NΔ

δ

}
.

So, the probability that event E− occurs is bounded by δ using the union bound and Hoeffd-
ing’s inequality:

P{E−} ≤
K∑
i=1

TΔ∑
n=1

P

{
μ̂i (n) ≥ μi +

√
1

2n
ln

K NΔ

δ

}

≤
K∑
i=1

TΔ∑
n=1

δ

K NΔ

= TΔ

NΔ

δ ≤ δ. (by Proposition 1)

��
The following theorem states that algorithm BAEC[∗, μ, μ] is a (θL , θU , δ)-BAEC algo-

rithm which needs at most KTΔ samples in the worst case.

Theorem 4 Algorithm BAEC[∗, μ, μ] is a (θL , θU , δ)-BAEC algorithm that stops after at
most KTΔ arm draws.
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Proof By the definition of τi , algorithm BAEC[∗, μ, μ] draws arm i at most τi times, which
is upper-bounded by TΔ due to Theorem 2. So, algorithm BAEC[∗, μ, μ] stops after at most
KTΔ arm draws.

When at least one arm is positive, that is, in the case with μ1 ≥ θU , algo-
rithm BAEC[∗, μ, μ] returns “positive” if event E+ occurs. Thus, algorithm BAEC[∗, μ, μ]
returns “positive” with probability P{E+} = 1 − P{E+} ≥ 1 − δ by Lemma 1. When all the
arms are negative, that is, in the case with μ1 < θL , algorithm BAEC[∗, μ, μ] returns “nega-
tive” if event E− occurs. Thus, algorithm BAEC[∗, μ, μ] returns “negative” with probability
P{E−} = 1 − P{E−} ≥ 1 − δ by Lemma 1. ��

5.3 High-probability and average-case bounds

By Theorem 4, we know worst-case upper bound KTΔ on the number of samples needed for
algorithm BAEC[∗, μ, μ]. In this section, we show a high-probability and an average-case
bounds for the algorithm.

We define Δi as

Δi =
{

μi − θL (μi ≥ θ)

θU − μi (μi < θ)

and let TΔi
denote TΔi

=
⌈

2
Δ2
i
ln

√
K NΔ

δ

⌉
.

A high-probability upper bound of the number of samples needed for algorithm
BAEC[∗, μ, μ] is shown in the next theorem. Compared to worst case bound, KTΔ can

be improved to
∑K

i=1 TΔi
in the case with μ1 < θL , however, only one TΔ is guaranteed to be

improved to the maximum TΔi
among those of positive arms i in the case with μ1 ≥ θU .

Theorem 5 In algorithm BAEC[∗, μ, μ], inequality τi ≤ TΔi
holds for at least one positive

arm i with probability at least 1 − δ when μ1 ≥ θU . Inequality τi ≤ TΔi
holds for all

the arm i = 1, . . . , K with probability at least 1 − δ when μ1 < θL . As a result, with
probability at least 1−δ, the stopping time T of algorithm BAEC[∗, μ, μ] is upper-bounded
as T ≤ maxi :μi≥θU TΔi

+ (K − 1)TΔ when μ1 ≥ θU and T ≤ ∑K
i=1 TΔi

when μ1 < θL .

Proof See “Appendix F”. ��

The last sample complexity upper bound for algorithm BAEC[∗, μ, μ] is an upper
bound on the expected number of samples. Compared to the high-probability bound,

TΔi
=

⌈
2

Δ2
i
ln

√
K NΔ

δ

⌉
is improved to 1

2Δ2
i
ln K NΔ

δ
or 1

2Δ2
i
ln NΔ

δ
.

Theorem 6 For algorithm BAEC[∗, μ, μ], the expected value of τi of each arm i is upper-
bounded as follows.

E [τi ] ≤

⎧⎪⎪⎨
⎪⎪⎩

1
2Δ2

i
ln K NΔ

δ
+ O

((
ln K NΔ

δ

)2/3)
(μi ≥ θ)

1
2Δ2

i
ln NΔ

δ
+ O

((
ln NΔ

δ

)2/3)
(μi < θ)
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As a result, the expected stopping time E[T ] of algorithm BAEC[∗, μ, μ] is upper-bounded
as

E[T ] ≤ 1

2
ln

NΔ

δ

K∑
i=1

1

Δ2
i

+ ln K

2

∑
i :μi≥θ

1

Δ2
i

+ O

(
K

(
ln

K NΔ

δ

)2/3
)

. (7)

The above theorem can be easily derived from the following lemma by setting event E to
a certain event (an event that occurs with probability 1).

Lemma 2 For any event E , in algorithm BAEC[∗, μ, μ], inequality

E[τi1{E}] ≤ P[E]
2Δ2

i

ln
K NΔ

δ
+ O

((
ln

K NΔ

δ

) 2
3
)

. (8)

holds for any arm i with μi ≥ θ and

E[τi1{E}] ≤ P[E]
2Δ2

i

ln
NΔ

δ
+ O

((
ln

NΔ

δ

) 2
3
)

. (9)

holds for any arm i with μi < θ .

Proof See “Appendix G”. ��
Remark 5 When all the arms have Bernoulli loss distributions with means less than θL , by
Pinsker’s Inequality d(x, y) ≥ 2(x − y)2, the right-hand side of Ineq. (2) in Theorem 1 can
be upper-bounded as

K∑
i=1

1 − 2δ

d(μi , θU )
ln

1 − δ

δ
≤

K∑
i=1

1 − 2δ

2Δ2
i

ln
1 − δ

δ
.

Since Pinsker’s Inequality is tight in the worst case, algorithm BAEC[∗, μ, μ] is almost
asymptotically optimal as δ → +0. Algorithm BAEC[∗, μ, μ] is a kind of elimination
algorithm, that is, the arms that satisfy negative decision condition are eliminated. Excluding
elimination algorithms, UCB and Murphy Sampling coupled with a box stopping rule is
known to also have asymptotically optimal stopping time in this casewhenΔ = 0 (Kaufmann
et al. 2018).

6 Sample complexity of algorithm BAEC[APTP, �, �]

6.1 Sample complexity upper bound

If all the arms are judged as negative in algorithm BAEC[ASP, μ, μ], that is, drawing arm i
is stopped by the decision condition of μi (τi ) < θU for all i = 1, . . . , K , the stopping time
T is

∑K
i=1 τi regardless of arm-selection policy ASP. In the case that some positive arms

exist, however, the stopping time depends on how fast the (θL , θU , δ)-BAEC algorithm can
find one of positive arms.

In this subsection, we prove upper bounds on the expected number of samples needed
for algorithm BAEC[APTP, μ, μ], an instance of algorithm BAEC[∗, μ, μ] with specific
arm-selection policy APTP.
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Let arm î1 denote the first arm that is drawn τi times in algorithm BAEC[APTP, μ, μ].
In addition to Δi , we also use Δi = |μi − θ | in the following analysis. We let m denote the
number of arms i with μi ≥ θ . The event that arm i is judged as positive is denoted as EPOS

i .
From the following theorem and corollary, we know that, when δ is small, the dominant

terms of our upper bound on the expected stopping time of algorithm BAEC[APTP, μ, μ],
are

P

[
î1=i,EPOS

i

]

2Δ2
i

ln 1
δ
(i = 1, . . . ,m), whose sum is between 1

2Δ2
1
ln 1

δ
and 1

2Δ2
m
ln 1

δ
.

Theorem 7 If m ≥ 1 (or μ1 ≥ θ ), then the expected stopping time E[T ] of algorithm
BAEC[APTP, μ, μ] is upper-bounded as

E[T ] ≤
m∑
i=1

⎛
⎝P

[
î1 = i, EPOS

i

]

2Δ2
i

ln
K NΔ

δ
+ 2(m − 1)

Δ4
i

+
(

1

Δ2
i

+ 4

)
K∑

j=m+1

1

Δ2
j

⎞
⎠

+ m(K − m) + O

(
m

(
ln

K NΔ

δ

) 2
3
)

+ KTΔ

(
e2Δ

2
i

2Δ2
i

m∑
i=1

(
δ

NΔ

)(
Δi

max{θU ,1−θL }
)2

+
(
1 + 1

2Δ2
1

)
K∑

i=m+1

(
δ

NΔ

) 1
4

(
Δi

max{θU ,1−θL }
)2)

Proof See “Appendix H”. ��
The next corollary is easily derived from Theorem 7.

Corollary 1 If m ≥ 1, then

lim
δ→+0

E[T ]
ln 1

δ

≤
m∑
i=1

limδ→+0 P

[
î1 = i, EPOS

i

]

2Δ2
i

≤ 1

2Δ2
m

holds for the expected stopping time E[T ] of algorithm BAEC[APTP, μ, μ].

6.2 Comparison with BAEC[UCB, �, �]

HDoC (Hybrid algorithm for the Dilemma of Confidence)(Kano et al. 2017) for good arm identifica-
tion problem uses arm selection policy UCB (Upper Confidence Bound) (Auer et al. 2002),
in which

UCB(t, i) =
{∞ (ni (t) = 0)

μ̂i (ni (t)) +
√

1
2ni (t)

ln t (ni (t) > 0)

is used as ASP(t, i). In this section, we analyze a sample complexity upper bound of algo-
rithm6 BAEC[UCB, μ, μ] and compare it with that of BAEC[APTP, μ, μ].

6 This is not completely the same algorithm as HDoC because, in the HDoC’s decision condition, bounds

μ̂i (ni (t)) ±
√

1
2ni (t)

ln 4Kni (t)2
δ

are used.
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Define Δ1i as Δ1i = μ1 − μi . Then, we can obtain the following theorem and corollary,
from which, we know that, when δ is small, the dominant terms of our upper bound on the
expected stopping time of algorithm BAEC[UCB, μ, μ], are 1

2Δ2
i
ln 1

δ
(i : μi = μ1), whose

sum is |{i |μi=μ1}|
2Δ2

1
ln 1

δ
.

Theorem 8 If m ≥ 1, then expected stopping time E[T ] of algorithm BAEC[UCB, μ, μ] is
upper-bounded as

E[T ] ≤
∑

i :μi=μ1

(
1

2Δ2
i

ln
K NΔ

δ
+ O

((
ln

K NΔ

δ

) 2
3
))

+
∑

i :μi<μ1

(
ln KTΔ

2Δ2
1i

+ O((ln KTΔ)
2
3 )

)

+ O((ln KTΔ)
2
3 ln ln KTΔ) + e2Δ

2
1KTΔ

2Δ2
1

(
δ

NΔ

)(
Δ1

max{θU ,1−θL }
)2

.

Proof See “Appendix I”. ��
Corollary 2 If m ≥ 1, then

lim
δ→+0

E[T ]
ln 1

δ

≤ |{i | μi = μ1}|
2Δ2

1

holds for the expected stopping time E[T ] of algorithm BAEC[UCB, μ, μ].
Remark 6 From the upper bound shown by Ineq. (7), inequality

lim
δ→+0

E[T ]
ln 1

δ

≤
K∑
i=1

1

2Δ2
i

is derived. This means that the expected stopping time upper bounds for algorithm
BAEC[APTP, μ, μ] and BAEC[UCB, μ, μ] shown in Theorems 7 and 8 are asymptotically
smaller than that of algorithm BAEC[∗, μ, μ] as δ → +0.

Remark 7 When all the arms have Bernoulli loss distributions, the right-hand side of Ineq. (1)
in Theorem 1 can be upper-bounded as

1 − 2δ

d(μ1, θL)
ln

1 − δ

δ
≤ 1 − 2δ

2Δ2
1

ln
1 − δ

δ

by Pinsker’s Inequality. Considering tightness of Pinsker’s Inequality, 1
2Δ2

1
is considered to

be a tight upper bound of limδ→+0
E[T ]
ln 1

δ

if Ineq. (1) is tight. There is a large gap between

∑m
i=1

limδ→+0 P

[
î1=i,EPOS

i

]

2Δ2
i

and 1
2Δ2

1
, and improvement of the upper bound on the number

of samples for APTP seems difficult, so the algorithm BAEC with arm selection policy

APTP does not seem asymptotically optimal unless limδ→+0 P

[
î1 = 1, EPOS

i

]
= 1. On

the other hand, limδ→+0
E[T ]
ln 1

δ

for UCB is upper-bounded by 1
2Δ2

1
, that is, asymptotically

optimal when μi < μ1 for all arm i 	= 1. In the case with μi = μ1 for all i = 1, . . . ,m,
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however, limδ→+0
E[T ]
ln 1

δ

≤ m
2Δ2

1
holds for UCB while the corresponding bound for APTP is

asymptotically optimal, that is, limδ→+0
E[T ]
ln 1

δ

≤ 1
2Δ2

1
holds. The stopping time’s asymptotic

optimality of Murphy Sampling coupled with a box stopping rule (Kaufmann et al. 2018)
for Δ = 0 is basically the same as that of BAEC[UCB, μ, μ] for Δ > 0; its stopping time is
optimal in the unique-best-arm case but not in the multiple-best-arms case.

Remark 8 Comparing non-dominant terms of BAEC[APTP, μ, μ] and BAEC[UCB, μ, μ],
a cause for the large upper bound of the expected stopping time can be the existence of arms
i whose loss mean μi is close to μ1 in BAEC[UCB, μ, μ] while it can be the existence of
arms i whose loss mean μi is close to θ in BAEC[APTP, μ, μ].

7 Experiments

In this section, we report the results of our experiments that were conducted in order to
demonstrate the effectiveness of our Δ-dependent asymmetric confidence bounds used in
decision condition and arm selection policy on the stopping time.

In all the tables of experimental results, the smallest averaged stopping time in each
parameter setting is bolded or italic, and bolded ones mean statistically significant difference.

7.1 Effectiveness of1-dependent asymmetric confidence bounds

As upper and lower confidence bounds LB and UB, we proposed μ and μ based on Δ-
dependent asymmetric bounds μi (n) and μ

i
(n) defined by Eq. (4), instead of μ′ and μ′

based on conventional non-Δ-dependent symmetric bounds μ′
i (n) and μ′

i
(n) defined by

Eq. (3). In this subsection, we empirically compare the number of draws for an arm with
mean μi to satisfy the decision condition using those bounds.

In the experiment, an i.i.d. loss sequence Xi (1), . . .was generated according to a Bernoulli
distribution with mean μi and we measured the decision time τi which is the smallest n
that satisfies the decision condition (μ

i
(n) ≥ θL or μi (n) < θU ). The decision times

were averaged over 100 runs for each combination of parameters δ = 0.001, 0.01, μi =
0.2, 0.4, 0.6, 0.8 and (θL , θU ) = (0.1, 0.3), (0.3, 0.5), (0.5, 0.7), (0.7, 0.9), (0.19, 0, 21),
(0.39, 0.41), (0.59, 0.61), (0.79, 0.81). Note that Δ = θU − θL = 0.2 for the first half of
the setting and Δ = 0.02 for the last half of the setting. We used K = 100 so as to make the
bounds asymmetric. As a result, α = 1.154, 1.186 for δ = 0.001, 0.01, respectively. So, θ
is (θL + θU )/2 + 0.007 for δ = 0.001 and (θL + θU )/2 + 0.009 for δ = 0.01.

The result is shown in Table 3. As we can see from the table, the decision condition
using Δ-dependent asymmetric bounds make the decision time fast compared to that using
conventional bounds except in the case with Δ = 0.02 and μi > θ . The effect of the
proposed Δ-dependent asymmetric confidence bounds become significant when the arm is
neutral or negative, notably, 1.74∼2.08 times faster when μi ≈ θ . The reason why the
decision condition using conventional bounds performs better for Δ = 0.02 and μi > θ , is
that μ′

i
(τ ′

i ) > μ
i
(τ ′

i ) occurs frequently for decision time τ ′
i using μ′. In fact, μ′

i
(n) > μ

i
(n)

holds for n <
√
NΔ/2, and

√
NΔ/2 = 246.99, 264.79 for δ = 0.01, 0.001, respectively, in

the case with Δ = 0.02 and K = 100. The width μ̂i (n) − μ′
i
(n) of the lower confidence

interval of μ′
i
(n) is 0.206 for δ = 0.01 and n = 246, and 0.210 for δ = 0.001 and n = 264,

Thus, arm i with mean μi larger than θ by more than 0.21 is more likely to satisfy condition
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μ′
i
(ni (t)) ≥ θL before satisfying condition μ

i
(ni (t)) ≥ θL . This indicates that, in the case

with very small Δ, decision condition using conventional bounds is better for arms far from
θ .

7.2 Effectiveness of arm selection policy APTP

7.2.1 Simulation using synthetic distribution parameters

In this experiment, we first generated distribution means μ1, . . . , μ100 of 100 arms, and then
ran algorithm BAEC[APTP, μ, μ] simulating an arm-i draw by generating a loss according
to a Bernoulli distribution with mean μi .

For given natural number m and a threshold pair (θL , θU ), m distribution means were
generated according to a uniform distribution over [θ, 1] and 100 − m distribution means
were generated according to a uniform distribution over [0, θ), where θ = θU − 1

1+α
Δ.

For each set of 100 distribution means, we also ran algorithms BAEC[ASP, μ, μ] for
ASP = UCB,LUCB,TS (Thompson sampling) and MS (Murphy sampling)7 in addition to
for ASP = APTP by generating the same i.i.d. loss sequence for the same arm, which can
be realized by feeding a same seed to a random number generator for the same arm. Here,
arm selection policy LUCB uses

LUCB(t, i) =

⎧
⎪⎪⎨
⎪⎪⎩

∞ (ni (t) = 0)

μ̂i (ni (t)) (ni (t) > 0, t is odd)

μ̂i (ni (t)) +
√

1
2ni (t)

ln 5Kt4
4δ (ni (t) > 0, t is even).

Note that LUCB8 (Kalyanakrishnan et al. 2012) is an algorithm for the best k arm identi-
fication problem, and the above policy is exactly the same arm-selection policy as original
LUCB for k = 1.

Both ofTS andMSdecide the arm to select at each round t based on samples μ̃t
i drawn from[0, 1] according to each arm’s posterior loss-mean distributionπ t

i (i = 1, . . . , K ). TS chooses
the arm i ∈ At with μ̃t

i = max j μ̃
t
j without any condition while MS similarly chooses9 the

maximum-sampled-mean arm i ∈ At under the condition10 that the max j μ̃
t
j > θ . We used

independent uniform distribution over [0, 1] for each arm as the prior loss-mean distribution
of TS and MS.

For each m = 0, 1, 25, 50, 100, we generated 100 sets11 of 100 distribution means, and
ran the three algorithms for each set and for each combination of parameters δ = 0.01, 0.001
and (θL , θU ) = (0.19, 0.21), (0.49, 0.51), (0.79, 0.81), (0.1, 0.3), (0.4, 0.6), (0.7, 0.9). As

7 Note that BAEC[MS, μ, μ] is an elimination algorithm though originalMurphy sampling does not eliminate
arms.
8 LUCB means that both of LCB (lower confidence bound) and UCB (upper confidence bound) are used in
the algorithm. In fact, it chooses the arm i with the smallest LCB among the arms with the largest m sample
means when m ≥ 2.
9 The original Murphy sampling is an algorithm for checking the existence of negative arms and the procedure
of MS here is completely opposite to the original one.
10 This conditioned sampling is realized by rejecting a condition-unsatisfied set of samples and drawing
another one repeatedly until a condition-satisfied set of samples is drawn.
11 Note that the results shown in Table 4 are the averaged decision times not for a specific set of Bernoulli
distributions but for 100 sets ofBernoulli distributionswithmeans generated fromcertain uniformdistributions.
So, the decision times obtained in this experiment are not a direct experimental evaluation of the theoretically
analyzed decision times.

123



Machine Learning (2020) 109:327–372 347

for threshold pairs (θL , θU ), Δ = 0.02 for the first three and Δ = 0.2 for the last three.
Stopping times were averaged over 100 runs.

The result is shown in Table 4. In the case with large Δ(= 0.2), the averaged stopping
time for APTP is the smallest for all the combinations of parameters in this experiment. In the
case with smallΔ(= 0.02), BAEC[APTP, μ, μ] also stopped first, on average, for more than
half of the combinations of parameters. For this small Δ, MS, TS and LUCB also performed
well to some extent, and in fact, MS and TS stopped first for most of small m (m = 1, 25),
and LUCB’s stopping time was shortest for about a quarter of the parameter combinations.
BAEC[APTP, μ, μ] stopped first even whenm = 0, that is, in the case that all the loss means
are below θ . In such case, some gray zone arms can be judged as positive and make the
algorithm stop. BAEC[APTP, μ, μ] is considered to have found such gray zone arms faster.

7.2.2 Simulation based on real dataset

In this experiment, as loss distribution means, we used estimated ad click rates by users in
the same category calculated from Real-Time Bidding dataset provided by iPinYou (Zhang
et al. 2014). From the training dataset of the second season of iPinYou dataset, we chose 20
most frequently appeared user categories (sets of user profile ids) and calculated the click
rate by the users in the category for each of them using the impression and click logs. Since
the click rates are smaller than 0.001, we used the values multiplied by 100 as loss means.
The loss means μ1, . . . , μ20 used in the experiment are followings:

μ1 : 0.06232, μ5 : 0.04124, μ9 : 0.03792, μ13 : 0.02535, μ17 : 0.02183,
μ2 : 0.05549, μ6 : 0.04060, μ10 : 0.03764, μ14 : 0.02498, μ18 : 0.02055,
μ3 : 0.05011, μ7 : 0.04031, μ11 : 0.03054, μ15 : 0.02203, μ19 : 0.01255,
μ4 : 0.04587, μ8 : 0.03907, μ12 : 0.02594, μ16 : 0.02197, μ20 : 0.01033.

In this experiment, 5 thresholds (θL , θU ) = (θm′ − 0.01, θm′ + 0.01) for m′ =
0, 1, 5, 10, 19 are used so as to let the loss means of about m′ arms be at least
θ , where θ0 = μ1 + μ1−μ2

2 , θm′ = μm′+μm′+1
2 for m′ = 1, 5, 10, 19. For these

(θL , θU )s, θ = 0.06649, 0.05966, 0.04168, 0.03485, 0.01220 when δ = 0.001, and θ =
0.06659, 0.05976, 0.04178, 0.03495, 0.01230 when δ = 0.01. For these θs, the number of
arms whose loss mean is at least θ is 0, 1, 4, 10, 19. For each combination of parameters
δ = 0.01, 0.001, (θL , θU ) = (θm′ − 0.01, θm′ + 0.01) (m′ = 0, 1, 5, 10, 19), we ran algo-
rithm BAEC[ASP, μ, μ] with three arm selection policies ASP = APTP, LUCB and UCB
100 times and calculated their stopping times averaged over the 100 runs.

The result is shown in Table 5. For m = 1, the stopping times for APTP are significantly
small compared with those for the other four arm selection policies. Shortest averaged stop-
ping time was achieved by MS and TS for m = 4, 10 and by LUCB for m = 19 though the
differences from APTP’s stopping times are not significant except for the stopping time of
MS and TS in the case with δ = 0.001,m = 10. When m = 0, the stopping times of the
three algorithms are equal, which means that all the arms including the unique neutral arm
μ1 were always judged as negative arms in the experiment.

8 Conclusions

We theoretically and empirically studied sample complexity of a bad arm existence checking
problem (BAEC problem), whose objective is to judge whether some arms are bad (having
loss mean at least θU ) or all the arms are good (having loss mean less than θL ) correctly
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with probability at least 1 − δ for given thresholds 0 < θL ≤ θU < 1 and a given accept-
able error rate 0 < δ < 1/2. In the case with Δ = θU − θL > 0, we proposed algorithm
BAEC[APTP, μ, μ] that utilizes asymmetry of positive and negative arms’ roles in this prob-
lem; the algorithm with a decision condition for each arm i with the current number of draws
n usingΔ-dependent asymmetric confidence boundsμ

i
(n) andμi (n), and arm selection pol-

icy APTP that uses a single threshold θ closer to θU instead of the center between θL and θU .
Effectiveness of our decision condition was shown empirically and theoretically. Algorithm
BAEC[APTP, μ, μ] stopped faster or comparably fast as algorithms BAEC[ASP, μ, μ] for
ASP = LUCB,UCB,TS (Thompson Sampling) and MS (Murphy Sampling) in almost all
the our simulations. We also showed an asymptotic upper bound of the expected stopping
time for BAEC[APTP, μ, μ]which is smaller than that for BAEC[UCB, μ, μ] in the case that
there are multiple positive arms and all the positive arms have the same loss means. Current
theoretical support for our arm selection policy APTP is very limited, and further theoretical
analysis that explains its empirically observed small stopping times is our future work.

Acknowledgements This work was partially supported by JST CREST Grant Numbers JPMJCR1662 and
JPMJCR18K3, JSPS KAKENHI Grant Numbers JP18H05413 and JP19H04161.

A Proof of Theorem 1

We use the following lemma to prove our lower bound on the number of samples needed for
a (θL , θU , δ)-BAEC algorithm.

Lemma 3 (Kaufmann et al. 2016) Let ν and ν′ be two loss distribution sets of K arms such
that distributions νi and ν′

i are mutually absolutely continuous for i = 1, . . . , K. For any
almost-surely finite stopping time T and any event E , the following inequality holds.

K∑
i=1

Eν[ni (T )]KL(νi , ν
′
i ) ≥ d(Pν(E),Pν′(E)).

Proof of Theorem 1. Consider a set ν of Bernoulli distributions νi with mean μi for which
some positive arms exist, that is, the case with μ1 ≥ θU . Let k be the number of arms i with
μi ≥ θL in {νi }, that means μ1 ≥ · · · ≥ μk ≥ θL > μk+1 ≥ · · · ≥ μK . For an arbitrary
fixed ε > 0, let {ν′

i } be the set of Bernoulli distributions with means μ′
i defined as

μ′
i =

{
θL − ε (i ≤ k)
μi (i > k)

For any (θL , θU , δ)-BAEC algorithm, EPOS denotes the event that its output is “positive”.
Since some positive arms exist for the distribution set ν, the probability that the event EPOS
occurs must be at least 1− δ by Definition 1, that is, inequality Pν(EPOS) ≥ 1− δ holds. All
the arms are negative in the distribution set ν′ = {ν′

i }, likewise by Definition 1, inequality
Pν′(EPOS) < δ holds. Thus,

K∑
i=1

E[ni (T )]K L(νi , ν
′
i ) =

k∑
i=1

E[ni (T )]d(μi , μ
′
i ) (by d(μi , μi ) = 0)

=
k∑

i=1

E[ni (T )]d(μi , θL − ε)

≥d(Pν(EPOS),Pν′(EPOS)) (by Lemma 3)
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>d(1 − δ, δ)

holds. From the fact that maxi∈{1,...,k} d(μi , θL − ε) = d(μ1, θL − ε),

E[T ] =
K∑
i=1

E[ni (T )] >
d(1 − δ, δ)

d(μ1, θL − ε)
= 1 − 2δ

d(μ1, θL − ε)
ln

1 − δ

δ

holds, which leads to Ineq. (1) by considering its limit as ε → +0.
Next, consider a set ν of Bernoulli distributions νi with mean μi for which all the arms

are negative, that is, the case with μ1 < θL . Fix j ∈ {1, . . . , K } arbitrarily. For arbitrary
ε > 0, let ν′ be a set of Bernoulli distributions ν′

i with mean μ′
i defined as

μ′
i =

{
θU + ε (i = j)
μi (i 	= j)

For any (θL , θU , δ)-BAEC algorithm, ENEG denotes the event that its output is “negative”.
Then, inequalities Pν(ENEG) ≥ 1 − δ and Pν′(ENEG) < δ hold by Definition 1 because all
the arms are negative in ν and arm j is positive in ν′. Thus, by Lemma 3,

E[n j (T )]d(μ j , θU + ε) ≥d(Pν(ENEG),Pν′(ENEG)) > d(1 − δ, δ)

holds, that is, for each j = 1, . . . , K ,

E[n j (T )] >
d(1 − δ, δ)

d(μ j , θU + ε)
= 1 − 2δ

d(μ j , θU + ε)
ln

1 − δ

δ

holds. This leads to Ineq. (2) by considering its limit as ε → +0 and the summation over
j = 1, . . . , K . ��

B Proof of Theorem 2

We prove Theorem 2 using the following proposition.

Proposition 2 For any x > 0, the following inequality holds:
√
4 + x ≤ √

1 + x + 1 ≤ √
4 + 2x .

Proof Since

√
1 + x + 1 =

√
(
√
1 + x + 1)2 =

√
2 + x + 2

√
1 + x

holds,
√
4 + x = √

2 + x + 2 ≤ √
1 + x + 1

and

√
4 + 2x =

√
2 + x + 2

(
1 + x

2

)
≥ √

1 + x + 1

hold for x > 0. ��
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Proof of Theorem 2. We prove this theorem by contradiction. Assume that μi (TΔ) ≥ θU and
θL > μ

i
(TΔ). Then,

μi (TΔ) − μ
i
(TΔ) > θU − θL = Δ (10)

holds. On the other hand,

Δ =
√√√√ 2

2
Δ2 ln

√
K NΔ

δ

ln

√
K NΔ

δ

≥
√

4

2TΔ

ln

√
K NΔ

δ

=
√

1

2TΔ

ln
NΔ

δ

√
4 + 2 ln K

ln NΔ

δ

≥
√

1

2TΔ

ln
NΔ

δ

(√
1 + ln K

ln NΔ

δ

+ 1

)
(by Proposition 2)

=
√

1

2TΔ

ln
K NΔ

δ
+

√
1

2TΔ

ln
NΔ

δ
= μi (TΔ) − μ

i
(TΔ)

holds, which contradicts Ineq. (10). ��

C Proof of Theorem 3

Ifμ′
i (T

′
Δ
)−μ′

i
(T ′

Δ
) > Δ holds, thenμ′

i (n)−μ′
i
(n) > Δ holds for n = 1, . . . , T ′

Δ
. In this case,

μ′
i
(n) < θL andμ′

i (n) ≥ θU hold for n = 1, . . . , T ′
Δ
when θU−(μ′

i (n)−μ′
i
(n))/2 ≤ μ̂i (n) <

θL + (μ′
i (n) − μ′

i
(n))/2, which means τ ′

i > T ′
Δ
. In fact, Inequality μ′

i (T
′

Δ
) − μ′

i
(T ′

Δ
) > Δ

holds because

μ′
i (T

′
Δ
) − μ′

i
(T ′

Δ
) = 2

√
1

2T ′
Δ

ln
2KT ′

Δ

2

δ

=2

√√√√ 1

2� 2
Δ2 ln

448K
Δ4δ

� ln
2K � 2

Δ2 ln
448K
Δ4δ

�2
δ

≥2

√√√√√ 1

2 2
Δ2 ln

448K
Δ4δ

ln
2K

(
2

Δ2 ln
448K
Δ4δ

)2

δ

(
because f (x) = ln x

x
is decreasing for x ≥ e

)

=Δ

√√√√ 1

ln 448K
Δ4δ

ln

(
8K

Δ4δ

(
ln

448K

Δ4δ

)2
)

>Δ

√
1

ln 448K
Δ4δ

ln

(
8K

Δ4δ
· 56

) ⎛
⎝by

(
ln

448K

Δ4δ

)2

>

(
ln

448 · 2
14( 12 )

)2

=56.11 · · · > 56

⎞
⎠

123



Machine Learning (2020) 109:327–372 355

=Δ

√
1

ln 448K
Δ4δ

ln
448K

Δ4δ
= Δ.

The difference between the worst case stopping times τ ′
i − τi is lower-bounded as

τ ′
i − τi >T ′

Δ
− TΔ =

⌊
2

Δ2 ln
448K

Δ4δ

⌋
−

⌈
2

Δ2 ln

√
K NΔ

δ

⌉

>
2

Δ2 ln
448K

Δ4δ
− 2

Δ2 ln

√
K NΔ

δ
− 2

= 2

Δ2 ln
448

√
K

Δ4NΔeΔ2

>
2

Δ2 ln
448

√
Ke−Δ2

Δ4
(

2e
(e−1)Δ2 ln

2
√
K

Δ2δ
+ 1

)

= 2

Δ2 ln
448

√
Ke−Δ2 · (e−1)

2eΔ2

ln 2
√
K

Δ2δ
+ (e−1)Δ2

2e

= 2

Δ2 ln
224

√
Ke−Δ2−1(e−1)

Δ2

ln 2
√
K

Δ2δ
e

(e−1)Δ2
2e

>
2

Δ2 ln
224

√
Ke−2(e − 1)/Δ2

ln 2
√
K

Δ2δ
e
e−1
2e

(by Δ < 1)

>
2

Δ2 ln
52

√
K/Δ2

ln 3
√
K

Δ2δ

(
by 224e−2(e − 1) > 52 and 2e

e−1
2e < 3

)

= 2

Δ2

(
ln

52
√
K

Δ2 − ln ln
3
√
K

Δ2δ

)
.

D Theorem refered in Remark 4

Define μ′′
i (n) as

μ′′
i (n) = μ̂i (n) +

√
1

2n
ln

2n2

δ
. (11)

Then, the following theorem holds.

Theorem 9 Consider algorithm BAEC[∗, μ′, μ′′] and define τ ′′
i = min{n | μ′

i
(n) ≥

θL or μ′′
i (n) < θU } for i = 1, . . . , K. Then, event τ ′′

i > T ′′
Δ
can happen for i = 1, . . . , K,

where T ′′
Δ
is defined as T ′′

Δ
= � 2

Δ2 ln
366K 1/4

Δ4δ
�. Furthermore, the difference between the worst

case stopping times τ ′′
i − τi is lower-bounded as

τ ′′
i − τi > T ′′

Δ
− TΔ >

2

Δ2

(
ln

2

K
1
4 Δ2

− ln ln
3
√
K

Δ2δ

)
.
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Proof If μ′′
i (T

′′
Δ
) − μ′

i
(T ′′

Δ
) > Δ holds, then μ′′

i (n) − μ′
i
(n) > Δ holds for n = 1, . . . , T ′′

Δ
.

In this case, μ′
i
(n) < θL and μ′′

i (n) ≥ θU hold for n = 1, . . . , T ′′
Δ
when θU − (μ′′

i (n) −
μ′
i
(n))/2 ≤ μ̂i (n) < θL + (μ′′

i (n) − μ′
i
(n))/2, which means τ ′′

i > T ′′
Δ
. In fact, Inequality

μ′′
i (T

′′
Δ
) − μ′

i
(T ′′

Δ
) > Δ holds because

μ′′
i (T

′′
Δ
) − μ′

i
(T ′′

Δ
) =

√
1

2T ′′
Δ

ln
2T ′′

Δ

2

δ
+

√
1

2T ′′
Δ

ln
2KT ′′

Δ

2

δ

=
√

1

2T ′′
Δ

ln
2T ′′

Δ

2

δ

⎛
⎜⎝1 +

√√√√1 + ln K

ln 2T ′′
Δ

2

δ

⎞
⎟⎠

≥
√

1

2T ′′
Δ

ln
2T ′′

Δ

2

δ

√√√√4 + ln K

ln 2T ′′
Δ

2

δ

(by Proposition 2)

=
√

2

T ′′
Δ

ln
2K

1
4 T ′′

Δ

2

δ

≥

√√√√√√√ Δ2

ln 366K
1
4

Δ4δ

ln
8K

1
4

(
ln 366K

1
4

Δ4δ

)2

Δ4δ

>

√√√√√ Δ2

ln 366K
1
4

Δ4δ

ln
366K

1
4

Δ4δ

⎛
⎝by 8

(
ln

366K
1
4

Δ4δ

)2

> 8

(
ln

366 · 2 1
4

14 · 1
2

)2

> 366.56.. > 366

⎞
⎠

=Δ

The difference between the worst case stopping times τ ′′
i − τi is lower-bounded as

τ ′′
i − τi >T ′′

Δ
− TΔ =

⌊
1

2Δ2 ln
366K

1
4

Δ4δ

⌋
−

⌈
1

2Δ2 ln

√
K NΔ

δ

⌉

>
1

2Δ2 ln
366K

1
4

Δ4δ
− 1

2Δ2 ln

√
K NΔ

δ
− 2

= 1

2Δ2 ln
366

Δ4NΔe4Δ
2K

1
4

>
1

2Δ2 ln
366e−4Δ2

Δ4K
1
4

(
2e

(e−1)Δ2 ln
2
√
K

Δ2δ
+ 1

)

= 1

2Δ2 ln
366e−4Δ2 · (e−1)

2eΔ2 · K− 1
4

ln 2
√
K

Δ2δ
+ (e−1)Δ2

2e

= 1

2Δ2 ln
183e−4Δ2−1(e−1)

Δ2

K
1
4 ln 2

√
K

Δ2δ
e

(e−1)Δ2
2e
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>
1

2Δ2 ln
183e−5(e − 1)/Δ2

K
1
4 ln 2

√
K

Δ2δ
e
e−1
2e

(by Δ < 1)

>
1

2Δ2 ln
2/Δ2

K
1
4 ln 3

√
K

Δ2δ

(
by 183e−5(e − 1) = 2.118.. > 2 and 2e

e−1
2e = 2.74 · · · < 3

)

= 1

2Δ2

(
ln

2

K
1
4 Δ2

− ln ln
2
√
K

Δ2δ

)
.

��

E Proof of Proposition 1

The following proposition is needed to prove Proposition 1.

Proposition 3 For 0 < a < 1, any t ≥ e
(e−1)a ln

1
a satisfies the following inequality.

at ≥ ln t .

Proof For 0 < a < 1, let f (t) = at − ln t . When a > 1
e , f (t) is always positive for any

t > 0 since f (t) takes minimum value 1 − ln 1
a at t = 1

a .
When a ≤ 1

e , if t = e
(e−1)a ln

1
a ,

at − ln t =
(

1

e − 1
ln

1

a
− ln

e

e − 1

)
− ln ln

1

a
≥ 0

holds because y = 1
e−1 x − ln e

e−1 is a tangential line of y = ln x at x = e − 1. If t >

e
(e−1)a ln

1
a

(
≥ e

(e−1)a > 1
a

)
, d f (t)

dt = a − 1
t is positive. Therefore, for t ≥ e

(e−1)a ln
1
a ,

at − ln t ≥ 0. ��

Proof of Proposition 1. The following inequality is derived from Proposition 3 by setting a to
Δ2δ

2
√
K
that means t =

√
K NΔ

δ
≥ 2e

√
K

(e−1)Δ2δ
ln 2

√
K

Δ2δ
,

ln

√
K NΔ

δ
≤ Δ2δ

2
√
K

·
√
K NΔ

δ
= Δ2NΔ

2
.

Thus,

NΔ ≥ 2

Δ2 ln

√
K NΔ

δ

holds, and so

NΔ ≥
⌈

2

Δ2 ln

√
K NΔ

δ

⌉
= TΔ

holds. ��
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F Proof of Theorem 5

Consider the case that μ1 ≥ θU and event E+ occurs. In this case,
⋂TΔ

n=1{μi (n) ≥ μi }
holds for some i with μi ≥ θU . Assume TΔi

< τi for this i . Then, μi (TΔi
) ≥ μi ≥ θU and

μ
i
(TΔi

) < θL hold. However,

μ
i
(TΔi

) =μ̂i −
√

1

2TΔi

ln
K NΔ

δ

≥μi −
√

1

2TΔi

ln
NΔ

δ
−

√
1

2TΔi

ln
K NΔ

δ
(by μi (TΔi

) ≥ μi )

=μi −
√

1

2TΔi

ln
NΔ

δ

(√
1 + ln K

ln NΔ

δ

+ 1

)

≥μi −
√

1

2TΔi

ln
NΔ

δ

√
4 + 2 ln K

ln NΔ

δ

(by Proposition 2)

=μi −
√

4

2TΔi

ln

√
K NΔ

δ
≥ μi − Δi = θL

(
by TΔi

≥ 2

Δ2
i

ln

√
K NΔ

δ

)

holds, which contradicts the fact that μ
i
(TΔi

) < θL . Thus, τi ≤ TΔi
holds for at least one

positive arm i with probability P{E+} which is at least 1 − δ by Lemma 1.
Consider the case that μ1 < θL holds and event E− occurs. Assume TΔi

< τi for i =
1, . . . , K . Then, μi (TΔi

) ≥ θU and μ
i
(TΔi

) < μi < θL hold. However,

μi (TΔi
) =μ̂i +

√
1

2TΔi

ln
NΔ

δ

<μi +
√

1

2TΔi

ln
NΔ

δ
+

√
1

2TΔi

ln
K NΔ

δ
(by μ

i
(TΔi

) < μi )

=μi +
√

1

2TΔi

ln
NΔ

δ

(√
1 + ln K

ln NΔ

δ

+ 1

)

≤μi +
√

1

2TΔi

ln
NΔ

δ

√
4 + 2 ln K

ln NΔ

δ

(by Proposition 2)

=μi +
√

4

2TΔi

ln

√
K NΔ

δ
≤ μi + Δi = θU

(
by TΔi

≥ 2

Δ2
i

ln

√
K NΔ

δ

)

holds, which contradicts the fact that μi (TΔi
) ≥ θU . Thus, τi ≤ TΔi

holds for all arms i with
probability P{E−} which is at least 1 − δ by Lemma 1.
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G Proof of Lemma 2

Let ε be an arbitrary real that satisfies 0 < ε < Δ/2(1 + α).
Consider the case with μi ≥ θ . Define ni as ni = 1

2(Δi−ε)2
ln K NΔ

δ
. Then,

E[τi1{E}] =
∞∑
n=1

nP[τi = n, E] =
∞∑
n=1

P[τi ≥ n, E]

≤
∞∑
n=2

P[μ
i
(n − 1) < θL , E] + 1

=
∞∑
n=1

P[μ
i
(n) < θL , E] + 1

≤
�ni �∑
n=1

P[E] +
∞∑

n=�ni �+1

P[μ
i
(n) < θL ] + 1

(
becauseP[μ

i
(n) < θL , E] ≤ min{P[μ

i
(n) < θL ],P[E]}

)

≤P[E]ni +
∞∑

n=�ni �+1

P

[
μ̂i (n) −

√
1

2ni
ln

K NΔ

δ
< θL

]
+ 1

(
because

√
1

2ni
ln

K NΔ

δ
≥

√
1

2n
ln

K NΔ

δ
for n ≥ ni

)

=P[E]ni +
∞∑

n=�ni �+1

P[μ̂i (n) < μi − ε] + 1

(
because

√
1

2ni
ln

K NΔ

δ
= Δi − ε

)

≤P[E]ni +
∞∑

n=�ni �+1

e−2nε2 + 1 (by Hoeffding’s Inequality)

≤P[E]ni + 1

e2ε2 − 1
+ 1 ≤ P[E]ni + 1

2ε2
+ 1 (because ex − 1 ≥ x for any real x)

= P[E]
2(Δi − ε)2

ln
K NΔ

δ
+ 1

2ε2
+ 1

holds. Since 1
Δ2
i

+ 6ε
Δ3
i

− 1
(Δi−ε)2

= ε(Δi−2ε)(4Δi−3ε)
Δ3
i (Δi−ε)2

≥ 0 holds for 0 < ε ≤ Δi
2 , 1

(Δi−ε)2
≤

1
Δ2
i

+ 6ε
Δ3
i
holds for 0 < ε < Δ/2(1+ α) ≤ Δi/2. Thus, Ineq. (8) can be obtained by setting

ε to O((ln K NΔ

δ
)−1/3).

Next, consider the case with μi < θ . Define ni as ni = 1
2(Δi−ε)2

ln NΔ

δ
. Then,

E[τi1{E}] =
∞∑
n=1

nP[τi = n, E] =
∞∑
n=1

P[τi ≥ n, E]

≤
∞∑
n=2

P[μi (n − 1) ≥ θU , E] + 1

=
∞∑
n=1

P[μi (n) ≥ θU , E] + 1
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holds. Similar calculation leads to Inequality (9).

H Proof of Theorem 7

Define aptP(n, i) as aptP(n, i) = √
n(μ̂i (n) − θ) for convenience. Note that APTP(t, i) =

aptP(ni (t), i). Random variables Yi and Ni (a) are defined as

Yi = min
n∈{1,...,τi }

aptP(n, i) and

Ni (a) =min
({n|n ∈ {1, . . . , τi − 1}, aptP(n, i) < a} ∪ {τi }

)
.

To obtain an upper bound of the expected stopping time E[T ] for algorithm
BAEC[APTP, μ, μ], we consider the case that, for some arm i with μi ≥ θ , arm i is
the first arm that satisfies decision condition and μ

i
(τi ) ≥ θL , that is, the case that event

{î1 = i, EPOS
i } occurs for i ≤ m. In the case with no such arm i , stopping time T is

upper-bounded by the worst case bound KTΔ (Theorem 4) and the decreasing order of the
occurrence probability of this case as δ → +0 can be proved to be small compared to the
increasing order of KTΔ (for the case with î1 = i ≥ m + 1 by Lemma 13 and for the

case that event EPOS
i occurs for i ≤ m by Lemma 14), so it can be ignored asymptotically

as δ → +0. An upper bound of E[T1{î1 = i, EPOS
i }] for arm i with μi ≥ θ is proved

in Lemma 10. When event {î1 = i, EPOS
i } occurs for arm i with μi ≥ θ , the number of

arm draws is τi for arm i , at most N j (Yi ) for arm j 	= i if Yi ≤ 0 and at most N j (0)
for arm j 	= i if Yi > 0. So, to prove the upper bound in Lemma 10, we upper bound
E[τi1{î1 = i, EPOS

i }] by Lemma 2, E[N j (Yi )1{Yi ≤ 0, î1 = i, EPOS
i }] for j 	= i by Lem-

mas 5 and 8 and E[N j (0)1{Yi > 0, î1 = i, EPOS
i }] for j 	= i by Lemma 9.

Lemma 4 BAEC[APTP, μ, μ] satisfies
∞∑
n=1

P[N j (a) ≥ n] <
2

Δ4
j

for j ≤ m and a ≤ 0.

Proof
∞∑
n=1

P[N j (a) ≥ n] =
∞∑
n=1

∞∑
t=n

P[N j (a) = t]

≤
∞∑
n=1

∞∑
t=n

P[aptP(t, j) < a] ≤
∞∑
n=1

∞∑
t=n

P[aptP(t, j) < 0]

=
∞∑
n=1

∞∑
t=n

P[√t(μ̂ j (t) − θ) < 0]

=
∞∑
n=1

∞∑
t=n

P[μ̂ j (t) < μ j − Δ j ]

≤
∞∑
n=1

∞∑
t=n

e−2tΔ2
j (by Hoeffding’s Inequality)

=
∞∑
n=1

e−2nΔ2
j

1 − e−2Δ2
j

= e−2Δ2
j

(1 − e−2Δ2
j )2

= e2Δ
2
j

(e2Δ
2
j − 1)2
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<
e2

4Δ4
j

<
2

Δ4
j

(because Δ j < 1)

��
Lemma 5 BAEC[APTP, μ, μ] satisfies

E[N j (Yi )1{Yi ≤ 0}] ≤ 2

Δ4
j

P[Yi ≤ 0]

for i = 1, . . . , K and j ≤ m (i 	= j).

Proof Define Fi (a) as Fi (a) = P[Yi ≤ a]. Then,

E[N j (Yi )1{Yi ≤ 0}] =
∞∑
n=1

nP[N j (Yi ) = n, Yi ≤ 0]

=
∞∑
n=1

P[N j (Yi ) ≥ n, Yi ≤ 0]

=
∫ 0

−∞

∞∑
n=1

P[N j (Yi ) ≥ n | Yi = a]dFi (a)

=
∫ 0

−∞

∞∑
n=1

P[N j (a) ≥ n]dFi (a)

≤ 2

Δ4
j

∫ 0

−∞
dFi (a) (by Lemma 4)

= 2

Δ4
j

[P[Yi ≤ a]]0−∞ = 2

Δ4
j

P[Yi ≤ 0]

holds.
��

Lemma 6 BAEC[APTP, μ, μ] satisfies
∞∑
n=1

P[N j (a) ≥ n] <
4a2

Δ2
j

+ 4

Δ2
j

+ 1

for j ≥ m + 1 and a ≤ 0.

Proof Define n0 as n0 = 4a2

Δ2
j
. Note that Δ j + a√

n
>

Δ j
2 for n > n0. Then,

∞∑
n=1

P[N j (a) ≥ n] ≤
∞∑
n=1

P[aptP(n − 1, j) ≥ a] ≤
∞∑
n=1

P[aptP(n, j) ≥ a] + 1

=
∞∑
n=1

P[√n(μ̂ j (n) − θ) ≥ a] + 1

=
∞∑
n=1

P

[
μ̂ j (n) ≥ θ + a√

n

]
+ 1
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=
∞∑
n=1

P

[
μ̂ j (n) ≥ μ j + Δ j + a√

n

]
+ 1

≤
�n0�∑
n=1

1 +
∞∑

n=�n0�+1

P

[
μ̂ j (n) ≥ μ j + Δ j + a√

n

]
+ 1

≤n0 +
∞∑

n=�n0�+1

e
−2n

(
Δ j
2

)2
+ 1

(
by Hoeffding’s Inequality and the fact that Δ j + a√

n
>

Δ j

2
for n > n0

)

≤4a2

Δ2
j

+ e−n0
Δ2
j
2

1 − e− Δ2
j
2

+ 1 = 4a2

Δ2
j

+ e
Δ2
j
2

e
Δ2
j
2 − 1

e−2a2 + 1

≤4a2

Δ2
j

+ 2e
Δ2
j
2

Δ2
j

+ 1 ≤ 4a2

Δ2
j

+ 2e
1
2

Δ2
j

+ 1 <
4a2

Δ2
j

+ 4

Δ2
j

+ 1

��
Lemma 7 BAEC[APTP, μ, μ] satisfies

P[Yi ≤ a] ≤ e−2a2

2Δ2
i

for i ≤ m and a ≤ 0.

Proof

P[Yi ≤ a] ≤P

[ ∞⋃
n=1

{aptP(n, i) ≤ a}
]

≤
∞∑
n=1

P[aptP(n, i) ≤ a]

=
∞∑
n=1

P[√n(μ̂i (n) − θ) ≤ a]

=
∞∑
n=1

P

[
μ̂i (n) ≤ θ + a√

n

]

=
∞∑
n=1

P

[
μ̂i (n) ≤ μi − Δi + a√

n

]

≤
∞∑
n=1

e
−2n

(
Δi− a√

n

)2

≤e−2a2
∞∑
n=1

e−2nΔ2
i = e−2a2 1

e2Δ
2
i − 1

≤ e−2a2

2Δ2
i

.

��
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Lemma 8 For i ≤ m and j ≥ m + 1, BAEC[APTP, μ, μ] satisfies

E[N j (Yi )1{Yi ≤ 0}] ≤ 1

Δ2
i Δ

2
j

+
(

4

Δ2
j

+ 1

)
P[Yi ≤ 0].

Proof Define Fi (a) as Fi (a) = P[Yi ≤ a]. Then,

E[N j (Yi )1{Yi ≤ 0}] =
∞∑
n=1

P[N j (Yi ) ≥ n, Yi ≤ 0]

=
∫ 0

−∞

∞∑
n=1

P[N j (Yi ) ≥ n | Yi = a]dFi (a)

=
∫ 0

−∞

∞∑
n=1

P[N j (a) ≥ n]dFi (a)

≤
∫ 0

−∞

(
4a2

Δ2
j

+ 4

Δ2
j

+ 1

)
dFi (a) (by Lemma 6)

= 4

Δ2
j

∫ 0

−∞
a2dFi (a) +

(
4

Δ2
j

+ 1

)∫ 0

−∞
dFi (a)

= 4

Δ2
j

([
a2P[Yi ≤ a]]0−∞ −

∫ 0

−∞
2aP[Yi ≤ a]da

)
+

(
4

Δ2
j

+ 1

)
[P[Yi ≤ a]]0−∞

(using integration by parts)

= − 4

Δ2
j

∫ 0

−∞
2aP[Yi ≤ a]da +

(
4

Δ2
j

+ 1

)
P[Yi ≤ 0]

≤ − 2

Δ2
i Δ

2
j

∫ 0

−∞
2ae−2a2da +

(
4

Δ2
j

+ 1

)
P[Yi ≤ 0] (by Lemma 7)

= 2

Δ2
i Δ

2
j

[
e−2a2

2

]0

−∞
+

(
4

Δ2
j

+ 1

)
P[Yi ≤ 0]

= 1

Δ2
i Δ

2
j

+
(

4

Δ2
j

+ 1

)
P[Yi ≤ 0].

��
Lemma 9 For i ≤ m, BAEC[APTP, μ, μ] satisfies

E[N j (0)1{Yi > 0}] ≤

⎧
⎪⎨
⎪⎩

2
Δ4

j
P[Yi > 0] ( j ≤ m)

(
4

Δ2
j
+ 1

)
P[Yi > 0] ( j ≥ m + 1).

Proof

E[N j (0)1{Yi > 0}] =
∞∑
n=1

P[N j (0) ≥ n, Yi > 0]
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=
∞∑
n=1

P[N j (0) ≥ n]P[Yi > 0]

(because N j (0) and Yi are independent)

≤

⎧⎪⎨
⎪⎩

2
Δ4

j
P[Yi > 0] ( j ≤ m) (by Lemma 4)

(
4

Δ2
j
+ 1

)
P[Yi > 0] ( j ≥ m + 1) (by Lemma 6)

��
Lemma 10 For i ≤ m and any event E , BAEC[APTP, μ, μ] satisfies

E[T1{î1 = i, E}] ≤ P[î1 = i, E]
2Δ2

i

ln
K NΔ

δ
+ O

((
ln

K NΔ

δ

) 2
3
)

+
∑

j≤m, j 	=i

2

Δ4
j

+
K∑

j=m+1

{
1

Δ2
i Δ

2
j

+
(

4

Δ2
j

+ 1

)}
.

Proof In the case that the decision condition is satisfied first by one of arms i with μi ≥ θ

(i ≤ m), that is, î1 = i , the stopping time T is at most τi + ∑
j 	=i N j (Yi ) if Yi ≤ 0 and at

most τi + ∑
j 	=i N j (0) if Yi > 0. Thus, for i ≤ m,

E[T1{î1 = i,E}]

≤E

⎡
⎣
⎛
⎝τi +

∑
j 	=i

N j (Yi )

⎞
⎠1{Yi ≤ 0, î1 = i,E}

⎤
⎦ + E

⎡
⎣
⎛
⎝τi +

∑
j 	=i

N j (0)

⎞
⎠1{Yi > 0, î1 = i,E}

⎤
⎦

=E[τi1{î1 = i,E}] +
∑
j 	=i

E[N j (Yi )1{Yi ≤ 0, î1 = i,E}] +
∑
j 	=i

E[N j (0)1{Yi > 0, î1 = i,E}]

≤E[τi1{î1 = i,E}] +
∑
j 	=i

E[N j (Yi )1{Yi ≤ 0}] +
∑
j 	=i

E[N j (0)1{Yi > 0}]

≤ P[î1 = i,E]
2Δ2

i

ln
K NΔ

δ
+ O

((
ln

K NΔ

δ

) 2
3
)

+
∑

j≤m, j 	=i

2

Δ4
j

P[Yi ≤ 0] (by Lemma 2& 5)

+
K∑

j=m+1

{
1

Δ2
i Δ

2
j

+
(

4

Δ2
j

+ 1

)
P[Yi ≤ 0]

}
(by Lemma 8)

+
∑

j≤m, j 	=i

2

Δ4
j

P[Yi > 0] +
K∑

j=m+1

(
4

Δ2
j

+ 1

)
P[Yi > 0] (by Lemma 9)

≤P[î1 = i,E]
2Δ2

i

ln
K NΔ

δ
+ O

((
ln

K NΔ

δ

) 2
3
)

+
∑

j≤m, j 	=i

2

Δ4
j

+
K∑

j=m+1

{
1

Δ2
i Δ

2
j

+
(

4

Δ2
j

+ 1

)}

holds.
��

Define nΔ, δ as nΔ, δ =
⌈

1
2(max{θU ,1−θL })2 ln

NΔ

δ

⌉
. Then, τi for any arm i = 1, . . . , K is

bounded by nΔ, δ from below.
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Lemma 11 In algorithm BAEC[∗, μ, μ], τi ≥ nΔ, δ holds for any arm i = 1, . . . , K.

Proof By the definition of τi , μi (τi ) < θU or μ
i
(τi ) ≥ θL must be satisfied for any arm i . In

the case with μi (τi ) < θU ,

μ̂i (τi ) +
√

1

2τi
ln

NΔ

δ
< θU

holds. Since μ̂i (τi ) ≥ 0, √
1

2τi
ln

NΔ

δ
< θU

holds. So, we obtain

τi >
1

2θ2U
ln

NΔ

δ
.

In the case with μ
i
(τi ) ≥ θL ,

μ̂i (τi ) −
√

1

2τi
ln

K NΔ

δ
≥ θL

holds. Since μ̂i (τi ) ≤ 1,

1 −
√

1

2τi
ln

K NΔ

δ
≥ θL

holds. So, we obtain

τi ≥ 1

2(1 − θL)2
ln

K NΔ

δ
.

Therefore,

τi ≥min

{
1

2θ2U
ln

NΔ

δ
,

1

2(1 − θL)2
ln

K NΔ

δ

}
≥ 1

2(max{θU , 1 − θL})2 ln
NΔ

δ

holds. Since τi is a natural number,

τi ≥
⌈

1

2(max{θU , 1 − θ})2 ln
NΔ

δ

⌉

holds. ��
Lemma 12 BAEC[APTP, μ, μ] satisfies

P

[
Yi ≥ −Δi

2
√
nΔ, δ

]
≤ e−nΔ, δ

Δ2
i
2 ≤

(
δ

NΔ

) 1
4

(
Δi

max{θU ,1−θL }
)2

for i ≥ m + 1.

Proof

P

[
Yi ≥ −Δi

2
√
nΔ, δ

]
= P

[
τi⋂

n=1

{
aptP(n, i) ≥ −Δi

2
√
nΔ, δ

}]
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≤ P

[
aptP(nΔ, δ, i) ≥ −Δi

2
√
nΔ, δ

]
(by Lemma 11)

= P

[√
nΔ, δ(μ̂i (nΔ, δ) − θ) ≥ −Δi

2
√
nΔ, δ

]

= P

[
μ̂i (nΔ, δ) ≥ μi + Δi

2

]

≤ e
−2nΔ, δ

(
Δi
2

)2
= e−nΔ, δ

Δ2
i
2

≤ e
− 1

4

(
Δi

max{θU ,1−θL }
)2

ln NΔ
δ =

(
δ

NΔ

) 1
4

(
Δi

max{θU ,1−θL }
)2

.

��
Lemma 13 For m ≥ 1 and i ≥ m + 1, BAEC[APTP, μ, μ] satisfies

P[î1 = i] ≤
(
1 + 1

2Δ2
1

)(
δ

NΔ

) 1
4

(
Δi

max{θU ,1−θL }
)2

.

Proof Define Fi (a) as Fi (a) = P[Yi ≥ a]. Then,
P[î1 = i] = P

[
î1 = i, Yi ≥ −Δi

2
√
nΔ, δ

]
+ P

[
î1 = i, Yi < −Δi

2
√
nΔ, δ

]

≤ P

[
Yi ≥ −Δi

2
√
nΔ, δ

]
+ P

[
Y1 ≤ Yi , Yi < −Δi

2
√
nΔ, δ

]
. (12)

The second term is bounded as

P

[
Y1 ≤ Yi , Yi < −Δi

2
√
nΔ, δ

]

=
∫ −∞

− Δi
2

√
nΔ, δ

P[Y1 ≤ Yi | Yi = a]dFi (a)

≤
∫ −∞

− Δi
2

√
nΔ, δ

P[Y1 ≤ a]dFi (a)

≤
∫ −∞

− Δi
2

√
nΔ, δ

e−2a2

2Δ2
1

dFi (a) (by Lemma 7)

= 1

2Δ2
1

([
e−2a2

P[Yi ≥ a]
]−∞
− Δi

2
√
nΔ, δ

+
∫ −∞

− Δi
2

√
nΔ, δ

4ae−2a2
P[Yi ≥ a]da

)

(using integration by parts)

≤ 1

2Δ2
1

(
−e−nΔ, δ

Δ2
i
2 P

[
Yi ≥ −Δi

2
√
nΔ, δ

]
+

∫ −∞

− Δi
2

√
nΔ, δ

4ae−2a2da

)

≤ 1

2Δ2
1

∫ −∞

− Δi
2

√
nΔ, δ

4ae−2a2da

= − 1

2Δ2
1

[
e−2a2

]−∞
− Δi

2
√
nΔ, δ

= 1

2Δ2
1

e−nΔ, δ

Δ2
i
2 ≤ 1

2Δ2
1

(
δ

NΔ

) 1
4

(
Δi

max{θU ,1−θL }
)2

. (13)
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Thus, by Ineqs. (12), (13) and Lemma 12,

P[î1 = i] ≤
(
1 + 1

2Δ2
1

)(
δ

NΔ

) 1
4

(
Δi

max{θU ,1−θL }
)2

holds. ��
Lemma 14 For the complementary events EPOS

i of event EPOS
i , inequality

P

[
EPOS
i

]
≤ e2Δ

2
i

2Δ2
i

(
δ

NΔ

)(
Δi

max{θU ,1−θL }
)2

holds when i ≤ m.

Proof In the case with μ̂i (τi ) ≥ θ , arm i is judged as positive because μ
i
(τi ) ≥ θL holds

whenever μi (τi ) < θU holds.12 This is because θU − θ : θ − θL = μi (τi ) − μ̂i (τi ) :
μ̂i (τi ) − μ

i
(τi ) = 1 : α holds. Thus,

P

[
EPOS
i

]
≤P

⎡
⎣

TΔ⋃
n=nΔ, δ

{μ̂i (n) < θ}
⎤
⎦

=P

⎡
⎣

TΔ⋃
n=nΔ, δ

{μ̂i (n) < μi − Δi }
⎤
⎦

≤
TΔ∑

n=nΔ, δ

P[μ̂i (n) < μi − Δi ]

≤
∞∑

n=nΔ, δ

e−2nΔ2
i = e2Δ

2
i e−2nΔ, δΔ

2
i

e2Δ
2
i − 1

≤ e2Δ
2
i

2Δ2
i

(
δ

NΔ

)(
Δi

max{θU ,1−θL }
)2

holds. ��
Proof of Theorem 7

E[T ] =
m∑
i=1

E

[
T1

{
î1 = i, EPOS

i

}]
+

m∑
i=1

E

[
T1

{
î1 = i, EPOS

i

}]
+

K∑
i=m+1

E[T1{î1 = i}]

≤
m∑
i=1

(
P

[
î1 = i, EPOS

i

]

2Δ2
i

ln
K NΔ

δ
+ O

((
ln

K NΔ

δ

) 2
3
)

+
∑

j≤m, j 	=i

2

Δ4
j

+
K∑

j=m+1

{
1

Δ2
i Δ

2
j

+
(

4

Δ2
j

+ 1

)})

(by Lemma 10)

+ KTΔ

m∑
i=1

P

[
EPOS
i

]
+ KTΔ

K∑
i=m+1

P[î1 = i]

12 An arm is judged as positive when both the positive and negative decision conditions are satisfied simul-
taneously.
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≤
m∑
i=1

(P

[
î1 = i, EPOS

i

]

2Δ2
i

ln
K NΔ

δ
+ O

((
ln

K NΔ

δ

) 2
3
)

+ 2(m − 1)

Δ4
i

+
(

1

Δ2
i

+ 4

)
K∑

j=m+1

1

Δ2
j

+ (K − m)

)

+ KTΔ

(
e2Δ

2
i

2Δ2
i

m∑
i=1

(
δ

NΔ

)(
Δi

max{θU ,1−θL }
)2

(by Lemma 14)

+
(
1 + 1

2Δ2
1

)
K∑

i=m+1

(
δ

NΔ

) 1
4

(
Δi

max{θU ,1−θL }
)2)

(by Lemma 13)

=
m∑
i=1

(
P

[
î1 = i, EPOS

i

]

2Δ2
i

ln
K NΔ

δ
+ 2(m − 1)

Δ4
i

+
(

1

Δ2
i

+ 4

)
K∑

j=m+1

1

Δ2
j

)

+ m(K − m) + O

(
m

(
ln

K NΔ

δ

) 2
3
)

+ KTΔ

(
e2Δ

2
i

2Δ2
i

m∑
i=1

(
δ

NΔ

)(
Δi

max{θU ,1−θL }
)2

+
(
1 + 1

2Δ2
1

)
K∑

i=m+1

(
δ

NΔ

) 1
4

(
Δi

max{θU ,1−θL }
)2)

.

��

I Proof of Theorem 8

We consider event
⋃

i :μi=μ1
EPOS
i , that is, the event that one of the best arm i is judged

as positive. In the case that event
⋃

i :μi=μ1
EPOS
i does not occur, stopping time T is upper-

bounded by theworst case bound KTΔ (Theorem4) and the decreasing order of the occurrence
probability of this case as δ → +0 can be proved to be small compared to the increasing
order of KTΔ (Lemma 14), so it can be ignored asymptotically as δ → +0. When event⋃

i :μi=μ1
EPOS
i occurs, non-optimal arms i with μi < μ1 is drawn in the case of μi ’s overes-

timation (UCB(t, i) ≥ μ1 − ε) or in the case ofμ1’s underestimation (UCB(t, 1) < μ1 − ε).
So, E[T1{⋃i :μi=μ1

EPOS
i ] is upper-bounded by upper bounding E[τi1{⋃i :μi=μ1

EPOS
i }]

for optimal arms i with μi = μ1 by Lemma 2, the expected number of overestima-

tions E
[∑KTΔ

t=1 1[UCB(t, i) ≥ μ1 − ε, it = i]
]
for non-optimal arms i with μi < μ1 by

Lemma15, and the expected number of underestimationsE
[∑KTΔ

t=1 1[UCB(t, 1) < μ1 − ε]
]

for the optimal arm 1 by Lemma 16.

Lemma 15 For an arbitrary ε > 0, BAEC[UCB, μ, μ] satisfies

E

[
KTΔ∑
t=1

1[UCB(t, i) ≥ μ1 − ε, it = i]
]

≤ ln KTΔ

2(Δ1i − 2ε)2
+ 1

2ε2
+ 1
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for i = 2, . . . , K with μi < μ1.

Proof Let n′
i = ln KTΔ

2(Δ1i−2ε)2
. Then,

KTΔ∑
t=1

1[UCB(t, i) ≥ μ1 − ε, it = i] =
KTΔ∑
t=1

KTΔ−1∑
n=0

1

[
μ̂i (n) +

√
ln t

2n
≥ μ1 − ε, ni (t) = n, it = i

]

=
KTΔ−1∑
n=0

1

[
KTΔ⋃
t=1

{
μ̂i (n) +

√
ln t

2n
≥ μ1 − ε, ni (t) = n, it = i

}]

≤
KTΔ−1∑
n=0

1

[
μ̂i (n) +

√
ln KTΔ

2n
≥ μ1 − ε

]

≤
�n′

i �∑
n=0

1 +
∞∑

n=�n′
i �+1

1

⎡
⎣μ̂i (n) +

√√√√ ln KTΔ

2 · ln KTΔ

2(Δ1i−2ε)2

≥ μ1 − ε

⎤
⎦

≤ ln KTΔ

2(Δ1i − 2ε)2
+ 1 +

∞∑
n=1

1
[
μ̂i (n) ≥ μi + ε

]

Therefore,

E

[
KTΔ∑
t=1

1[UCB(t, i) ≥ μ1 − ε, it = i]
]

≤ ln KTΔ

2(Δ1i − 2ε)2
+ 1 +

∞∑
n=1

P
[
μ̂i (n) ≥ μi + ε

]

= ln KTΔ

2(Δ1i − 2ε)2
+ 1 +

∞∑
n=1

e−2nε2

= ln KTΔ

2(Δ1i − 2ε)2
+ 1 + 1

e2ε2 − 1

≤ ln KTΔ

2(Δ1i − 2ε)2
+ 1

2ε2
+ 1.

��
Lemma 16 For BAEC[UCB, μ, μ], the following inequality holds.

E

[
KTΔ∑
t=1

1[UCB(t, 1) < μ1 − ε]
]

≤ 1

ε2
+ 1

4ε2
ln

1

2ε2

for 0 < ε ≤ 1.

Proof
KTΔ∑
t=1

1[UCB(t, 1) < μ1 − ε] =
KTΔ∑
t=1

KTΔ−1∑
n=0

1

[
μ̂1(n) +

√
ln t

2n
< μ1 − ε, n1(t) = n

]

=
KTΔ−1∑
n=0

KTΔ∑
t=1

1
[
t < e2n(μ1−μ̂1(n)−ε)2 , μ̂1(n) < μ1 − ε, n1(t) = n

]

≤
KTΔ−1∑
n=1

e2n(μ1−μ̂1(n)−ε)21
[
μ̂1(n) ≤ μ1 − ε

]
.
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Define Fn(x) as Fn(x) = P{μ̂1(n) ≤ x}. Note that Fn(x) ≤ e−2n(μ1−x)2 for x < μ1 by
Hoeffding’s Inequality. Then,

E

[
KTΔ∑
t=1

1[UCB(t, 1) < μ1 − ε]
]

≤
KTΔ−1∑
n=1

E

[
e2n(μ1−μ̂1(n)−ε)21

[
μ̂1(n) ≤ μ1 − ε

]]

=
KTΔ−1∑
n=1

∫ μ1−ε

−∞
e2n(μ1−x−ε)2dFn(x)

=
KTΔ−1∑
n=1

([
e2n(μ1−x−ε)2

Fn(x)
]μ1−ε

−∞ +
∫ μ1−ε

−∞
4n(μ1 − x − ε)e2n(μ1−x−ε)2

Fn(x)dx

)

≤
KTΔ−1∑
n=1

(
Fn(μ1 − ε) +

∫ μ1−ε

−∞
4n(μ1 − x − ε)e2n(μ1−x−ε)2e−2n(μ1−x)2dx

)

≤
KTΔ−1∑
n=1

(
e−2nε2 +

∫ μ1−ε

−∞
4n(μ1 − x − ε)e−2nε(2μ1−2x−ε)dx

)

=
KTΔ−1∑
n=1

(
e−2nε2 + 1

4nε2

[
{4nε(μ1 − x − ε) + 1}e−2nε(2μ1−2x−ε)

]μ1−ε

−∞

)

=
KTΔ−1∑
n=1

(
e−2nε2 + 1

4nε2
e−2nε2

)

≤ 1

e2ε2 − 1
+ − ln(1 − e−2ε2)

4ε2

⎛
⎜⎝because

∞∑
n=1

(
e−2ε2

)n

n
= − ln

(
1 − e−2ε2

)
⎞
⎟⎠

≤ 1

2ε2
+

2ε2 + ln 1
e2ε2−1

4ε2

≤ 1

2ε2
+ 1

2
+ 1

4ε2
ln

1

2ε2
≤ 1

ε2
+ 1

4ε2
ln

1

2ε2
.

��

Proof of Theorem 8 Let ε be 0 < ε ≤ mini :Δ1i>0 Δ1i/4.

E[T ] =E

⎡
⎣T1

⎧⎨
⎩

⋃
i :μi=μ1

EPOS
i

⎫⎬
⎭

⎤
⎦ + E

⎡
⎣T1

⎧⎨
⎩

⋂
i :μi=μ1

EPOS
i

⎫⎬
⎭

⎤
⎦

≤E

⎡
⎣ ∑
i :μi=μ1

τi1

⎧⎨
⎩

⋃
i :μi=μ1

EPOS
i

⎫⎬
⎭

⎤
⎦ + E

⎡
⎣

KTΔ∑
t=1

1

⎧⎨
⎩μit < μ1,

⋃
i :μi=μ1

EPOS
i

⎫⎬
⎭

⎤
⎦

+ E

⎡
⎣T1

⎡
⎣ ⋂
i :μi=μ1

EPOS
i

⎤
⎦
⎤
⎦
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≤
∑

i :μi=μ1

E

⎡
⎣τi1

⎧
⎨
⎩

⋃
i :μi=μ1

EPOS
i

⎫
⎬
⎭

⎤
⎦

+ E

[KTΔ∑
t=1

1
[
{UCB(t, it ) ≥ μ1 − ε, μit < μ1} ∪ {UCB(t, 1) < μ1 − ε}

]]
+ E

[
T1

{
EPOS
1

}]

≤
∑

i :μi=μ1

E

⎡
⎣τi1

⎧
⎨
⎩

⋃
i :μi=μ1

EPOS
i

⎫
⎬
⎭

⎤
⎦ +

∑
i :μi<μ1

E

[
KTΔ∑
t=1

1 [UCB(t, i) ≥ μ1 − ε, it = i}]
]

+ E

[
KTΔ∑
t=1

1 [UCB(t, 1) < μ1 − ε]

]
+ E

[
T1

{
EPOS
1

}]

≤
∑

i :μi=μ1

⎛
⎝P

[⋃
i :μi=μ1

EPOS
i

]

2Δ2
i

ln
K NΔ

δ
+ O

((
ln

K NΔ

δ

) 2
3
)⎞
⎠ (by Lemma 2)

+
∑

i :μi<μ1

(
ln KTΔ

2(Δ1i − 2ε)2
+ 1

2ε2
+ 1

)
+ 1

ε2
+ 1

4ε2
ln

1

2ε2
+ KTΔP

[
EPOS
1

]
.

(by Lemmas 15 and 16, and Theorem 4)

Since 1
Δ2

1i
+ 12ε

Δ3
1i

− 1
(Δ1i−2ε)2

= 4ε(Δ1i−4ε)(2Δ1i−3ε)
Δ3

1i (Δ1i−2ε)2
≥ 0 holds for 0 < ε ≤ Δ1i

4 , 1
(Δ1i−2ε)2

≤
1

Δ2
1i

+ 12ε
Δ3

1i
holds. Thus, by setting ε to O((ln KTΔ)

−1/3), we have

E[T ] ≤
∑

i :μi=μ1

(
1

2Δ2
i

ln
K NΔ

δ
+ O

((
ln

K NΔ

δ

) 2
3
))

+
∑

i :μi<μ1

(
ln KTΔ

2Δ2
1i

+ O((ln KTΔ)
2
3 )

)

+ O((ln KTΔ)
2
3 ln ln KTΔ) + e2Δ

2
1KTΔ

2Δ2
1

(
δ

NΔ

)(
Δ1

max{θU ,1−θL }
)2

. (by Lemma 14)

��
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