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Abstract

We study a bad arm existence checking problem in a stochastic K-armed bandit setting, in
which a player’s task is to judge whether a positive arm exists or all the arms are negative
among given K arms by drawing as small number of arms as possible. Here, an arm is
positive if its expected loss suffered by drawing the arm is at least a given threshold 6y,
and it is negative if that is less than another given threshold 6 (< 6y). This problem is
a formalization of diagnosis of disease or machine failure. An interesting structure of this
problem is the asymmetry of positive and negative arms’ roles; finding one positive arm is
enough to judge positive existence while all the arms must be discriminated as negative to
judge whole negativity. In the case with A = 6y —6;, > 0, we propose elimination algorithms
with arm selection policy (policy to determine the next arm to draw) and decision condition
(condition to conclude positive arm’s existence or the drawn arm’s negativity) utilizing this
asymmetric problem structure and prove its effectiveness theoretically and empirically.
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1 Introduction

In the diagnosis of disease or machine failure, the test object is judged as “positive” if some
anomaly is detected in at least one of many parts. In the case that the purpose of the diagnosis
is the classification into one of the two classes, “positive” or “negative”, then the diagnosis
can be terminated right after the first anomaly part has been detected. Thus, fast diagnosis
will be realized if one of anomaly parts can be detected as fast as possible in the positive
case.

The fast diagnosis of anomaly detection is particularly important in the case that the
judgment is done based on measurements using a costly or slow device. For example, a
Raman spectral image has been known to be useful for cancer diagnosis (Haka et al. 2009),
but its acquisition time is 1-10 seconds per point (pixel)! resulting in an order of hours or days
per one image (typically 10,000-40,000 pixels), so it is critical to measure only the points
necessary for cancer diagnosis in order to achieve fast measurement. A Raman spectrum of
each point is believed to be converted to a cancer index, which indicates how likely the point
is inside a cancer cell, and we can judge the existence of cancer cells from the existence of
area with a high cancer index.

The above cancer cell existence checking problem can be formulated as the problem of
checking the existence of a grid with a high cancer index for a given area that is divided into
grids. By regarding each grid as an arm, we formalize this problem as a loss-version of a
stochastic K -armed bandit problem in which the existence of positive arms is checked by
drawing arms and suffering losses for the drawn arms. In our formulation, given an acceptable
error rate 0 < § < 1/2 and two thresholds 67 and 6y with 0 < 6 < 6y < 1, a player
is required to, with probability at least 1 — 8, answer “positive” if positive arms exist and
“negative” if all the arms are negative. Here, an arm is defined to be positive if its loss mean
is at least Oy, and defined to be negative if its loss mean is less than 0;. We call player
algorithms for this problem as (6;, 6y, 6)-BAEC (Bad Arm Existence Checking) algorithms.
The objective of this research is to design a (6z, Oy, §)-BAEC algorithm that minimizes the
number of arm draws, that is, an algorithm with the lowest sample complexity. The problem
of this objective is said to be a Bad Arm Existence Checking Problem.

The bad arm existence checking problem is closely related to the thresholding bandit
problem (Locatelli et al. 2016), which is a kind of pure-exploration problem such as the best
arm identification problem (Even-Dar et al. 2006; Audibert et al. 2010). In the thresholding
bandit problem, provided a threshold 6 and a required precision € > 0, the player’s task is
to classify each arm into positive (its loss mean is at least 6 + €) or negative (its loss mean is
less than 6 — €) by drawing a fixed number of samples, and his/her objective is to minimize
the error probability, that is, the probability that positive (resp. negative) arms are wrongly
classified into negative (resp. positive). Apart from whether fixed confidence (constraint on
error probability to achieve) or fixed budget (constraint on the allowable number of draws),
positive and negative arms are treated symmetrically in the thresholding bandit problem
while they are dealt with asymmetrically in our problem setting; judgment of one positive arm
existence is enough for positive conclusion though all the arms must be judged as negative for
negative conclusion. This asymmetry has also been considered in the good arm identification
problem (Kano et al. 2017), and our problem can be seen as its specialized version though
their problem deal with the case with 6, = 6y only. In their setting, the player’s task is
to output all the arms of above-threshold means with probability at least 1 — §, and his/her
objective is to minimize the number of drawn samples until 1 arms are outputted as arms

1 http://www.horiba.com/en_en/raman-imaging-and-spectroscopy-recording-spectral-images-profiles/.
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with above-threshold means for a given A. In the case with A = 1, algorithms for their
problem can be used to solve our existence checking problem. Their proposed algorithm,
however, does not utilize the asymmetric problem structure. Kaufmann et al. (2018) studied
the problem of sequential test for the lowest mean, which is basically the same problem as the
bad arm existence checking problem except the difference in the number of thresholds; they
also treat the case with ;, = 6y only. They proposed an algorithm to utilize the asymmetric
problem structure: Murphy Sampling and asymmetric stopping condition. Our approach to
utilize the asymmetric problem structure is different from their approach; our algorithm is
an elimination algorithm and asymmetric conditions are used not only to stop but also to
eliminate the drawn arm.

We consider elimination algorithms BAEC[ASP, LB, UB] that are mainly composed of an
arm-selection policy arg max; ASP(¢, i) and a decision condition LB(t) > 0y or UB(t) < 6y
at time ¢. The arm-selection policy decides which arm is drawn at each time ¢ based on loss
samples obtained so far. The decision condition is used to conclude positive arm’s existence
if LB(#) > 61 holds or the drawn arm’s negativity if UB(#) < 6y holds. If the conclusion
is positive arm’s existence, then the algorithms stop immediately by returning “positive”. In
the case that the conclusion is the drawn arm’s negativity, the arm is eliminated from the
set of positive-arm candidates, which is composed of all the arms initially, and will not be
drawn any more. If there remains no positive-arm candidate, then the algorithms stop by
returning “negative”. To utilize our asymmetric problem structure, we propose a decision
condition that uses A-dependent asymmetric confidence bounds w(¢) and 7¢(¢) of estimated
loss means as LB(¢) and UB(#) in the case with A = 0y — 60y > 0. Here, asymmetric bounds
mean that the width of the upper confidence interval is narrower than the width of the lower
confidence interval. As an arm selection policy, we propose policy APTp that is derived by
modifying policy APT (Anytime Parameter-free Thresholding) (Locatelli et al. 2016) so as to
favor arms with sample means larger than a single threshold  (rather than arms with sample
means closer to 0 as the original APT does). Here, as the single threshold 6 used by policy
APTp, we use not the center between 67, and 6 but the value closer to 6y by utilizing the
asymmetry of our confidence bounds.

By using A-dependent asymmetric confidence bounds as the decision condition, the worst-
o)
A2
compared to the case using the conventional symmetric confidence bounds of the successive
elimination algorithm (Even-Dar et al. 2006).

Our sample complexity results regarding the asymptotic behavior as § — 0 is summarized
as Table 1. Reflecting the asymmetric structure of the problem, the existence of a positive
arm makes the sample complexity higher. In the case with negative arms only, algorithm
BAEC[x, 1, it], our elimination algorithm with any arm selection policy and A-dependent
asymmetric confidence bounds, is proved to achieve almost optimal sample complexity. In
the case with positive arm existence, the upper bound on the expected number of samples for
algorithm BAEC[APTYp, u, 1z] is proved to be almost optimal when all the positive arms have
the same loss mean while that for algorithm BAEC[UCB, u, ] using UCB (Upper Confi-
dence Bound) (Auer et al. 2002) as the arm selection policy like HDoC (Hybrid algorithm
for the Dilemma of Confidence) (Kano et al. 2017) is proved to be almost optimal when just
one positive arm has the largest loss mean.

The effectiveness of our decision condition using the A-dependent asymmetric confidence
bounds is demonstrated in simulation experiments. The algorithm using our A-dependent
asymmetric confidence bounds stops drawing an arm about two times faster than the algo-
rithm using the symmetric confidence bounds when its loss mean is around the center of the

case bound on the number of samples for each arm is shown to be improved by 2 (ﬁ In
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Table 1 Our asymptotic lower and upper bounds on the expected stopping times E[7'] divided by In % as

8 — +0, that is, lims_, o —]?[Tl] , for bad arm existence checking problem
nl
)

Case At least one positive Negative only
1 1 1

Lower bound —_— (5 2) (Th. 1) >

(Bernoulli dis- d(p1,01) 249 st d(ui, 0y)

i=1

tribution case) ( K o )
<Zi

T —an?

1

(Th. 1)
Ko, £
Upper bound BAEC[x, u, 7] Z — (Th.6) Zl 242
- : : = 1
i=1 i (Th. 6)
1
BAEC[APTp, u, it] ——— (Cor. 1
P L A2 ( )
It | i = pa}l

BAEC[UCB, p, it (Cor. 2)

2
247

Without loss of generality, arms i with mean loss p; are assumed to be sorted as (1 > --- > ug. Function
d is Kullback—Leibler divergence for Bernoulli distribution defined as d(x, y) = x1n % + (1 —x)In }%;‘,,
and the parenthesized upper bounds can be obtained by Pinsker’s Inequality, which is known to be tight in
the worst case. For 6 defined by Eq. (6), A; is defined to be p; — 0y, if ; > 0 and 6y — u; otherwise, and
m=I{i | nj =0}

thresholds. Our algorithm BAEC[APTp, u, ix] almost always stops faster than the algorithm
BAEC[UCB, 1, 7z], and our algorithm’s stopping time is faster or comparable to the stop-
ping time of the algorithm BAEC[ASP, 1, 7z] using LUCB (Lower and Upper Confidence
Bounds) (Kalyanakrishnan et al. 2012), Thompson Sampling (Thompson 1933) and Murphy
Sampling (Kaufmann et al. 2018) as ASPs in almost all the our simulations using Bernoulli
loss distribution with synthetically generated means and means generated from a real-world
dataset.

Related work

The bad arm existence checking problem is a kind of multi-armed bandit problem, which is
a classical problem studied by Thompson (1933) and Robbins (1952). A bandit problem is
an online learning problem (Littlestone and Warmuth 1994), but a player can obtain partial
information only in its setting. In our study, loss (or reward) distribution is assumed to be
stochastic, which is easier to deal with than the adversarial setting (Auer et al. 2003). For
the bandit problem, depending on problem objectives, two kinds of settings exist: regret-
minimization setting (Auer et al. 2002) and pure-exploration setting (Bubeck et al. 2011).
Most pure-exploration problems are best arm identification problems (Even-Dar et al. 2006;
Audibert et al. 2010; Kalyanakrishnan et al. 2012; Kaufmann and Kalyanakrishnan 2013)
which are the problems to identify the arms with the maximum reward means. There are the
fixed budget version and the fixed confidence version of best arm identification problems,
and algorithms for the fixed confidence version have an arm selection policy and a stopping
condition. Some best arm identification algorithms eliminate arms that are estimated not to
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be the best, and most of those algorithms use uniform sampling as an arm selection policy
(Even-Daretal. 2006; Bubeck et al. 2013). Non-elimination best arm identification algorithms
use a more sophisticated adaptive sampling as an arm selection policy (Gabillon et al. 2012;
Kalyanakrishnan et al. 2012). Comparison analysis between elimination and non-elimination
algorithms was performed by Kaufmann and Kalyanakrishnan (2013). Identification of the
above-or-below-threshold arms (Locatelli et al. 2016; Kano et al. 2017; Kaufmann et al. 2018)
is a variant of best arm identification, and among these algorithms, only ours and HDoC (Kano
etal. 2017) are elimination algorithms using adaptive sampling. This combination is effective
for checking existence of above-or-below-threshold arm setting.

2 Preliminaries

For given thresholds 0 < 6, < 6y < 1, consider the following bandit problem. Let K (> 2)

be the number of arms, and at each time t = 1,2, ..., a player draws arm i; € {1, ..., K}.
Fori € {1,...,K}, X;(n) € [0, 1] denotes the loss for the nth draw of arm i, where
Xi(1), Xi(2), ... are a sequence of i.i.d. random variables generated according to a proba-

bility distribution v; with mean u; € [0, 1]. We assume independence between {X;(1)}72,
and {X;(1)}72, forany i, j € {1,..., K} with i # j. For a distribution set v = {v;} of K
arms, [E, and P, denote the expectation and the probability under v, respectively, and we
omit the subscript v if it is trivial from the context. Without loss of generality, we can assume
that ;1 > - -+ > ug and the player does not know this ordering. Let n; () denote the number
of draws of arm i right before the beginning of the round at time ¢. After the player observed
the loss X;, (n;, (t) + 1), he/she can choose stopping or continuing to play at time ¢ + 1. Let
T denote the stopping time.

The player’s objective is to check the existence of some positive arm(s) with as small
a stopping time 7' as possible. Here, arm i is said to be positive if u; > 0y, negative if
Wi < 01, and neutral otherwise. We consider a bad arm existence checking problem, which
is a problem of developing algorithms that satisfy the following definition with as small
number of arm draws as possible.

Definition 1 Given? 0 < 6, < 6y < 1 and § € (0, 1/2), consider a game that repeats
choosing one of K arms and observing its loss at each time ¢. A player algorithm for this
game is said to be a (01, Oy, §)-BAEC (Bad Arm Existence Checking) algorithm if it stops in
a finite time outputting “positive” with probability at least 1 — § in the case that at least one
arm is positive, and “negative” with probability at least 1 — § in the case that all the arms are
negative.

Note that the definition of BAEC algorithms requires nothing when arm 1 is neutral. Our
problem definition coincides with the highest-mean version problem of sequential testing for
the lowest mean (Kaufmann et al. 2018) in the case with 6; = 0. Table 2 is the table of
notations used throughout this paper.

2 Thresholds 01, and Oy correspond to 6 — € and 6 + €, respectively, in thresholding bandit problem (Locatelli
et al. 2016) with one threshold 6 and precision €, but we use the two thresholds due to convenience for our
asymmetric problem structure.
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Table 2 Notation list

K : Number of arms
Oy, 01, : Upper and lower thresholds. (0 < 67 <6y < 1)
A : Gray zone width (A =0y —0r)
8 : Acceptable error rate. (§ € (0, 1/2))
v; : Loss distribution of arm i
v : Set {v; } of loss distributions of K arms
i : Loss mean (expected loss) of arm i. (u; € [0, 1])
positive if u; > 0y,
Arm i is { neutral if 67, < pu; < 0y,
negative if u; < 6,
Ay =1 — Wi
Ey : Expectation of some random variable w.r.t. v
Py : Probability of some event w.r.t. v (v is omitted when it is trivial from the context)
iy : Drawn arm at time ¢
X (n) : Loss suffered by the nth draw of arm i
n;(t) : Number of draws of arm i at the beginning of the round at time #
T : Stopping time
Ri(n) = § Y0_) Xi(9)

~ 2 N 2
) = ;) — ) £ n 28 ) = () + /o In 2K

NF( 2e lnﬂ—‘ Tﬂ=[llnﬁ1ﬂ

(e—1)A2 " A2s

_ InK _ 1 _ o
o = 1+ln% G—GU—mA—eL—FmA

P >
A= mi — 0L (i = 0) T, = lln VKN,
= a2 s

Ou — ni(ni <0)
A =lpi — 0|
m : Number of arms i with y; > 6

w0 = i) = /o I K ) = ) 4/ 4 In B

7; : Number n of draws of arm i until algorithm BAEC[x, I ]’s decision condition
(Ei (n) > 01, or u; (n) < Oy ) is satisfied.

21 : First arm that is drawn 7; times by algorithm BAEC[APTp, u, 1]

et = Ui:m29U ﬂz,-d:] {ﬁi(n) > Mi} & = ﬂ,Kzl m:?:l {ﬁi(n) < ;,L,-}

S,P OS . Event that arm i is judged as positive

3 Sample complexity lower bound
In this section, we derive a lower bound on the expected number of samples needed for a

(61, 6y, 6)-BAEC algorithm. The derived lower bound is used to evaluate algorithm’s sample
complexity upper bound in Sects. 5.3 and 6.2.
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We let KL (v, v') denote Kullback—Leibler divergence from distribution v’ to v and define
d(x,y)as

l—y

d(x,y):xlnf-l—(] —x)In
y

Note that KL(v, v') = d(u;, pt;) holds if v and v’ are Bernoulli distributions with means z;
and p}, respectively.

The following theorem is an extension® of Lemma 1 in Kaufmann et al. (2018) to the case
with two thresholds.

Theorem 1 Let {v;} be a set of Bernoulli distributions with means {i;}. Then, the stopping
time T of any (0L, 0y, 8)-BAEC algorithm with 0y and 01, is bounded as

1-26 1-6
In ——

E(T)> —— In (1
d(ui,0r) )
if some arm is positive, and
K
1—-26 1-96
E(T) > Y ————In—— Q)
— d(ui,0y) 8
if all the arms are negative.
Proof See “Appendix A”. O

Remark 1 Identification is not needed for checking existence, however, in terms of asymptotic
behavior as § — +0, the shown expected sample complexity lower bounds of both the tasks
are the same; lims_, o E(T)/In(1/8) > 1/d(j1,6r) for both the tasks in the case with
some positive arms. The bounds are tight considering the shown upper bounds, so the bad
arm existence checking is not more difficult than the good arm identification* (Kano et al.
2017) with respect to asymptotic behavior as § — +0.

4 Algorithm
4.1 BAEC[ASP, LB, UB] algorithm framework

As (01, 6y, 8)-BAEC algorithms, we consider algorithm BAEC[ASP, LB, UB] shown in
Algorithm 1 that, at each time ¢, chooses an arm i, from the set A; of positive-candidate arms
by an arm-selection policy ASP

i; < arg max ASP(z, 1)
i€A,

3 The original lemma treats the problem to decide whether the lowest mean is less than a given one threshold
for one-parameter canonical exponential family of K distributions.

4 The lower bound on the stopping time under the decision of no more positive arm is not analyzed in Kano
et al. (2017), and the stopping time in the case with no positive arm is the time of its special case. In good
arm identification, the algorithm must stop without falsely identifying any arm as positive in such case with
probability at least 1 — 8, so its task is the same as our bad arm existence checking problem in the case with
no positive arm.
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Algorithm 1 BAEC[ASP, LB, UB]

Parameter Function:
ASP(t, i): index value of arm i at time 7 for arm selection
LB(#), UB(t): lower and upper confidence bounds of arm i;’s estimated loss mean
Input: K: the number of arms
0 < 07, <0y < 1: thresholds
8 € (0, 1/2): acceptable error rate
1D Ay < {1,2,....,K},nij(1) < O0fori =1,..., K
2: 1«1
3: while A; # # do
4: iy < argmax ASP(z, 1)
€Ay

o i) +1 G =ip)
domeED N0 i

6 Draw i; and suffer a loss X;, (n;, (t + 1)).
. i, (nj, (t i O)+X;, (n, (141
T (ng, (1 +1)) < i O ))sz((;)ﬂtl) p i D
8: if LB(¢) > 6y, then
9: return “positive” > Conclude positive arm’s existence
10:  elseif UB(r) < 6y then
11: Arpr < A\ {ir} > Conclude Arm i;’s negativity
12:  endif

13: t<t+1
14: end while
15: return “negative”

using some index value ASP(¢z, i) of arm i at time ¢ (Line 4), suffers a loss X;, (n;, (t + 1))
(Line 6) and then checks whether a decision condition

LB(t) > 61, or UB(¢) < 6y

is satisfied (Lines 8 and 10). Here, LB(¢) and UB(#) are lower and upper confidence bounds of
an estimated loss mean of the current drawn arm i;, and condition LB(¢) > 6y is the condition
for the decision of positive arm’s existence , and condition UB(#) < 6y is the condition for
concluding the drawn arm’s negativity and eliminating arm i, from the set A; of positive-
candidate arms of time 7 4 1. In addition to the case with positive conclusion, algorithm
BAEC[ASP, LB, UB] also stops with negative conclusion when A; becomes empty.

Define sample loss mean fi; (n) of arm i with n draws as

X I ¢
i) =~ Xi(s),
s=1
and we use fi;, (n;, (t + 1)) as an estimated loss mean of the current drawn arm i, at time 7.

4.2 Asymmetric A-dependent confidence bounds

As we use the sample mean [1; (n) as an estimated loss mean, LB(#) and UB(¢) are determined
by defining lower and upper bounds of a confidence interval of [i;(n) fori = i; and n =
n;, (t +1).

As lower and upper confidence bounds of [i; (),

, R 1 2K n? _, R 1 2K n?
p.(n) =pi(n) —,/—In and i; (n) = i (n) +,/ —In , 3)
. 2n ) 2n )
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respectively, are generally used” in successive elimination algorithms (Even-Dar et al. 2006).
Define p '(t) and @' (¢) as 1% "t) = ,u (n,, (t+ 1) and 7' (1) = ;t (ni, (t 4+ 1)) for use as
LB(¢) and UB(¢).

Consider the case with 7, < 6y, namely, the case that 8y, is strictly smaller than 6. In
this case, we propose asymmetric bounds 12 (n) and 1; (n) defined using a gray zone width
A = 6y — 0y, as follows:

N,
— In—2,
2n 1)

1 A _ N
w,(n) = fi(n) —/5-In and 11; (n) = f1i(n) + “

2n

2e 24 K
N, = In .
(e —1)A2 A28

We also let u(¢) and z(7) denote LB(#) and UB(¢) using these bounds, that is, u(z) =
#; (i (t + 1) and (1) = 1, (ni, (¢ + 1)).

Note that zt;(n) < @ (n) forn > /N,/2K and w; () > /,L/(I’l) forn > /N,/2, so
Hi(n)—p, (n) < @ (n)—p;(n) holds forn > /N, /2. Both It; (n) — . (n) and z; (n) — p’ (n)
decrease as n increases, and LB(#) > 6, or UB(t) < 6y is satisfied for BAEC[x, u, 1] and
BAEC[*, &’, '] when they become at most A for n = n;(t + 1), where ASP = % means
that any index function ASP(¢, i) can be assumed.

where

Remark 2 Condition w(t) > 61, essentially identifies non-negative arm i;. Is there real-valued
function LB that can check existence of a non-negative arm without identifying it? The answer
is yes. Consider a virtual arm at each time r whose mean loss ' is a weighted average over
the mean losses u; of all the arms i (i =1, ..., K) defined as u' = % ZlK:] ni(t + ;. If
u' > 6r, then at least one arm i must be non-negative. Thus, we can check the existence of
a non-negative arm by judging whether / > 67 or not. Since ' (¢) defined as

ROE Z 4+ D+ 1) — 1g
- i= 1” " s

can be considered to be a lower bound of the estimated value of i/, i’ can be used as LB
for checking the existence of a non-negative arm without identifying it. Instead of the set
of all arms, any arm subset can be considered to be a virtual arm as the stopping condition
proposed by Kaufmann et al. (2018) in the case with 67, = 0. However, the increase of the
number of subsets to be considered also makes the required number of each subset’s samples
increase due to the property of union bound. In this paper, we do not pursue in this direction,
and instead focus on the effect investigation of the decision condition using A-dependent
asymmetric confidence bounds.

The ratio of the width of our upper confidence 1nterva1 /L, (n), w; (n) to the width of our

lower confidence interval [u (n), fi; (n)] is /In = Na KNA 1+ 11“1{\ Thus, we

5 Precisely speaking, /i; (n) £/ 5, ln 4K " is used in successive elimination algorithms for best arm iden-

tification problem. A narrower conﬁdence interval is enough to judge whether expected loss is larger than a
fixed threshold.
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define 6 as

1 In K
926U_]+aA where o = l+17NA
n 2a

$

This 6 can be considered to be the balanced center between the thresholds 67, and 67 for our
asymmetric confidence bounds.

4.3 Arm selection policy APTp

As arm selection policy ASP, we consider policy APTp that uses index function

APTp(t, i) = /ni (1) (i (ni (1)) — 6) , )

where we use [1; (n; (1)) = 6 when n;(t) = 0. This arm-selection policy is a modification of
the policy of APT (Anytime Parameter-free Thresholding algorithm) (Locatelli et al. 2016), in which
an arm

arg min/n; (1) (|fti (n; (1)) — 6] +€) (©)

is chosen for given threshold 6 and accuracy €. In the original APT, arm i with the sample
mean [1; (n;(t)) closest to 6 is preferred to be chosen no matter whether [i; (n; (1)) is larger
or smaller than 6. In APTp, there is at most one arm i whose sample mean fi; (n;(t)) is
larger than 6 at any time ¢ because of the above our definition of j(nj(2)) for arms j with
n;j(t) = 0 and mathematical induction in ¢, and such unique arm i is always chosen as long
as fi;(n;(t)) > 6.

5 Theoretical analyses of algorithm BAEC[ «, H, ;_t]

In the following sections, we consider the case with 87, < 6y (A > 0). We first analyze arm’s
sample complexity for any arm, then analyze algorithm’s sample complexity.

5.1 Worst case sample complexity upper bound for any arm

One merit of the two threshold setting with §; < 6 is that the number of drawn samples
until the decision condition is satisfied, is upper-bounded for any arm by a common constant
depending on A = 6y — 61, and §. In this subsection, we prove such common constant bound
for our A-dependent asymmetric confidence bounds and compare it with the corresponding
number of samples for the conventional symmetric confidence bounds.

Let 7; denote the smallest number n of draws of arm i for which the decision condition

is met, that is, either M (n) > 61, or u;(n) < Oy holds. Define T, as T, = ’_% In @Nﬂ-‘.

Then, 7; can be upper-bounded by 7, for any arm i as the following theorem.
Theorem 2 Inequality t; < T, holds fori =1, ..., K.
Proof See “Appendix B”. O

How good is the worst case bound 7, on the number of samples for each arm compared to
the case with LB = g’ and UB = 1’ (Eq. 3)? It is shown by the following theorem that,
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in BAEC[x, p ', '], the number of arm draws 7/ for some arm i, which is corresponding
to 7;, can be larger than T, = v 2 In ‘jﬁfj which means 7/ — 7; = £ (ﬁ In A—‘C) if
1=o0 (eﬁ/ Az).

Theorem 3 Consider algorithm BAEC[x, u', '] and define v/ = min{n | g; (n) >
Op orr;(n) < Oy} fori = 1,..., K. Then, event t/ > T, can happen fori =1, ..., K,
where T is defined as T, = L= 2 In 42%? ]. Furthermore, the difference between the worst
case decision times 7:1.’ — T is lower-bounded as

2 <ln 52VK 3J?> .

ri’—ri>TA’—TA>P Inln

A2 T A%
Proof See “Appendix C”. O
Remark 3 Theorem 3 says that the difference between the worst case decision times 7/

52JVK
and 7; of arm i is .Q( In */7) for § = w (fe 42 ) under the condition that

5 > i A2 . In the experimental setting of Sect. 7.1, in which parameters K = 100,
(4, 8) (0.2,0.01), (0.2,0.001), (0.02,0.01), (0.02, 0.001) are used, the lower bounds of
‘L'i’ —1; calculated using the above inequality are 352.7, 343.4, 56579.7, 55900.7, respectively,
which seem relatively large compared to the corresponding 7, = 684, 808, 93098, 105307.
The range of § which guarantees that the lower bound of ti’ —1; is positive,is > 1.11x 1075643
for A =0.2and 1.12 x 107578 for A = 0.02.

Remark 4 Instead of 1;(n) defined in Eq. 3), i/ (n) = fi(n) + ,/ 2’; can be used
because an union bound is not necessary for a positive arm as z; (1) deﬁned in Eq. (4). For
the algorithm BAEC[x, u’, 7] using this upper confidence bound 7z} (n) (i = 1,..., K),

the decision time difference from t; is still lower-bounded by el <ln —Inln f) by

o A%s
Theorem 9 in “Appendix D”. The values of this lower bound for the Iéprerimental setting of
Sect. 7.1, that is, K = 100, (4, §) = (0.2, 0.01), (0.2,0.001), (0.02, 0.01), (0.02, 0.001),
are 17.13,7.80, 23020.3, 22341.3, respectively. Compared to the corresponding 7, =
684, 808, 93098, 105307, the difference seems still large for A = 0.02 though it becomes
small for A = 0.2. The range of § guaranteeing positiveness of the lower bound is
> 1.03 x 107 for A = 0.2 and 1.63 x 107%2 for A = 0.02.

5.2 Algorithm’s correctness

In this subsection, we prove that algorithm BAEC[*, u, i]is a (0., 6y, §)-BAEC algorithm.
We define events £1 and £~ as

Tx K T,
U m{ﬁi(n) > Mi}fﬁ = ﬂ ﬂ[gi(n) < Mi}-
i:pui >0y n=1 i=1ln=1

Note that algorithm BAEC[*, u, ] returns “positive” under the event £ and returns “neg-
ative” under the event £~ . For any event £, we let 1{£} denote an indicator function of &,
that is, 1{€} = 1 if £ occurs and 1{€} = 0 otherwise.

The following proposition is used to prove Lemma 1.
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Proposition1 7, < N,.
Proof See “Appendix E”. O

The next lemma says that algorithm’s output is correct with probability at least 1 — § in
the cases that at least one positive arm exists or all the arms are negative.

Lemma 1 For the complementary events &+ e of events £, £, inequality P{E+) < 6
holds when 1 > 0y and inequality IF’{ ~} < § holds when 1 < 0.

Proof Assume that 11 > 6y. Using De Morgan’s laws, £+ can be expressed as

N @{m(n) < i

i'/L,‘>9Un=1

N,
ﬂ U fAi(n) < i — ln? .
i:pui>0y n=1

So, the probability that event £+ occurs is bounded by § using Hoeffding’s inequality:

& N

P{ET) < E P — In—2
€t} < llrJ-I;]iXU {Mz (n) < pi — 2n n 5 }

E —8 < 4. (by Proposition 1)

Assume that ;1 < 7. Using De Morgan’s laws, £~ can be expressed as

K R 1 KN,

:UU wi(m) = i +4/=—In .
) 2n )
i=1n=1

So, the probability that event £~ occurs is bounded by § using the union bound and Hoeffd-
ing’s inequality:

AR KN
P(€- }<ZZP{M,@>>MZ S-ln SA}
i=1n=1
K T,
< ZZ KN, —8 < 4. (by Proposition 1)

[m}

The following theorem states that algorithm BAEC[*, , ;t] is a (6L, 0y, §)-BAEC algo-
rithm which needs at most K 7, samples in the worst case.

Theorem 4 Algorithm BAEC[x, W, il is a (01, Oy, 8)-BAEC algorithm that stops after at
most KT, arm draws.
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Proof By the definition of 7;, algorithm BAEC[*, u, 1t] draws arm i at most 7; times, which
is upper-bounded by 7, due to Theorem 2. So, algonthm BAECTx, u, 1z] stops after at most
KT, arm draws.

When at least one arm is positive, that is, in the case with pu; > 6y, algo-
rithm BAEC[*, u, 1] returns “positive” if event £+ occurs. Thus, algorithm BAEC[x, u, 1x]
returns “positive” with probability P{€T} =1 — PET)>1-36 by Lemma 1. When all the
arms are negative, that is, in the case with 1 < 6, algorithm BAEC[*, u, it] returns “nega-
tive” if event £~ occurs. Thus, algorithm BAEC[x, u, ft] returns “negative” with probability

P{E"}=1—-P{~}>1—8byLemma l. O

5.3 High-probability and average-case bounds

By Theorem 4, we know worst-case upper bound K T, on the number of samples needed for
algorithm BAEC[*, w, it]. In this section, we show a high-probability and an average-case
bounds for the algorithm.

We define A; as

A — i =6 (ui =0)
l v — i (ni <0)

and let T, denote T, = ﬁ In ‘RSN 2
A high-probability upper bound of the number of samples needed for algorithm
BAEC[*, u, 1z] is shown in the next theorem. Compared to worst case bound, K7, can

be 1mpr0ved to Zl-: 1 T,, in the case with 1 < 6y, however, only one T, is guaranteed to be
improved to the maximum 7,, among those of positive arms i in the case with pu; > 6y .

Theorem 5 [n algorithm BAEC[*, u, jt], inequality t; < T,, holds for at least one positive
arm i with probability at least | — 8 when w1 > 0y. Inequality i < T,, holds for all
the armi = 1,..., K with probability at least 1 — § when wy < 0r. As a result, with
probability at least 1 — 8, the stopping time T of algorithm BAEC[x, u, 1t] is upper-bounded

as T < max;.;>e, T, + (K — )T, when 1 > 6y and T < 211(:1 T, when 1 < 0.
Proof See “Appendix F”. O

The last sample complexity upper bound for algorithm BAEC[*, u, ] is an upper
bound on the expected number of samples. Compared to the high-probability bound,

= | 2 1n YENs | g i KNa o L
TA,_’VAI.2 In *=5 —‘mlmprovedto 247 In or 2A2 ln

Theorem 6 For algorithm BAEC[x, i, 1], the expected value of t; of each arm i is upper-
bounded as follows.

2/3
0 40 ((n5e)) i = 0)

E[Ti] =< 2/3
2AzlnNA+0((1 N ) (i <6)
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As a result, the expected stopping time E[T] of algorithm BAEC[, u, it] is upper-bounded

as

K 2/3

1. N, 1 In K 1 KN,

E[T] < —In— — + — —+O0|K (I . 7

Msan 3o+ 2 ot (<n8>> "
i=1 "1 ipi=0 1

The above theorem can be easily derived from the following lemma by setting event £ to
a certain event (an event that occurs with probability 1).

Lemma2 For any event £, in algorithm BAEC[x, u, it], inequality

2
Ple}, KN, KN, \?
Elz; ol(1 . 8
(6 1{E}] = 247 n——+ <<n8>> (®)
holds for any arm i with u; > 6 and
2
P[E], N, Ny\3
Elt1{€}] < —In—+ 0| |In— . 9
(HEN = 5y <<n8)) ©

holds for any arm i with u; < 6.
Proof See “Appendix G”. O

Remark5 When all the arms have Bernoulli loss distributions with means less than 6;,, by
Pinsker’s Inequality d (x, y) > 2(x — y)2, the right-hand side of Ineq. (2) in Theorem 1 can
be upper-bounded as

K

Zdl 26 17_21 gﬁnl 8.

2 dGa o0 " s 24

Since Pinsker’s Inequality is tight in the worst case, algorithm BAEC[*, u, it] is almost
asymptotically optimal as § — +0. Algorithm BAEC[x, 1, 7z] is a kind of elimination
algorithm, that is, the arms that satisfy negative decision condition are eliminated. Excluding
elimination algorithms, UCB and Murphy Sampling coupled with a box stopping rule is
known to also have asymptotically optimal stopping time in this case when A = 0 (Kaufmann
et al. 2018).

6 Sample complexity of algorithm BAEC[APTp, i, /]

6.1 Sample complexity upper bound

If all the arms are judged as negative in algorithm BAEC[ASP, u, 1], that is, drawing arm i
is stopped by the decision condition of 7z;(t;) < @y foralli =1, ..., K, the stopping time
T is ZIK: | Ti regardless of arm-selection policy ASP. In the case that some positive arms
exist, however, the stopping time depends on how fast the (61, 6y, §)-BAEC algorithm can
find one of positive arms.

In this subsection, we prove upper bounds on the expected number of samples needed
for algorithm BAEC[APTp, i, it], an instance of algorithm BAEC[x, u, ;] with specific
arm-selection policy APTp. B
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Let arm lA'1 denote the first arm that is drawn t; times in algorithm BAEC[APTp, u, it].
In addition to A;, we also use A; = |u; — 6] in the following analysis. We let m denote the
number of arms i with p; > 6. The event that arm i is judged as positive is denoted as Sip 08,

From the following theorem and corollary, we know that, when & is small, the dominant
terms of our upper bound on the expected stopping time of algorithm BAEC[APTp, u, 1],

P[l] =i, EP S]

1
7T In L.

are 5

Ini 5 @ =1,...,m), whose sum is between — ln 5 and 2A2

Theorem?7 If m > 1 (or w1 > 0), then the expected stopping time E[T] of algorithm
BAEC[APTYp, u, it] is upper-bounded as

" P[fl =i’5ipos] KN, 20m—1) 1 Ko
< In——= + +{—5+4 —

Jj=m+1 =Jj

( KN,\3
+ m(K —m)+ O m(ln 3 >

Q247 M /s (W)z
wxn (52 (x)

i=1

) £

24y i=m+1 N

Proof See “Appendix H”. O
The next corollary is easily derived from Theorem 7.

Corollary 1 If m > 1, then

s _ i cPOS
]E[T] i llm5_>+()]P [11 =1, Si ] -
2o In § 247 - 247

holds for the expected stopping time E[T] of algorithm BAEC[APTp, u, i].

6.2 Comparison with BAEC[UCB, 1, ul

HDoC (Hybrid algorithm for the Dilemma of Confidence)(Kano et al. 2017) for good arm identifica-
tion problem uses arm selection policy UCB (Upper Confidence Bound) (Auer et al. 2002),
in which

(ni (1) = 0)

o0
UCB(t,i) =1 .
(’){mwMHJ%@mrmm>m

is used as ASP(¢, i). In this section, we analyze a sample complexity upper bound of algo-
rithm® BAEC[UCB, M, it] and compare it with that of BAEC[APTp, u, ]

6 This is not completely the same algorithm as HDoC because, in the HDoC’s decision condition, bounds

()2
i (ni(t)) £ 0@ (t) In % are used.
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Define Ay; as Ay; = uy — pi. Then, we can obtain the following theorem and corollary,
from which, we know that, when 8 is small, the dominant term@ of our upper bound on the

expected stopping time of algorithm BAEC[UCB, u, 1], are 3 A2 Int 5 (0 1 i = pu1), whose

o Wilmwi=padl g, 1
sum is “=2re In 5

Theorem 8 [fm > 1, then expected stopping time E[T] of algorithm BAEC[UCB, w, 1] is
upper-bounded as

2
1 . KN, KN,\3
E[TI< ) <2A21n ; ((m ; )))

ipi=p
InKT,

+ Y < +O((anT)3))
i<y 11

4+ O(nKT,)3 nInKT,) +

A 2
ezA%KTA ( 8 >(max(9U.ll—9L))
242 N, ‘

Proof See “Appendix I”. O

Corollary 2 Ifm > 1, then

BIT] _ 1| pi = mll
6>+0 Int ~ 243

holds for the expected stopping time E[T] of algorithm BAEC[UCB, u, it].

Remark 6 From the upper bound shown by Ineq. (7), inequality

K
. E[T] 1
lim < —
§—+0 ln% - 121: 2A12

is derived. This means that the expected stopping time upper bounds for algorithm
BAEC[APTp, u, ix] and BAEC[UCB, p, 1] shown in Theorems 7 and 8 are asymptotically

smaller than that of algorithm BAEC[*, u W, ] as & — +0.

Remark 7 When all the arms have Bernoulli loss distributions, the right-hand side of Ineq. (1)
in Theorem 1 can be upper-bounded as
1—-2§ -8 1-28 1-6§

n < 5—In
d(ur,0L) b 2A7 B

by Pinsker’s Inequality. Considering tightness of Pinsker’s Inequahty, 2 is considered to
be a tight upper bound of hm(;_H_o [T] if Ineq. (1) is tight. There is a large gap between

m lims— 40 IP’[:]:I,SI.POS] .
py ——a and ﬁ’ and improvement of the upper bound on the number

of samples for APTp seems dlfﬁlcult, so the algorithm BAEC with arm selection policy
APTp does not seem asymptotically optimal unless lims_, 1o P [fl =1 EPOS] = 1. On
the other hand, llm5%+0 EITI for UCB is upper-bounded by A %, that is, asymptotically
optimal when p; < w1 for all arm i # 1. In the case with u; = py foralli = 1,...,m,
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% < ﬁ holds for UCB while the corresponding bound for APTp is
5 T
E[T]

asymptotically optimal, that is, lims_, 1o T S ﬁ

5 1
optimality of Murphy Sampling coupled with a box stopping rule (Kaufmann et al. 2018)
for A = 0 is basically the same as that of BAEC[UCB, pu, it] for A > 0; its stopping time is

optimal in the unique-best-arm case but not in the multiple-best-arms case.

however, lims_, o

holds. The stopping time’s asymptotic

Remark 8 Comparing non-dominant terms of BAEC[APTp, W 1] and BAEC[UCB, W, 1l
a cause for the large upper bound of the expected stopping time can be the existence of arms
i whose loss mean p; is close to ;1 in BAEC[UCB, p, 1z] while it can be the existence of

arms i whose loss mean y; is close to § in BAEC[APTp, My 1]

7 Experiments

In this section, we report the results of our experiments that were conducted in order to
demonstrate the effectiveness of our A-dependent asymmetric confidence bounds used in
decision condition and arm selection policy on the stopping time.

In all the tables of experimental results, the smallest averaged stopping time in each
parameter setting is bolded or italic, and bolded ones mean statistically significant difference.

7.1 Effectiveness of A-dependent asymmetric confidence bounds

As upper and lower confidence bounds LB and UB, we proposed © and & based on A-
dependent asymmetric bounds 7z; (n) and 122 (n) defined by Eq. (4), instead of ﬁ/ and 1w’
based on conventional non-A-dependent symmetric bounds ﬁ; (n) and &; (n) defined by
Eq. (3). In this subsection, we empirically compare the number of draws for an arm with
mean f; to satisfy the decision condition using those bounds.

In the experiment, an i.i.d. loss sequence X; (1), ... was generated according to a Bernoulli
distribution with mean u; and we measured the decision time 7; which is the smallest n
that satisfies the decision condition (ﬁi (n) > 0 or 1;(n) < 6Oy). The decision times
were averaged over 100 runs for each combination of parameters § = 0.001, 0.01, u; =
0.2,0.4,0.6,0.8 and (0.,0y) = (0.1,0.3), (0.3, 0.5), (0.5,0.7), (0.7, 0.9), (0.19,0, 21),
(0.39,0.41), (0.59, 0.61), (0.79, 0.81). Note that A = 0y — 0;, = 0.2 for the first half of
the setting and A = 0.02 for the last half of the setting. We used K = 100 so as to make the
bounds asymmetric. As a result, @ = 1.154, 1.186 for 6 = 0.001, 0.01, respectively. So, 6
is (61 +60y)/2 + 0.007 for § = 0.001 and (61, + 0y)/2 + 0.009 for § = 0.01.

The result is shown in Table 3. As we can see from the table, the decision condition
using A-dependent asymmetric bounds make the decision time fast compared to that using
conventional bounds except in the case with A = 0.02 and pu; > 6. The effect of the
proposed A-dependent asymmetric confidence bounds become significant when the arm is
neutral or negative, notably, 1.74~2.08 times faster when u; = 6. The reason why the
decision condition using conventional bounds performs better for A = 0.02 and u; > 6, is
that E; (t}) > 2 (t/) occurs frequently for decision time 7/ using j". In fact, E; (n) > p,(n)
holds for n < +/N,/2, and 4/N,/2 = 246.99, 264.79 for § = 0.01, 0.001, respectively, in
the case with A = 0.02 and K = 100. The width [;(n) — ﬁ; (n) of the lower confidence
interval ofﬁ; (n) is 0.206 for § = 0.01 and n = 246, and 0.210 for § = 0.001 and n = 264,
Thus, arm i with mean p; larger than 6 by more than 0.21 is more likely to satisfy condition
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ﬁ; (ni(t)) > 6, before satisfying condition M (n;(t)) > 6. This indicates that, in the case
with very small A, decision condition using conventional bounds is better for arms far from
6.

7.2 Effectiveness of arm selection policy APTp
7.2.1 Simulation using synthetic distribution parameters

In this experiment, we first generated distribution means u1, ..., i1p0 of 100 arms, and then
ran algorithm BAEC[APTp, u, it] simulating an arm-i draw by generating a loss according
to a Bernoulli distribution with mean ;.

For given natural number m and a threshold pair (6, 6y), m distribution means were
generated according to a uniform distribution over [, 1] and 100 — m distribution means
were generated according to a uniform distribution over [0, 8), where 6 = 6y — ﬁA.

For each set of 100 distribution means, we also ran algorithms BAEC[ASP, u, 1t] for
ASP = UCB, LUCB, TS (Thompson sampling) and MS (Murphy sampling)’ in addition to
for ASP = APTp by generating the same i.i.d. loss sequence for the same arm, which can
be realized by feeding a same seed to a random number generator for the same arm. Here,
arm selection policy LUCB uses

o0 (ni(r) =0)
LUCB(z, i) = { i (n; (1)) (n; () > 0, t is odd)
i (1 (1)) + ) 3y KL (i (1) > 0, 1 is even).

Note that LUCB® (Kalyanakrishnan et al. 2012) is an algorithm for the best k arm identi-
fication problem, and the above policy is exactly the same arm-selection policy as original
LUCB for k = 1.

Both of TS and MS decide the arm to select at each round ¢ based on samples /lﬁ drawn from
[0, 1] according to each arm’s posterior loss-mean distribution nf (i=1,...,K). TSchooses
the arm i € A, with i} = max; ,&ti without any condition while MS similarly chooses’ the

maximum-sampled-mean arm i € A; under the condition'? that the max j i > 6. We used
independent uniform distribution over [0, 1] for each arm as the prior loss-mean distribution
of TS and MS.

For each m = 0, 1, 25, 50, 100, we generated 100 sets!! of 100 distribution means, and
ran the three algorithms for each set and for each combination of parameters § = 0.01, 0.001
and (6., 0y) = (0.19,0.21), (0.49, 0.51), (0.79, 0.81), (0.1, 0.3), (0.4, 0.6), (0.7,0.9). As

7 Note that BAEC[MS, 4, k] s an elimination algorithm though original Murphy sampling does not eliminate
arms.

8 LUCB means that both of LCB (lower confidence bound) and UCB (upper confidence bound) are used in
the algorithm. In fact, it chooses the arm i with the smallest LCB among the arms with the largest m sample
means when m > 2.

9 The original Murphy sampling is an algorithm for checking the existence of negative arms and the procedure
of MS here is completely opposite to the original one.

10 This conditioned sampling is realized by rejecting a condition-unsatisfied set of samples and drawing
another one repeatedly until a condition-satisfied set of samples is drawn.

1 Note that the results shown in Table 4 are the averaged decision times not for a specific set of Bernoulli
distributions but for 100 sets of Bernoulli distributions with means generated from certain uniform distributions.
So, the decision times obtained in this experiment are not a direct experimental evaluation of the theoretically
analyzed decision times.
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for threshold pairs (67, 0y), A = 0.02 for the first three and A = 0.2 for the last three.
Stopping times were averaged over 100 runs.

The result is shown in Table 4. In the case with large A(= 0.2), the averaged stopping
time for APTp is the smallest for all the combinations of parameters in this experiment. In the
case with small A(= 0.02), BAEC[APTp, u, 1t] also stopped first, on average, for more than
half of the combinations of parameters. For this small A, MS, TS and LUCB also performed
well to some extent, and in fact, MS and TS stopped first for most of small m (m = 1, 25),
and LUCB’s stopping time was shortest for about a quarter of the parameter combinations.
BAEC[APTp, 1, 1t] stopped first even when m = 0, that is, in the case that all the loss means
are below 6. In such case, some gray zone arms can be judged as positive and make the
algorithm stop. BAEC[APTp, w, 1] is considered to have found such gray zone arms faster.

7.2.2 Simulation based on real dataset

In this experiment, as loss distribution means, we used estimated ad click rates by users in
the same category calculated from Real-Time Bidding dataset provided by iPinYou (Zhang
et al. 2014). From the training dataset of the second season of iPinYou dataset, we chose 20
most frequently appeared user categories (sets of user profile ids) and calculated the click
rate by the users in the category for each of them using the impression and click logs. Since
the click rates are smaller than 0.001, we used the values multiplied by 100 as loss means.
The loss means p1, ..., (2o used in the experiment are followings:

1 2 0.06232, s : 0.04124, 19 : 0.03792, ju13 : 0.02535, 117 : 0.02183,
o 2 0.05549, 116 : 0.04060, 110 : 0.03764, 14 : 0.02498, u15 : 0.02055,
w3 :0.05011, 117 :0.04031, 11 : 0.03054, 115 : 0.02203, 19 : 0.01255,
a2 0.04587, 11g 1 0.03907, u12 : 0.02594, u16 : 0.02197, a0 : 0.01033.

In this experiment, 5 thresholds (9.,0y) = (6, — 0.01,6,, + 0.01) for m' =
0,1,5,10,19 are used so as to let the loss means of about m’ arms be at least
6, where 6 = i + “52, 60,y = % for m’ = 1,5,10,19. For these
L, 0u)s, 6 = 0.06649, 0.05966, 0.04168, 0.03485, 0.01220 when § = 0.001, and 0 =
0.06659, 0.05976, 0.04178, 0.03495, 0.01230 when § = 0.01. For these s, the number of
arms whose loss mean is at least 6 is 0, 1, 4, 10, 19. For each combination of parameters
8 = 0.01,0.001, 6z, 6y) = (6, — 0.01, 6,y +0.01) (m" = 0, 1, 5, 10, 19), we ran algo-
rithm BAEC[ASP, u, ] with three arm selection policies ASP = APTp, LUCB and UCB
100 times and calculated their stopping times averaged over the 100 runs.

The result is shown in Table 5. For m = 1, the stopping times for APTp are significantly
small compared with those for the other four arm selection policies. Shortest averaged stop-
ping time was achieved by MS and TS for m = 4, 10 and by LUCB for m = 19 though the
differences from APTp’s stopping times are not significant except for the stopping time of
MS and TS in the case with § = 0.001, m = 10. When m = 0, the stopping times of the
three algorithms are equal, which means that all the arms including the unique neutral arm
1 were always judged as negative arms in the experiment.

8 Conclusions
We theoretically and empirically studied sample complexity of a bad arm existence checking

problem (BAEC problem), whose objective is to judge whether some arms are bad (having
loss mean at least Oy) or all the arms are good (having loss mean less than 67) correctly
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with probability at least 1 — § for given thresholds 0 < 6, < 6y < 1 and a given accept-
able error rate 0 < § < 1/2. In the case with A = 6y — 6, > 0, we proposed algorithm
BAEC[APTp, i, 1] that utilizes asymmetry of positive and negative arms’ roles in this prob-
lem; the algorithm with a decision condition for each arm i with the current number of draws
n using A-dependent asymmetric confidence bounds M (n) and 7¢; (n), and arm selection pol-
icy APTp that uses a single threshold 6 closer to 6y 1nstead of the center between 6, and 6.
Effectiveness of our decision condition was shown empirically and theoretically. Algorithm
BAEC[APTp, u, 1] stopped faster or comparably fast as algorithms BAEC[ASP, u, 7t] for
ASP = LUCB, UCB TS (Thompson Sampling) and MS (Murphy Sampling) in almost all
the our simulations. We also showed an asymptotic upper bound of the expected stopping
time for BAEC[APTp, 1, ] which is smaller than that for BAEC[UCB, w, 1t]in the case that
there are multiple positive arms and all the positive arms have the same loss means. Current
theoretical support for our arm selection policy APTp is very limited, and further theoretical
analysis that explains its empirically observed small stopping times is our future work.

Acknowledgements This work was partially supported by JST CREST Grant Numbers JPMJCR1662 and
JPMIJCR18K3, JSPS KAKENHI Grant Numbers JP18H05413 and JP19H04161.

A Proof of Theorem 1

We use the following lemma to prove our lower bound on the number of samples needed for
a (01, 0y, 6)-BAEC algorithm.

Lemma 3 (Kaufimann et al. 2016) Let v and v’ be two loss distribution sets of K arms such
that distributions v; and v, are mutually absolutely continuous fori = 1,..., K. For any
almost-surely finite stopping time T and any event &, the following inequality holds.

K
Z]Ev[ni(T)]KL(w, V) = d(Py(£), Py (E)).
i=1
Proof of Theorem 1. Consider a set v of Bernoulli distributions v; with mean w; for which
some positive arms exist, that is, the case with | > 6y . Let k be the number of arms i with
(i > 6 in {v;}, that means p1 > --- > pup > 60 > Ugy1 > --- > ug. For an arbitrary
fixed € > 0, let {v/} be the set of Bernoulli distributions with means 1] defined as

r_ 0p—€ (@=<k
i lw G=h

For any (61, 6y, 6)-BAEC algorithm, Epps denotes the event that its output is “positive”.
Since some positive arms exist for the distribution set v, the probability that the event Epps
occurs must be at least 1 — § by Definition 1, that is, inequality P, (€pos) > 1 — & holds. All

the arms are negative in the distribution set v = {v/}, likewise by Definition 1, inequality
Py (Epos) < & holds. Thus,

K k
D Elni(MIKL(vi, v)) =Y Elni (T)ld (i, 1) (by d(i, i) = 0)

k
=Y Elni(D)d(wi, 0 — €)

i=1
=d (Py(Epos), Py (Epos)) (by Lemma 3)
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>d(1 -4, 9)

holds. From the fact that max;e1,.. k) d(ui, 0L — €) = d(u1, 0L — €),

K
d(l1—-24,6 1—-26 1-96
E[T]=)_En(T)] > ( L
i=1

= In
d(uy, 0 —e)  d(u1,0p —€) s

holds, which leads to Ineq. (1) by considering its limit as € — +-0.

Next, consider a set v of Bernoulli distributions v; with mean u; for which all the arms
are negative, that is, the case with u; < 0. Fix j € {1,..., K} arbitrarily. For arbitrary
€ > 0, let v’ be a set of Bernoulli distributions v/ with mean .} defined as

{_{ey+e (i =)
Pl G#ED

For any (01, 6y, §)-BAEC algorithm, Exgg denotes the event that its output is “negative”.
Then, inequalities P, (éngg) > 1 — 8 and P/ (Engg) < § hold by Definition 1 because all
the arms are negative in v and arm j is positive in v’. Thus, by Lemma 3,

Eln;j(T)ld(juj, 0u + €) =d(Py(ENgc), Py (ENgG)) > d(1 =6, 8)
holds, that is, foreach j = 1,..., K,

d(1—35,5) 1-25 1-35
E[n;(T)] > = In
d(pnj, 0y +€) d(uj,0u +¢) d

holds. This leads to Ineq. (2) by considering its limit as € — +0 and the summation over
j=1...,K. O
B Proof of Theorem 2

We prove Theorem 2 using the following proposition.

Proposition 2 For any x > 0, the following inequality holds:
Vi+x <AV/14+x+1 < V44 2x.

Proof Since

«/l—l—x—i-l:\/(«/1+x+1)2=\/2+x+2«/1—|—x

holds,
Vitx=V2+x+2<VI+x+1
and
«/W=\/2+x+2<1+%)zm+l
hold for x > 0. ]
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Proof of Theorem 2. We prove this theorem by contradiction. Assume that i; (7,) > 6y and
0 > ﬁi(TA)' Then,

i (T) —p (Ty) > 0y — 0L = A (10)

holds. On the other hand,

2 VKN,
VKN, 8

1 N, InK .
> In — 14 ¥ + 1] (by Proposition 2)
n

—\ 27, 8 F
1 KN, 1 N, _
‘/ZTA s +\/2TA n o = R0 = (1)
holds, which contradicts Ineq. (10). O

C Proof of Theorem 3

If 7 (T)) _E;(TA/) > A holds, then 7z} () _E; (n) > Aholdsforn =1, ..., T..Inthis case,
&;(n) < @pandf;(n) > Oy holdforn =1, ..., T when@u—(ﬁ;(n)—ﬁ;(n))/Z <pi(n) <
0L + (@;(n) — E; (n))/2, which means t/ > T,. In fact, Inequality z}(T) — E;(TA/) > A
holds because

(T’ Ty =2 1 1 ZKTA/Z

wi(T,) — p (T,) = o7 n—s

) 1 2K |2 In 438K )2
= n

2|5 1n ‘jig | )
2 1. 448K 2
1 2K ( 42 In 33 Inx .
>2 5 TRE In because f(x) = — is decreasing for x > e)
2 ) X
\ 2A2 In A4S

1 8K 448K \ 2
B S VA
2 2
A (35 s by (1 243K n 482 56.11 56
> —In| — - n >|In —— ] =56.11--- >
n A% M ads e
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1 448K

=4 4 1 40y

The difference between the worst case stopping times 7/ — 7; is lower-bounded as

ST T, = il 448K fN
P A2 Ads A2 F)

2 448K 2 . KN,

>E ln W — p ln — 2
_2 . 448K
A2 A4N, AN A
2 448K e=2
>Eln . 2\/7
4 ((e haz In a5 + 1)
—A2  (e=1)
2, VR G
A2 In zA\/zz_f_ (e=1)A2 1)A2
224/Ke= 41 (e—1)
_ 2 1 v E—
E n | 2f (e=1aZ ])A2
705 ¢
2 . 224 2(e—1)/A%
> VKeZe 1)/ (by A < 1)
A In ZA‘/Z;e e
52VK | A? ,2 et
>Fl e (by224e e—1) > 52and 2¢’% <3)
2 szf 3VK
=—|In —Inln .
A2 A2 A2ZS
D Theorem refered in Remark 4
Define 7z} (n) as
) = () + | o= In 22 (1)
M Mi n s
Then, the following theorem holds.
Theorem 9 Consider algorithm BAEC[*,E/,E”] and define t/' = min{n | ﬁ; (n) >

Op or i) (n) < Oy} fori =1,..., K. Then, event t/ > T can happen fori =1, ..., K,

1/4 .
where T is defined as T) =14 2 In 362155 1. Furthermore, the difference between the worst

case stopping times t!' — 1; is lower-bounded as

2 2 3V K
7 —15>T)—T,> AZ(ln R —1Inln ;;)
KzA
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Proof 1If 7”(7“”) ,u/(T”) > A holds, then 7//(n) w (n) > Aholdsforn=1,...,T/.
)
In this case, '(n) < O and [z} (n) > 6y hold forn = 1,..., T when 0y — (&t} (n) —
W (m)/2 < f1;(n) < O + (i} (n) — p’(n))/2, which means 7;" > T In fact, Inequality
m(T)) — wi(T)) > Aholds because

1 2772 1 2KT/?
u,"(TA”)—MZ(TA”)=\/ In —= +\/ 1 =

n n
2TV 1) 2TV 8
R B PO
n
2TV ) In 27{;;2
212 In K .
ST7 In 5 4—i—1 77 (by Proposition 2)
A n 8
2 2KIT)?
=/—1In
T/ )

%
’E‘

a2 366K 1
366K 1 A%S
A*S

1y 2 1\ 2
366K # 366 - 2%
) > 8 <ln 1 ) > 366.56.. > 366
‘2

\

=

o
<

oo

S
—_
=

In

Il
D~

The difference between the worst case stopping times 7" — t; is lower-bounded as

1
1 366K * 1 \/ KN,
-1 >T'—T,=| —In——
! 4 2A2 A4S 2A2 1)

1 366K+ 1 | JEN,

== _ 2
a2 AR a2 s
1 366
Y VI
2A AN, e42% K
L 366¢ 44"
>—7=1N
2A2 e 2K
A K4( 2 i 20K +1)
| 366e 447 ). K1
=——=1In zed
2A2 In 2A¢2;+ (e— 1)A2
183¢447 =1 (e—1)
1 A2

:2A2]n 1. /K (e=ha?
K4lnﬂe 2e
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1 183¢73(e — 1)/ A2

> by A<1)
242 K41n2ﬁe2e

1 2/ A2 .
g A (by 183¢5(e — 1) =2.118.. > 2and 2% =274 ... < 3)
242 I n 3K
K% In =57

1 2 2«/
2A K7A2 A28

E Proof of Proposition 1
The following proposition is needed to prove Proposition 1.

Proposition3 For(0 <a < 1, anyt > Inl -, satisfies the following inequality.

= e—Da l)a
at > Int.
Proof For 0 < a < 1,let f(t) = at —Int. When a > %, f(t) is always positive for any

t > O since f(¢) takes minimum value 1 — In Cll att = %
When a < é,ift =

e 1
o—na Nz

= m o m S Y —mmlso
1 1 a

€ — a € —

llx — In ;% is a tangential line of y = Inx atx = e — 1. If 7 >

holds because y = =
Ind <> e _ > 1), an _ 4 % is positive. Therefore, for ¢ > In 1

e e
e—Da “a \= (e—Da a dt e—Da " a’
—1Int > 0. ]

Proof of Proposition 1. The following inequality is derived from Proposition 3 by setting a to

VKN, 2¢eVK WK
2f that means 1 = 5~ > a2

VKN, - A28 KN, _ AN,

In

1 . =
TS T ok 8 2
Thus,
2 KN
N,>—1In VK 2
A2 )
holds, and so
2 KN,
N, > llenf A—‘ =T,
)
holds. O
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F Proof of Theorem 5

Consider the case that u; > 6y and event £ occurs. In this case, ﬂ;il{ﬁ,- (n) > wi}
holds for some i with y; > 6y. Assume T,, < t; for this i. Then, i;(T,) > pu; > 6y and
ﬁi(TA') < 61, hold. However,

X 1 . KN,
&i(TA,) =Mi — ZTA, In 5
> 11NA llKNA (by w; (T,) > wi)
P — n— — n i i
Z M 27, s ZTA, s Y Wi(Ly) = Wi
1 1 N, - InK 41
— q N A
Meyar, s In X2
> inNs g 2K 4 proposition 2)
i — n— —_— Troposition
_I‘Ll ZTA, 8 ln % y p
4 VKN, 2 VKN,
=i — o, In 5 W~ A =0L <b)’ T, = Zf]n 5

holds, which contradicts the fact that Ei(TAr) < 0r. Thus, r; < T, holds for at least one

positive arm i with probability P{£T} which is at least 1 — § by Lemma 1.
Consider the case that ;; < 6r, holds and event £~ occurs. Assume 7, < 7; fori =
1,..., K. Then, i;(T,) > 0y and Ei(TA') < m;i < 0r, hold. However,

_ N N,
M[(TA,) =i + ZTA, In ?
1 N, 1 KN,
; In—2 1 by . (T ;
<“’+\/2TA,H3 +\/2TA’n 5 by 1 (To) < i)
Y Y
=; n—
Mo, s In Y
. 1 | N, 4+21nK (by P ition 2)
i — In — —_— Troposition
=Mi 2T, s ln% y P
4 JEN, 2 VKN,
=i + 27, In 5 <ui+ 4, =60y <by T, > ZIZ In 5

holds, which contradicts the fact that ;(7,,) > 6y . Thus, 7; < T,, holds for all arms i with
probability P{€™} which is at least 1 — § by Lemma 1.
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G Proof of Lemma 2

Let € be an arbitrary real that satisfies 0 < € < A/2(1 + oe)

Consider the case with u; > 6. Define n; as n; = InX N =4 . Then,

2(A —e)?

ElG1{E}]1 =) nPlt; =n, ] =) Ply > n, €]

n=1 n=1

<) Plp(n—1) <6 E1+1
n=2

=> Plp,(n) <0.,E1+1

n=1

Lni ] 00
< Z]P’[E] + ) Pl <6]+1
n=|n;]+1

(becauseIP[ﬁi () < 6r. €] < min(Pu,(n) < 6,1, P[&]})

[e9]

1 KN

<PElni+ ) ]P’[;li(n)— 5 In 5A<9L}+1
n=|n;]+1 !

1 KN, 1 KN,
because .| — In >./—1In forn > n;
2n; ) 2n )

> 1 KN
=P[&]n; + E Pli(n) < u;i —e]l+1 | because In = A —€
2n; )
n=|[n;|+1
ad 2
<P[&In; + E e 2" 4+ 1 (by Hoeffding’s Inequality)
n=|n;]+1

1 1
<P[&]n; + 626271 + 1 <P[E]n; + — + 1 (because e’ — 1 > x for any real x)

2¢2
P[] KN, 1
= — 1
20— s Tt
: 1 6¢ 1 e(Ai—20)(44i—3¢) Ai 1
holds. Since 2 + BTGB T Doy > O holds for 0 < € < 5, Yo

A2 + 65 % holds for 0 < € < A/2(1 +«) < A;/2. Thus, Ineq. (8) can be obtained by setting

€to 0((1n KNay=173),

Next, consider the case with u; < 6. Define n; as n; = In % Then,

2(A Ze)?

o0

E[7; 1{€}] ZnIP Z]P[r,- >n, €]

n=1

EZP[E(H—I)EHU,5]+1
n=2

= Pl;(n) = 0y, £+ 1

n=1
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holds. Similar calculation leads to Inequality (9).

H Proof of Theorem 7

Define aptp(n, i) as aptp(n, i) = /n(f1;(n) — 0) for convenience. Note that APTp(z, i) =
aptp(n;(t), 1). Random variables Y; and N; (a) are defined as

Y, = min aptp(n,i)and
nefl,....t}

Ni(a) =min ({n|n € {1,..., 7 — 1}, aptp(n, i) < a} U{z;}).

To obtain an upper bound of the expected stopping time E[T] for algorithm
BAEC[APTp, u, 1], we consider the case that, for some arm i with u; > 6, arm i is
the first arm that satisfies decision condition and &I,(r,') > @, that is, the case that event

{lA'1 =i, SEPOS} occurs for i < m. In the case with no such arm i, stopping time 7 is
upper-bounded by the worst case bound K 7, (Theorem 4) and the decreasing order of the
occurrence probability of this case as § — +0 can be proved to be small compared to the
increasing order of K7, (for the case with 21 =i > m + 1 by Lemma 13 and for the

case that event é‘ip OS occurs for i < m by Lemma 14), so it can be ignored asymptotically
as § — +0. An upper bound of IE[T]l{fl =1, SiPOS}] for arm i with u; > 6 is proved
in Lemma 10. When event {fl =1, EiP OS} occurs for arm i with p; > 6, the number of
arm draws is 7; for arm 7, at most N;(Y;) for arm j # i if ¥; < O and at most N;(0)
for arm j # i if ¥; > 0. So, to prove the upper bound in Lemma 10, we upper bound
El51{i1 = i, £°5)] by Lemma 2, E[N;(Y/)1{Y; < 0,i; = i, E’OS}] for j # i by Lem-
mas 5 and 8 and E[N;(0)1{Y; > 0, = i, £’°%}] for j # i by Lemma 9.
Lemma 4 BAEC[APTp, u, 1] satisfies

> 2

Z]P’[Nj(a) >n] < Fforj <manda <0.

n=1 =
Proof

P[Nj(a) =1]

gk
¢

Y "PINj(a) = n] =

n=1

3
Il
-
-
I
3

oo o0

Plaptp(t, j) < al < » Y Plaptp(t, j) < 0]

n=11t=n

e
¢

3
Il
-
-
I
3

PIV1(iL; (1) — ) < 0]

L
¢

3
I
N
-
Il
=

L
¢

Plj1j (1) < 11j — A

3
I
-
-
ll
3

—Ztéz. . . .
e 7 (by Hoeffding’s Inequality)

e
Nk

3
Il
-
-
I
3

3

Y a2 )
2n43 e 245 o247

2 2 - 2
o l—e A (-2 (@4 - 1)2
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e2

<m < F (becauseéj <1
=

—J

Lemma5 BAEC[APTp, u, 1] satisfies

2
E[N;(Y)1{Y; < 0}] < Z‘}P[Yi <0]
fori=1,...,Kand j <m (i # j).

Proof Define F;(a) as F;(a) = P[Y; < a]. Then,

E[N;(Y)1{Y; <0} =Y nP[N;(¥;) =n,¥; <0]

n=1

=Z]P[Nj(Yi) >n,Y; <0]

n=1

0 oo
=/ PIN;(Y;) > n | Y; = aldF;(a)
~0 =1

0 oo
=/ P[Nj(a) > n]dF;(a)
T =1

2 0
=— / dF;(a) (by Lemma 4)
a3 )

2 0 2
=F[P[Yi <all = FP[Yi <0]
=j =j
holds.

Lemma 6 BAEC[APTp, u, 1] satisfies

> 4a’> 4

D_PINj@ znl <~ + -5 + 1
n=1 =j =

for j>m+1landa <0.

Proof Define ng as ng =

4q° a Aj
A—?. Note thatéj + W > = for n > ng. Then,

D PINj(@) =nl <) Plaptp(n — 1, j) = al < ) Plaptp(n, j) = al+ 1

n=1 n=1 n=1

=Y PL/a(ij(n) —0) = al + 1

n=1
—il@[ﬁ,(n) >9+i] +1
n=1 ! B \/E
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_ZP[uj(n)>u]+A + f:|+1

n=1
[n0] 00

SZH Z P[ﬁj(")iﬂj-ﬁ-éj-i-%]-I—l

n=1 n=|no|+1
2
)

\l>

<ng + Z —2n(

n=[no|+1
. . a 4,
(by Hoeffding’s Inequality and the fact that A, + — > — forn > no)
oyn 2
a3 a2
4a? e "2 4a> e7 2
A2 47 A A
U Tooed —1
A% .
4a  2e7 4a®  2e3 40> 4
<t 5t S+ +l<—+—5+1
A“ A7 A g
= =Jj = J i =
O
Lemma7 BAEC[APTp, u, ] satisfies
672112
PlY; <al < A fori <manda <O0.
i
Proof
(.¢]
P[Y; <a] <P {U aptp(n, i) < a}i|
=
EZ [aptp(n, i) < al
-
=Z [Vn(iii(n) — 6) < al
.
=Y Pl <0+
=< NG
n=1
oo
=Y Pl i) < pi— A+~
=< it
n=1
(e ¢] 2
<Y (e 5)
n=1
> 1 g2’
<e24° Z —mA} _ o2 . < -
n=1 ezé[ - 1 241
O
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Lemma8 Fori <mand j > m + 1, BAEC[APTp, u, it] satisfies
1 4
E[N;(Y)1{Y; = 0}] = yoreRa e + 1) P[Y; <0].
=i=j =j
Proof Define FF;(a) as F;(a) = P[Y; < a]. Then,

E[N;(Y)1{Y; <0}l = ) P[N;(Y;) > n, ¥; <0]

n=1

0 o0
/ > PIN;(Y) = n | ¥; = aldF;(a)
X p=1

0 o
f Y PIN;(a) > n]dF;(a)
% =1

O (4a®> 4
<) latat 1) dF;(a) (by Lemma 6)
- —J

=J

4 (0 4 0
=— / a*dFi(a) + | — +1 / dF;(a)
A? —o0 42- —00

J

4 2 0 0 4 0
:P [a PLY; < a]]_oo —/ 2aPlY; < alda | + E + 1) [PLY; <all’y

71 -0

(using integration by parts)

4 0
=_ P/ 2aP[Y; < alda + (2 )P[Yi <0]
=j Vo J

2 /O - ( )
<— — 2ae " da + + 1) P[Y; <0] (by Lemma 7)
A7AT - A4

A2
=j
2 6’2”2 0
[ 2 } ( ) =0

1 4
—1 =] —J

Lemma9 Fori < m, BAEC[APTYp, u, it] satisfies

=PV > 0] G =m)

E[N;)1{Y; > 0)1 < { /’
<§w4>mn>m (Gzm+1).
=)

Proof

E[N;(0)1{Y; > 0] =) "P[N;(0) > n, Y¥; > 0]

n=1

@ Springer



Machine Learning (2020) 109:327-372
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= PIN;(0) > n]P[¥; > 0]

n=1

(because N;(0) and Y; are independent)

A4 IP’[Y, > 0] (j <m) (by Lemma 4)

<
B <F + 1) P[Y; > 0] (j >m+ 1) (by Lemma 6)

Lemma 10 Fori < m and any event £, BAEC[APTp, s ] satisfies

A 2
~ . Pliy =i,], KN, KN,\3
E[T1{ii =i,&}] < A In 5 + 0 n 3

1

2z ()

Jj=m+1

Proof In the case that the decmon condition is satisfied first by one of arms i with pu; > 6
(i < m), thatis, i; = i, the stopping time 7 is at most t; + Z/’#i N;(Y;)if ¥; < 0 and at

most 7 + Y;4; N;(0) if ¥; > 0. Thus, for i < m,

E[T1{i, =i, &}]
<E [(q + ZNj(Yi)) 1{Y; <0,i; = i,S}:| +E [(n + ZN,-(O)) 1{Y; >0, = i,é‘}:|
J#i J#i
=El[5;1{iy =i, EY+ Y _BIN;(Y)1{¥; <011 =i, )1+ Y _EIN;O)1{¥; > 0,11 =i, &)]
J#i J#i
nl{iy =i, E+ Y BIN;(Y)1{¥; <0+ Y EIN;(0)1{¥; > 0}]
J#i J#i
~ 2
Pli; =i, E]. KN, KN,\3 2
A In i 10) ((m 5 ) ) +j<m2;¢i Z4;1P>[y, <0] (byLemma2& 5)

£y

j=m+1

+ 25 ZPLY; > 0]+ Z <A4

Jj=m+1

{ A2A2 <42 + 1) PlY; < 0]} (by Lemma 8)

1) PlY; > 0] (by Lemma 9)

j=m,j#i *J

2
Pl =i KN, KN,\3
_Plh=ie . +0(<m 8 ))

247

K
2
N o
Jj<m,j#i ] Jj=m+1 =
O

holds.
Define n,; as n,; = {z(max{eyl] ~o0)° nX 5 —‘ Then, 7; for any armi = 1,..., K is

bounded by n, ; from below.
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Lemma 11 In algorithm BAEC[x, K ) T = 1 holds for any armi =1, ..., K.

Proof By the definition of 7;, i; (t;) < Oy or M (7;) > 0 must be satisfied for any arm i. In

the case with it; (7;) < 6y,
i (i) + S/ 0
i (Ti —In— <
HilTi 27 s U
L s 0
—1In— <
2‘5,' $ v

1 N,
> 72111?.
202

o) L KN,

i(ti) —,/=—1In

i (T 27, s = L
1 KN

l— |—In—= >0,
2‘[,‘ )

1 KN,
> In
2(1 —6;1)2 1)

holds. Since fi;(z;) > 0,

holds. So, we obtain
T

In the case with pt (%) > 0,

holds. Since fi;(z;) < 1,

holds. So, we obtain

T

Therefore,

In > In —
2(max{fy,1 —6.})> 6

. 1 N, 1 KN, 1 N,
T; > min —zln—, 5
20, 6 2(1—6r) 1)

holds. Since 7; is a natural number,

1 N,
T > In —
{Z(max{Gu, 1—6p2 s —‘
holds. =

Lemma 12 BAEC[APTp, u, it] satisfies

a A: 2
, 22 1 (e, =
]}D[Yi > —%\/@] <e T < <i> (sitrm)

N,
fori>m+1.

Proof

P [Y,- > —%ﬁn} =P [ﬂ {aptpm, > —AZ\/TH
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=P

=P

<e

<e

Lemmal13 Form > 1landi > m +

Pli; =i] < (1

Proof Define F;(a) as F;(a) =

Pli;=i]=P [

PlY;

A A
EP[Y = _7\/nAai|+IP|:Y1 <V%.Yi < _7\/’1A{|.

The second term is bounded as

A
]P’[Yl <YY< _T‘ﬁ"“}

[

2
—00
Ly
2
</
4 gy 243

a1

(using integration by parts)
<L
=5 A%
<L
=5 A%

nas

<

PlY; < aldF;(a)
nas

—o0 —242

—0o0

2

—0o0

52
dae 2 da
4

— W/Nas
“ gl
2A2

@ Springer

o0
A,
T /nas

_2nA.&(%)2
,%(

A;
i1=1i,Y>—=

4

—”AaAz A
—e 2P|Y; >—74/nm +

A
aptp(n, . i) > —TM] (by Lemma 11)

4;

\/nAAa(lli(nAAs) —-0)>— 3 a4, a]

g

Li(ny,) = wi + El

2
—e Mas2

P
1, BAEC[APTp,

)

> a]. Then,

A A
\/nAA] +IFD|:11 =0,Y < _771 nA.é]

__ 4
max{f;,1-0 }

8

A 2
N, '
s i satisfies

1
A2

)
N,

1 4; 2
) 7\ max(0y.1-0. )

+
2

2

(12)

P[Y) = Y; | Yi = aldFi(a)

dIF (a) (by Lemma 7)

oo ,
+/ dae 2 PlY; > a]da)
nas —% nas

1
27 7
—Nas—>

1 8

7(7 (i)
242 \ N, '

2A2 (13)
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Thus, by Inegs. (12), (13) and Lemma 12,

1 4 2

P[f 1 14 1 < 1) )4(mﬂXWUv‘9L))
i1=i] < — | —
e 242 )\,

holds. O

Lemma 14 For the complementary events EiP OS of event SI-P 0S

4 2
<28 (e

! 2A2

, inequality

holds when i < m.

Proof In the case with [i;(t;) > 0, arm i is judged as positive because gi(r,-) > 61, holds
whenever 1;(t;) < 6y holds.'2 This is because 6y — 6 : 6 — 0, = wi(t) — ai(y) -
i (ti) — &i(‘[i) = 1 : « holds. Thus,

-
P[eFS] <P | | (o <o)

N=nas

Ta
=P | J tum < wi— 25

nN=na s

Tx
< Y Plain) < pi — 4

n=nau.s
4 2
S sy e o (a><mww>
< = 2 < 5
n=ny s ezéi —1 24,- N,
holds. o
Proof of Theorem 7
m m K
BT =Y E[r1{i =i &)+ Y E[r1{i =i )]+ Y B =i
i=1 i=1 i=m+1
[11 =1, EPOS] KN KN\ 3 )
A A
52( 7 A (n50) )+ = &
=1 Jj<m,j#i =]
4
+ Z { A2 A2 (A2+1>})
Jj=m+1 7,7,
(by Lemma 10)
m K
+ KT, ) P[eFS|+ KT, Y Plii=1i]
i=l1 i=m+1

12 Anarmis judged as positive when both the positive and negative decision conditions are satisfied simul-
taneously.
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" PFF=ﬁ§m] KN KNS\ 20m—1)
< 1 2 o[l = _
= Z( A2 n 5 + (( n 3 ) ) + A?
1 Ko

= j=m+1=J

(by Lemma 14)

)wwfw)z

K 1 A 2
1 S Z(me\x(0U<lfﬁL))

i=m-+1

* _ . oPOS
m <IF’|:11_I,51» ]1 KNA+2(WZ_1)+ 14 EK 1)
= n A2
i; A2 b 4;‘ Az A2

j=m+1=J

Q247 S(HWT@Y
wxn (2 (57)
1

2
! K S z(m)
“(am) 2. )

+ m(K — m)+0<

| Proof of Theorem 8

POS
ipi=m i

as positive. In the case that event U Fi= & POS does not occur, stopping time 7 is upper-
bounded by the worst case bound K 7, (Theorem 4) and the decreasing order of the occurrence
probability of this case as 6 — +0 can be proved to be small compared to the increasing
order of KT, (Lemma 14), so it can be ignored asymptotically as § — +0. When event
U P EiPOS occurs, non-optimal arms i with p; < w1 is drawn in the case of u;’s overes-
timation (UCB(¢, i) > i1 — €) or in the case of w1’s underestimation (UCB(¢, 1) < 1 —e€).
So, E[T1{U;.,, —u1 SPOS] is upper bounded by upper bounding E[z; 1{U;.,,—,, £POSY
for optimal arms i with u; = p; by Lemma 2, the expected number of overestima-

tions [E [ZKTA 1[UCB(t,i) > u; — €, iy = z]] for non-optimal arms i with u; < up by

We consider event | J; , that is, the event that one of the best arm i is judged

Lemma 15, and the expected number of underestimations [E [ZKTA 1[UCB(t, 1) < pu1 — e]]
for the optimal arm 1 by Lemma 16.

Lemma 15 For an arbitrary € > 0, BAEC[UCB, p, u] satisfies
B[ 3 1. i = 1] L R
i —€,i;=1i —_—— 1 —
- pr—edl =24 —2ep T 2e2
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fori=2,..., K with p; < 1.

/ _ _InKT,
Proof Letn; = Tap e Then,
KT, KTy KTy—1
Z [UCB(t,i) > 1 — e, t,_l]_Z Z ]l|:;L,(n)+,/ > —€,ni(t) =n, l[—l:|
=1 t=1 n=0
KTa—1 T[KT, 7
= Z H[U{ul(mﬂ/ S Z M- e,ni(r)zn,i,=i”
t=1
KTs—1
InKT,
<> Jl[m(n)Jr = >u1—e}
n=0
|n}] 00
! . InKT
=D+ Y T+ Y R = M1 €
n=0 n=[n;]+1 2(A1;—2¢)?
InKT, ad
<— 41 1{a >
<3, 2t +; [/i(n) = i + €]
Therefore,

w InKT. >
E [Z L[UCB(1, i) > p1 — €,i; = i]} S3a oo T+ B[ = i+ ]

= T 1e)2
po 2(A1; — 2¢) =
InKT,
1 —2ne?
T2 207 T Ze
_ InKT, 4
T 2(A1; —2€)? e’ — 1
InKT, + 1 "
- Z(Al, —2¢)?
]
Lemma 16 For BAEC[UCB, w, i, the following inequality holds.
pSE (I
E |:; 1[UCB(, 1) < w1 —6]:| < a + Eln?
for0 <e <1
Proof
KT, KTy KTs—1 7
D LUCBG D) <pi—el=)" > 1 [Ml(n)-h/ Sy < —em® —n}
=1 t=1 n=0
KTs—1KTs A ,
= Z Z Jl[t < =M=~ 5 ) < g —e, (1) = n]
n=0 t=1
KTs—1

Z e2n(u1—ﬂl(”)_€)2]l [ﬂl(”l) < uy— e] :

n=1
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Define F,,(x) as F,,(x) = P{f1(n) < x}. Note that F,,(x) < e 2"1=9 for x < u; by
Hoeffding’s Inequality. Then,

KT,
E [Z 1[UCB(, 1) < p1 — e]}

t=1

KT,—1 )
< Z E[ezwlfmmfe) 1 (A1) < py — e]]
n=1
KTa=1 e ,
= Z / 2= =" 4F, (x)
n=1 -
KT, —1 _
n1—€ H1—€
= 3 ([eeomw]” T [ 4n(m—x—e)ez"W'*X*e)an(x)dx)
n=1 o e
KTy—1 pw—e
< > (Fuu—o +/ dn(py —x — 6)62”(’“*x*)ze*z"(“lfx)zdx>
—0Q

n=1

—2ne? N —2ne(pu—2x—€)
+ dn(pu; —x —€)e al dx

IA
>
1
L
e e = R

n=1 e
KT, 2 i—€
_ Z e~ 2 | . [{4%(“1 —x—e+ 1}672n6(2M1*2x76)] )
4ne —00
n=1
KTy—1 , ,
_ —2ne —2ne
N + 4ne? )
n=1
—2¢2 "
1 —1In(l —e™2") > (e ) e
2 _ 1 12 because; . =—In (1 —e € )
- 1 +262+ln 2621 .
~ 22 4¢e2
_ 1 n 1 + 1 | 1 1 n 1 | 1
— + = n— < — n
T2e¢2 2 4€2 2e2 T €2 4€2 7 2¢2

Proof of Theorem 8 Let € be 0 < € < min;.a,;~0 A1;/4.

]E[T]:IE|:T]1{ U 5})03]}+IE|:T11{ N 5}’05”
ipi=p ipi=p

§IE|: Z 7l U S}DOS]j|+E|:KZTA]l{/¢L,-,<m, U 81.Pos}i|

Q=11 =1 =1 Q=11

+E {T]l { N SFOSH
ipi=p1
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IA

Y Ela] | e
ipi=q1 itpi=p

KT, -
+ E[Z ]l[{UCB(t, i) = w1 — e wi, < 1) U{UCB(t, 1) < pp — e}]] -HE[T]l {5}’05}]

t=1

KTy
< > Eluiy U &%+ X E{ZH[UCB(M)ZM — ey =i}]}
L= ipi=p i <p =1
KT,
T E [Z 1[UCB(, 1) < ) — e]} +E [Tll {SFOSH
=1
P\ Ui &5 kN KN,\?
= Z [l’zAl;ll]ln(SA-l—O((lngA) ) (by Lemma 2)
=1 t
InKT, 1 1 1 1 —
— 4 — 41|+ =+ -—In— +KT,P|EPOS].
+,Z <2(A1[—2€)2+262+)+€2+4€2n2€2+ 4 [1 ]
i<
(by Lemmas 15 and 16, and Theorem 4)

: 1 12¢ 1 _ 4e(A1i—46)(2A,;,—3¢) Ay 1
Since a7 + 7S A2 = AT (By—2e? > (0 holds for0 < € < 1 (A 0? <
Al%‘ + %{ holds. Thus, by setting € to O ((In KT,)~1/3), we have

2
1 KN, KN,\?3 InKT, 2
E[T] < ——In Of(In— O((InKT,)3
[]_,Z<2A.2 5 (( 8>>>+.Z(2A2.+ (€ %)
=41 i it <p li
A 2
2 eZA%KTA § (max{HU,ll—GL))
+ O((nKT,)3InlnKT,) + — | . (by Lemma 14)
242 \N,
O
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