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Abstract
Statistical machine learning algorithms usually assume the availability of data of consider-
able size to train the models. However, they would fail in addressing domains where data 
is difficult or expensive to obtain. Transfer learning has emerged to address this problem 
of learning from scarce data by relying on a model learned in a source domain where data 
is easy to obtain to be a starting point for the target domain. On the other hand, real-world 
data contains objects and their relations, usually gathered from noisy environments. Find-
ing patterns through such uncertain relational data has been the focus of the Statistical 
Relational Learning (SRL) area. Thus, to address domains with scarce, relational, and 
uncertain data, in this paper, we propose TreeBoostler, an algorithm that transfers the SRL 
state-of-the-art Boosted Relational Dependency Networks learned in a source domain to 
the target domain. TreeBoostler first finds a mapping between pairs of predicates to accom-
modate the additive trees into the target vocabulary. After, it employs two theory revision 
operators devised to handle incorrect relational regression trees aiming at improving the 
performance of the mapped trees. In the experiments presented in this paper, TreeBoostler 
has successfully transferred knowledge between several distinct domains. Moreover, it per-
forms comparably or better than learning from scratch methods in terms of accuracy and 
outperforms a transfer learning approach in terms of accuracy and runtime.
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1  Introduction

Machine learning algorithms have been widely and successfully used in many areas such 
as computer vision, robotics, social network analysis, among others  (Lee et  al. 2010; 
Sinapov and Stoytchev 2011). However, such success usually comes with the presence of 
large amounts of data. When the number of examples is relatively small, learning good 
models can be a challenging task. Lacking data is often the case for several real-world 
problems where collecting data is expensive or even impossible to obtain. To handle this 
issue, transfer learning techniques (Pan and Yang 2010) leverage a model learned from a 
source domain with more examples to learn from to be the start point of the learning pro-
cess for another related domain where data is scarce.

Transfer learning has been widely employed in classical machine learning settings, such 
as for ensembles (Dai et al. 2007) and decision trees (Lee and Giraud-Carrier 2007). How-
ever, most of them do not take into account the relationships between entities of the domain 
and the fact that the examples may not be identically and independently distributed, which 
is the case for several real-world data. Learning from noisy relational data is the focus of 
the area called Statistical Relational Learning (SRL) (Getoor and Taskar 2007). Transfer 
Learning algorithms have also been developed in the context of SRL, mostly consider-
ing Markov Logic networks (MLN) (Richardson and Domingos 2006). Two of these algo-
rithms (Davis and Domingos 2009; Van Haaren et al. 2015) transfer relational knowledge 
by creating a second-order representation of formulas from learned MLN. Other three algo-
rithms (Mihalkova et al. 2007; Mihalkova and Mooney 2009; Kumaraswamy et al. 2015) 
find predicate mappings through searching methods to perform transference of clauses 
learned from MLNs by mapping their predicates.

Although these methods showed better results compared to learning MLNs from 
scratch, Natarajan et al. (2012) and Khot et al. (2011b) have shown that applying a boosted 
approach to learn SRL achieves the state-of-the-art in SRL tasks. Particularly, Relational 
Dependency Networks (RDN) yielded superior performance in terms of quality metrics 
and learning time over traditional SRL approaches. Based on the predicate mapping algo-
rithm presented by Mihalkova et al. (2007) to transfer MLN clauses, we developed a simi-
lar predicate mapping approach to perform transference of Boosted RDNs, allowing for a 
transfer approached executed directly at the level of the additive models.

Thus, in this paper, we present a transfer learning algorithm called transfer Boosted 
RDNs by first mapping the predicates appearing in the trees. At a higher level, the algo-
rithm generates the possible predicate mappings as it tries to transfer nodes from the source 
regression trees recursively. After finding such mappings, the algorithm propagates them to 
the rest of the trees. To complement the process and better adjust the mapped trees to the 
new target domain, TreeBoostler also includes a Theory Revision algorithm that proposes 
modifications to the mapped models in order to handle incorrectness and enhance the per-
formance. Although in this paper we have focused on transferring Boosted RDNs, the pro-
posed algorithm is general enough to be applied to other tree-based boosted SLR methods, 
such as Boosted MLNs.

We evaluated TreeBoostler in several real-world datasets and simulated the scenario 
where only a few data are available by training on one single fold and testing on the 
remaining folds. Furthermore, we simulate scenarios where only a minimal target data is 
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available (from one to 15 examples). Our results demonstrate that TreeBoostler can suc-
cessfully transfer learned knowledge across different domains in a reduced runtime com-
pared to another transfer learning algorithms. Also, transference is useful in terms of accu-
racy compared to learning from scratch methods based on (Boosted) RDNs and MLNs. An 
additional experiment was performed to investigate the behavior of the algorithm as the 
number of examples increases. The results demonstrate that TreeBoostler can be very com-
petitive to traditional methods that learn from scratch even with the increase of the amount 
of data.

The remainder of the paper is organized as follows: the next section introduces the nec-
essary background for one following our proposal. We review the algorithm for boosting 
RDNs, Theory Revision, and Transfer Learning. Next, we present the algorithm TreeBoos-
tler and its mapping and revision components. Then, in the experimental section, we pro-
vide the results of the transfer learning algorithm applied in several datasets. Finally, we 
conclude with remarks and present possible directions for future research.

2 � Background

In this section, we present a brief introduction about functional gradient boosting to learn 
relational dependency networks (RDNs) and the use of relational regression trees (RRTs) 
as functional gradients. Also, we give a brief introduction to Theory Revision and Transfer 
Learning.

2.1 � Functional gradient boosting of relational dependency networks

Relational datasets can be represented by logical facts containing predicates and terms that 
are possibly augmented with argument types. In first-order logic (FOL), a predicate rep-
resents a relation between entities in the domain, such as a relation published-by that may 
connect the entities paper and person. Commonly, when representing relational datasets 
using FOL, the arguments may be associated with a type, for efficiency. The number of 
arguments a predicate takes is its arity. For example, the first argument of the predicate 
published-by exemplified earlier may be associated to the type paper and the second to type 
person (arity 2). An atom is a predicate applied to terms that can be variables, constants, 
or function symbols applied to terms. A literal is an atom or a negated atom and an atom 
whose terms are constants is called a ground atom (e.g., published-by(paper1,person2)). A 
definite clause is a disjunction of literals with exactly one positive literal.

In relational domains, the relations among objects are essential to allow the algorithms 
to discover rules and then to apply such rules to other objects to reach conclusions. Rela-
tional probabilistic models developed within the area of Statistical Relational Learning 
(SRL)   (Getoor and Taskar 2007) extend this concept by combining the representational 
power of first-order logic with probability theory to handle uncertainty. Relational depend-
ency networks (RDNs) (Neville and Jensen 2007) extends Dependency networks (DNs)
(Heckerman et al. 2001), a probabilistic graphic model that allows cyclic dependencies, to 
relational domains and employs relational probability trees (RPTs) for the learning process. 



1438	 Machine Learning (2020) 109:1435–1463

1 3

RDNs approximate the joint distribution as a product of conditional probability distribu-
tions over ground atoms.

When learning RDNs, each conditional probability distribution can be represented as 
a relational probability tree (RPT)—as done by Neville et al. (2003)—in which leaf nodes 
report the number of positive and negative training examples that reached the leaf. Thus, 
a learning algorithm can induce a RPT for a given target predicate. Natarajan et al. (2012) 
proposed using relational regression trees (RRTs) instead of RPTs and presented an algo-
rithm named RDN-Boost built upon functional-gradient boosting technique. The idea was 
to apply gradient boosting  (Friedman 2000) to RDNs and represent each conditional prob-
ability distribution as a weighted sum of regression models. Explicitly, each relation is rep-
resented as a set of relational regression trees (Blockeel and De Raedt 1998). A particu-
lar advantage of the boosting method is that it allows learning both the structure and the 
parameters of RDNs simultaneously. In this paper, we refer to boosted trees as the set of 
these relational regression trees.

RDN-Boost uses RRTs and computes functional gradients for each training example. 
The functional gradient starts with an initial potential �0 and iteratively adds gradients �i 
resulting after m iterations in the potential �m = �0 + �1 +⋯ + �m . After these m steps, 
the current model will have m regression trees for a given query predicate. Regression 
tree learner takes examples of the form [(xi, yi),�m(yi;xi)] (weighted examples) and finds 
a regression tree hm that minimizes 

∑
i [hm(yi;xi) − �m(yi;xi)]

2 . The weight of an example 
corresponds to the gradient presented to that example. For each tree, the probability and the 
gradient of an example are computed based on its groundings. Then, the gradient serves as 
the weight for the example at the next training step.

In relational regression trees, inner nodes (or test nodes) are conjunctions of literals, and 
a variable presented in a node cannot appear in its right subtree (i.e., variables are bounded 
along left-tree paths. This restriction is due to the fact that the right subtree is only relevant 
when the conjunction of literals fails.) (Gutmann and Kersting 2006). The algorithm learns 
a relational regression tree as follows: it starts with an empty tree and repeatedly searches 
for the best test for a node according to some splitting criterion. Then, it splits the examples 
in the node into success and failure according to the test. Examples covered by the clause 
reaches the left path (success), while examples not covered reaches the right path (failure).. 
The splitting criterion used was weighted variance on success and failure. For each split, 
the procedure is recursively applied further in order to obtain subtrees for the respective 
splits. The procedure stops if the variance in one node is small enough, the tree has reached 
a maximum depth defined in the procedure or has derived a maximum number of leaves. In 
the leaves, the average regression value is computed (Gutmann and Kersting 2006; Nata-
rajan et al. 2012). An example is presented in Fig. 1. This tree was learned for the query 
predicate advisedby aiming at predicting if B advises A. In the tree, if A is a student, B is 
a professor and both work in the same publication (publication(C, B), publication(C, A), 
then the regression value is 0.858. On the other hand, if the node (student(A), professor(B)) 
is not satisfied, then the regression value is -0.142. Negative values indicate low probabili-
ties and, for this tree, the fact that A is not a student or B is not a professor indicate a low 
probability of A to be advised by B. This regression tree learner also considers aggregation 
functions such as count, max, average in the inner nodes, however we did not consider 
aggregation functions in our work. For more details about aggregation functions, we refer 
the reader to Natarajan et al. (2012).
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Note that each path between the root and leaf in the regression tree is as a 
clause in a logic program. For the Fig.  1, the left-most path in the tree is the clause: 
student(A) ∧ professor(B) ∧ publication(C,B) ∧ publication(C,A) ⇒ advisedby(A,B) . The 
algorithm evaluates the clause in order from left to right for a particular query. After that, it 
returns the corresponding regression value. In the logical setting, multiples ground clauses 
can be satisfied for a particular query. In the case of relational regression trees, this is 
avoided by considering only the first satisfied ground clause (i.e., the first path that covered 
an example). This is equivalent to add a cut to the end of each clause in a logic program. 
Then, the second clause to be evaluated in the example if the first clause were not satisfied 
would be the clause made by the second left-most path.

2.2 � Theory revision

Learning First-Order Logic theories from a set of examples and background knowledge 
(BK) is a process known as Inductive Logic Programming (ILP). Given the BK and a set of 
examples represented as logical facts, an ILP learner derives a hypothesis in the form of a 
logic program to cover as many as possible positive examples while avoiding covering neg-
ative examples. Because such systems start from an empty initial hypothesis, we say that 
they learn from scratch. However, an incomplete or only partially correct theory may exist, 
and one may take advantage of it as a starting point to improve it instead of discarding it 
and learning a new theory from scratch. An incomplete/partially correct theory may exist 

[student(A), professor(B)]

[publication(C, B), publication(C, A)]

True

-0,142

False

0,858

True

[publication(D, A), tempadvisedby(E, B)]

False

[publication(D, F), ta(G, F, H)]

True

[tempadvisedby(I, B), publication(J, I)]

False

0,658

True

-0,142

False

0,430

True

0,715

False

Fig. 1   An example of relational regression tree. The leaves are the regression values learned and nodes are 
conjunctions of literals
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because of different reasons: (1) it has been proposed by a domain expert, who has useful, 
but only partial knowledge about the domain; (2) it has become incomplete due to new data 
available; (3) it has come from a different yet related domain through transference. In such 
cases, the theory may contain important information that should not be discarded. Because 
of that, it is desirable to use the given theory as a starting point in the learning process. 
These crucial considerations have contributed to the development of Theory Revision sys-
tems (Richards and Mooney 1995; Duboc et al. 2009; Paes et al. 2017).

Theory revision is the process of repairing incorrect or incomplete theories from a given 
set of examples. This process is a sub-task of a general problem—improving the quality of 
a given theory—known as theory refinement. A theory revision task consists of proposing 
modifications to the theory which are going to imply in changes in the set of answers, i.e., 
covering missing answers or fixing incorrect answers made by the theory. On the other 
hand, the theory restructuring task does not change the set of answers given by a theory. 
Theory revision is then defined as follows (Wrobel 1996): given an initial theory H and 
a set of positive and negative examples E+ and E− composing the set of examples E, the 
system aims at finding a revised theory H′ that covers all the positive examples (complete-
ness) and none of the negative examples (consistency), and also obeys a minimality criteria 
which requires minimal revisions of the theory. However, it is not always possible to find a 
complete and consistent theory; thus theory revision systems find theories as close as pos-
sible to be complete and consistent.

Usually, theory revision is applied when new data have become available or when we 
want to improve an imprecise theory learned from scratch. The initial theory is assumed to 
be partially correct, and thus, only some points are responsible for misclassifications in the 
dataset. Therefore, a theory revision system needs only to propose modifications to such 
points instead of discarding the initial theory or proposing modifications for all its clauses 
(Paes et  al. 2017). These points are called revision points and are detected according to 
misclassified examples. When positive examples are not covered (i.e., false negatives), the 
theory is too specific. Similarly, when negative examples are covered (i.e., false positives), 
the theory is too general.

Revision operators are responsible for proposing modifications at each revision point, 
and the type of the revision point determines which revision operator to apply. Commonly, 
two types of revision operators are considered: (1) generalization operators; and (2) spe-
cialization operators (Wrobel 1996). Generalization operators can be used to handle false 
negatives, while specialization operators can be used to remove false positives. We refer 
the reader to Wrobel (1996) for more information about revision operators.

In this work, we refer to a theory as the boosted trees learned from a specific query 
predicate. Also, proposing modifications to clauses is equivalent to proposing modifica-
tions to paths in a tree. We will explain further the operators proposed for revising boosted 
trees in the Sect. 3.

2.3 � Transfer learning

Traditional machine learning algorithms work with the assumption that both training and 
future data are in the same feature space and have the same distribution. However, this 
assumption may not hold in real-world scenarios. Then, when the test distribution changes 
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w.r.t. to the training data, the algorithms need to relearn the model from scratch using the 
newly collected data. Arguably, a more efficient solution would be to adapt the previously 
learned model to the new distribution of examples. Another situation that may benefit from 
adaptability is when one has a domain for which collecting data is quite expensive or even 
impossible. However, it could be the case that, while we do not have sufficient data for a 
specific domain, we may have plenty of data for a similar domain. Consider, as an exam-
ple, learning from simulations. While obtaining real-world measures would be extremely 
expensive, generating data from simulations which have a different distribution comparing 
to the reality could be more accessible (e.g., a physics engine mimicking movements of a 
robot).

Transfer learning  (Pan and Yang 2010) addresses the problem of lacking data 
by allowing that domains used in training and testing be different. The advantage is 
to exploit the knowledge learned in a source domain to improve the performance of 
a related target domain. An example might be using the knowledge obtained to rec-
ognize a specific kind of object to help to recognize a similar object, or equivalently, 
using knowledge learned from Spanish and apply it to learn Portuguese. Indeed, Trans-
fer learning is motivated by the fact that humans can take the knowledge learned in a 
specific domain and apply it to a completely different domain. The difference between 
traditional learning and transfer learning is that traditional learning tries to learn a task 
from scratch regarding one specific domain, while transfer learning tries to transfer 
knowledge learned from a previous source task to a target task.

A definition of Transfer learning was presented by Pan and Yang (2010) as the fol-
lowing: a domain D is consisted by a feature space X  and a marginal probability distri-
bution P(X) where X = {x1,… , xn} ∈ X  . Considering the problem of document clas-
sification as an example, then X  is the space of all term vectors, xi is the i-th term of a 
vector of a given document and X is a particular sample. Given a domain D = {X,P(X)} , 
a task T  consists of a label space Y and a not observed conditional probability distribu-
tion P(Y|X) which could be learned from training data. In the document classification 
example, Y is the set of all labels. Finally, given a source domain DS and a source task 
TS , as well a target domain DT and a target task TT , the purpose of transfer learning is 
to help to learn the target conditional probability distribution P(YT |XT ) in DT using the 
knowledge obtained from DS and TS , where DS ≠ DT , or TS ≠ TT . If two domains are 
different, they have either a different feature space or different marginal probability dis-
tributions due to the definition of the domain as a pair D = {X,P(X)} . Thus, the condi-
tion DS ≠ DT implies that XS ≠ XT or PS(X) ≠ PT (X) . In document classification, a dif-
ferent feature space may correspond to domains of two different languages and different 
probability distribution may correspond to domains in the same language but about dif-
ferent topics. Similarly, for a definition of task as a pair T = {Y,P(Y|X)} , the condition 
TS ≠ TT implies that YS ≠ YT or P(YS|XS) ≠ P(YT |XT ).

Most of the current work conducted in Transfer Learning assumes that the source 
and target domains are related, i.e., there exists some relationship between both feature 
spaces. In the relational data scenario, it is assumed that the source and target data may 
share similar relationships. If two domains are related to each other, there may exist two 
similar relationships that connect entities in a domain, and thus a mapping for these 
relationships may be found. For example, the role of a professor in a university domain 
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can be seen as similar to a director in a cinematographic domain because they play simi-
lar roles by teaching/leading students and actors. Also, the relationship between a pro-
fessor and a student, as well as between a director and an actor, can be considered simi-
lar. Consequently, other relationships as “professor publishing a paper” and “a director 
directing a film” can also be considered similar. More examples would be the relation-
ship of a professor teaching students which is similar to a football coach teaching foot-
ball players, also a team playing a specific sport, which is similar to a company belong-
ing to a specific economic sector.

There are three main essential research issues regarding transfer learning (Pan and Yang 
2010). One issue is to decide what kind of knowledge to transfer between domains or tasks. 
Some knowledge may be shared between both the domains so that it could help improving 
performance in a target domain. For relational domains, the knowledge to be transferred is 
the structure of the theory and a mapping from source predicates to target predicates must 
be found in order to find which clauses to transfer to the target domain. In this work, we 
consider transferring the structure of each tree learned from the source domain by finding 
a mapping between the predicates in the trees. Second, how to perform transfer needs to be 
considered, and learning algorithms must be developed to accomplish this process. Most 
of the previous works have focused on these two issues. Thus, transfer algorithms consider 
what to transfer across domains and how to proceed with the transference. The third issue 
that needs to be solved is when to perform transfer which corresponds to answering when 
transferring should be done or not. In some situations, a negative transfer may hurt the 
learning performance in the target domain resulting in worse accuracy than to not transfer 
at all. Knowing when not to conduct the transfer is also an interesting issue in order to 
avoid struggling in a transfer that would lead to a worse result than to no transfer at all.

Some transfer learning methods in the SRL context were proposed before. The TAMAR 
algorithm (Mihalkova et al. 2007), for example, maps predicates in the clauses of an MLN 
learned from a source domain in order to transfer these clauses to a target domain. The 
legal mapping that gives the best-weighted pseudo-log-likelihood (WPLL) in the target 
domain is the mapping used for that clause. In a second step, TAMAR performs theory 
revision for the mapped structure through an algorithm similar to the FORTE algorithm 
(Richards and Mooney 1995) to improve its accuracy. Another example is the algorithm 
SR2LR (Mihalkova and Mooney 2009), an extension of TAMAR to deal with minimal 
target data. It considers the extreme case described as single-entity-centered where one 
entity is available in the target domain, although they are also generalized for more than 
one entity.

Another algorithm, DTM (Davis and Domingos 2009), uses second-order Markov 
Logic where formulas contain predicate variables. The key idea is to discover second-order 
structure shared by source and target domains by instantiating second-order formulas with 
predicates from the target domain. TODTLER algorithm (Van Haaren et al. 2015) also cre-
ates a second-order representation. It uses previous useful second-order patterns learned 
in the source domain to bias the learning process in the target domain towards models that 
also have these patterns. LTL (Kumaraswamy et al. 2015) compares types between source 
and target predicates and performs a matching. After that, it builds the first-order logic 
clauses in the target domain by performing a type-based tree construction. LTL algorithm 
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also performs theory refinement in its rules. Differently, LAST (Odom et al. 2016) algo-
rithm allows for human expert advice in the process of refinement through the LTL algo-
rithm. The goal is to improve the human-machine interaction by allowing the expert to 
refine a transferred knowledge.

Finally,  (Ramon et al. 2007) also includes operators acting over trees; however, differ-
ent from us, they focus on relational trees targeting reinforcement learning policies. They 
include an operator that replaces an internal sub-tree by another. We found out that imple-
menting such an operator in boosted RDNs would bring additional complexity to our revi-
sion algorithm as we would have to carefully control the variables shared among the differ-
ent nodes involved in the replacement. The behavior of replacing an internal sub-tree could 
be achieved by removing a sub-tree up to the leaf and adding another one in its place, with 
a successive application of our both revision operators, as we discuss later.

Our algorithm differs from the algorithms presented as we map and revise boosted 
models directly at the level of the additive models. Moreover, we built our implementa-
tion focusing on RDNs, instead of relying on MLNs, as most of the previous work. Our 
approach considers the set of relational regression trees learned from the source domain 
to bias the learning algorithm in order to obtain a target model derived from the source 
model. The algorithm starts by transferring the source tree structures and inner nodes to 
the target domain. This component is similar to TAMAR’s predicate mapping algorithm. 
The next step is the process of theory revision where we contribute with finding revision 
points and applying two revision operators over relational regression trees. Proposing mod-
ifications in a tree affects the covering of examples in both its left and its right path. We 
explain the functioning of the TreeBoostler, our proposed algorithm, in the next section.

3 � The TreeBoostler algorithm

The algorithm we devised in this work follows two top-level components: first, it transfers 
the source boosted trees structure to the target domain by finding an adequate predicate 
mapping; second, it revises those trees by pruning and expanding nodes. The regression 
values are learned simultaneously in both steps. Next, we detail each one of these steps.

3.1 � Transferring the structure

A fundamental problem when tackling transfer learning on relational domains is to auto-
matically find how to map the source vocabulary to the target domain. In this way, the first 
step of the overall process is to find this mapping, where we reduce the overall vocabulary 
of both domains to their set of predicates, making our first problem to find the best map-
ping of source predicates to target predicates. With that, the boosted trees learned from 
the source domain are transferred sequentially to the target domain, and their parameters 
are relearned to fit the target data. Mihalkova et al. (2007) introduced two approaches for 
establishing a predicate mapping regarding Markov Logic Networks: (1) a global map-
ping, which finds a corresponding target predicate to each source predicate and applies 
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this mapping to the entire source structure (i.e. all clauses) at once; and (2) a local map-
ping, which finds an independent predicate mapping for each independent part of the entire 
structure (i.e. each clause). This latter case constructs a predicate mapping only for the 
predicates that appear in a specific clause, separately, independently of how the predicates 
appearing in the other clauses have been mapped before. Generally, the local mapping 
approach is more scalable since the number of predicates that appears in a clause is natu-
rally smaller than the total number of predicates of a source domain and more flexible, as 
the mapping in one part of the structure does not necessarily hold or depends on all the 
other rest of the structure.

In this work, we choose to follow the local approach by finding the best local predicate 
mapping for transferring the boosted trees. As we have mentioned earlier, each path from 
the root to a leaf in the relational regression tree can be seen as a clause in a logic program. 
However, these paths are not independent of each other as they may share the same inner 
nodes with different paths in the relational regression tree. Also, trees cannot be interpreted 
individually since each one depends on the previously handled trees. Thus, the algorithm 
translates the predicates presented in the inner nodes according to the previously found 
translations in order to keep the same mapped predicates along the entire process.

To find the best predicate mapping for the entire structure, we perform an exhaustive 
search through the space of all legal mappings of the predicates that are in the inner node 
which have not a translation yet. The legal mapping that provides to the node the best split 
is selected as the best node and mapped predicate. We defined the weighted variance as 
the split criterion. Transference starts from the root node of the first source tree and pro-
ceeds to find not-mapped predicates recursively (similar to learning from scratch) in order 
to update the current predicate mapping.

Definition 1  Let p(X1,… ,Xn) be an atom in the source vocabulary with predicate p and 
arity n. Let q(Z1,… , Zm) be an atom in the target domain with predicate q and arity m. 
Let S = {types1 → typet1 … typesn → typetm} be the set of constrained types, where the first 
term of each element is a type in the source domain and the second term is a type in the 
target domain. We say that p∕n → q∕m is a legal mapping when n = m (they have the same 
arity), and for each pair of corresponding terms ( Xi, Zi ) where Xi is a term in p(X1,… ,Xn) 
and Zi is a term in q(Z1,… , Zm) , if Xi is associated to the type typesi and Zi is associated to 
the type typeti , then either typeti has not appeared before as the second term of an element in 
S or typesi → typeti ∈ S . The set of compatible types starts empty and is iteratively filled in 
with a type correspondence yielded from a predicate mapping.

We define a mapping as legal if each given source predicate is mapped to a compatible 
target predicate or an “empty” predicate. If the source and target predicates have the same 
arity and their argument types agree with the current type constraints they are considered 
compatible. The mapping is done by following the current type constraints which each type 
mapped to at most one corresponding type in the target domain. For example, the cur-
rent type constraints are empty and the first predicate to map is genre(person,genre), then 
the target domain predicate projectmember(project,person) is considered to be compatible. 
Therefore, the type constraints are updated with the following constraints: person → pro-
ject and genre → person. Since all following predicates to be mapped need to conform 
to the current type constraints, a mapping for the predicate advisedby(person,person) can 
only be compatible with sameproject(project,project). Algorithm 1 finds legal mappings 
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given the source predicates to be mapped, possible target predicates to consider and current 
predicate mappings and type constraints.

Note that the boosted trees are learned concerning a query atom; because of that, the 
transfer algorithm must receive as input the source and target query atoms to start the 

Table 1   Predicate mapping 
automatically discovered for 
transferring IMDB→UW-CSE

workedunder(A,B) → advisedby(A,B)
director(A) → professor(A)
actor(A) → student(A)
movie(A,B) → publication(A,B)

[student(A), professor(B)]

[publication(C, B), publication(C, A)]

True

leaf

False

[tempadvisedby(D, B), ta(E, A, F)]

True

[publication(I, A), tempadvisedby(J, B)]

False

[ta(G, D, H)]

True

leaf

False

[publication(I, K), ta(L, K, M)]

True

[publication(N, B)]

False

leaf

True

leaf

False

leaf

True

leaf

False

leaf

True

leaf

False

Fig. 2   One regression tree to be transferred from UW-CSE to Cora for query predicate advisedby. Regres-
sion values are not considered for transference. They are relearned in the process
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transference. Hence, the predicate mapping starts with a mapping from the source query 
predicate to the target query predicate. For example, considering to transfer the source 
query atom workedunder(person,person) from IMDB dataset to the target query atom 
advisedby(person,person) from UW-CSE dataset, where person is the type of both argu-
ments, in both target query domains. The algorithm starts the type constraints set with 
the mapping person → person and the predicate mapping set with workedunder(A,B) → 
advisedby(A,B). Table 1 shows the final predicate mapping set, found after transferring the 
entire boosted tree structure.

In case the algorithm does not find a compatible mapping, a predicate in the source 
domain is mapped to an “empty” predicate. This is used to decide how to map the nodes 
in the trees, encompassing three cases: (1) all the literals in an inner node have a non-
empty predicate mapping. This is the best scenario, as we can keep the same number of 
literals in the transferred tree; (2) an inner node has some predicate mapped to an “empty” 
one, but there is at least one predicate mapped to a non-empty, then the ones mapped to 
empty are discarded and the others remain; (3) an inner node has all their literals mapped 
to an empty predicate. This last case is the more complicated scenario, as discarding all 
the literals yields an empty node, which affects the tree structure, leading to no struc-
ture transference in the worst case. For example, the transference UW-CSE → Cora would 
result in a null theory as shown in Fig. 2 since Cora dataset has no unary predicates and 
the root nodes of learned source trees are conjunctions of unary predicates. To tackle the 
presented scenarios, the algorithm discards the “empty” node, promotes its left child and 
appends its right child to the right-most path of the subtree. If the left child is a leaf, then 
the “empty” node is discarded, and the right child is promoted. It is essential to mention 
that the transfer process is also subject to the search bias growing tree parameters, namely 
the maximum depth and the maximum number of leaves per tree. Generally, in our exper-
iments, we restricted the size of the trees with the same parameters used for learning from 
scratch in the source domain. It means that the nodes and the subtrees appended to the 
right-most path of the tree may be ignored in the process. In some cases, the transfer-
ence may result in inner nodes that cover all the examples in their left or right path, mak-
ing the node with no examples useless. To reduce the tree depth, the algorithm discards 
such nodes and promotes the child that covers all examples. The Algorithm 2 presents the 
transfer mechanism described.

Our method includes three search bias to conduct the way the algorithm performs the 
mapping. The first one, called here as searchArgPermutation, allows searching for the per-
mutation of all arguments in the target predicate to check if one of them makes the source 
and target predicates compatible. It allows for example, the mapping of a source predi-
cate with the inverse relation of a target predicate (e.g. workedunder(A,B) → advises(B,A), 
which is the same as advisedby(A,B)). The second search bias, named searchEmpty, allows 
generating an additional “empty” mapping even if there is a compatible target predicate 
to map the source predicate. The last one, named allowSameTargetMap, allows mapping 
distinct source predicates to the same target predicate. If this bias is not used, the algo-
rithm finds a one-to-one correspondence between source and target predicates (except for 
“empty” mappings).
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3.2 � Revising the structure

When transferring learned theories from one domain to another, it is usually not enough 
to map the vocabularies from both domains to achieve a model representative of the target 
domain  (Mihalkova et  al. 2007). Such theories may contain multiple faults that prevent 
them from correctly predicting examples due to the difference in the distribution of both 
domains. These faults can be repaired through the process of Theory Revision  (Wrobel 
1996). The main idea of Theory Revision is to search for points in the theory that are pre-
venting the examples from being correctly classified and propose modifications to them. 
In a Transfer Learning scenario, the revision process attempts to adjust the initial mapped 
source theory to fit the target data. The goal is to achieve more accurate theories since the 
theory revision allows the learning algorithm to build clauses from partial or incomplete 
theories that would otherwise not be found in the constrained search space.
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Our theory revision component follows the three major steps: 

1.	 Searching for paths in the trees responsible for bad predictions of examples and defining 
them as revision points.

2.	 Proposing possible modifications to the revision points by applying the revision opera-
tors.

3.	 Scoring both transferred and revised theory and choosing to stay with the best one.

In the traditional Theory Revision literature concerning Inductive Logic Programming 
(ILP), the points to be changed are defined according to a misclassified example defined 
according to the proved examples, as explained in the Sect. 2.2. However, this concept does 
not hold for the Statistical Relational Learning (SRL) case, which considers the uncertainty 
of the domain. Thus, we define the points to be changed according to the bad predictions 
made by the trees. Here, a node is marked as “badly” predicting when its weighted vari-
ance is greater than a given threshold � , reflecting the fact that a node is not good enough to 
stop the growth of its subtree.

Definition 2  Revision Point Let v be a leaf node in a tree and let �v be the weighted vari-
ance of examples being covered until v. Given a threshold � , we say that v is “badly” pre-
dicting the examples when 𝛿v > 𝛿 . Hence, the leaf node v is marked as a Revision Point.

The revision points need to be modified during the revision process in order to increase 
accuracy. In the traditional ILP setting, examples incorrectly covered determine the revi-
sion operator to be applied: a positive example not covered by the theory indicates that the 
theory is too specific and needs to be generalized, on the other hand, a negative example 
covered by the theory indicates that the theory is too general and needs to be specialized. 
In the case of relational regression trees, positive and negative examples are covered by the 
paths in the tree, with their respective weights determining the weighted variance of the 
covered examples. In this way, instead of determining the type of the revision point (spe-
cialization or generalization), we only assume that some paths are responsible for harming 
the accuracy. To make this matter simpler, we define as a revision point any leaf that has 
a “bad” weighted variance as defined before. Arguably, modifications on the paths end-
ing up on such leaves will change the way an example is covered, resulting in a differently 
weighted variance.

We designed two types of revision operators: (1) a pruning operator, which increases the 
coverage of examples by deleting nodes from a tree (and in such a way, it may be seen as 
a generalization operator); and (2) an expansion operator, which decreases the coverage of 
examples by expanding nodes in each tree (in the same way, it can be seen as a specializa-
tion operator). We describe them as follows:

•	 Pruning operator prunes the tree from the bottom to top by removing a node whose 
children are leaves marked as revision points.

•	 Expansion operator recursively adds nodes that give the best split in a leaf considered 
as a revision point.

The top-level theory revision algorithm fully applies the pruning and expansion opera-
tors in all the revision points at once. The first step is to call the Pruning procedure 
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for each tree in the model. The Pruning procedure receives a root node of a given tree 
as input and recursively removes nodes that contain leaves marked as revision points. 
However, this process may completely prune an entire tree, eventually leading to the 
deletion of all the trees. If this happens, the revision algorithm will face the expansion 
of nodes from an empty tree which is the same as learning from scratch. To avoid that, 
if the pruning results in a null model, the effect of this operator is ignored as if it was 
never applied.

Next, for each tree, the Expansion procedure is called, and recursively expands the 
revision points. The last step is done by scoring both the transferred theory (before 
applying theory revision) and the revised theory. The revised theory is implemented if it 
has a scoring better than before. The scoring function is the conditional log-likelihood 
(CLL) over the examples. The Algorithm  3 presents the theory revision process after 
mapping the vocabulary of the source and target domain.

Next, we provide more details about the revision operators devised in this work.
Pruning is a technique that reduces the size of trees by removing nodes of the tree 

where the wrong predictions lie. The pruning operator has two primary goals: (1) to 
cover more examples along a path, which is the equivalent of generalizing clauses, by 
removing nodes (literals) possibly responsible for wrong predictions; and (2) to reduce 
the size of the trees which may contribute to three additional benefits: (1) improve the 
inference time, (2) make the trees more interpretable, and (3) help in the rest of the revi-
sion process, since it is also subject to tree depth limitations.

The structure of our pruning algorithm is quite simple: it makes a bottom-up pass 
through a given tree, and decides, for each node, whether to leave the node as it is, or 
whether to delete this node and make its parent become a leaf. The decision is made 
considering the success or failure weighted variance of a path ending in a node. Thus, 
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the algorithm recursively attempts to remove nodes whose children are leaves and revi-
sion points, from bottom to up and keeps subtrees that contain at least one path not 
marked as a revision point.

As mentioned earlier, a node is good enough to stop the growth of its subtree when its 
weighted variance is less than a given � . Oppositely, we consider a node not good enough 
to remain in the tree when its weighted variance is higher than � . By removing such a node, 
we are giving a chance for the algorithm to later find a possible expansion of nodes that 
would result in better splits. We implemented the value of � as 0.0025, which is the default 
value for stopping the growth of a subtree in the RDN-Boost algorithm. The Pruning oper-
ation is presented as Algorithm 4.

The Expansion operator proceeds by adding nodes in an initial theory. As the ini-
tial theory is preferably nonempty, as required by Algorithm  3, this process takes 
advantage of a starting point, instead of learning from scratch. Adding new nodes and 
performing splits from starting points may lead to paths that would otherwise not be 
found in the constrained search space, possibly resulting in better covering. Thus, this 
process is important for two main reasons: (1) by adding nodes in existing paths, it 
has the same effect of specializing clauses by adding literals to make them fit more to 
target data; and (2) it takes advantage of the starting point obtained by transference. 
The expansion is done similarly to the process of learning from scratch; it considers 
leaves that still need to grow into subtrees as revision points and searches for the node 
that gives the best split, according to the weighted variance, as the splitting criterion. 
The leaves and their regression values are computed when the path is good enough, or 
the tree has reached the maximum depth or number of clauses. Algorithm 5 presents 
the procedure used here to perform the expansion of nodes. Figure 3 brings an exam-
ple of the transfer learning process proposed here from model learned from IMDB 
and transferred to UW-CSE (more details about these domains can be found in the 
next section).
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4 � Experiments

In this section, we present the experiments we conducted in this paper in order to investi-
gate the following research questions:

•	 Q1: Does TreeBoostler learn more accurate models than the baselines?
•	 Q2: Does the theory revision step improve the performance of the transfer process?
•	 Q3: Does TreeBoostler transfer well across domains?
•	 Q4: Is TreeBoostler faster than the baselines?

[actor(A), director(B)]

[movie(C, A), movie(C, B)]

True

[actor(A)]

False

0,858(0,702)

True

-0,142(0,465)

False

-0,142(0,465)

True

[actor(B)]

False

0,035(0,509)

True

-0,042(0,490)

False

[student(A), professor(B)]

[publication(C, A), publication(C, B)]

True

[student(A)]

False

0,791(0,688)

True

0,495(0,621)

False

0,208(0,552)

True

[student(B)]

False

0,428(0,605)

True

0,580(0,641)

False

[student(A), professor(B)]

[publication(C, A), publication(C, B)]

True

leaf

False

leaf

True

leaf

False

[student(A), professor(B)]

[publication(C, A), publication(C, B)]

True

[professor(B)]

False

0,791(0,688)

True

0,495(0,621)

False

0,066(0,517)

True

-0,142(0,465)

False

Fig. 3   The transfer learning process stages. The trees presented are the following: obtained from source 
domain by learning from scratch (top-left); transferred by mapping predicates (top-right); after pruning 
process (down-left) and after expansion of nodes (down-right). All trees are the first one learned in the 
iterations. The transference is done from IMDB to UW-CSE and depth limits were reduced to generate 
smaller trees. Regression values are not considered in pruning process and they are relearned when expand-
ing nodes
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•	 Q5: Does TreeBoostler perform better than the baselines with an increasing amount of 
examples in the target data?

•	 Q6: Does TreeBoostler perform better than the baselines with minimal target data?

We compare the performance of TreeBoostler against three baseline approaches that learn 
from scratch from target data: RDN-B which learns a set of regression trees using boosting 
method, RDN which learns a single large regression tree and MLN-B (Khot et al. 2011a, 
2015) which uses functional gradient boosting method to learn either a set of trees or 
clauses to represent a MLN. We also compare TreeBoostler with TODTLER (Van Haaren 
et al. 2015), a transfer learning method that lifts a source structure to second-order logic. 
We do not compare against the state-of-the-art algorithm LTL (Kumaraswamy et al. 2015) 
because the complete transfer and theory refinement system is not available.

Experimental Methodology: To observe if the theory revision stage improves the per-
formance of the whole transfer process, two versions of the algorithm are considered: (1) 
transference considering predicates mapping and parameter learning only, i.e., the first 
stage of the complete algorithm (TreeBoostler*) and (2) the complete transfer system using 
predicate mapping and theory revision (pruning and expansions of trees) (TreeBoostler). 
For TreeBoostler, we restricted the depth limit of the trees to be 3, the number of leaves to 
be 8, the number of regression trees was 10, and the maximum number of literals per node 
to 2. We used the same settings to learn from scratch using the method RDN-B. For the 
single tree RDN method, we used 20 leaves. For training all the RDN based algorithms, 
we subsampled the negative examples in a ratio of two negatives for one positive. Thus, 
following Natarajan et  al. (2012), we set the initial potential to be -1.8. For testing, we 
presented all the negative examples. For MLN-B, we used the clause-based representation 
with default settings. For the MLN-based transfer approach TODTLER, we used Alchemy 
with default settings and MC-SAT algorithm (option -ms) to compute the probabilities. 
Also, we kept the default parameters and generated second-order templates containing at 
most three literals and three object variables.

Datasets:  Following the previous literature we present our results considering seven 
publicly available datasets described as follows.

•	 The Cora dataset (Bilenko and Mooney 2003) is a database of computer science cita-
tions with 1295 different citations to 112 computer science research papers and has 
fields as author, venue, title and year. We consider two tasks in this dataset: to predict 
the sametitle and the samevenue relations. This dataset is divided into five mega-exam-
ples.

•	 The WebKB dataset (Craven and Slattery 2001) consists of labeled web pages from 
computer science departments of four universities. The dataset contains information 
about links between web pages, classification of web pages, words that appears on the 
web pages, instructors, and members of projects. The goal in this dataset is to predict 
the departmentof relation that determines the department of a given web page. This 
dataset is divided into four mega-examples, one for each university.

•	 The UW-CSE dataset (Khosravi et al. 2012) consists of information about professors, 
students, and courses from 5 different areas of computer science (artificial intelligence, 
programming languages, theory, system, and graphics). Thus, this dataset is divided 
into five mega-examples according to the mentioned areas. It includes predicates that 
represent publications and their authors, projects and their members, level of courses, 
and so forth. The goal is to predict the advisedby relation that identifies a student being 
advised by a professor.
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•	 IMDB (Mihalkova and Mooney 2007) is a dataset that describes a movie domain and 
presents predicates as director, actor, genre, movie, among others, and the relationships 
between them. It is divided into five mega-examples where each one contains informa-
tion about four movies. The goal is to predict the workedunder relation that identifies 
an actor that has worked for a director.

•	 The Yeast protein (Mewes et al. 1999) dataset is obtained from MIPS1 Comprehensive 
Yeast Genome Database and includes information about proteins with their location, 
function, phenotype, enzyme, among others. The goal in this dataset is to predict the 
class of a protein. This dataset contains four folds independent of each other.

•	 Twitter (Van Haaren et al. 2015) is a dataset that contains tweets about Belgian soccer 
matches. The information is words that are tweeted, relations between accounts (fol-
lowing relation) and the type of accounts (club, fan, or news). The goal is to predict the 
type of account in two independent folds.

•	 NELL (Carlson et  al. 2010) is a machine learning system that extracts probabilistic 
knowledge base from online text data. We consider two domains from NELL data-
set, which are the Sports domain, extracted from the iteration 1070 and the Finances 
domain, extracted from the iteration 1115. The goal in the Sports domain is to predict 
the relation that defines a team playing a sport. The Finances domain has a goal of pre-
dicting the relation that defines a company belonging to an economic sector. In order to 
obtain different folds, we split the data of the target predicate randomly into three parts. 
Thus, each fold consists of parts of the target predicates and all facts (non-target predi-
cates).

Experiments For all the experiments, we allowed TreeBoostler to search for all permuta-
tions of arguments of a given predicate. This action was crucial for transferring among 
NELL datasets since some source predicates are the inverse of a possible mapped target 
predicate. Also, we did not allow more than one distinct source predicate to be mapped to 
the same target predicate, as this bias does not improve the results while still increases the 
training time. The option searchEmpty was also set to false to avoid increasing the amount 
of training time.

The first experiment simulates the learning process from limited data which is the more 
suitable scenario for transfer learning. We employed the same methodology used in related 
works: training is performed on one fold and testing on the remaining n − 1 folds. The 
results are then averaged over n runs. For each run, a new learned source model is used for 
transference. Specifically for TODTLER, the results were obtained from one single run due 
to extremely time-consuming resources when computing scores for each first-order clause 
using Alchemy. TODTLER was not able to finish computing scores for clauses in NELL 
and WebKB datasets after one week and MLB-B was not able to infer the probabilities for 
the Cora test set in the same amount of time. We used the following measures to compare 
the performance: conditional log-likelihood (CLL), the area under the ROC curve (AUC 
ROC), the area under the PR curve (AUC PR) and training time. Note that in the training 
time of transfer systems, we did not consider the time necessary to learn from the source 
domain.

The results are presented in the Tables  2, 3, 4, 5 and 6. The Tables  2, 3, and 4 pre-
sent the transfer experiments for the pairs of datasets IMDB and Cora and also Yeast and 

1  Munich Information Center of Protein Sequence.
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Twitter. Each dataset was treated as a source domain and target domain. The Table 5 pre-
sents the transfer experiments UW-CSE → WebKB and NELL Sports → NELL Finances. 
We omitted the opposite transfer experiments because transferring from WebKB to 

Table 2   Results on IMDB and Cora (sametitle) dataset

We compare our algorithm, RDN-B (that uses boosting), MLN-B (clause-based representation), RDN and 
TODTLER. We present the results for the area under curves for ROC and PR and the conditional log-likeli-
hood for test examples. We also present the training time

Algorithm IMDB → Cora (sametitle) Cora (sametitle) → IMDB

CLL AUC ROC AUC PR Time CLL AUC ROC AUC PR Time

RDN − 0.211 0.764 0.073 3.85 s − 0.168 0.987 0.720 0.94 s
RDN-B − 0.336 0.821 0.206 32.36 s − 0.075 1.000 0.986 2.44 s
MLN-B NA NA NA NA − 0.262 0.998 0.905 3.96 s
TODTLER − 4.454 0.504 0.458 27 min − 0.923 0.885 0.537 197.77 s
TreeBoostler* − 0.244 0.721 0.476 1.84 s − 0.307 0.868 0.092 1.48 s
TreeBoostler − 0.232 0.888 0.599 30.17 s − 0.075 1.000 0.979 6.73 s

Table 3   Results on IMDB and Cora (samevenue) dataset

We compare TreeBoostler algorithm, RDN-B (that uses boosting), MLN-B (clause-based representation), 
RDN and TODTLER. We present the results for the area under curves for ROC and PR and the conditional 
log-likelihood for test examples. We also present the training time

Algorithm IMDB → Cora (samevenue) Cora (samevenue) → IMDB

CLL AUC ROC AUC PR Time CLL AUC ROC AUC PR Time

RDN − 0.192 0.641 0.074 16.70 s − 0.166 0.994 0.813 1.17 s
RDN-B − 0.277 0.842 0.270 237.47 s − 0.073 1.000 1.000 3.29 s
MLN-B NA NA NA NA − 0.434 0.997 0.879 3.77 s
TODTLER − 5.213 0.519 0.371 17 min − 0.923 0.885 0.537 195.77 s
TreeBoostler* − 0.323 0.582 0.183 5.34 s − 0.213 0.958 0.727 2.82 s
TreeBoostler − 0.298 0.707 0.292 106.39 s − 0.077 0.999 0.952 10.70 s

Table 4   Results on Yeast and Twitter dataset

We present the results for the area under curves for ROC and PR, the conditional log-likelihood and the 
training time

Algorithm Yeast → Twitter Twitter → Yeast

CLL AUC ROC AUC PR Time CLL AUC ROC AUC PR Time

RDN − 0.155 0.964 0.271 4.08 s − 0.182 0.695 0.081 4.46 s
RDN-B − 0.118 0.993 0.382 24.42 s − 0.257 0.919 0.231 18.80 s
MLN-B − 0.249 0.819 0.312 114.10 s − 0.288 0.674 0.154 9.68 s
TODTLER − 1.259 0.520 0.368 13.42 s − 0.023 0.497 0.002 39 min
TreeBoostler* − 0.138 0.986 0.394 6.12 s − 0.180 0.986 0.273 4.14 s
TreeBoostler − 0.118 0.993 0.362 114.71 s − 0.180 0.986 0.272 60.99 s
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UW-CSE is too easy and it was not possible to map the predicates from NELL Finances. 
The Table 6 presents the transfer experiment IMDB → UW-CSE. It can be observed that 
our algorithms are competitive or better than TODTLER and learning from scratch meth-
ods. Our algorithms and learning from scratch methods outperform TODTLER in most of 
the results presented, mostly due to the efficiency and expressiveness of the language used 
for representing RDNs. Therefore, it is more interesting to compare our algorithms against 
learning from scratch methods. The TreeBoostler algorithm performed comparably or bet-
ter than learning from scratch methods in all but two experiments for AUC ROC. Even for 
the TreeBoostler*, which is restricted only for mapping, was able to learn more accurate 
models than learning from scratch in 2 experiments for AUC ROC and 4 for AUC PR. 
Then only mapping the predicates and learning the parameters for the mapped trees may be 
very useful when target training data is scarce. The most significant result can be observed 
in the transference from the real-world dataset NELL Sports to NELL Finances. The values 
in bold highlight the best results which are significantly better than the performance of the 
remaining algorithms, but not significantly better concerning one another. Based on these 
experiments and observations, we can positively answer the questions Q1 and Q3 posed 
before.

As can be seen from the results, the training time consumed by TreeBoostler* is usually 
smaller than RDN-B and equivalent to RDN. This is because the transfer algorithm only 
needs to find the best split for those nodes that have not-mapped predicates; otherwise it 
already knows which mapped node to consider in the split, avoiding searching and evalu-
ating other possible mappings. The first time a predicate appears in the set of regression 

Table 5   Results on transference from UW-CSE to WebKB dataset and NELL sports domain to finances 
domain considering area under the curves for ROC and PR, the conditional log-likelihood and the training 
time

Algorithm UW-CSE → WebKB NELL Sports → NELL Finances

CLL  AUC ROC  AUC PR Time CLL  AUC ROC  AUC PR Time

RDN − 0.141 0.571 0.032 110.87 s − 0.180 0.532 0.020 4.59 s
RDN-B − 0.081 0.801 0.138 13 min − 0.317 0.713 0.083 22.12 s
MLN-B − 0.203 0.995 0.414 113 min − 0.205 0.503 0.007 16.22 s
TODTLER NA NA NA NA NA NA NA NA
TreeBoostler* − 0.287 0.888 0.013 11.74 s − 0.164 0.978 0.062 46.63 s
TreeBoostler − 0.080 0.916 0.292 19 min − 0.161 0.979 0.074 229.36 s

Table 6   Results on transference 
from IMDB to UW-CSE dataset 
considering area under the curves 
for ROC and PR, the conditional 
log-likelihood and the training 
time

Algorithm IMDB → UW-CSE

CLL AUC ROC AUC PR Time

RDN − 0.194 0.918 0.247 1.79 s
RDN-B − 0.261 0.935 0.265 8.17 s
MLN-B − 0.707 0.893 0.152 4.19 s
TODTLER − 3.699 0.570 0.037 208 min
TreeBoostler* − 0.274 0.926 0.275 1.16 s
TreeBoostler − 0.241 0.940 0.305 9.20 s
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trees is the only time a mapping has to be found for this predicate. It saves time in the rest 
of the tree and the next iterations as the algorithm knows how to transfer an inner source 
node. On the other hand, TreeBoostler, considering Theory Revision, improves accuracy 
but is computationally costly since it is another search approach. This training time consid-
ers the time spent in the entire process which includes the time taken for transference, the 
time taken for evaluating both the transferred and the revised model, and the time taken 
for pruning and expansion. In summary, we can answer Q4 affirmatively for TreeBoost-
ler* and affirmatively comparing to other transfer learning system for TreeBoostler. The 
results show that question Q2 can also be answered positively. The Theory Revision pro-
cess shows an improvement in the performance for all the metrics except for a worse AUC 
PR in a single experiment.

In order to compare the performance of TreeBoostler method with increasing amounts 
of target data, we performed a learning curve experiment to transfer some of the same pairs 
of datasets. For these experiments, we employed the traditional cross-validation method-
ology when training is performed on n − 1 folds and testing on the remaining one fold. 
The data selected for training is then shuffled and divided into five sequence parts. All 
systems observed the same sequence of these parts. The entire process is done in n runs, 
and the curves are obtained by averaging the results. Figures 4, 5, 6, 7, 8, 9, 10 and 11 
demonstrate this experiment. As can be seen, our algorithm outperforms or equates learn-
ing from scratch RDN-B in most of the results, particularly with smaller amounts of data 
(about 40% of the target data). One exception is the learning curve for the AUC ROC in 

Fig. 4   Learning curves for AUC ROC (left) and AUC PR (right) obtained from IMDB → UW-CSE

Fig. 5   Learning curves for AUC ROC (left) and AUC PR (right) obtained from NELL Sports → NELL 
Finances
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Fig. 9, which demonstrates a decreasing in the performance as the target data increases. 
In this experiment, TreeBoostler is outperformed by RDN-B until 80% of the target data, 
although it outperforms RND-B in terms of AUC PR. Thus, question Q5 can be answered 
affirmatively.

A third experiment was conducted in order to address the problem of minimal target 
data and investigate how the algorithms behave when learning from only a few exam-
ples. We also performed a learning curve experiment with the same pairs of datasets. 
We employed the traditional cross-validation methodology, then we shuffled the data for 
training and selected five groups of 5 positive examples and five groups of 5 negative 

Fig. 6   Learning curves for AUC ROC (left) and AUC PR (right) obtained from Yeast → Twitter

Fig. 7   Learning curves for AUC ROC (left) and AUC PR (right) obtained from Twitter → Yeast

Fig. 8   Learning curves for AUC ROC (left) and AUC PR (right) obtained from IMDB → Cora (sametitle)
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examples. All systems observed the same sequence of these groups of examples, i.e., 
systems observed from 5 up to 25 examples for each label. Similarly to the last experi-
ment, the entire process is done in n runs, and the curves are obtained by averaging 
the results. Figures 12, 13, 14, 15, 16, 17 and 18 demonstrate this experiment. As indi-
cated in the experiments, TreeBoostler easily outperforms the learning from scratch 
algorithms RDN-B and RDN in all the presented results. The small amount of train-
ing data available was insufficient to learn good models in the learning from scratch 

Fig. 9   Learning curves for AUC ROC (left) and AUC PR (right) obtained from Cora (sametitle) → IMDB

Fig. 10   Learning curves for AUC ROC (left) and AUC PR (right) obtained from IMDB → Cora (samev-
enue)

Fig. 11   Learning curves for AUC ROC (left) and AUC PR (right) obtained from Cora (samevenue) → 
IMDB



1459Machine Learning (2020) 109:1435–1463	

1 3

approaches, especially for NELL Finances and Yeast datasets. Providing more examples 
has shown to increase the performance of these approaches; however, it was still insuffi-
cient compared to TreeBoostler, which also increased its performance with more exam-
ples. As can be seen, the revision step also showed to slightly decrease the performance 
in the experiments, except for the experiments in Figs. 15, 16, 17 and 18 . This may be 

Fig. 12   Learning curves from minimal target data for AUC ROC (left) and AUC PR (right) obtained from 
NELL Sports → NELL Finances

Fig. 13   Learning curves from minimal target data for AUC ROC (left) and AUC PR (right) obtained from 
Yeast → Twitter

Fig. 14   Learning curves from minimal target data for AUC ROC (left) and AUC PR (right) obtained from 
Twitter → Yeast
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basically due to difficulty of revising and simultaneously relearning parameters of mod-
els given very few examples. Since the pruning and expansion operators are subject to 
the threshold � , very few examples may not be sufficient to determine correctly when a 
node is “badly” predicting. Thus, according to these experiments, we can answer ques-
tion Q6 positively.

Fig. 15   Learning curves from minimal target data for AUC ROC (left) and AUC PR (right) obtained from 
IMDB → Cora (sametitle)

Fig. 16   Learning curves from minimal target data for AUC ROC (left) and AUC PR (right) obtained from 
Cora (sametitle) → IMDB

Fig. 17   Learning curves from minimal target data for AUC ROC (left) and AUC PR (right) obtained from 
IMDB → Cora (samevenue)
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5 � Conclusions

In this paper, we have presented a complete transfer learning algorithm, named as Tree-
Boostler, that transfers Boosted RDNs learned from a source domain to a desirable target 
domain. TreeBoostler constructs a target set of regression trees biased by a predicate map-
ping found through the transfer process given the structure of the source regression trees. 
Then, it applies a second stage process relying on Theory Revision, to propose modifica-
tions to the mapped model. These modifications are done through two proposed revision 
operators for the regression trees, which are the pruning operator and the expansion opera-
tor. The pruning operator showed to be essential for deleting nodes in the tree and provid-
ing space for the expansion of new nodes in the tree. Through experimental results, we 
found out that even the first state of the entire transfer process, which only maps predicates 
and learn the parameters of them, can give better results than learning from scratch in a 
smaller amount of training time.

Our experimental results demonstrate that this algorithm is effective compared to the 
other transfer algorithm TODTLER mainly because of the efficiency and expressiveness 
of the language used for representing RDNs. We also showed from experiments that trans-
fer learning potentially results in more accurate models compared to learning from scratch 
methods. Moreover, the theory revision process, in general, improved the performance 
of the transferred models showing the effectiveness of proposing modifications to fit the 
model to the target data. However, there are some cases that transfer from another domain 
resulted in less accurate models. It remains a future investigation to understand whether or 
not to transfer from one domain to another. According to the experiments, our algorithm 
also demonstrated to be as much efficient as learning from scratch methods.

A possible future direction is to take advantage of stochastic search methods (Paes et al. 
2017) in the process of pruning, allowing the method to generate different pruning in the 
trees at random and expand nodes from these candidates. The stochastic search may help 
the algorithm to escape from a local optimum since the pruning process follows a deter-
ministic criterion. Another possible research direction is developing the transfer learn-
ing process to regression trees that contain predicates with constants or numeric values, 
increasing the expressiveness of the language used for transference. It is also interesting to 
investigate how to compute the similarity between domains beforehand to avoid a negative 
transfer and to enhance the predicate mapping. Finally, we believe that the framework pro-
posed here could be made general enough to be employed to other SRL methods, as long 

Fig. 18   Learning curves from minimal target data for AUC ROC (left) and AUC PR (right) obtained from 
Cora (samevenue) → IMDB
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as they can be boosted. Verifying this belief, both theoretically and empirically is a promis-
ing direction for future research.
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