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Abstract
Investigating strategies that are able to efficiently deal with multi-label classification tasks 
is a current research topic in machine learning. Many methods have been proposed, mak-
ing the selection of the most suitable strategy a challenging issue. From this premise, this 
paper presents an extensive empirical analysis of the binary transformation strategies 
and base algorithms for multi-label learning. This subset of strategies uses the one-ver-
sus-all approach to transform the original data, generating one binary data set per label, 
upon which any binary base algorithm can be applied. Considering that the influence of 
the base algorithm on the predictive performance obtained by the strategies has not been 
considered in depth by many empirical studies, we investigated the influence of distinct 
base algorithms on the performance of several strategies. Thus, this study covers a family 
of multi-label strategies using a diversified range of base algorithms, exploring their rela-
tionship over different perspectives. This finding has significant implications concerning 
the methodology of evaluation adopted in multi-label experiments containing binary trans-
formation strategies, given that multiple base algorithms should be considered. Despite 
these improvements in strategy and base algorithms, for many data sets, a large number 
of labels, mainly those less frequent, were either never predicted, or always misclassified. 
We conclude the experimental analysis by recommending strategies and base algorithms in 
accordance with different performance criteria.
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1  Introduction

Multi-label learning has been investigated widely by the machine learning community in 
recent years (de Carvalho and Freitas 2009; Tsoumakas et  al. 2010; Gibaja and Ventura 
2014). It deals with classification tasks where an instance can be simultaneously classified 
into more than one class. Each class is represented by one label. Several domains, such as 
text (Klimt and Yang 2004; Pestian et al. 2007), multimedia (Duygulu et al. 2002; Zhou 
and Zhang 2006; Briggs et al. 2013) and biology (Elisseeff and Weston 2001), are intrinsi-
cally multi-label.

A common approach to dealing with multi-label classification tasks is to transform the 
original data set into one or more single-label data sets. A conventional binary classifica-
tion algorithm, called base algorithm here, is used to induce predictive models for each 
one of them. As such, a transformation strategy defines how to decompose the original task 
into a set of single-label tasks and to combine the results obtained from these tasks to solve 
the original task (Tsoumakas et al. 2010). Many strategies have been proposed to address 
the multi-label tasks and transform the data, exploring different aspects, such as label cor-
relation (Read et  al. 2011; Cherman et  al. 2012; Montañes et  al. 2014), dimensionality 
reduction (Tsoumakas et al. 2008; Zhang and Wu 2015) and class imbalance (Zhang and 
Wu 2015; Tsoumakas et al. 2011b).

Although the base algorithm can be seen as a hyperparameter for transformation strate-
gies, it is generally fixed for all strategies, so that only a single base algorithm is considered 
in the whole experiment (Read et al. 2011; Montañes et al. 2014; Madjarov et al. 2012). 
Given that a comprehensive comparison of the binary transformation strategies, using dif-
ferent base algorithms, has not yet been performed, this study assesses the hypothesis that 
the base algorithms can have a stronger influence than the binary transformation strategies 
on the predictive performance of multi-label models. At a glance, it may seem trivial to be 
investigated, however, if the choice of a base algorithm is more important regarding the 
quality of the results than the specific strategy, then several of them should be considered 
in empirical studies evaluating these strategies.

In the multi-label literature, the most similar comparative study was performed by 
Madjarov et  al. (2012), where 12 strategies (including 3 binary transformation strate-
gies) were evaluated under several measures, using the original train and test partition of 
11 benchmark data sets. Even though a variety of different algorithms were considered, 
the transformation strategies were evaluated with a single base algorithm, Support Vec-
tor Machine (SVM). Another large empirical study covering multiple ensemble strategies 
(Moyano et al. 2018) used only the C4.5 decision tree as the base algorithm. Nevertheless, 
a few studies have considered using more than one base algorithm. These studies include 
Tsoumakas and Katakis (2007) and Cherman et al. (2012), who did not compare strategies 
using different base algorithms; and Zufferey et al. (2015), who compared strategies with 
distinct base algorithms, but just in a single data set.

Methods using Automatic Machine Learning (Auto-ML) to address multi-label classi-
fication tasks also consider multiple base algorithms (de Sá et al. 2017, 2018; Wever et al. 
2018, 2019). During the search for a solution, the Auto-ML method may find a suitable 
combination between strategies and base algorithms that optimizes a fitness function. In 
these cases, choosing the base algorithm is seen as part of the solution and the comparison 
of the strategies does not fix a base algorithm, as observed in other studies.

Since the most common strategies are based on binary transformations, this paper will 
focus on these strategies. Hence, 10 binary transformation strategies and 5 different base 
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algorithms (plus one with its hyperparameters tuned) were evaluated using 5 × 2-fold 
cross-validation for 20 benchmark data sets. In contrast to previous studies, which used 
null hypothesis significance testing, we ran Bayesian statistic tests (Benavoli et al. 2017) 
to assess the statistical significance of the differences in the predictive performance of the 
assessed strategies over different evaluation measures. To the best of our knowledge, this is 
the most extensive multi-label empirical study carried out so far.

The results reported reinforce the claim that the predictive performance obtained by 
transformation strategies is affected by the base algorithm used. Thus, experimental studies 
in multi-label learning must take into account experiments with several different base algo-
rithms. In particular, many of the binary transformation strategies obtained very similar 
results, with differences mainly being due to the choice of the base algorithm used. There-
fore, previous comparative studies (Madjarov et al. 2012; Moyano et al. 2018) might have 
reached different conclusions if other base algorithms had been employed. Additionally, for 
many data sets, the investigated strategies consistently predicted only a subset of the exist-
ing labels, never assigning the remaining labels to any instance. This problem was previ-
ously observed in the food truck data set (Rivolli et al. 2018), however, as far as we know, 
it has never been widely investigated.

The rest of the paper is organized as follows: Sect. 2 formally defines the main concepts 
relevant for multi-label learning. Section  3 details the investigated strategies. Section  4 
describes the experimental design, including data sets, evaluation procedures, base classi-
fiers, tools, and hyperparameter values adopted. Section 5 presents, analyzes and discusses 
the empirical results. In the last section, conclusions are drawn concerning relevant find-
ings from the experimental study and future work directions.

2 � Multi‑label learning

In multi-label learning, an instance can be simultaneously associated with more than one 
label. The main tasks in this field are Multi-Label Classification and Label Ranking.

Multi-Label Classification (MLC), the most common task (Tsoumakas et  al. 2010), 
induces a predictive model h ∶ X → Y from a set of training data D , which later assigns 
labels to new examples. This task can be formally defined as follows. Let D be a set of 
labeled instances, such that D =

{
(x1, Y1), ..., (xn, Yn)

}
 . Every labeled instance is com-

posed of xi = (xi1, xi2, ..., xid) ∈ ℝ
d , and Yi ⊆ L , such that L =

{
�1, �2, ..., �q

}
 is the set 

of all q labels �i . For the sake of convenience, the labels associated with the ith instance, 
also called label set, can be seen as a binary vector yi = (yi1, yi2,… , yiq) ∈ {0, 1}q , where 
yij = 1 iff �j ∈ Yi and yij = 0 iff �j ∉ Yi . Finally, model h is used to predict, for a test instance 
(xi, ?) , the set of relevant labels Ŷi (or ŷi as a binarized prediction).

In the Label Ranking (LRK) task, a model outputs the ranked labels for each test 
instance. This ranking can easily be computed using any model that provides a score value 
indicating its probability of being relevant to a given instance. Thus, the higher the score 
value, the better its ranking position. In turn, MLC can be derived from the LRK formula-
tion (Gibaja and Ventura 2015).

A multi-label model can be obtained by using two approaches (Tsoumakas and Katakis 
2007), problem transformation and algorithm adaptation. The former converts the original 
multi-labeled data into a set of binary or multi-class data sets, whereas for the latter, the 
multi-label support is embedded into the algorithm’s structure. Thus, the transformation 
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approach fits the data to the algorithms, and the adaptation approach fits the algorithms to 
the data (Zhang and Zhou 2014).

A straightforward transformation is to build a binary classifier for each label individu-
ally. This is known as the Binary approach. On the other hand, a multi-class transformation 
can be considered, in which each label set (combination of labels) is mapped to one class. 
Both approaches are algorithm independent (de Carvalho and Freitas 2009), in the sense 
that any traditional classification algorithm that is capable of handling such problems can 
be used as the base algorithm.

We want to emphasize that the binary transformation approach implies that algorithms 
are trained separately, but not necessarily independently; this will become apparent in the 
following section. In addition, many hybrid approaches exist, such as Pairwise, which 
models pairwise combinations (a one-vs-one approach), and subset approaches, which 
includes the well-known RAkEL strategy (Tsoumakas et al. 2011a).

Binary transformation generates at least one data set per label. Each binary data set D′
j
 is 

related to the label �j . The instances associated with �j are labeled with a class value of “1”, 
all others are labelled with a class value of “0”.The number of binary data sets generated 
is defined by |D�| = mq , where m is the number of data sets per label. Therefore, the com-
plexity of this family of strategies is linear in the number of labels q. Negative aspects of 
this approach include the tendency to generate rather imbalanced data sets and the fact that 
some of these strategies ignore the relationships between labels (Zhou et al. 2012).

The binary transformation strategies are organized into three groups, one-round, stack-
ing, and ensemble, according to the value of m. One-round strategies are the simplest strat-
egies, with m = 1 . A special case of one-round is chaining, which increases the input space 
by adding already predicted labels as features to predict the others, in a chain. In stacking 
strategies, two rounds of training and prediction steps are performed, thus m = 2 . They 
augment the input space in the second round by using the values of the labels predicted in 
the first round as features. When all the labels are used, they are called full-stacking. When 
only a subset of the labels is used, they are called pruned-stacking. Finally, in the ensemble 
strategies more than two models for each label ( m > 2 ) are used and usually, the value of m 
is a hyperparameter defined by the user. When the same instances and attributes are shared 
by all internal models, the ensemble is homogeneous. However, when each member and 
label use distinct data sets as training data, the ensemble is heterogeneous. The former can 
be seen as an ensemble of multi-labeled data, whereas the latter as multiple ensembles of 
single-label data (Gibaja and Ventura 2015). These groups and their strategies are detailed 
in Sect. 3.

A base classification algorithm must always be chosen to induce predictive models for 
each transformed data set D′ . Later, these models are used to predict the relevance of each 
label for new instances. If the models predict a score instead of a class, the strategies sup-
port both tasks, MLC and LRK (Gibaja and Ventura 2015). Logically, if the base algo-
rithms are responsible for predicting a score and the binary transformation strategies are 
independent from them, any transformation strategy can be used to solve them. Distinc-
tions among them will not be considered in the rest of this paper.

As previously mentioned, this study is restricted to analyzing strategies based on binary 
transformation, which are relevant for a broad group of researchers and practitioners. 
Besides, for most of them, their individual models can be trained separately (thus, allow-
ing for parallelism), they are simple to interpret, they have been successfully used in many 
state-of-the-art comparisons in the literature, and they usually exhibit acceptable time com-
plexity, almost linear with the number of labels. Using separate classifiers, each focused 
on only one label, allows for higher flexibility, choosing potentially different approaches 
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on a per-label basis. Furthermore, new labels can usually be added to the problem with-
out retraining the models built for existing labels. In general, as some of the strategies are 
conceptually quite similar to each other, their practical differences may be highlighted by 
comparing their performances using different base algorithms, an approach we put forward 
in this paper.

3 � Strategies

In this section, the 10 binary transformation strategies considered are described. Table 1 
presents the strategies organized into groups, defined by the number of binary models gen-
erated per label, and the subgroups according to their main characteristic.

3.1 � One‑round

The one-round strategies are characterized by generating only a single binary data set for 
each label. Binary models are induced from these data sets and used for multi-label predic-
tion. The strategies from this group differ mainly by how they transform the data sets.

Binary Relevance (BR) (Boutell et  al. 2004) is the simplest and most popular multi-
label strategy (Luaces et al. 2012; Montañes et al. 2014). For each label �j , an independent 
binary data set is generated according to

and will be used to induce a binary model �j . The prediction is performed using the values 
of all binary models as follows:

3.1.1 � Chaining

The Classifier Chains (CC) strategy (Read et al. 2009, 2011) organizes the labels in a chain 
and increases the original input space of the transformed data set for a given label with the 
values of all previous labels in the chain. Thus, the data set is transformed as follows:

(1)D
�
j
=
{
(xi, yij) ∣ 1 ≤ i ≤ n

}
,

(2)hbr = {�j | �j(x) = 1, 1 ≤ j ≤ q}.

Table 1   Binary transformation 
strategies organized into groups/
subgroups according to the 
number of binary models 
per label and their main 
characteristic

Group Subgroup Strategy References

One-round - BR Boutell et al. (2004)
Chaining CC Read et al. (2011)

NS Senge et al. (2013)
Stacking Full BR+ Cherman et al. (2012)

DBR Montañes et al. (2014)
RDBR Rauber et al. (2014)

Pruned MBR Godbole and Sarawagi (2004)
PruDent Alali and Kubat (2015)

Ensemble Homogeneous EBR Read et al. (2011)
ECC Read et al. (2011)
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The model related to the first label in the chain is obtained exclusively from the original 
input data, without adding any predictive attributes, as shown in Eq. 1. The other models 
increase their input space by adding j − 1 new attributes, where j is the position of the 
respective label in the chain. During the prediction phase, as the labels are predicted, their 
values are used to increase the input space, as shown next

Nested Stacking (NS) (Senge et al. 2013) brings two modifications to CC. In the training 
phase, it uses the predicted labels instead of the real labels. Furthermore, in the prediction 
phase, it makes a subset correction, in order to predict only preexisting label sets.

The transformation step is similar to Eq.  3. However, the original label values y are 
changed by the predicted values ŷ , such that

where ŷij is the prediction of the binary model �j for the instance xi presented in the training 
data. The prediction is obtained similarly to Eq. 4 followed by the subset correction. The ŷ 
is replaced by y∗ ∈ Y  , which is the vector in Y that is most similar to ŷ , such that

and dist is the hamming distance, which corresponds to the number of differences between 
two binary vectors. When more than one minimum is found, the label set with the higher 
frequency in the training data is selected.

3.2 � Stacking

The stacking strategies are characterized by using the stacked generalization learning para-
digm (Wolpert 1992). In the multi-label context, they use two rounds of binary transforma-
tion, where in the second round, the input space is augmented by the information from the 
labels obtained from the first round.1 The main difference among the stacked strategies 
is how they choose the labels that would augment the input space. Some of them use all 
labels (full stacking), while others use only a subset of labels (pruned stacking).

3.2.1 � Full stacking

BR+ (Cherman et  al. 2012) and Dependent Binary Relevance (DBR) (Montañes et  al. 
2014) are very similar to each other. In the training phase, they perform exactly the same 
procedure. The first round is characterized by the induction of a BR model, according 

(3)D
�
j
=
{
([xi, yi1, yi2,… , yi(j−2), yi(j−1)], yij) ∣ 1 ≤ i ≤ n

}
.

(4)
hcc = {𝜆j | ŷj = 1, 1 ≤ j ≤ q}, where

ŷj = 𝜃j([x, ŷ1, ŷ2,… , ŷ(j−2), ŷ(j−1)]).

D
�
j
=
{
([xi, ŷi1, ŷi2,… , ŷi(j−2), ŷi(j−1)], yij) ∣ 1 ≤ i ≤ n

}
,

hns = {𝜆j | y∗j = 1, 1 ≤ j ≤ q}, where

y∗ = argmin
y∈Y

dist(ŷ, y),

1  Although CC and NS also augment the input space, they are not considered stacking, given that only one-
round is performed.
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to Eqs. 1 and 2. In the second round, the transformation is performed by increasing the 
input space using the original labels. To illustrate how it works, let �j(y) be a function that 
removes the label �j from the vector y, such that

It should be noted though, that there is a subtle difference in the prediction phase, pre-
cisely, in the second round. DBR predicts the labels using the second round binary models 
that use the labels obtained from the first round binary models. Using the � function pre-
sented in Eq. 5, the prediction is obtained as follows:

Differently, BR+ updates the labels from the first round binary models while the second 
prediction is occurring. Given a chain of labels (for example, 𝜆1 ≺ 𝜆2 ≺ ⋯ ≺ 𝜆q ), the pre-
diction is obtained in the following way:

Recursive Dependent Binary Relevance (RDBR) (Rauber et al. 2014) induces two models 
as DBR does, but it uses the second model several times in a recursive way. The labels 
predicted for the second model are used to update the input space and the second round is 
executed again until either the result converges or a fixed number of iterations is reached. 
In practice, it is the same process as in Eq. 6, but while BR+ does only one update, RDBR 
updates recursively several times until a stopping criterion is reached.

3.2.2 � Pruned stacking

The Meta-BR (MBR) strategy2 (Godbole and Sarawagi 2004; Read et al. 2011) augments 
the input space using the values of the most correlated labels (Tsoumakas et al. 2009). The 
Pearson product moment correlation coefficient for categorical variables � is computed for 
each pair of labels and a threshold � is used to define which labels should augment the 
space of attributes. The data set in the second round is obtained in the following way:

and 𝜙(ŷi) returns only the most related labels. Unlike the other stacked strategies, instead of 
using the original labels in the second transformation, it uses the predicted labels obtained 
in the first round.

The final prediction is the result of the binary models in the second step, such that:

(5)
D

��

j
=
{
([xi,�j(yi)], yij) ∣ 1 ≤ i ≤ n

}
, where

�j(y) = (y1,… , y(j−1), y(j+1),… , yq).

hdbr = {�j | �
��

j
([x,�j(hbr(x))]) = 1, 1 ≤ j ≤ q}.

(6)
hbr+ = {𝜆j | 𝜃

��

j
([x,𝜙j(ŷ)]) = 1, 1 ≤ j ≤ q},

for each j, ŷ = (ŷ1,… , ŷ(j−1), 𝜃
��

j
([x, ŷ])), ŷ(j+1),… , ŷq).

D
��

j
=
{
([xi,𝜙j(ŷi)], yij) ∣ 1 ≤ i ≤ n

}
, where

𝜙j(ŷ) = {ŷl | 𝜌(𝜆j, 𝜆l) ≥ 𝜏, 1 ≤ l ≤ q},

2  Also known as 2BR (Tsoumakas et al. 2009), Meta-Stacking (Read et al. 2009) and Stacking (Montañes 
et al. 2014).
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The Pruned and confiDent (PruDent) strategy (Alali and Kubat 2015) uses only the most 
relevant labels, as MBR does, and the original values to augment the second input space, 
as BR+ and DBR do. The Information Gain (IG) measure is used to prune the irrelevant 
labels based on a threshold � . The PruDent transformation is the same as Eq. 5, with the 
exception of the � function:

Contrary to the others, PruDent assigns a label to an example if either one of the corre-
sponding models, first or second round, predicts it. The predictions are done in the follow-
ing way:

3.3 � Ensemble

Ensemble of Binary Relevance (EBR) and Ensemble of Classifier Chains (ECC) (Read 
et al. 2011) are simply ensembles of models induced by the BR strategy and by the CC 
strategy, respectively. Both BR and CC use bagging and choose different random subsets of 
the attributes for each bagging iteration. To illustrate how EBR computes predictions, let 
m be the number of models in the ensemble and �i a function for selecting a random subset 
of attributes:

ŷlj is the predicted value of the BR model l for the label �j and � is a threshold value.3 For 
the ECC strategy, internal models are built using hcc with different chains, avoiding the 
influence that choosing an inappropriate chain could have on the results.

4 � Experimental design

This section presents an experimental comparison across the binary transformation strate-
gies and base algorithms. It describes the multi-label data sets, followed by a short over-
view of evaluation measures and procedures. Next, it explains the methodology adopted 
and the environmental setup.

hmbr = {�j | �
��

j
([x,�j(hbr(x))]) = 1, 1 ≤ j ≤ q}.

�j(y) = {yl | IG(�j, �l) ≥ �, 1 ≤ l ≤ q, l ≠ j}.

hprud = {�j | �j(x) = 1 ∨ �
��

j
([x,�j(hbr(x))]) = 1, 1 ≤ j ≤ q}.

hebr = {𝜆j |
(

1

m

m∑

l=1

ŷlj

)
> 𝜏, 1 ≤ j ≤ q}, where

ŷl = hl
br
(𝜙l(x)),

3  It can either be a predefined value, such as 0.5 (Read et al. 2011) or dynamically defined using the cardi-
nality value of the training data set (Read et al. 2009).
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4.1 � Data sets

Table 2 lists the 20 multi-label data sets used for the experiments. They are from distinct 
domains (column Domain) and have a wide diversity in their characteristics. The columns 
Inst, Attr and Lbl are respectively the number of instances, attributes and labels. Label sets 
(lSets) is the amount of distinct label combination, proportion of unique label sets (PUL) 
indicates the proportion of label sets related to a single instance, label cardinality (lCard) 
measures the average number of labels per instance, label density (lDen) describes the 
average frequency of labels, dependency (Dep) shows the average unconditional labels’ 
dependency (Luaces et al. 2012), inner imbalance degree (IID) measures the average label 
imbalance in the binary data sets (Raez et al. 2004) and, finally, correlation (Corr) indi-
cates the average correlation between the predictive attributes and the labels.

Letting �jk be the Pearson correlation coefficient between the jth attribute and the label 
�k , the correlation is computed as

where d is the number of attributes. A high value for this measure means that there is at 
least one attribute which is strongly correlated to each label, while a low value indicates the 
opposite.

These data sets are frequently used as benchmarks for multi-label experiments. They 
come from different domains, organized here as text, image, audio, biology and other. The 

Corr =
1

q

q∑

k=1

max(|�1k|, |�2k|, ..., |�dk|),

Table 2   Characteristics of the multi-label data sets

Data set Domain Inst Attr Lbl lSets PUL lCard lDen Dep IID Corr

20ng text 19,300 1006 20 55 0.31 1.03 0.05 0.08 0.9 0.45
birds audio 337 260 15 115 0.53 1.84 0.12 0.08 0.75 0.39
cal500 audio 502 68 141 502 1.00 25.54 0.18 0.14 0.67 0.15
corel5k image 4995 499 218 2940 0.76 3.37 0.02 0.16 0.97 0.12
emotions audio 593 72 6 27 0.15 1.87 0.31 0.28 0.38 0.41
enron text 1702 1001 42 722 0.74 3.34 0.08 0.12 0.84 0.22
fapesp text 251 7286 18 61 0.46 1.35 0.08 0.11 0.85 0.57
flags other 194 19 7 54 0.44 3.39 0.48 0.15 0.35 0.40
image image 2000 294 5 20 0.10 1.24 0.25 0.15 0.51 0.33
langlog text 1197 916 38 223 0.53 1.31 0.03 0.06 0.93 0.29
mediamill image 42,177 120 101 6554 0.63 4.56 0.05 0.22 0.93 0.10
medical text 949 1421 20 55 0.22 1.20 0.06 0.19 0.88 0.76
msd-195 audio 2901 180 38 267 0.09 2.47 0.07 0.24 0.87 0.13
ohsumed text 13,929 1002 23 1147 0.50 1.66 0.07 0.04 0.86 0.32
scene image 2407 294 6 15 0.20 1.07 0.18 0.11 0.64 0.43
slashdot text 3776 1079 18 149 0.35 1.18 0.07 0.05 0.87 0.34
stackex-chess text 1612 585 78 725 0.72 2.07 0.03 0.10 0.95 0.37
tmc2007-500 text 28,596 500 22 1172 0.35 2.22 0.10 0.11 0.81 0.38
yeast biology 2417 103 14 198 0.39 4.24 0.30 0.25 0.54 0.18
yelp8 image 10,784 668 8 117 0.06 2.26 0.28 0.11 0.48 0.23
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text-domain data sets are related to aviation safety reports (tmc2007-500, Srivastava and 
Zane-Ulman 2005), medical documents (medical, Pestian et al. 2007), emails (enron, 
Klimt and Yang 2004), newsgroups (20ng, Lang 1995), scientific literature (fapesp, 
Cherman et al. 2014; ohsumed, Joachims 1998), web forums (stackex_chess, Charte 
et al. 2015), and web content (langlog and slashdot, Read et al. 2011). Text data sets 
have a higher number of attributes than most of the data sets from the other domains and 
also contain the largest average value of correlation between attributes and labels.

The image-domain data sets are related to food (yelp), images extracted from videos 
(mediamill, Snoek et  al. 2006), scene classification (image, Zhou and Zhang 2006; 
scene, Boutell et al. 2004), and vector graphics (corel5k, Duygulu et al. 2002). They 
have the highest average number of labels and label sets of all domains. The data sets with 
the highest average dependency degree among the labels are from the audio domain. They 
are related to detecting emotions in songs (emotion, Trohidis et  al. 2011), the identi-
fication of music styles (msd-195, Bernardini et  al. 2014), music effects classification 
(cal500, Turnbull et al. 2008) and sounds of birds (birds, Briggs et al. 2013).

The last two data sets are yeast (Elisseeff and Weston 2001), a data set from the biol-
ogy domain that associates gene expressions with biological functions, and flags (Gon-
çalves et al. 2013), a data set of the countries where the color of their respective flags are 
the labels.

The data sets come from the Cometa repository (Charte et al. 2018), an exhaustive col-
lection of MLC data sets, integrated with the tools used in this work. The exceptions are 
the data sets fapesp and msd-195 obtained from their respective authors, and yelp8 
from the Kaggle website.4 The data sets were preprocessed with three operations. First, the 
labels with less than 10 instances were removed to ensure a minimum number of instances 
with each label in the training and test folds. Next, instances with no labels were also 
removed. Finally, predictive attributes with constant values were removed.

Concerning the characteristics shown in Table  2, the density (LDen) and the inner 
imbalance degree (IID) are inversely correlated. As the density increases, the imbal-
ance degree decreases, and vice-versa. We did not find high correlation among the other 
characteristics.

4.2 � Evaluation measures

The evaluation of the predictive performance of multi-label strategies requires using differ-
ent measures to assess different dimensions (Tsoumakas et al. 2010). They are organized 
here in example-based, label-based and ranking measures. The example-based measures 
summarize the predictive performance over all instances, whereas the label-based meas-
ures summarize the performance over all labels. The ranking measures are a specialization 
of the former, using the prediction scores instead of the crisp values. As many evaluation 
measures are highly correlated with each other (Pereira et al. 2018), a subset was used.

4  see https​://www.kaggl​e.com/c/yelp-resta​urant​-photo​-class​ifica​tion.

https://www.kaggle.com/c/yelp-restaurant-photo-classification
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4.2.1 � Example‑based measures

Hamming-loss (HL) is an error measure that evaluates the misclassification rate for each label 
of every instance (Schapire and Singer 1999). This measure does not distinguish between false 
positive and false negative errors, giving the same weight for both, as shown next

While Hamming-loss is the most relaxed measure, Subset-accuracy (SA) is the strictest 
(Gibaja and Ventura 2015). It accounts only for correctly predicted label sets, ignoring the 
partial hits. A partially correct prediction is valued the same was as a completely incorrect 
one, such that the set of predicted or observed labels is treated as a class value in single-
label classification (Zhang and Zhou 2014). It is computed as

Let us call the labels associated with an instance of relevant labels. We can use them to 
define the following measures: Precision is the fraction of relevant labels among those pre-
dicted. A high precision indicates a high ability of a model to correctly predict the labels, 
although not necessarily all of them. Recall is the fraction of relevant labels that have been 
predicted out of all relevant labels. A high recall indicates that a model predicts many 
labels correctly, but not necessarily only the relevant labels. Thus, the F1 measure (F1) 
computes the harmonic mean between precision and recall. A model with a high value in 
this measure can predict the relevant labels accurately and only them. It does not take the 
true negatives into account, combining just the rate of relevant labels among the predicted 
ones and the rate of predicted relevant labels over all relevant labels. F1 is computed as

4.2.2 � Label‑based measures

Label-based measures usually come in two variants: micro-averaged and macro-averaged. The 
macro-averaged measures summarize the label distribution by giving the same weight to all 
labels (Yang 1999). They assess the consistency across all labels. Thus, they are too sensitive 
to the performance on the least common labels, which is usually low (Jackson and Moulinier 
2002).

To illustrate how these measures work, let TP , FP , TN and FN be respectively the true pos-
itive, false positive, true negative and false negative values from a confusion matrix, such that

(7)
HL =

1

n

n∑

i=1

1

q
∣h(xi) Δ Yi∣, where

AΔB = (A − B) ∪ (B − A).

(8)
SA =

1

n

n∑

i=1

I(h(xi) = Yi), where

I(⋅) =

{
1 if the predicate is true,

0 otherwise.

(9)F1 =
1

n

n∑

i=1

2∣h(xi) ∩ Yi∣

∣h(xi)∣ + ∣Yi∣
.

(10)Precisionb =
TP

TP + FP
,
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The macro label-based version computes the previous measures for each label and returns 
their average value, such that

where � = {Precisionb |Recallb |F1b} , from Eqs. 10, 11 and 12, respectively.
The label problem measures, MLP and WLP, (Rivolli et al. 2018) will be also considered. 

The Missing Label Prediction (MLP) measure indicates the proportion of labels that are never 
predicted by a strategy. The Wrong Label Prediction (WLP) measure, which can be seen as a 
generalization or relaxation of MLP, represents the case where a label might be predicted for 
some instances, but these predictions are always wrong. Eqs. 13 and 14 formalize these meas-
ures, respectively. In an ideal scenario, their expected value is zero.

4.2.3 � Ranking measures

Ranking measures consider the ranking of labels instead of the quality of bipartitions, which 
defines the labels predicted. One-error (OE) is an extreme measure that only assesses the error 
of the label predicted with most confidence. This measure is computed as follows:

Ranking-loss (RL) computes the average rate of label pairs that are incorrectly sorted when 
using their predicted probabilities. It is calculated as follows:

(11)Recallb =
TP

TP + FN
,

(12)F1b =
2TP

2TP + FP + FN
.

macro-� =
1

q

q∑

j=1

�(TPj,FPj, TNj,FNj),

(13)MLP =
1

q

q∑

j=1

I(TPj + FPj == 0)

(14)WLP =
1

q

q∑

j=1

I(TPj == 0)

OE =
1

n

n∑

i=1

I(argmax
�j∈L

f (xi, �j) ∉ Yi)

RL =
1

n

n∑

i=1

∣{(�j, �k)|f (xi, �j) ≤ f (xi, �k), (�j, �k) ∈ Yi × Yi}∣

∣Yi∣∣Yi∣
,

where Yi = L ⧵ Yi.
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4.3 � Multi‑label baselines

Different baselines were adopted, optimizing different measures. With the exception of the 
baselineRL , they were proposed by Metz et al. (2012). The baselineF1 literally predicts the 
label set that maximizes the F1 measure (Eq. 9) for the training data, such that

where Ŷ  is the label set predicted. This baseline is also used to compare the label based 
measures macro-F1, macro-precision and macro-recall.

The baselineHL predicts the labels present in more than 50% of the training instances, 
such that

where freq(�j) is the frequency of the label �j in the training data. In turn, baselineSA pre-
dicts the most frequent label set in the training data, such that

where I is the indicator function defined in Eq. 8.
Finally, the baselineRL (Rivolli et al. 2018), an adaptation of the GeneralB baseline (Metz 

et al. 2012), predicts a ranking of labels according to their frequency, such that

and

where lcard is the label cardinality of the training data. This baseline is used for the rank-
ing measures: one-error and ranking-loss.

4.4 � Base algorithms

The strategies described in Sect. 3 require using a base algorithm to induce binary models. 
Algorithms that are frequently used as the base algorithm in multi-label experiments are 
Decision Tree Induction Algorithms (Cherman et al. 2012; Alali and Kubat 2015; Tsouma-
kas et al. 2009), Logistic Regression (LR) (Montañes et al. 2014; Rauber et al. 2014; Senge 
et al. 2013; Tsoumakas et al. 2009) and Support Vector Machines (SVM) (Read et al. 2011; 
Cherman et al. 2012; Li and Zhang 2014; Luaces et al. 2012; Madjarov et al. 2012; Tsou-
makas et al. 2009).

Two classification algorithms that have been very successful in classification tasks, but 
not commonly used for multi-label classification, Random Forest (RF) and eXtreme Gradi-
ent Boosting (XGB), complete the set of base algorithms used in our experiments.

The k-Nearest Neighbors and Naive Bayes algorithms were initially considered. They 
were discarded because they did not show competitive results when compared with the 
others. Although other base algorithms, such as Multilayer Perceptron, could also be 

baselineF1 = argmax
Ŷ ⊆L

F1(Y , Ŷ),

baselineHL = {𝜆j | freq(𝜆j) > 0.5, 1 ≤ j ≤ q},

baselineSA = argmax
Ŷ ⊆L

n∑

i=1

I(Yi = Ŷ)

rank(𝜆j) = |L| − |
{
𝜆k ∣ 𝜆k ∈ L, freq(𝜆j) > freq(𝜆k)

}
|,

baselineRL = {�j | rank(�j) ≤ lcard, 1 ≤ j ≤ q},
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investigated, they were not considered because those selected were able to support the 
claims addressed in this paper.

4.5 � Experimental setup

The experiments were carried out using the R environment. The data sets were handled 
using code from the mldr package (Charte and Charte 2015). The strategies used R code 
from the utiml package (Rivolli and de Carvalho 2018). By default, utiml prevents 
empty predictions (Liu and Chen 2015), in which case the strategy outputs the label with 
the highest probability/score, preventing an example from being predicted without any 
labels.

Most strategies and base algorithms used in the experiments require the definition of 
hyperparameter values. Table 3 shows, for each strategy used, the default values recom-
mended by the packages for the main hyperparameters.

The implementation of the base algorithms used in the experiments come from the 
packages C50, stats, randomForest, e1071 and xgboost for C5.0, LR, RF, SVM 

Table 3   Hyperparameters values 
for the strategies used in the 
experiments

Strategy Parameters/Values

BR/DBR -

CC/NS chain = random(L)

BR+ strategy = “Dyn”

EBR/ECC m=10

subsample = 0.75

attr.space = 0.5

MBR/PruDent phi = 0.1

RDBR max.iterations = 5

batch.mode = FALSE

Table 4   Hyperparameter values of the base algorithms used in the experiments

Base algorithm Parameters/Values References

C5.0 trials = 1 Quinlan (1993)
CF = 0.25

minCases = 2

LR - Gelman and Hill (2007)
RF ntree = 500 Breiman (2001)
SVM kernel = “radial” Chang and Lin (2011)

cost = 1

gamma = 1 / d

SVMt kernel = “radial” Madjarov et al. (2012)
cost = [2−5, 2−3,… , 213, 215]

gamma = [2−15, 2−13,… , 21, 23]

XGB nrounds = 100 Chen and Guestrin (2016)
eval_metric = “error”

early_stop_round = 2
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and XGB, respectively. Table  4 shows the values used for the hyperparameters of each 
base algorithm, which were those recommended in the corresponding package. SVMt is a 
tuned version of SVM for the macro-F1 measure, where the range of values used in a Grid 
Search procedure is reported. To validate the hyperparameter values, holdout with 70% for 
training and 30% for validation is adopted for all data sets. SVM was singled out for tuning, 
due to the high effect of hyperparameter values on its performance (Mantovani et al. 2015).

All results were obtained using 5 × 2-fold cross-validation with paired folds across all 
combinations of strategies and base algorithms. An iterative algorithm for the stratification 
of multi-labeled data (Sechidis et al. 2011) was applied to ensure similar label distributions 
between training and test data.

Different from previous comparative studies in the multi-label domain, two Bayesian 
statistical tests were used (Benavoli et al. 2017). The Bayesian hierarchical correlated t-test 
was used to compare two strategies over multiple data sets, whereas the Bayesian corre-
lated t-test was used for a single data set. When comparing two strategies, the Bayesian sta-
tistical test outputs the probability of three situations: strategy 1 is the best (left); strategy 
2 is the best (right); and there is a draw between them (rope), which is a region of practical 
equivalence that indicates an insignificant difference in performance between the strate-
gies. Benavoli et al. (2017) suggest the interval [−0.01, 0.01] , which represents a difference 
of 1% for a measure whose range is [0, 1]. This interval was used for all evaluation meas-
ures, with the exception of hamming-loss, where the interval was modified [−0.001, 0.001] 
due to its finer granularity when compared to the other measures. Otherwise, no statistical 
differences was observed, given that, for hamming-loss, the number of mistakes made by 
a strategy is divided by the number of test instances times the number of labels. Thus, the 
larger the data set, the smaller the differences between the strategies.

5 � Experimental results

This section presents the experimental results and the main findings from this study. The 
complete set of experimental results is publicly available online at https​://rivol​li.githu​b.io/
ml-binar​y-trans​forma​tion/.

Initially, this section compares the results with multi-label baselines followed by the 
comparison of the most similar strategies. Next, the strategies are compared using fixed 
base algorithms, which is the traditional approach used in the multi-label literature. After-
wards, the base algorithms are compared by fixing the strategies. In the last set of com-
parisons, both strategies and base algorithms are combined without distinction. Finally, the 
main findings are highlighted.

5.1 � Comparison with the baselines

Despite their importance for evaluating predictive performance, baselines have not been 
frequently used in multi-label experiments (Metz et al. 2012). As a result, there are no clear 
standards for selecting baselines for evaluation. Table 5 presents a comprehensive set of 
results for the different baselines (Sect. 4.3) used in the experiments.

The baselineF1 obtained the highest results for all measures in data sets with high aver-
age labels’ frequency and low imbalance degree. The baselineHL , on the contrary, had 
its best results in data sets with low average label frequency and high imbalance degree. 
Regarding the baselineRL , used to evaluate the ranking measures, the results obtained are 

https://rivolli.github.io/ml-binary-transformation/
https://rivolli.github.io/ml-binary-transformation/
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inversely correlated with the label cardinality, i.e. the lowest ranking-loss values were 
observed in data sets with high lCard. Finally, as the number of labels and label sets 
increase, the results obtained for the baselineSA decrease.

Figure 1 summarizes the number of strategy/base-algorithm pairs that did not perform 
statistically significantly better than the baselines for each data set and evaluation measure. 
With the exception of macro-recall, that can be easily maximized by predicting all labels, 
and some other measures in the case of the cal500 data set, at least one combination 

Table 5   Baseline values obtained for each data set and measure

Data set Baseline
F1 ↑ Baseline

HL
↓ Baseline

RL
↓ Baseline

SA
↑

F1 F1
m

Prec
m

Rec
m

HL OE RL SA

20NG 0.098 0.098 0.051 1.000 0.096 0.948 0.505 0.052
birds 0.288 0.096 0.059 0.267 0.149 0.694 0.316 0.087
cal500 0.478 0.156 0.112 0.282 0.165 0.116 0.212 0.000
corel5k 0.204 0.006 0.003 0.018 0.018 0.776 0.194 0.010
emotions 0.464 0.472 0.312 1.000 0.330 0.555 0.409 0.125
enron 0.463 0.057 0.042 0.095 0.078 0.464 0.141 0.088
fapesp 0.198 0.059 0.033 0.250 0.115 0.857 0.374 0.096
flags 0.699 0.528 0.427 0.714 0.328 0.211 0.220 0.097
image 0.389 0.395 0.247 1.000 0.331 0.710 0.458 0.189
langlog 0.145 0.015 0.008 0.079 0.053 0.857 0.271 0.094
mediamill 0.516 0.027 0.022 0.040 0.036 0.197 0.068 0.056
medical 0.249 0.044 0.027 0.145 0.082 0.720 0.252 0.174
msd-195 0.246 0.051 0.031 0.158 0.078 0.751 0.226 0.082
ohsumed 0.270 0.046 0.029 0.130 0.091 0.716 0.254 0.084
scene 0.302 0.303 0.179 1.000 0.272 0.779 0.473 0.168
slashdot 0.220 0.067 0.038 0.278 0.104 0.845 0.270 0.139
stackex 0.188 0.011 0.006 0.040 0.033 0.737 0.232 0.065
tmc2007 0.447 0.076 0.054 0.136 0.093 0.408 0.163 0.087
yeast 0.576 0.311 0.236 0.500 0.232 0.249 0.211 0.095
yelp8 0.494 0.284 0.203 0.500 0.260 0.411 0.296 0.080
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Fig. 1   Number of pairs strategy/base-algorithm that did not perform statistically significantly better than the 
baselines according to different evaluation measures
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strategy/base-algorithm was always able to outperform the baselines for all measures and 
data sets. However, the considerable number of non-zero entries in Fig. 1 corroborates the 
claim of Metz et al. (2012) that any new strategy should be compared with others using 
appropriate multi-label baselines.

5.2 � Similarity of strategies

How the base algorithms affect the behavior of the binary transformation strategies is one 
of the questions investigated in this paper. According to Table 1, it is reasonable to assume 
that strategies within a group/subgroup are more similar to each other than the rest. How-
ever, the transformation strategies work with a base algorithm, which is used to induce the 
learning models from the transformed data, and its effect over the strategies is unknown 
so far. Following this rationale, the similarity of strategies using different base algorithms 
is analyzed in two distinct ways. First, by comparing their predictions, which removes the 
bias of a specific evaluation measure. Second, by comparing their predictive performance 
statistically over distinct evaluation measures, which considers particularities of the learn-
ing process.

To compare the predictions obtained by the strategies, the Hamming distance (defined 
in Eq. 7) is computed for each pair of strategies. The result indicates the difference between 
the predictions, and therefore, the average value over all data sets and repetitions can indi-
cate how similar or distinct any two given strategies are.

Initially, by fixing the base algorithm, the strategies were compared. For such, they were 
organized according to their similarity using the hierarchical clustering algorithm Aver-
aged-Linkage (Jain and Dubes 1988). Figure 2 shows the hierarchy of strategies for each 
base algorithm. Similar results are observed regardless of the base algorithm, with some 

E
B
R

E
C
C

C
C

N
S

P
ru
D
en

t

B
R

M
B
R

R
D
B
R

B
R
+

D
B
R0.

00
0.
02

0.
04

0.
06

0.
08

(a) C5.0

N
S

M
B
R

B
R

P
ru
D
en

t

C
C

D
B
R

B
R
+

R
D
B
R

E
B
R

E
C
C0.

00
0.
01

0.
02

0.
03

0.
04

(b) LR

C
C

N
S

D
B
R

B
R
+

R
D
B
R

P
ru
D
en

t

B
R

M
B
R

E
B
R

E
C
C

0.
00

5
0.
01

5
0.
02

5

(c) RF

C
C

R
D
B
R

B
R
+

D
B
R

N
S

P
ru
D
en

t

B
R

M
B
R

E
B
R

E
C
C

0.
00

5
0.
01

5
0.
02

5
0.
03

5

(d) SVM

R
D
B
R

B
R
+

D
B
R

N
S

C
C

M
B
R

B
R

P
ru
D
en

t

E
B
R

E
C
C

0.
02

0
0.
03

5
0.
05

0

(e) SVMt

E
B
R

E
C
C

C
C

N
S

P
ru
D
en

t

B
R

M
B
R

R
D
B
R

B
R
+

D
B
R0.

00
0.
01

0.
02

0.
03

0.
04

(f) XGB

Fig. 2   Similarity of strategies according to their bipartition predictions
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exceptions. In summary, the similarity of the predictions follows the intuition of the groups 
of strategies presented in Table 1.

For all base algorithms, the ensembles EBR and ECC presented the largest difference to 
all others. The full stacking BR+, DBR and RDBR were grouped together, following dif-
ferent paths, according to the base algorithm. These are the only consensus in the results. 
Other strategy pairs, such as the chaining CC and NS were the closest strategies only for 
the base algorithms C5.0, RF and XGB. Similarly, pruned stacking MBR and PruDent 
were not always in the same group.

Regarding the subgroups, the chaining strategies were more similar to the full stacking 
for some base algorithms, and to the pruned stacking for others. Pruned stacking was more 
related to BR than full stacking, which may indicate that the pruning approach impacted 
the results more than the use of stacking, for these strategies.

Looking at the base algorithms, the use of C5.0 leads to a larger difference among the 
results obtained by the strategies, and, on the other hand, RF leads to a higher similarity.

Next, when all the strategy/base-algorithm pairs were compared together (Fig. 3), the 
similarity between the base algorithms could also be compared. The base algorithms RF 
and XGB produced similar results, and likewise for SVM and LR. In the latter case, the 
similarity observed was still stronger than the former, since the same strategies using dis-
tinct base algorithms were clustered together. On the other hand, SVM and SVMt, despite 
being the same base algorithm using different hyperparameter values, were not so closely 
related as SVM and LR were.

With the exception of the ensembles and the SVM and LR base algorithms, all strate-
gies are clustered according to the base algorithm, instead of the opposite, i.e. different 
variants of the same strategy grouped together. For instance, in this comparison, BRRF is 
more similar to DBRRF , a full stacking approaching, than to BRXGB . This shows that, for 
these strategies, their differences might not be strong enough to always be apparent, regard-
less of the choice of base algorithm.

To identify when small differences in prediction are significant, the pairs of strategies 
within a group/subgroup were statistically compared. The investigated hypothesis remains 
that the two distributions are equal such that a high probability means that the two strate-
gies are similar and a low value that the two strategies are indeed dissimilar as one would 
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be interested in. Figure 4 presents the rope probability of different pairs of strategies. The 
pairs are sorted according to their average values, from the most similar to the most distinct 
(from the bottom to the top). Likewise, the base algorithms are sorted from left to right.

As previously observed, C5.0 was the base algorithm with the largest number of differ-
ences between strategies, whereas RF was the base algorithm with the lowest number of 
differences. Regardless of the evaluation measure, all pairs were considered similar to each 
other when RF was used. Additionally, the differences between the strategies were captured 
in different ways by the evaluation measures. For instance, no differences in F1 results 
were observed; the ranking measures were more sensitive when comparing the pruned 
stacking strategies; and hamming-loss and subset-accuracy produced clear differences for 
the ensemble and full stacking strategies.

In summary, the results presented in this section showed that the base algorithms impact 
the strategies in different ways. Despite all the investigated strategies using the same 
paradigm (binary transformation), their small differences were captured by the evalua-
tion measures for some of the base algorithms. By varying the base algorithm, a pair of 
close-related strategies can be seen as more similar, or more distinct, to each other, given a 
specific evaluation measure. Therefore, it can be concluded that some base algorithms are 
more dominant than others.

5.3 � Analysis of strategies

Following the procedure used in many multi-label studies, the strategies are compared with 
each other by fixing the base algorithm. As distinct base algorithms are considered, the dif-
ferences between them can be contrasted. Using the Bayesian hierarchical statistical test, 
each pair of strategies with the same base algorithm is compared with each other. Figure 5 
presents the results of the paired test, varying the base algorithms. For each base algorithm, 
the strategy whose probability to statistically outperform the other is higher than or equal 
to 95% is highlighted. Similar algorithms (rope ≥ 95% ) are represented with an “=” char-
acter and an empty value indicates inconclusive results (probabilities < 95% ). The pairs of 
strategies with similar or inclusive results for all base algorithms were removed from the 
chart.
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The main discrepancies in the results are observed in relation to the ensemble strategies 
and the base algorithm C5.0. For C5.0, EBR and ECC outperformed all other strategies 
for most evaluation measures, whereas for other base algorithms, ensembles were outper-
formed by different strategies. For the measures F1, macro-F1 and macro-recall a more 
homogeneous result is observed across the base algorithms. In this case, the ensembles are 
clearly the best choice, probably due to the fact that they internally perform a thresholding 
calibration that allows them to obtain more balanced precision and recall results regardless 
of the base algorithm.

To detail the contradictions, Table 6 presents the cases where conflicting probabilities 
from the statistical test were found across distinct base algorithms. Probabilities indicat-
ing that the strategies are similar (rope > 50%) and inconclusive results (all probabilities 
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Fig. 5   Best strategy according to the results of the Bayesian hierarchical statistical test. The symbol ‘=’ 
indicates they are similar with statistical significance
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< 50%) were omitted from the table, which led to the elimination of the columns relative 
to base algorithms RF and SVM. The bold markup highlights, for each base algorithm, 
the highest value and the cases where the probability is greater than or equal to 95% are 
underlined.

Many observations showed low probabilities at least for one of the base algorithms. 
This indicates that the differences were not so evident according to the statistical test, 
even though they are still conflicting. In this sense, the most noticeable differences were 
observed in the ranking-loss measures, probably because the scores produced by the binary 
models are more sensitive to variation than the bipartitions.

Regarding the base algorithm, C5.0 shows many strongly significant differences, which 
reinforces the previous conclusions concerning C5.0 behaving very differently from the 
other base algorithms. Regarding the strategies, all observed differences are related to pairs 
of strategies where each comes from a different subgroup, e.g., a chaining strategy against 
a full stacking strategy.

In conclusion, the comparison of the transformation strategies showed different results, 
for some measures, according to the base algorithm used. In this particular case, all strate-
gies use a binary transformation, which makes them very similar to each other. Given that 
differences were still observed, it is reasonable to assume that when different transforma-
tion strategies are evaluated, it is important to investigate distinct base algorithms.

5.4 � Analysis of base algorithms

Exploring a different perspective, the base algorithms are compared by fixing the strate-
gies. The hypothesis investigated is that for each strategy some specific base algorithms 
perform better than the rest. Analogous to the previous section, Fig. 6 presents the results 
of the paired test for base algorithms, in which all base algorithms were compared against 
each other for each one of the strategies. In this test, for each strategy, the algorithm 
whose probability to statistically outperform the other is higher than or equal to 95% is 

Table 6   Divergent probabilities found across the base algorithms in the comparison of the strategies

Left and right are the probabilities obtained in the Bayesian hierarchical test

Measure Strategies C5.0 LR SVMt XGB

Left Right Left Right Left Right Left Right

HL CC x DBR 0.53 0.00 0.35 0.59
Rec

m
BR x NS 0.68 0.01 0.04 0.79
NS x PruDent 0.53 0.03 0.08 0.59

OE CC x MBR 0.74 0.09 0.3 0.50
RL BR+ x MBR 0.24 0.74 1.00 0.00

BR+ x PruDent 0.01 0.81 1.00 0.00
DBR x MBR 0.26 0.72 1.00 0.00
DBR x PruDent 0.01 0.86 1.00 0.00
MBR x PruDent 0.05 0.89 1.00 0.00 0.00 1.00
MBR x RDBR 0.84 0.15 0.01 0.99
PruDent x RDBR 0.97 0.00 0.00 1.00
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highlighted. Similar algorithms (rope ≥ 95%) are represented with an “=” character and an 
empty value indicates inconclusive results (probabilities < 95%).

At a glance, RF and XGB were the dominant base algorithms, regardless of the evalu-
ation measure used. However, they have not been used as the base algorithm in previous 
studies. In contrast, C5.0, followed by LR, obtained the worst results, despite their popular-
ity in multi-label studies.

Probably due to the lack of diversity in the strategies considered, few variations con-
cerning the best base algorithm were observed. Nevertheless, they are related to the ensem-
bles, the most distinctive strategies among the ones investigated, as noticed in Sect. 5.2. An 
illustrative example that reinforces the investigated hypothesis is related to the ranking-loss 
measure. For many strategies, RF was the best base algorithm. However, for the ensembles, 
it was the worst. On the other hand, C5.0, which is not a good choice for many strategies, 
is a suitable alternative for the ensembles. This is very plausible, as ensemble-based base 
algorithms, similar to RF, perform better when their base learners are unstable—which is 
why decision tree induction algorithms (e.g., C5.0) are popular choices inside ensembles 
of machine learning algorithms. Since the predictions of ensemble-based base algorithms 
themselves reduce variance, they are not as suitable for ensembles strategies.

For some comparisons and evaluation measures, one of the base algorithms was sta-
tistically better than the other regardless of the strategy, mainly when C5.0 was involved, 
which typically is the worst of the two. In spite of this regularity, the results reinforce the 
conjecture that the performance of strategies depends on the base algorithm. In particular, 
the results of the ensemble strategies presented a greater variation, concerning the best 
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Fig. 6   Best base algorithm according to the results of the Bayesian hierarchical statistical test. The best 
option for each pair and strategy is indicated by the first letter of the base algorithm, such that C, L, R, S, St 
and X indicate C5.0, LR, RF, SVM, SVMt and XGB, respectively. The symbol ‘=’ indicates they are simi-
lar with statistical significance
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base algorithms, compared to the other strategies. However, additional tests, including a 
more varied set of strategies, can increase support for this claim.

Some pairs of base algorithms, in particular LR/SVM and SVM/SVMt, presented simi-
lar results, with statistical significance, for different evaluation measures. Between LR and 
SVM, the latter was the best option only for the ensembles, but not for all measures. Com-
paring SVM and its optimized version, SVMt, despite the fact the latter performed appar-
ently better than the former in terms of F1, macro-F1 and macro-recall, the probabilities 
obtained in the Bayesian test were not greater than or equal to the 95%. Regarding C5.0 and 
LR, the latter shows clear advantages over the former. Finally, between RF and XGB, the 
most dominant base algorithms according to the experimental results, the choice between 
one of them depends on the evaluation measure. XGB was the best option for macro-F1 
and macro-recall, while RF was the best for hamming-loss, one-error, and ranking-loss.

In summary, the results presented in this section provide some support for the claim that 
the choice of base algorithm can strongly influence a strategy’s performance. Furthermore, 
some base algorithms performed better on average than others, which again can influence 
and even distort comparisons of multi-label learning strategies.

5.5 � Combining strategies and base algorithms

The previous analyses showed that the ranking of the best strategies varies according to the 
base algorithm used. To further investigate this issue, all strategy/base-algorithm pairs are 
evaluated against each other without distinctions. In order to summarize the 60 pairs (strat-
egy/base-algorithm), Annex A presents the ranking for each pair considering all data sets 
and the strategies’ results using the best base algorithm. The statistical results comparing 
those strategies are presented in Annex B.

Considering the BR strategy as a more robust baseline, its performance is analysed 
in relation to the other strategies. For the measures F1, macro-F1 and macro-recall the 
ensembles outperform BR with statistical significance, regardless of the base algorithm. 
By contrast, BR outperforms them to the measures hamming-loss, macro-precision, rank-
ing-loss and subset-accuracy. In relation to the other strategies, there is no case in which 
BR is completely outperformed by other strategy and vice-versa. Specifically for one-error 
measure, BRRF achieved the best ranking over all combinations and outperformed the other 
strategies for 4 or 5 base algorithms.

To complement these results, Table  7 presents, for all the selected pairs, the number 
and percentage of other pairs that were statistically outperformed with a probability greater 
than or equal to 95%, according to the Bayesian statistical test. The strategies are sorted 
from top to bottom based on the number of pairs outperformed.

None of the strategies obtained a reasonable performance over all evaluation measures. 
The highest results are observed for the ensembles using XGB that outperformed more 
than 90% of the other strategies in terms of F1, macro-F1 and macro-recall. Consequently, 
they are the best ranked pairs of strategy/base-algorithm according to the number of out-
performed pairs. The lack of a dominant combination for the other measures shows that all 
the strategies obtained a good performance for some base algorithms.

Concerning the base algorithms, the best results were obtained mainly by either RF or 
XGB. Both algorithms are represented in the table by all strategies. In terms of strategies, 
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despite being the simplest, BR presented a good performance for the hamming-loss, one-
error and ranking-loss.

To sum up, when all strategies/base-algorithms pairs are compared, some strategies 
appear as dominant for some measures regardless of the choice of base algorithm, such as 
EBR and ECC for macro-F1. On the other hand, for some evaluation measures, the choice 
of the base algorithm dominates the results, regardless of the chosen strategies, such as RF 
for ranking-loss. Even though all strategies use binary transformation, and consequently are 
very similar to each other, statistical differences were observed between them. In conclu-
sion, an empirical comparison of multiple transformation strategies together with multiple 
base algorithms should be considered for any future study proposing new transformations.

Table 7   Selected pairs of strategy/base-algorithm and the percentage of other pairs that were statistically 
outperformed by them

Strategy/base-algorithm F1 (%) F1
m

 (%) Prec
m

 (%) Rec
m

 (%) HL (%) OE (%) RL (%) SA (%)

EBR
XGB

90 92 24 92 27 27 19 20
ECC

XGB
90 85 25 92 27 22 20 27

PruDent
RF

14 2 39 0 49 58 58 32
MBR

LR
14 25 24 27 32 20 37 25

RDBR
SVMt

32 46 25 47 29 20 37 39
DBR

SVMt
19 36 25 44 34 24 37 36

BR
RF

14 2 32 0 47 66 59 32
NS

RF
14 12 36 0 41 53 53 39

BR+
SVM

14 27 24 27 32 20 37 31
CC

RF
14 7 31 0 49 53 53 37

MBR
XGB

14 46 27 36 34 19 22 32
BR

XGB
14 46 27 36 32 20 39 31

PruDent
XGB

14 47 27 39 34 20 37 31
CC

XGB
14 34 27 27 27 17 37 32

NS
XGB

14 37 27 27 27 17 37 34
BR+

SVMt
17 37 25 41 34 24 37 36

MBR
RF

14 3 37 0 49 53 47 32
RDBR

RF
14 0 47 0 42 29 53 37

BR+
RF

14 3 42 0 42 27 51 37
DBR

RF
14 3 39 0 42 49 53 36

EBR
SVM

42 64 14 92 14 14 5 7
DBR

XGB
14 42 25 34 27 19 37 32

RDBR
XGB

14 42 27 34 31 17 37 36
BR+

XGB
14 42 27 36 29 19 37 34

EBR
RF

81 27 27 29 22 20 0 20
ECC

RF
88 27 27 32 20 19 0 22

NS
SVMt

14 32 32 32 31 22 37 34
CC

SVMt
14 36 31 34 36 22 37 36
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5.6 � Label problems

It can be observed in Fig. 7 that the values of F1 are substantially higher than the values 
of macro-F1 for many data sets. This occurs when the value of F1 is very low for one or 
more labels. In practice, the least common labels are often behind these differences. As 
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Fig. 7   Comparative results of the measures F1 and macro-F1 for all data sets and strategy/base-algorithm 
pairs

Table 8   Average label problems 
results over all strategy/base-
algorithm pairs

Data set MLP WLP

flags 0.03 0.04
ohsumed 0.06 0.07
medical 0.06 0.10
yeast 0.10 0.11
fapesp 0.13 0.19
slashdot 0.15 0.20
birds 0.15 0.23
mediamill 0.17 0.20
msd-195 0.24 0.34
enron 0.29 0.44
stackex-chess 0.32 0.45
langlog 0.34 0.47
cal500 0.37 0.54
corel5k 0.55 0.73
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the previously defined label problems MLP and WLP (Eqs. 13 and 14) provide a possible 
explanation, their average proportions over all strategy/base-algorithm pairs are presented 
in Table 8.

For the sake of clarity, the data sets without problems were removed from the table. 
For many data sets, the values obtained paint a clear picture, indicating that many labels 
were wrongly predicted or even never predicted at all. E.g., in the worst case, on average 
73% of the labels from the corel5k ( ≈ 159 labels) were wrongly predicted for all test 
instances, and 55% ( ≈ 120 labels) were never predicted. The high values observed for 
many data sets indicate a problem generated by the binary transformation strategies not 
previously detected.

This also justifies the high macro-precision values in comparison with the macro-recall 
values (Fig.  8). The best results for the measures F1, macro-F1 and macro-recall were 
achieved by the strategy ensembles. Since they use an internal threshold technique for 
selecting relevant labels, their recall is enhanced and, consequently, their F1 result is also 
higher. Additional studies are needed to test if this behavior is mainly due to this post-
processing used by the ensembles.

5.7 � Summary

The main motivation for this study was to obtain a better understanding of how the base 
algorithm impacts the binary transformation strategies. The results presented in the 
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base-algorithm pairs
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previous sections show that the choice of the base algorithm can interfere in the behav-
iour of binary transformation strategies. Thus, by considering distinct base algorithms, an 
empirical study involving transformation strategies can become less biased.

Different rankings of strategies and statistical results were obtained by using differ-
ent base algorithms. This, however, is not common practice in multi-label research. Usu-
ally, transformation strategies are proposed and compared using a single base algorithm 
(Read et al. 2011; Madjarov et al. 2012; Montañes et al. 2014; Moyano et al. 2018). The 
claim that by segmenting the comparison of base algorithms more consistent results can 
be obtained (Moyano et  al. 2018) might actually be misleading. In addition, across all 
assessed measures, there was not a single base algorithm that obtained the best results for 
all strategies. Consequently, performing a comparison of strategies using only one fixed 
base algorithm should be avoided.

Nevertheless, it is still valid to compare the strategies using a fixed base algorithm, 
since it can help with understanding the scenarios in which a strategy is improved. For 
instance, a clear superiority of the ensembles EBR and ECC, regardless of the evaluation 
measure, was observed when the base algorithm C5.0 was used. On the other hand, when 
using the LR and RF algorithms, ensemble strategies did not perform so well, showing 
that for a given base algorithm some strategies might not be suitable. Even though some 
base algorithms might obtain a better overall performance than others, the diversity of base 
algorithms is valid to determine the conditions in which each strategy is convenient. Fur-
thermore, although predictive performance is very important, there are reasons one may 
consider different base classifiers. For example, decision trees provide good interpretation, 
logistic regression provides good probability estimates. Therefore, it is useful to consider 
the relative performance difference rather than simply the top performance.

Considering the large experimental scenario evaluated, the hyperparameter tuning pro-
cedure adopted was simple and did not achieve the best results for the optimized measure. 
The use of the SVMt base algorithm produced distinct results when compared to SVM, 
but when compared to others, such as RF and XGB, the SVMt results were more similar 
to SVM. Therefore, in this context, hyperparameter tuning can be seen secondary to base 
algorithm selection, provided reasonable default parameter settings can be identified for the 
selected base algorithm. However, we remark that this indeed depends on the model class 
in question; in which some models are more sensitive to initial hyperparameter settings 
than others. Ideally, if computational power allows for it, then the base algorithms should 
be tuned as part of the base-algorithm selection process, especially if the performance dif-
ference between them is not great. Of course, for large scale experimental comparisons, 
this may not be feasible due to the extra degree of complexity implied.

Auto-ML for MLC (de Sá et al. 2017; Wever et al. 2019) can be used to find the best 
combination between strategies and base algorithm. Furthermore, it can tune the hyperpa-
rameters of both of them, as well as the pipeline of the solution, in order to bring the best 
results for a given problem. Thus, Auto-ML tools is an answer to the question of how to 
give advice which multi-label classifier and base algorithm to use. However, it demands 
high computational resources, which may be limiting its use.

Regarding the closely-related strategies (BR and pruned stacking; chaining; full stack-
ing; and the ensembles investigated here), their differences are shown to be subtle and cir-
cumstantial. Given the relatively small number of data sets that have been considered in 
empirical studies, finding characteristics of a problem that distinguishes strategies is not a 
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trivial task. Thus, the choice of a strategy between those close-related might also be seen 
as merely a matter of convenience, potentially influenced by other performance considera-
tions, such as memory or runtime cost.

The differences between strategies from distinct groups are very consistent for the dif-
ferent evaluation criteria. Therefore, for empirical studies involving binary transformation 
strategies in MLC, we strongly recommend the use of strategies from different groups, as 
well as various base algorithms. The selection between strategies in the same group is not 
an easy task. However, it is important to provide some guidance concerning which one to 
use. We decided to use the average ranking considering all base algorithms (“Appendix 1”).

Table  9 summarises the experimental results, describing good strategies for different 
evaluation measures. In practical applications, RF and XGB should be considered as base 
algorithms, in addition to the usual favorites, which include C5.0, LR, and SVM. We note 
that if the median rank for each base algorithm or another criterion were adopted, differ-
ent recommendations would probably be observed but the predicted performance obtained 
would not be expected to be very different.

6 � Conclusion

This paper presented an extensive experimental evaluation of binary transformation strate-
gies for multi-label classification. Different perspectives were considered in addition to the 
traditional approach of selecting just a single base algorithm when comparing multi-label 
strategies. Thus, bipartition predictions were compared, strategies were compared for fixed 
base algorithms, base algorithm were compared for fixed strategies, and all possible pairs 
of strategy and base algorithm were compared with each other.

The main conclusions to draw from this study are:

•	 Binary transformation strategies are strongly influenced by the base algorithm used. 
Consequently, empirical studies should always consider distinct and diversified base 
algorithms.

Table 9   Suggestion of binary 
transformation strategies to be 
picked in empirical experiments

The recommendation is based on criteria such as dissimilarity and the 
strategies’ average ranking considering all base algorithms

Measure Ranking of suggested strategies

1 2 3 4 5

F1 EBR MBR RDBR BR CC
macro-F1 EBR RDBR MBR CC BR
macro-precision MBR NS RDBR BR ECC
macro-recall EBR RDBR MBR CC BR
hamming-loss PruDent BR CC BR+ EBR
one-error BR PruDent NS DBR EBR
ranking-loss BR NS PruDent DBR ECC
subset-accuracy RDBR NS PruDent BR ECC
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•	 RF and XGB, which showed high predictive performance across a number of strat-
egies, should be considered in the subset of base algorithms selected to perform an 
empirical study in MLC.

•	 The investigated strategies and base algorithms always either misclassified or were una-
ble to predict some of the labels. So far this problem has been ignored, mainly because 
the traditional evaluation measures are not able to capture this problem. Nevertheless, 
this is a problem that requires more attention in future studies.

More specific conclusions for multi-label strategies and evaluation measures include:

•	 Ensembles using internal threshold selection obtained good results for F1, macro-F1 
and macro-recall.

•	 Despite being considered a baseline in many studies, BR obtained the best predictive 
performance for the ranking measures, one-error and ranking-loss. In addition, BR 
obtained good results for the macro-precision and hamming-loss measures, depending 
on the choice of base algorithm.

•	 The full stacking strategies and the NS strategy, which uses a subset correction proce-
dure, obtained the best results for the subset-accuracy measure.

Future work includes investigating the impact of the base algorithm on other transforma-
tions such as the label-powerset method. Recommendation of combinations of a strategy 
and a base algorithm based on a desired measure, as well as data set characteristics is 
another promising direction. Finally, the two types of label prediction failure, MLP and 
WLP, need to be researched in more depth.
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Appendix 1: Best strategies/base algorithms

This section presents the strategy/base-algorithm’s ranking over all data sets (Figs. 9, 10, 
11, 12, 13, 14, 15 and 16) and the performance value obtained for each strategy when com-
bined with the best base algorithm (Tables 10, 11, 12, 13, 14, 15, 16 and 17). The median 
ranking is used to select the base-algorithm for each strategy.    
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Fig. 10   Strategy/base-algorithm’s rankings for the hamming-loss measure
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Fig. 11   Strategy/base-algorithm’s rankings for the macro-F1 measure
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Fig. 12   Strategy/base-algorithm’s rankings for the macro-precision measure
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Fig. 13   Strategy/base-algorithm’s rankings for the macro-recall measure
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Fig. 14   Strategy/base-algorithm’s rankings for the one-error measure
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Fig. 15   Strategy/base-algorithm’s rankings for the ranking-loss measure
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Fig. 16   Strategy/base-algorithm’s rankings for the subset-accuracy measure
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Appendix 2: Statistical results

From the previous results, the best pairs of strategies/base-algorithms were statistically 
compared against the other pairs using the Bayesian statistical test. Tables 18, 19, 20, 21, 
22, 23, 24 and 25 report the pairs that the considered strategies/base-algorithms statisti-
cally outperform with a probability greater than or equal to 95%.

Table 18   Bayesian statistical results for the F1 measure such that the strategies in the row improve the strat-
egies in the columns with a probability greater than or equal to 95%

The cells’ content indicates the base algorithms from the columns
Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

EBR
XGB

* * * * 124 12 * * * *
ECC

XGB
* * * * 124 12 * * * *

PruDent
RF

1 1 1 1 1 1 1 1
MBR

LR
1 1 1 1 1 1 1 1

RDBR
SVMt

13 13 136 13 1 1 13 16 13 13
DBR

SVMt
1 1 136 1 1 1 1 13

BR
RF

1 1 1 1 1 1 1 1
NS

RF
1 1 1 1 1 1 1 1

BR+
SVM

1 1 1 1 1 1 1 1
CC

RF
1 1 1 1 1 1 1 1

Table 19   Bayesian Statistical results for the hamming-loss measure such that the strategies in the row 
improve the strategies in the columns with a probability greater than or equal to 95%

The cells’ content indicates the base algorithms from the columns
Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

PruDent
RF

16 16 16 156 * * 16 16 16 16
BR

RF
16 16 16 16 * * 16 16 16 16

MBR
RF

16 16 16 156 * * 16 16 16 16
BR+

RF
1 16 16 16 * * 1 16 1 16

DBR
RF

1 16 16 16 * * 1 16 1 16
RDBR

RF
1 16 16 16 * * 1 16 1 16

CC
RF

16 16 16 156 * * 16 16 16 16
NS

RF
1 16 16 16 * * 1 16 1 1

EBR
RF

1 1 1 1 124 12 1 1 1 1
ECC

RF
1 1 1 1 12 12 1 1 1 1
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Table 20   Bayesian Statistical results for the macro-F1 measure such that the strategies in the row improve 
the strategies in the columns with a probability greater than or equal to 95%

The cells’ content indicates the base algorithms from the columns
Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

EBR
XGB

* * * * 123 123 * * * *
ECC

XGB
* 12346 12346 12346 123 123 * * * 12346

MBR
XGB

1234 13 123 13 13 13 13 1234 1234 13
BR

XGB
1234 13 1234 13 13 1 13 1234 1234 13

PruDent
XGB

1234 13 1234 123 13 1 13 1234 1234 13
RDBR

SVMt
1234 13 13 13 12 1 1234 1234 1234 13

DBR
SVMt

1234 13 13 13 13 1234 134 13
CC

XGB
123 13 13 13 1 1 13 123 13 13

NS
XGB

1234 13 13 13 1 1 13 123 134 13
BR+

SVMt
1234 13 13 13 13 1234 1234 13

Table 21   Bayesian Statistical results for the macro-precision measure such that the strategies in the row 
improve the strategies in the columns with a probability greater than or equal to 95%

The cells’ content indicates the base algorithms from the columns
Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

MBR
RF

1 1 1 12 * 12345 1 12 14 1
CC

RF
1 1 1 1 12345 12345 1 1 1 1

RDBR
RF

12 124 12 124 * 12345 1 124 14 1
NS

RF
1 1 1 1 * * 1 12 1 1

BR+
RF

12 1 12 12 * 12345 1 124 14 1
PruDent

RF
12 1 1 12 * 12345 1 12 14 1

DBR
RF

12 1 1 12 * 12345 1 12 14 1
BR

RF
1 1 1 1 * 12345 1 1 1 1

ECC
XGB

1 1 1 1 1245 124 1 1 1 1
EBR

XGB
1 1 1 1 124 124 1 1 1 1
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Table 22   Bayesian Statistical results for the macro-recall measure such that the strategies in the row 
improve the strategies in the columns with a probability greater than or equal to 95%

The cells’ content indicates the base algorithms from the columns
Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

EBR
SVM

* * * * 123 123 * * * *
ECC

XGB
* * * * 123 123 * * * *

DBR
XGB

1234 13 13 13 13 123 134 13
RDBR

XGB
1234 13 13 13 13 123 134 13

MBR
XGB

1234 13 13 13 13 1234 134 13
BR

XGB
1234 13 13 13 13 1234 134 13

BR+
XGB

1234 13 13 13 13 1234 134 13
PruDent

XGB
1234 13 134 13 13 1234 1234 13

CC
XGB

13 13 13 13 13 13 13 13
NS

XGB
13 13 13 13 13 13 13 13

Table 23   Bayesian Statistical results for the one-error measure such that the strategies in the row improve 
the strategies in the columns with a probability greater than or equal to 95%

The cells’ content indicates the base algorithms from the columns
Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

BR
RF

1 1246 12456 1246 1245 1246 12456 1246 124 12456
PruDent

RF
1 1246 1246 1246 1245 124 12456 16 124 1246

DBR
RF

1 1246 1246 1246 124 124 146 16 12 124
MBR

RF
1 1246 1246 1246 124 124 1456 16 12 1246

NS
RF

1 1246 1246 1246 124 124 1456 16 12 1246
CC

RF
1 1246 1246 1246 124 124 1456 16 12 1246

RDBR
RF

1 1 146 1 12 12 16 16 12 1
BR+

RF
1 1 16 1 12 12 16 16 12 1

EBR
XGB

1 1 16 1 124 12 16 1 12 1
ECC

XGB
1 1 16 1 12 12 1 1 1 1
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Table 24   Bayesian Statistical results for the ranking-loss measure such that the strategies in the row 
improve the strategies in the columns with a probability greater than or equal to 95%

The cells’ content indicates the base algorithms from the columns
Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

DBR
RF

1 126 16 16 * * 156 16 126 126
PruDent

RF
1 1246 16 126 * * 156 16 126 1246

BR
RF

1 1246 16 1246 * * 156 16 126 1246
BR+

RF
1 16 16 16 * * 156 16 126 126

CC
RF

1 126 16 16 * * 156 16 126 126
NS

RF
1 126 16 16 * * 156 16 126 126

MBR
RF

1 16 16 16 * * 156 16 12 16
RDBR

RF
1 126 16 16 * * 156 16 126 126

EBR
XGB

1 1 1 1 34 3 1 1 1 1
ECC

XGB
1 1 1 1 34 34 1 1 1 1

Table 25   Bayesian Statistical results for the subset-accuracy measure such that the strategies in the row 
improve the strategies in the columns with a probability greater than or equal to 95%

The cells’ content indicates the base algorithms from the columns
Symbols, 1: C5.0; 2: LR; 3: RF; 4: SVM; 5: SVMt; 6: XGB; Empty: none; *: All

Strategy BR BR+ CC DBR EBR ECC MBR NS PruDent RDBR

RDBR
RF

16 1 1 1 * * 16 1 1 1
BR+

SVMt
16 1 1 1 * * 1 1 1 1

NS
SVMt

1 1 1 1 * * 1 1 1 1
DBR

RF
16 1 1 1 * * 1 1 1 1

CC
SVMt

16 1 1 1 * * 1 1 1 1
PruDent

RF
1 1 1 1 * 12345 1 1 1 1

MBR
RF

1 1 1 1 * 12345 1 1 1 1
BR

RF
1 1 1 1 * 12345 1 1 1 1

ECC
XGB

1 1 1 1 1245 1245 1 1 1 1
EBR

XGB
1 1 1 1 12 12 1 1 1 1
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