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Abstract
We propose a supervised anomaly detection method for data with inexact anomaly labels, 
where each label, which is assigned to a set of instances, indicates that at least one instance 
in the set is anomalous. Although many anomaly detection methods have been proposed, 
they cannot handle inexact anomaly labels. To measure the performance with inexact 
anomaly labels, we define the inexact AUC, which is our extension of the area under the 
ROC curve (AUC) for inexact labels. The proposed method trains an anomaly score func-
tion so that the smooth approximation of the inexact AUC increases while anomaly scores 
for non-anomalous instances become low. We model the anomaly score function by a neu-
ral network-based unsupervised anomaly detection method, e.g., autoencoders. The pro-
posed method performs well even when only a small number of inexact labels are avail-
able by incorporating an unsupervised anomaly detection mechanism with inexact AUC 
maximization. Using various datasets, we experimentally demonstrate that our proposed 
method improves the anomaly detection performance with inexact anomaly labels, and out-
performs existing unsupervised and supervised anomaly detection and multiple instance 
learning methods.

Keywords Anomaly detection · Inexact labels · AUC maximization

1 Introduction

Anomaly detection is an important machine learning task, which is a task to find the anom-
alous instances in a dataset. Anomaly detection has been used in a wide variety of appli-
cations (Chandola et  al. 2009; Patcha and Park 2007; Hodge and Austin 2004), such as 
network intrusion detection for cyber-security (Dokas et al. 2002; Yamanishi et al. 2004), 
fraud detection for credit cards (Aleskerov et  al. 1997), defect detection in industrial 
machines (Fujimaki et  al. 2005; Idé and Kashima 2004) and disease outbreak detection 
(Wong et al. 2003).
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Many unsupervised anomaly detection methods have been proposed (Breunig et al. 
2000; Schölkopf et  al. 2001; Liu et  al. 2008; Sakurada and Yairi 2014). When anom-
aly labels, which indicate whether each instance is anomalous, are given, the anomaly 
detection performance can be improved (Singh and Silakari 2009; Mukkamala et  al. 
2005; Rapaka et al. 2003; Nadeem et al. 2016; Gao et al. 2006; Das et al. 2016, 2017). 
However, it is difficult to attach exact anomaly labels in some situations. Consider one 
such example from server system failure detection, where server logs at each timestep 
is an instance, and we want to classify each instance into anomalous (system failure) 
or non-anomalous classes. System operators often do not know the exact timestep of 
failures; they only know that a failure occurred within a certain period of timesteps. 
In this case, anomaly labels are attached to multiple instances in the certain period of 
timesteps, in which non-anomalous instances might be included. Another example is 
detecting anomalous user behaviors in many computers, where each computer is simul-
taneously used by multiple users. Administrators can determine whether a computer has 
problems or not by checking its system logs, but they sometimes cannot identify which 
users are anomalous. In this case, anomaly labels are attached to multiple users who use 
the problematic computer.

In this paper, we propose a supervised anomaly detection method for data with inexact 
anomaly labels. An inexact anomaly label is attached to a set of instances, indicating that 
at least one instance in the set is anomalous. We call this set an inexact anomaly set. First, 
we define an extension of the area under the ROC curve (AUC) for performance measure-
ment with inexact labels, which we call an inexact AUC . To the best of our knowledge, 
the inexact AUC is the first extension of the AUC that can handle inexact labels. Then we 
develop an anomaly detection method that maximizes the inexact AUC. With the proposed 
method, a function, which outputs an anomaly score given an instance, is modeled by the 
reconstruction error with autoencoders, which are a successfully used neural network-
based unsupervised anomaly detection method (Sakurada and Yairi 2014; Sabokrou et al. 
2016; Chong and Tay 2017; Zhou and Paffenroth 2017). Note that the proposed method 
can use any unsupervised anomaly detection methods with learnable parameters instead of 
autoencoders, such as variational autoencoders (Kingma and Wellniga 2014), energy-based 
models (Zhai et  al. 2016), and isolation forests (Liu et  al. 2008). The parameters of the 
anomaly score function are trained so that the anomaly scores for non-anomalous instances 
become low while the smooth approximation of the inexact AUC becomes high. Since our 
objective function is differentiable, the anomaly score function can be estimated efficiently 
using stochastic gradient-based optimization methods.

The proposed method performs well even when only a few inexact labels are given 
since it incorporates an unsupervised anomaly detection mechanism, which works with-
out label information. In addition, the proposed method is robust to class imbalance since 
our proposed inexact AUC maximization is related to AUC maximization, which achieved 
high performance on imbalanced data classification tasks (Cortes and Mohri 2004). Class 
imbalance robustness is important for anomaly detection since anomalous instances occur 
more rarely than non-anomalous instances.

The remainder of the paper is organized as follows. In Sect. 2, we briefly review related 
work. In Sect. 3, we introduce AUC, which is the basis of the inexact AUC. In Sect. 4, we 
present the inexact AUC, define our task, and propose our method for supervised anomaly 
detection using inexact labels. In Sect. 5, we experimentally demonstrate the effectiveness 
of our proposed method using various datasets by comparing with existing anomaly detec-
tion and multiple instance learning methods. Finally, we present concluding remarks and 
discuss future work in Sect. 6.
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2  Related work

Inexact labels in classification tasks have been considered in multiple instance learn-
ing methods (Dietterich et  al. 1997; Maron and Lozano-Pérez 1998; Babenko et  al. 
2009; Wu et al. 2015; Cinbis et al. 2017). With standard supervised learning, we are 
given training instances that are individually labeled. On the other hand, with mul-
tiple instance learning, we are given labeled sets, where each set contains multiple 
instances. For a binary classification multiple instance learning task, a set is labeled 
negative if all the instances in it are negative, and it is labeled positive if it contains 
at least one positive instance. Inexact anomaly sets considered in this paper are the 
same with this definition on positive labeled sets, where a set is labeled anomalous if it 
contains at least one anomalous instance. Multiple instance learning has been used for 
many applications, such as drug activity prediction (Dietterich et al. 1997; Davis et al. 
2007), image classification (Chen et al. 2006; Andrews et al. 2003; Zhang et al. 2002), 
and document classification (Zhou et al. 2009; Bunescu and Mooney 2007), but not for 
anomaly detection. With existing multiple instance learning methods, noisy-or (Maron 
and Lozano-Pérez 1998) and maximum (Andrews et al. 2003; Pinheiro and Collobert 
2015; Zhu et  al. 2017; Feng and Zhou 2017; Ilse et  al. 2018) operators are used for 
modeling set-level labels from instance-lebel labels. The proposed method uses the 
maximum operator since anomaly scores are not probabilities, and noisy-or modeling 
requires probabilities. An advantage of the proposed method over existing multiple 
instance learning methods is that the proposed method works well with a small num-
ber of inexact anomaly labels using inexact AUC maximization and incorporating an 
unsupervised anomaly detection mechanism, where we exploit the characteristics of 
anomaly detection tasks. Existing multiple instance learning methods are not robust to 
class imbalance (Herrera et al. 2016; Carbonneau et al. 2018).

Anomaly detection is also called outlier detection (Hodge and Austin 2004) or 
novelty detection (Markou and Singh 2003). Aanomaly detecion has been used in a 
wide variety of applications (Chandola et al. 2009; Patcha and Park 2007; Hodge and 
Austin 2004), including network intrusion detection for cyber-security (Dokas et  al. 
2002; Yamanishi et al. 2004), fraud detection for credit cards (Aleskerov et al. 1997), 
defect detection in industrial machines (Fujimaki et al. 2005; Idé and Kashima 2004) 
and disease outbreak detection (Wong et al. 2003). Many unsupervised methods have 
been proposed, such as the local outlier factor (Breunig et al. 2000), one-class support 
vector machines (Schölkopf et  al. 2001), isolation forests (Liu et  al. 2008), and den-
sity estimation based methods (Shewhart 1931; Eskin 2000; Laxhammar et al. 2009). 
However, these methods cannot use label information. Although supervised and semi-
supervised anomaly detection methods have been proposed to exploit label information 
(Nadeem et  al. 2016; Gao et  al. 2006; Das et  al. 2016, 2017; Munawar et  al. 2017; 
Pimentel et al. 2018; Akcay et al. 2018; Iwata and Yamanaka 2019), they cannot han-
dle inexact anomaly labels.

A number of AUC maximization methods have been proposed (Cortes and Mohri 
2004; Brefeld and Scheffer 2005; Ying et al. 2016; Fujino and Ueda 2016; Narasimhan 
and Agarwal 2017; Sakai et al. 2018) for training on class imbalanced data. However, 
these methods do not consider inexact labels. As a measurement related to the AUC, 
the partial AUC (Komori and Eguchi 2010) has been proposed. The partial AUC is the 
partial area under the curve with a specific false positive rate range, and it is different 
from the inexact AUC.
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3  Preliminaries: AUC 

Let X  be an instance space, and let pA and pN be probability distributions over anomalous 
and non-anomalous instances in X  . Suppose that a ∶ X → ℝ is an anomaly score function, 
and anomaly detection is carried out based on its sign:

where � is an instance and h is a threshold. The true positive rate (TPR) of anomaly score 
function a(�) is the rate that it correctly classifies a random anomaly from pA as anomalous,

where � is the expectation and I(⋅) is the indicator function; I(A) = 1 if A is true, and 
I(A) = 0 otherwise. The false positive rate (FPR) is the rate that it misclassifies a random 
non-anomalous instance from pN as anomalous,

The ROC curve is the plot of TPR(h) as a function of FPR(h) with different threshold h. 
The area under this curve (AUC) (Hanley and McNeil 1982) is computed as follows (Dodd 
and Pepe 2003):

where FPR−1(s) = inf{h ∈ ℝ|FPR(h) ≤ s} . AUC is the rate where a randomly sampled 
anomalous instance has a higher anomaly score than a randomly sampled non-anomalous 
instance.

Given sets of anomalous instances A = {�A
i
}
|A|
i=1

 drawn from pA and non-anomalous 
instances N = {�N

j
}
|N|
j=1

 drawn from pN , an empirical AUC is calculated by

where |A| represents the size of set A.

4  Proposed method

4.1  Inexact AUC 

Let B = {�B
i
}
|B|
i=1

 be a set of instances drawn from probability distribution pS , where at least 
one instance is drawn from anomalous distribution pA , and the other instances are drawn 
from non-anomalous distribution pN . We define inexact true positive rate (inexact TPR) 
as the rate where anomaly score function a(�) classifies at least one instance in a random 
instance set from pS as anomalous:

(1)sign(a(�) − h),

(2)TPR(h) = �
�
A∼pA

[I(a(�A) > h)],

(3)FPR(h) = �
�
N∼pN

[I(a(�N) > h)].

(4)AUC = ∫
1

0

TPR(FPR−1(s))ds = �
�
A∼pA,�

N∼pN
[I(a(�A) > a(�N))],

(5)
�AUC =

1

|A||N|
∑
�
A
i
∈A

∑
�
N
j
∈N

I(a(�A
i
) > a(�N

j
)),
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We then define the inexact AUC by the area under the curve of iTPR(h) as a function of 
FPR(h) with different threshold h in a similar way with the AUC (4) as follows:

Figure 1 shows an example of the inexact AUC. Inexact AUC is the rate where at least 
one instance in a randomly sampled inexact anomaly set has a higher anomaly score than 
a randomly sampled non-anomalous instance. When the label information is exact, i.e., 
every inexact anomaly set B contains only a single anomalous instance, the inexact AUC 
(7) is equivalent to the AUC (4). In addition, when anomaly score function a(�) gives 
higher scores to truely anomalous instances than false anomalous instances in every inex-
act anomaly set, the inexact AUC is equivalent to the AUC. Therefore, the inexact AUC is 
a natural extension of the AUC for inexact labels.

Given a set of inexact anomaly sets S = {Bk}
|S|
k=1

 , where Bk = {�B
ki
}
|Bk|
i=1

 , drawn from 
pS , and a set of non-anomalous instances N = {�N

j
}
|N|
j=1

 drawn from pN , we calculate an 
empirical inexact AUC as follows:

Figure 2 shows an example of the empirical inexact AUC. The maximum operator has been 
widely used for multiple instance learning methods (Andrews et  al. 2003; Pinheiro and 
Collobert 2015; Zhu et al. 2017; Feng and Zhou 2017; Ilse et al. 2018). The proposed inex-
act AUC can evaluate score functions properly even with class imbalanced data by incor-
porating the maximum operator into the AUC framework.

4.2  Task

Suppose that we are given a set of inexact anomaly sets S and a set of non-anoma-
lous instances N  for training. Our task is to estimate anomaly scores of test instances, 
which are not included in the training data, so that the anomaly score is high when the 
test instance is anomalous, and low when it is non-anomalous. Table 1 summarizes our 
notation. 

(6)iTPR(h) = �B∼pS

⎡⎢⎢⎣
I

⎛⎜⎜⎝
�
�
B
i
∈B

�
a(�B

i
) > h)

�⎞⎟⎟⎠

⎤⎥⎥⎦
= �B∼pS

�
I(max

xB
i
∈B

a(�B
i
) > h)

�
.

(7)iAUC = ∫
1

0

iTPR(FPR−1(s))ds = �B∼pS,�
N∼pN

[I(max
�
B
i
∈B

a(�B
i
) > a(�N))].

(8)
�iAUC =

1

|S||N|
∑
Bk∈S

∑
�
N
j
∈N

I[max
�
B
ki
∈Bk

a(�B
ki
) > a(�N

j
)].

Fig. 1  Inexact AUC: area under 
the curve of the inexact true 
positive ratio as a function of the 
false positive rate with different 
threshold
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4.3  Anomaly scores

For the anomaly score function, we use the following reconstruction error with deep 
autoencoders:

where f (⋅;�f) is an encoder modeled by a neural network with parameters �f , g(⋅;�g) is a 
decoder modeled by a neural network with parameters �g , and � = {�f,�g} is the param-
eters of the anomaly score function. The reconstruction error of an instance is likely to be 
low when instances similar to it often appear in the training data, and the reconstruction 
error is likely to be high when no similar instances are contained in the training data. With 
the proposed method, we can use other anomaly score functions that are differentiable with 
respect to parameters, such as Gaussian mixtures (Eskin 2000; An and Cho 2015; Suh et al. 
2016; Xu et al. 2018), variational autoencoders (Kingma and Wellniga 2014), energy-based 
models (Zhai et al. 2016), and isolation forests with weight adjustment (Das et al. 2017).

4.4  Objective function

With the proposed method, parameters � are trained by minimizing the anomaly scores 
for non-anomalous instances while maximizing the empirical inexact AUC (8). To make 
the empirical inexact AUC differentiable with respect to the parameters, we use sigmoid 

(9)a(�;�) =∥ � − g(f (�;�f);�g) ∥
2,

Fig. 2  Example of the empirical inexact AUC. Three sets of inexact anomaly sets and five non-anomalous 
instances are given. Each circle is an instance, and the value in the circle is its anomaly score. Each rectan-
gle represents an inexact anomaly set. In each anomaly set, the instance with the maximum anomaly score 
is used for calculating the empirical inexact AUC 

Table 1  Our notation Symbol Description

S Set of inexact anomaly sets, {Bk}
|S|
k=1

Bk kth inexact anomaly set, where at least 
one instance is anomaly, {�B

ki
}
|Bk |
i=1

A Set of anomalous instances, {�A
i
}
|A|
i=1

N Set of non-anomalous instances, {�N
j
}
|N|
j=1

a(�) Anomaly score of instance �
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function �(A − B) =
1

1+exp(−(A−B))
 instead of step function I(A > B) , which is often used 

for a smooth approximation of the step function. Then the objective function to be mini-
mized is given:

where � ≥ 0 is a hyperparameter that can be tuned using the inexact AUC on the valida-
tion data. When there are no inexact anomaly sets or � = 0 , the second term becomes zero, 
and the first term on the non-anomalous instances remains with the objective function, 
which is the same objective function with a standard autoencoder. By the unsupervised 
anomaly detection mechanism of the first term in (10), the proposed method can detect 
anomalous instances even when there are few inexact anomaly sets. When the first term in 
(10) is removed or � = ∞ , the proposed method corresponds to a multiple instance learn-
ing method (Dietterich et al. 1997; Maron and Lozano-Pérez 1998; Babenko et al. 2009; 
Wu et al. 2015; Cinbis et al. 2017), since inexact labels are used for learning classifiers, 
although existing multiple instance learning methods do not use AUC-based objective 
functions. 

Figure  3 shows an example of anomalous and non-anomalous instances, and inex-
act anomaly sets in a two-dimensional instance space. For unsupervised methods, it is 
difficult to detect test anomalous instance ‘A’ since some instances are located around 
it. Unsupervised methods consider that an instance is anomalous when there are few 
instances around it. Since supervised methods can use label information, they can cor-
rectly detect test anomalous instance ‘A’. However, supervised methods would mis-
classify non-anomalous instances around training instances in the inexact anomaly 
sets (colored triangles in Fig. 3) as anomaly since supervised methods consider all the 
instances in inexact anomaly sets. On the other hand, the proposed method detects ‘A’ 
as anomaly and does not misclassify non-anomalous instances by the second term in 
(10), where at least one instance in each inexact anomaly set has higher anomaly scores 
than non-anomaous instances. The reason is that, by maximizing the second term, red 
and blue circles are likely to have high anomaly scores because they are located closely 
together and the other instances in the inexact anomaly sets are surrounded by non-
anomalous instances, while anomaly scores of the other instances in the inexact anom-
aly sets are not maximized. In addition, the proposed method detects ‘B’ as anomaly by 
incorporating an unsupervised anomaly detection mechanism of the first term in (10).

(10)E =
1

|N|
∑
�
N
j
∈N

a(�N
j
) − �

1

|S||N|
∑
Bk∈S

∑
�
N
j
∈N

�

(
max
�
B
ki
∈Bk

a(�B
ki
) − a(�N

j
)

)
,

Fig. 3  Example of anomalous (circle) and non-anomalous (triangle) instances, and inexact anomaly sets 
(red or blue) in an instance space. Instances with identical color (red or blue) are contained in the same 
inexact anomaly set. White circles are test anomalous instances (Color figure online)
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The computational complexity of calculating the objective function (10) is 
O(|S||B| + |S||N|) , where |B| is the average number of instances in an inexact anomaly set, 
the first term is for finding the maximum of anomaly scores in every inexact anomaly set, 
and the second term is for calculating the difference of scores between inexact anomalous 
instances and non-anomalous instances in the second term in (10).

5  Experiments

5.1  Data

We evaluated our proposed supervised anomaly detection method with a synthetic dataset 
and nine datasets used for unsupervised anomaly detection (Campos et al. 2016) 1.

The synthetic dataset was generated from a two-dimensional Gaussian mixture model 
shown in Figure 4a, b. The non-anomalous instances were generated from two unit-vari-
ance Gaussian distributions with mean at (− 2, 0) and (2, 0), as shown by blue triangles 
in Figure 4(a). The anomalous instances were generated from a Gaussian distribution with 
mean (0, − 1.5) with a small variance and a Gaussian distribution with mean (0 ,3) with a 
wide variance as shown by red circles in Fig. 4a. The latter anomalous Gaussian was only 
used for test data, and it was not used for training and validation data as shown in Fig. 4b. 
We generated 500 instances from the non-anomalous Gaussians, and 200 instances from 
the anomalous Gaussians.

Table 2 shows the following values of the nine anomaly detection datasets: the number 
of anomalous instances |A| , the number of non-anomalous instances |N| , anomaly ratio |A|

|N| , 
and the number of attributes D. We used the nine datasets in (Campos et al. 2016) that con-
tained enough anomalous and non-anomalous instances for generating inexact anomaly 
sets and evaluating methods. Each attribute was linearly normalized to range [0, 1], and 
duplicate instances were removed. The original datasets contained only exact anomaly 
labels. We constructed inexact anomaly sets by randomly sampling non-anomalous 
instances and an anomalous instance for each set.

We used 70% of the non-anomalous instances and ten inexact anomaly sets for training, 
15% of the non-anomalous instances and five inexact anomaly sets for validation, and the 
remaining instances for testing. The number of instances in an inexact anomaly set was five 
with training and validation data, and one with test data; the test data contained only exact 
anomaly labels. For each inexact anomaly set, we included an anomalous instance, and the 
other instances were non-anomalous. For the evaluation measurement, we used AUC on 
test data. For each dataset, we randomly generated ten sets of training, validation and test 
data. We calculated the AUC for each of the ten sets, and averaged over the ten sets (For-
man and Scholz 2010).

5.2  Comparing methods

We compared our proposed method with the following 11 methods: LOF, OSVM, IF, 
AE, KNN, SVM, RF, NN, MIL, SIF and SAE. LOF, OSVM, IF and AE are unsupervised 

1 The datasets were obtained from http://www.dbs.ifi.lmu.de/resea rch/outli er-evalu ation /DAMI/.

http://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/
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anomaly detection methods, where non-anomalous instances were used for training, but 
inexact anomaly sets were not used since they cannot use the label information. KNN, 
SVM, RF, NN, MIL, SIF, SAE and our proposed method are supervised anomaly detection 
methods, where both the attribute � and the label information are used. Since KNN, SVM, 
RF, NN, SIF and SAE cannot handle inexact labels, they assume that all the instances in 

Table 2  Statistics of datasets 
used in our experiments. |A| 
is the number of anomalous 
instances, |N| is the number of 
non-anomalous instances, and D 
is the number of attributes

Data |A| |N| |A|
|N|

D

Annthyroid 350 6666 0.053 21
Cardiotocography 413 1655 0.250 21
InternetAds 177 1598 0.111 1555
KDDCup99 246 60,593 0.004 79
PageBlocks 258 4913 0.053 10
Pima 125 500 0.250 8
SpamBase 697 2788 0.250 57
Waveform 100 3343 0.030 21
Wilt 93 4578 0.020 5

Fig. 4  Synthetic dataset and the estimated anomaly scores in the two-dimensional instance space. a Test 
data: anomalous instances are represented by red circles and non-anomalous instances are represented by 
blue triangles. b Training data: instances in the same inexact anomalous set are represented by circles with 
identical color, and non-anomalous instances are represented by gray triangles. In each inexact anomaly set, 
an instance exists in an anomalous area at the bottom center, and the other instances exist in non-anomalous 
areas where many non-anomalous instances exist. Note that anomalous instances at the top in the test data 
are not contained in the training data. c–f Estimated anomaly scores by the AE (c), SAE (d), MIL (e) and 
the proposed method (f). The shape indicates the true label (circle: anomalous, triangle: non-anomalous), 
the color indicates the estimated anomaly score; the darker red indicates the higher anomaly score, and the 
darker blue indicates lower anomaly score (Color figure online)
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the inexact anomaly sets are anomalous. For hyperparameter tuning, we used the AUC 
scores on the validation data with LOF, OSVM, IF, AE, KNN, SVM, RF, NN, SIF and 
SAE, by assuming that instances in inexact anomaly sets are anomalous. Since the inexact 
AUC is our proposal, we did not use the inexact AUC for them. Since MIL and the pro-
posed method used the inexact AUC for their objective functions, we used the inexact AUC 
scores on the validation data for hyperparameter tuning. We used the scikit-learn imple-
mentation (Pedregosa et al. 2011) with LOF, OSVM, IF, KNN, SVM, RF and NN.

LOF, which is the local outlier factor method (Breunig et  al. 2000), unsupervisedly 
detects anomalies based on the degree of isolation from the surrounding neighborhood. 
The number of neighbors was tuned from {1, 3, 5, 15, 35} using the validation data.

OSVM is the one-class support vector machine (Schölkopf et  al. 2001), which is an 
extension of the support vector machine (SVM) for unlabeled data. OSVM finds the maxi-
mal margin hyperplane, which separates the given non-anomalous data from the origin by 
embedding them in a high-dimensional space by a kernel function. We used the RBF ker-
nel, its kernel hyperparameter was tuned from {10−3, 10−2, 10−1, 1} , and hyperparameter � 
was tuned from {10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1, 0.5, 1}.

IF is the isolation forest method (Liu et al. 2008), which is a tree-based unsupervised 
anomaly detection scheme. IF isolates anomalies by randomly selecting an attribute and 
randomly selecting a split value between the maximum and minimum values of the selected 
attribute. The number of base estimators was chosen from {1, 5, 10, 20, 30, 50, 100}.

AE calculates the anomaly score by the reconstruction error with the autoencoder, 
which is also used with the proposed method. We used the same parameter setting with the 
proposed method for AE, which is described in the next subsection. Although the model of 
the proposed method with � = 0 is the same with that of AE, early stopping criteria were 
different, where the proposed method used the inexact AUC, and AE used the AUC.

KNN is the k-nearest neighbor method, which classifies instances based on the votes of 
neighbors. The number of neighbors was selected from {1, 3, 5, 15, 35}.

SVM is a support vector machine (Schölkopf and Smola 2002), which is a ker-
nel-based binary classification method. We used the RBF kernel, the kernel hyperpa-
rameter was tuned from {10−3, 10−2, 10−1, 1} , and the cost parameter was tuned from 
{10, 2, 1, 0.2, 0.1, 0.02, 0.01}.

RF is the random forest method (Breiman 2001), which is a meta estimator that 
fits a number of decision tree classifiers. The number of trees was chosen from 
{1, 5, 10, 20, 30, 50, 100}.

NN is a feed-forward neural network classifier. We used three layers with recti-
fied linear unit (ReLU) activation, where the number of hidden units was selected from 
{5, 10, 50, 100}.

MIL is a multiple instance learning method based on an autoencoder, which is trained 
by maximizing the inexact AUC. We used the same parameter setting with the proposed 
method for the autoencoder. The proposed method with � = ∞ corresponds to MIL, and 
therefore MIL is a version of the proposed method. We included MIL in comparing meth-
ods in order to demonstrate the effectiveness of the first term of our objective function (10).

SIF is a supervised anomaly detection method based on the isolation forest (Das et al. 
2017), where the weights of the isolation forest are adjusted by maximizing the AUC.

SAE is a supervised anomaly detection method based on an autoencoder, where the 
neural networks are learned by minimizing the reconstruction error while maximizing the 
AUC. We used the same parameter setting with the proposed method for the autoencoder. 
When the proposed method uses the AUC instead of the inexact AUC in the objective 
function (10), the proposed method becomes the SAE.
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5.3  Settings of the proposed method

We used three-layer feed-forward neural networks for the encoder and decoder, where the 
hidden unit size was 128, and the output layer of the encoder and the input layer of the 
decoder was 16. Hyperparameter � was selected from {0, 10−3, 10−2, 10−1, 1, 10, 102, 103} 
using the inexact AUC on the validation data. The validation data were also used for early 
stopping, where the maximum number of training epochs was 1000. We optimized the neu-
ral network parameters using ADAM (Kingma and Ba 2015) with learning rate 10−3 , where 
we randomly sampled eight inexact anomaly sets and 128 non-anomalous instances for 
each batch. We implemented all the methods based on PyTorch (Paszke et al. 2017).

5.4  Results

Figure 4 shows the estimated anomaly scores by AE (c), SAE (d), MIL (e) and the pro-
posed method (f) on the synthetic dataset. Figure 5 shows the ROC curve and test AUC 
by the AE (a), SAE (b), MIL (c) and the proposed method (d) on the synthetic dataset. 
The test AUCs were 0.919 with AE, 0.790 with SAE, 0.905 with MIL, and 0.982 with 
the proposed method. The AE successfully gave relatively high anomaly scores to the 
test anomalous instances at the top in Fig. 4c. However, since the AE is an unsupervised 

Fig. 5  ROC curve and AUC on the test synthetic dataset by a AE, b SAE, c MIL, and d the proposed 
method. X-axis is the false positive rate, and y-axis is the true positive rate
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method and cannot use label information, some anomalous instances at the bottom 
center were misclassified as non-anomaly. The SAE is a supervised method, therefore 
the anomalous instances at the bottom center in Fig. 4d were identified as anomaly more 
appropriately than the AE. However, since the SAE cannot handle inexact labels, some 
test non-anomalous instances, that were located around non-anomalous instances in the 
training inexact anomaly sets, were falsely classified as anomaly. The MIL correctly 
gave lower anomaly scores to test non-anomalous instances by handling inexact labels 
than the SAE in Fig. 4e. However, the MIL failed to correctly give high anomaly scores 
to unseen anomalous instances at the top. On the other hand, because the proposed 
method is trained by minimizing the anomaly scores for non-anomalous instances while 
maximizing the inexact AUC, the proposed method succeeded to detect unseen anoma-
lous instances at the top as well as anomalous instances at the bottom center, and cor-
rectly classified test non-anomalous instances as non-anomaly in Fig. 4f.

Table 3 shows AUC on the nine anomaly detection datasets with ten inexact anomaly 
sets and five instances per set. Our proposed method achieved the highest AUC in most 
cases. Since the number of supervised labels was small, the performance of the super-
vised methods, KNN, SVM, RF and MIL, was not high. The proposed method outper-
formed them by incorporating an unsupervised method (AE) in a supervised framework. 
SIF and SAE also used both unsupervised and supervised anomaly detection frame-
works. However, the performance was worse than the proposed method because SIF 
and SAE cannot handle inexact labels. Although MIL can handle inexact labels, AUC 
with MIL was low since it does not have an unsupervised training mechanism, i.e., it 
does not minimize anomaly scores for non-anomalous instances. The average compu-
tational time for training the proposed method was 1.0, 0.4, 1.4, 8.1, 0.7, 0.2, 0.5, 0.6 
and 0.7 minutes with Annthyroid, Cardiotocography, InternetAds, KDDCup99, Page-
Blocks, Pima, SpamBase, Waveform and Wilt datasets, respectively, on computers with 
2.60 GHz CPUs.

Figure 6 shows test AUCs averaged over the nine anomaly detection datasets by chang-
ing the number of training inexact anomaly sets (a), and by changing the number of 
instances per inexact anomaly set (b). The proposed method achieved the best performance 
in all cases. As the number of training inexact anomaly sets increased, the performance 
with supervised methods was improved. Since unsupervised methods do not use inexact 
anomaly sets for training, their performance did not change with the number of train-
ing inexact anomaly sets. As the number of instances per inexact anomaly set increased, 
AUC was decreased since the rate of non-anomalous instances in an inexact anomaly set 
increased. AUC with unsupervised methods also decreased since they used inexact anom-
aly sets in the validation data.

Figure  7 shows test AUC on the nine anomaly detection datasets by the proposed 
method with different hyperparameters � . The best hyperparameters were different across 
datasets. For example, a high � was better with the Pima dataset, a low � was better with 
the PageBlocks and Wilt datasets, and an intermediate � was better with the Annthyroid 
and Waveform datasets. The proposed method achieved high performance with various 
datasets by automatically adapting � using the validation data to control the balance of the 
anomaly score minimization for non-anomalous instances and inexact AUC maximization.

We can use different neural network architectures for the autoencoder in the proposed 
method. Also, we can also use different anomaly score functions in the proposed method. 
Table  4 shows average test AUC with different autoencoder architectures and the varia-
tional autoencoder. With the variational autoencoder, we used the evidence lower bound 
the anomaly scores. The
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Table 3  AUC on nine anomaly detection datasets with ten inexact anomaly sets and five instances per set

Values in bold typeface are not statistically better (at 5% level) from the best performing method in each 
dataset according to the Friedman test with the post-hoc Nemenyi test (Demšar 2006). The Average column 
shows the average AUC over all datasets, and the value in bold indicates that the proposed method achieved 
statistically better (at 5% level) AUC than the other methods across all datasets according to the Friedman 
test with the post-hoc Nemenyi test

Annthyroid Cardiotocography InternetAds KDDCup99 PageBlocks

LOF 0.652 0.544 0.728 0.576 0.754
OSVM 0.525 0.845 0.814 0.974 0.877
IF 0.767 0.810 0.562 0.975 0.923
AE 0.754 0.768 0.839 0.995 0.915
KNN 0.556 0.677 0.574 0.823 0.702
SVM 0.744 0.692 0.853 0.785 0.653
RF 0.926 0.866 0.695 0.905 0.872
NN 0.622 0.702 0.783 0.975 0.462
MIL 0.590 0.801 0.824 0.714 0.609
SIF 0.829 0.843 0.622 0.992 0.932
SAE 0.836 0.768 0.832 0.924 0.926
Ours 0.867 0.846 0.828 0.992 0.914

Pima SpamBase Waveform Wilt Average

LOF 0.601 0.546 0.680 0.709 0.643
OSVM 0.686 0.639 0.622 0.571 0.728
IF 0.715 0.708 0.678 0.611 0.750
AE 0.678 0.757 0.671 0.895 0.808
KNN 0.549 0.628 0.635 0.570 0.635
SVM 0.563 0.660 0.732 0.615 0.700
RF 0.663 0.829 0.696 0.819 0.808
NN 0.396 0.782 0.724 0.619 0.674
MIL 0.670 0.660 0.640 0.474 0.665
SIF 0.706 0.808 0.723 0.703 0.795
SAE 0.662 0.765 0.728 0.863 0.812
Ours 0.713 0.791 0.746 0.895 0.844

number of inexact anomaly sets number of instances per inexact anomaly set(a) (b)

Fig. 6  AUC averaged over the nine anomaly detection datasets (a) with different numbers of training inex-
act anomaly sets and five instances per inexact anomaly set, and (b) with different numbers of instances per 
inexact anomaly set and ten training inexact anomaly sets
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6  Conclusion

We proposed an extension of the AUC for inexact labels, and developed a supervised 
anomaly detection method for data with inexact labels. With our proposed method, we 
trained a neural network-based anomaly score function by maximizing the inexact AUC 
while minimizing the anomaly scores for non-anomalous instances. We experimentally 
confirmed its effectiveness using various datasets. For future work, we want to extend our 
framework for semi-supervised settings (Blanchard et al. 2010), where unlabeled instances, 
labeled anomalous and labeled non-anomalous instances are given for training. Also, we 

Annthyroid Cardiotocography InternetAds

KDDCup99 PageBlocks Pima

SpamBase Waveform Wilt

Fig. 7  AUC by the proposed method with different hyperparameters � trained on data with ten inexact 
anomaly sets with five instances per set. The x-axis is hyperparameter � and the y-axis is AUC. Errorbar 
shows standard error. The green and orange horizontal lines are AUC by the proposed method with � = ∞ 
and � = 0 , respectively (Color figure online)

Table 4  Average AUC over all the nine anomaly detection datasets with ten inexact anomaly sets and five 
instances per set by different autoencoder architectures and the variational autoencoder

AE represents the autoencoder, and VAE represents the variational autoencoder. The numbers in AEs repre-
sent the number of hidden units of the encoder network. The number of hidden units of the decoder network 
is the same with that of the encoder network

AE:128-16 AE:128-128-16 AE:64-16 AE:128-128-32 AE:128-128-8 VAE

0.844 0.813 0.841 0.846 0.810 0.760
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plan to combine the inexact AUC with partial AUC (Komori and Eguchi 2010), which is 
the partial area under the curve with a specific false positive rate range.
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