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Abstract
Neural networks converge faster with help from a smart batch selection strategy. In this 
regard, we propose Ada-Boundary, a novel and simple adaptive batch selection algorithm 
that constructs an effective mini-batch according to the learning progress of the model. Our 
key idea is to exploit confusing samples for which the model cannot predict labels with 
high confidence. Thus, samples near the current decision boundary are considered to be the 
most effective for expediting convergence. Taking advantage of this design, Ada-Boundary 
maintained its dominance for various degrees of training difficulty. We demonstrate the 
advantage of Ada-Boundary by extensive experimentation using CNNs with five bench-
mark data sets. Ada-Boundary was shown to produce a relative improvement in test errors 
by up to 31.80% compared with the baseline for a fixed wall-clock training time, thereby 
achieving a faster convergence speed.

Keywords  Batch selection · Acceleration · Convergence · Decision boundary

1  Introduction

Deep neural networks (DNNs) have achieved remarkable performance in many fields, 
especially, in computer vision and natural language processing (Goodfellow et al. 2016). 
Nevertheless, as the size of data set grows, the training step via stochastic gradient descent 
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(SGD) based on mini-batches suffers from extremely high computational cost, which is 
mainly due to slow convergence. The common approaches for expediting convergence 
include SGD variants (Zeiler 2012; Kingma and Ba 2015) that maintain individual learn-
ing rates for parameters, and batch normalization (Ioffe and Szegedy 2015) that stabilizes 
the gradient variance.

Recently, considering the fact that not all samples have an equal impact on training, 
many studies have attempted to design sampling schemes based on sample importance 
(Wu et al. 2017; Fan et al. 2017; Katharopoulos and Fleuret 2018). Curriculum learning 
(Bengio et al. 2009), inspired by human learning, is one of the representative methods for 
speeding up the training step by gradually increasing the difficulty level of the training 
samples. In contrast, deep learning studies focus on giving higher weights to harder sam-
ples during the entire training process. When the model requires many epochs for conver-
gence, it is known to converge faster with the batches of hard samples than with randomly 
selected batches (Schaul et  al. 2016; Loshchilov and Hutter 2016; Gao and Jojic 2017; 
Song et al. 2020). There are various criteria for judging the hardness of a sample, e.g., the 
rank of the loss computed from previous epochs (Loshchilov and Hutter 2016).

Here, a natural question arises: Does the “hard” batch selection always speed up 
DNN training? Our answer is partially, yes: It is helpful only when training an easy data 
set. According to our in-depth analysis, as demonstrated in Fig. 1a, the hardest samples in a 
hard data set (e.g., CIFAR-10) were too hard to learn. They were highly likely to sway the 
decision boundary bias towards themselves, as shown in Fig. 1b. On the other hand, in an 
easy data set (e.g., MNIST), the hardest samples, though they were only moderately hard, 
provided useful information for training. In practice, it has been reported that hard batch 
selection successfully speed up training only for the easy MNIST data set (Loshchilov and 
Hutter 2016; Gao and Jojic 2017), and our experiments presented in Sect. 5 also confirmed 
the previous findings. This limitation calls for a new sampling scheme that supports both 
easy and hard data sets.
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(a) Difficulty distribution. (b) Hard sample oriented training.

Fig. 1   Analysis on hard batch selection strategy: a shows the true sample distribution according to the dif-
ficulty computed by Eq. (1) at the training accuracy of 60% . An easy data set (MNIST) does not have “too 
hard” samples but “moderately hard” samples colored in gray, whereas a relatively hard data set (CIFAR-
10) has many “too hard” samples colored in black. b Shows the result of SGD on a hard batch. The mod-
erately hard samples are informative to update a model, but the too hard samples make the model overfit to 
themselves



1839Machine Learning (2020) 109:1837–1853	

1 3

In this paper, we propose a novel and simple adaptive batch selection strategy, called 
Ada-Boundary, that accelerates training and is better generalized to hard data sets. As 
opposed to existing hard batch selection, Ada-Boundary picks up the samples with the 
most appropriate difficulty, considering the learning progress of the model. The sam-
ples near the current decision boundary are selected with high probability, as shown in 
Fig. 2a. Intuitively speaking, the samples far from the decision boundary are not that help-
ful because they are either too hard or too easy: those on the incorrect side are too hard, 
and those on the correct side are too easy. This is the reason why we regard the confusing 
samples around the decision boundary, which are moderately hard, to have the appropriate 
difficulty level.

Overall, the key idea of Ada-Boundary is to use the distance of a sample to the decision 
boundary as the hardness of the sample. The beauty of this design is that it does not require 
human intervention. The current decision boundary should be directly influenced by the 
learning progress of the model. The decision boundary of a DNN moves towards elimi-
nating incorrect samples as the training step progresses, so the difficulty of the samples 
near the decision boundary gradually increases as the model is learned. Then, the decision 
boundary continually updates to identify the confusing samples, as illustrated in Fig. 2b. 
This approach accelerates convergence by providing samples suited to the model at every 
SGD iteration, and it is less prone to incur an overfitting issue.

We conducted extensive experiments to demonstrate the superiority of Ada-Boundary. 
A popular convolutional neural network (CNN)1 model was trained on five benchmark data 
sets for the image classification task. Compared to random batch selection, Ada-Boundary 
produced a relative improvement in test errors by up to 31.80% for a fixed wall-clock train-
ing time. Compared to the two state-of-the-art algorithms, online batch  (Loshchilov and 
Hutter 2016) and active bias  (Chang et  al. 2017), it respectively improved the test error 
by up to 8.14% and 10.07% within the same time frame. Moreover, Ada-Boundary is well-
generalized for different gradient optimizers and CNN models.

2 � Related work

There have been numerous attempts to understand which samples contribute the most 
during training. Curriculum learning (Bengio et al. 2009), inspired by the perceived way 
that humans and animals learn, first takes easy samples and then gradually increases the 
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(a) Before update. (b) After update.

Fig. 2   Key idea of Ada-Boundary: a shows the sampling process of Ada-Boundary, b shows the results of 
an SGD iteration on the boundary samples

1  The idea is also applicable to DNNs other than CNNs, and we leave this extension to future work.
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difficulty of samples using a manual method. Self-paced learning (Kumar et al. 2010) uses 
prediction error to determine the easiness of samples in order to alleviate the limitation 
of curriculum learning. The researchers assumed that importance was determined by how 
easy the samples were. However, easiness does not sufficiently determine when a sample 
should be introduced to a learner (Gao and Jojic 2017).

Recently, Tsvetkov et al. (2016) used Bayesian optimization to optimize a curriculum 
for training dense, distributed word representations. Sachan and Xing (2016) emphasized 
that the right curriculum not only has to arrange data samples in order of difficulty, but 
also must introduce a small number of samples that are dissimilar to the samples previ-
ously seen. Shrivastava et al. (2016) proposed a hard-example mining method to eliminate 
several heuristics and hyperparameters commonly used to select hard examples. However, 
these algorithms are designed to support only a designated task, such as natural language 
processing or object detection. The neural data filter proposed by Fan et  al. (2017) is 
orthogonal to our work because it aims to filter redundant samples from streaming data. As 
mentioned earlier, Ada-Boundary generally follows the philosophy of curriculum learning 
because it exploits the samples with the most appropriate difficulty at the current training 
progress.

More closely related to adaptive batch selection, Loshchilov and Hutter (2016) stored 
the history of losses for previously seen samples, and computed sampling probability 
based on loss rank. The sample probability to be selected for the subsequent mini-batch 
was exponentially decayed with its rank. This allowed the samples with low ranks (i.e., 
high losses) to be considered more frequently for the subsequent mini-batch. Gao and Jojic 
(2017)’s work is similar to that of Loshchilov and Hutter (2016) except that gradient norms 
are used instead of losses to compute the probability. In contrast to curriculum learning, 
both methods focus on hard samples only for training. Also, they ignored the difference in 
actual losses or gradient norms by transforming the values to ranks. Similar to our work, 
the usefulness of exploiting uncertain samples was witnessed by active bias (Chang et al. 
2017) for a different purpose. Their main contribution lies in producing a more accurate 
and robust model by choosing samples with high prediction variance, whereas ours lies 
in training faster by using confusing samples that have softmax distributions of low vari-
ance. According to our experiments presented in Sect. 5.1, the samples selected by active 
bias slowed down the convergence in training loss, though they reduced the generalization 
error.

To complement this survey, we mention work done to accelerate the optimization pro-
cess of algorithms based on importance sampling. Needell et  al. (2014) re-weighted the 
obtained gradients by the inverse of their sampling probabilities to reduce the variance. 
Schmidt et al. (2015) biased the sampling toward the Lipschitz constant to quickly find the 
solution to a strongly-convex optimization problem arising from the training of conditional 
random fields.

3 � Ada‑Boundary Components

The main challenge for Ada-Boundary is to evaluate how close a sample is to the decision 
boundary. In this section, we introduce a novel distance measure, and present a method for 
computing the sampling probability based on the measure.
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3.1 � Sample distance based on Softmax distribution

To evaluate the distance from the sample to the decision boundary, we note that the 
softmax distribution, which is the output of the softmax layer in neural networks, clearly 
indicates how confidently the model predicts the true label, as demonstrated in Fig. 3.

Let h(y|xi;�t) be the softmax distribution for a given sample xi over y ∈ {1, 2,… , k} 
labels, where �t is the parameter of a neural network at time t. Then, the distance from a 
sample xi with the true label yi to the decision boundary of the neural network with �t is 
defined by the directional distance function,

More specifically, the function consists of two terms related to the direction and magni-
tude of the distance, determined by the model’s correctness and confidence, respectively. 
The correctness is determined by verifying whether the label with the highest probability 
matches the true label yi , and the confidence is computed by the standard deviation of the 
softmax distribution. Intuitively, the standard deviation is a nice indicator of confidence 
because the value gets closer to zero when the model is confused.

One might argue that the cross-entropy loss, H(p, q) = −p(xi) log(q(xi)) where p(xi) 
and q(xi) are the true and softmax distributions for xi , can be adopted for the distance 
function. However, because p(xi) is formulated as a one-hot true label vector, the cross-
entropy loss cannot capture the prediction probability for false labels, which is an 
important factor in confusing samples.

Another advantage is that our distance function is bounded as opposed to the loss. 
For k labels, the maximum value of std(h(y|xi;�t)) is k−1

√
(k − 1) when h(m|xi;�t) = 1 

and ∀l≠mh(l|xi;�t) = 0 . Thus, dist(xi, yi;�t) is bounded by

(1)dist(xi, yi;�
t) =

correctness

⏞⏞⏞⏞⏞⏞⏞

sign(xi, yi) ⋅

confidence

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

std
(
h(y|xi;�t)

)
,

where sign(xi, yi) =

{
+1, argmaxy∈{1,…,k}h(y|xi;�t) = yi
−1, otherwise.

(2)−k−1
√
k − 1 ≤ dist(xi, yi;�

t) ≤ k−1
√
k − 1.
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(a) Strongly correct. (b)Weakly correct. (c)Weakly incorrect. (d) Strongly incorrect.

Fig. 3   Classification of CIFAR-10 samples using the softmax distribution at the training accuracy of 90% . 
If the prediction probability of the true label is the highest, the prediction is correct; otherwise, incorrect. If 
the highest probability dominates the distribution, the model’s confidence is strong; otherwise, weak
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3.2 � Sampling probability based on quantization index

The rank-based approach introduced by  Loshchilov and Hutter (2016) is a common 
way to assign the sampling probability of being selected for the next mini-batch. This 
approach sorts the samples by a certain importance measure in descending order, and 
exponentially decays the sampling probability of a given sample according to its rank. 
Let N denote the total number of samples. Then, each r-th ranked sample is selected 
with the probability p(r), which drops by a factor of exp (log(se)∕N) . Here, se is the 
selection pressure parameter that affects the probability gap between the most and the 
least important samples. When normalized to sum to 1.0, the probability that the r-th 
ranked sample is selected is defined by

In the existing rank-based approach, the rank of a sample is determined by 
|dist(xi, yi;�t)| in ascending order, because it is inversely proportional to the sample 
importance. However, if the mass of the true sample distribution is skewed to one side 
(e.g., easy side) as shown in Fig. 4, the mini-batch samples are selected with high prob-
ability from the skewed side rather than from around the decision boundary where 
|dist(xi, yi;�t)| is very small. This problem was attributed to the unconditionally fixed 
probability of a given rank. In other words, samples with similar ranks are selected with 
similar probabilities, regardless of the magnitude of the distance values.

To incorporate the impact of distance into batch selection, we adopt the quantiza-
tion method (Gray and Neuhoff 1998; Chen and Wornell 2001) and use the quantization 
index q instead of rank r. Let � be the quantization step size and d be the output of the 
function dist(xi, yi;�t) of a given sample xi . Then, the index q is obtained by the simple 
quantizer Q(d),

The quantization index gets larger as sampling moves away from the decision boundary. In 
addition, the difference between two indexes reflects the difference in the actual distances.

In Eq. (4), we set � to be k−1
√
k − 1∕N such that the index q is bounded to N (the total 

number of samples) by Eq. (2). Then, the sampling probability of a given sample xi with 
the true label yi is defined by

(3)p(r) =
1∕ exp (log(se)∕N)

r

∑N

j=1
1∕ exp (log(se)∕N)

j
.

(4)q = Q(d), Q(d) = ⌈�d�∕�⌉.

Fig. 4   Sample distribution 
according to the normalized 
dist(xi, yi;�

t) on Fashion-MNIST 
data set at the training accuracy 
of 80% . The distributions of 
mini-batch samples selected by 
the rank-based approach and the 
quantization-based approach are 
plotted together with the true 
sample distribution
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As shown in Fig. 4, our quantization-based method produces a well-balanced distribution, 
even if the true sample distribution is skewed.

4 � Ada‑Boundary Algorithm

4.1 � Main proposed algorithm

Algorithm 1 describes the overall procedure of Ada-Boundary. The input to the algorithm 
consists of samples of size N (i.e., training data set), a mini-batch of size b, the selection 
pressure se , and the threshold � used to decide the warm-up period. In the early stages of 
training, because the quantization index for each sample is not confirmed yet, the algorithm 
requires a warm-up period of � epochs. Randomly selected mini-batch samples are used for 
the warm-up period (Lines 6–7), and their quantization indexes are updated (Lines 12–18). 
After the warm-up epochs, the algorithm computes the sampling probability of each sam-
ple by Eq. (5) and selects mini-batch samples based on the probability (Lines 8–11). Then, 
the quantization indexes are updated in the same way (Lines 12–18). Here, we compute the 
indexes using the previous model with �t after every SGD step, rather than the latest model 
with �t+1 , in order to reuse the previously computed softmax distributions; in addition, we 
asynchronously update the indexes of the samples that are only included in the mini-batch 
to prevent the additional forward propagation of the entire sample, which would induce a 
high computational cost.

(5)p(xi, yi) =
1∕ exp (log(se)∕N)

Q(dist(xi,yi;�
t))

∑N

j=1
1∕ exp (log(se)∕N)

Q(dist(xj,yj;�
t))
.
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4.2 � Variants of Ada‑Boundary for comparison

For a more sophisticated analysis of sampling, we present two heuristic sampling strate-
gies: (1) Ada-Hard is similar to the existing hard batch strategy (Loshchilov and Hutter 
2016), but it uses our distance function instead of the loss. That is, Ada-Hard focuses on 
the samples far from the decision boundary in the negative direction; (2) Ada-Uniform is 
designed to select samples with a wide range of difficulty, so it samples uniformly over the 
distance range regardless of the sample distribution.

We modified a few lines of Algorithm 1 to implement the two variants. In detail, for 
Ada-Hard, the quantization index q should be small for the sample located far in the nega-
tive direction. Thus, Ada-Hard can be implemented by modifying the quantizer Q(d) in 
Line 16 of Algorithm 1. When we set � = k−1

√
k − 1∕N to make index q bound to N, the 

quantizers of Ada-Hard are defined by

Ada-Uniform can be implemented by using F−1(x) to compute the sampling probability 
in Line 10 of Algorithm 1, where F(x) is the empirical sample distribution according to 
the sample’s distance to the decision boundary. Note that the computational cost of Ada-
Uniform is much higher than those of Ada-Boundary and Ada-Hard because of the compu-
tation for the empirical distribution, which requires the linear time complexity to the total 
number of training samples (i.e., O(N)) in every update iteration.

Figure 5 shows the distributions of mini-batch samples drawn by these two variants. The 
distribution of Ada-Hard is skewed to the hard side, and that of Ada-Uniform tends to be 
uniform.

5 � Evaluation

To validate the superiority of Ada-Boundary, we performed an image classification task 
on five benchmark data sets with varying difficulty levels: MNIST (easy),2 classification of 
handwritten digits (LeCun 1998), with 60,000 training and 10,000 testing images; Fash-
ion-MNIST (relatively easy),3 classification of various clothing (Xiao et  al. 2017), with 

(6)Q(d) =

�
⌈d∕2�⌉ + N∕2, if d ≥ 0

⌊d∕2�⌋ + N∕2 + 1, otherwise.

Fig. 5   The distributions of 
mini-batch samples selected 
by the two variants in the same 
configuration as Fig. 4
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2  http://yann.lecun​.com/exdb/mnist​.
3  https​://githu​b.com/zalan​dores​earch​/fashi​on-mnist​.

http://yann.lecun.com/exdb/mnist
https://github.com/zalandoresearch/fashion-mnist
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60,000 training and 10,000 testing images; CIFAR-104 (relatively hard) and CIFAR-100 
(hard),4 classification of a subset of 80 million categorical images (Krizhevsky et al. 2014), 
with 50,000 training and 10,000 testing images; Tiny-ImageNet (hard),5 classification of 
a subset of large-scale categorical images  (Krizhevsky et  al. 2012), with 100,000 train-
ing and 10,000 testing images. We did not apply any data augmentation or pre-processing 
procedures.

We experimentally analyzed the performance improvement of Ada-Boundary compared 
with not only random batch selection but also four different adaptive batch selection algo-
rithms: random batch selection selects the next batch uniformly at random from the entire 
data set; online batch selects hard samples based on the rank of the loss computed from 
previous epochs; active bias selects uncertain samples with high variance of true label 
probabilities; Ada-Hard and Ada-Uniform, which are the two variants of Ada-Boundary 
introduced in Sect. 4.2. All the algorithms were implemented using TensorFlow 2.1.06 and 
excuted using eight NVIDIA Titan Volta GPU. For reproducibility, we provide the source 
code at https​://githu​b.com/kaist​-dmlab​/Ada-Bound​ary.

For the classification task, we mainly used a densely connected neural net-
work  (DenseNet)  (Huang et  al. 2017), which is widely known to achieve good generali-
zation performance on data sets with varying difficulty levels (Song et al. 2019). In sup-
port of reliable evaluation, we repeated every task five times and reported the average with 
its standard error. That is, the training loss  (or test error) was averaged for all the trials 
at every epoch. To compare the convergence speed among the methods, we plotted the 
averaged training loss and test error for an equivalent wall-clock training time. Besides, 
because the best test error in a given time has been widely used for the studies on fast and 
accurate training (Loshchilov and Hutter 2016; Chang et al. 2017), we reported the average 
of the best test errors in tabular form.

5.1 � Analysis on hard data sets

We used six batch selection strategies to train a DenseNet on the hard data sets: CIFAR-
10, CIFAR-100, and Tiny-ImageNet. Specifically, we trained a DenseNet ( L = 25 , k = 12 ) 
with a momentum optimizer. We used batch normalization (Ioffe and Szegedy 2015), a 
momentum of 0.9, and a batch size of 128. As for the algorithm parameters, we used the 
best selection pressure se , obtained from se = {2, 8, 32} (see Sect. 5.5 for details), and set 
the warm-up threshold � to 15. Technically, a small � is enough to warm-up, but to reduce 
the performance variance caused by randomly initialized parameters, we used a larger � 
and shared the model parameters for all strategies during the warm-up period. For online 
batch selection, we recomputed all the losses across every epoch to reflect the latest losses. 
Regarding the training schedule, following the experimental setup of Huang et al. (2017), 
we trained the model for 100 epochs and used an initial learning rate of 0.1, which was 
divided by 5 at 50% and 75% of the total number of training iterations. Because the baseline 
strategy required about 2,300 seconds for the two CIFAR data sets and 14,500 seconds for 
the Tiny-ImageNet data set, we excluded the result of other strategies beyond those times.

4  https​://www.cs.toron​to.edu/~kriz/cifar​.html.
5  https​://www.kaggl​e.com/c/tiny-image​net.
6  https​://www.tenso​rflow​.org/versi​ons/r2.1/api_docs.

https://github.com/kaist-dmlab/Ada-Boundary
https://www.cs.toronto.edu/%7ekriz/cifar.html
https://www.kaggle.com/c/tiny-imagenet
https://www.tensorflow.org/versions/r2.1/api_docs
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Figure 6 shows the convergence curves of training loss and test error for six batch selec-
tion strategies on three hard data sets: CIFAR-10, CIFAR-100, and Tiny-ImageNet. In 
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Fig. 6   Convergence curves of six batch selection strategies using DenseNet with momentum on CIFAR-10 
and CIFAR-100

Table 1   The best test error (%) 
of six batch selection strategies 
using DenseNet on three hard 
data sets in Fig. 6

The lowest values are highlighted in bold

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Random batch 8.71 ± 0.02 33.54 ± 0.11 51.67 ± 0.41
Online batch 8.78 ± 0.09 35.64 ± 0.03 52.66 ± 0.37
Active bias 8.87 ± 0.09 34.48 ± 1.30 53.42 ± 0.10
Ada-Hard 8.90 ± 0.10 35.40 ± 0.50 52.63 ± 1.19
Ada-Uniform 17.37 ± 0.34 43.08 ± 0.083 65.37 ± 0.45
Ada-Boundary 8.38 ± 0.07 32.74 ± 0.10 51.17 ± 0.49
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order to improve legibility, only the curves for the baseline and proposed strategies are dark 
colored. The best test errors in Fig. 6 are summarized in Table 1. We conducted a conver-
gence analysis of the six batch selection strategies, as follows:

•	 CIFAR-10 (relatively hard): Except Ada-Uniform and active bias, all adaptive batch 
selections achieved faster convergence speed than random batch selection in train-
ing loss, but only Ada-Boundary converged faster than random batch selection in 
test error. This means that the strategy focused on hard sample results in the overfit-
ting to “too hard” samples, which is indicated by a larger converged test error. Mean-
while, active bias was prone to make the network better generalized on test data, con-
sidering its test error comparable to that of random batch selection despite its much 
higher training loss. That is, active bias resulted in better generalization, but slowed 
down the training process. Quantitatively, Ada-Boundary achieved test error rela-
tively lower by 3.79%  (8.71%→8.38% ) than random batch selection. In contrast, the 
test error of Ada-Hard, online batch selection, and active bias was relatively higher by 
2.18% (8.71%→8.90% ), 0.80% (8.71%→8.78% ), and 1.84% (8.71%→8.87%).

•	 CIFAR-100 (hard): In both training loss and test error, the convergence curves of all 
strategies showed similar trends to those of CIFAR-10. However, as the training dif-
ficulty increased from CIFAR-10 to CIFAR-100, the overfitting of Ada-Hard and 
online batch selection was further exacerbated. This emphasizes the need to con-
sider the samples with appropriate difficulty rather than hard samples. Compared 
with random batch selection, Ada-Boundary achieved test error relatively lower 
by 2.39%  (33.54%→32.74% ). On the other hand, the test error of Ada-Hard, online 
batch selection, and active bias was relatively higher by 5.55%  (33.54%→35.40% ), 
6.26% (33.54%→35.64% ), and 2.80% (33.54%→34.48%).

•	 Tiny-ImageNet (hard): The convergence trend was consistent even when the data set 
became larger and harder. Only Ada-Boundary achieved test error relatively lower by 
0.97%  (51.67%→51.17% ) than random batch selection. On the other hand, the test 
error of Ada-Hard, online batch selection, and active bias was relatively higher by 
1.86% (51.67%→52.63% ), 1.92% (51.67%→52.66% ), and 3.39% (51.67%→53.42%).

In all the cases, the large performance gap between Ada-Uniform and other methods 
were attributed to the high computational cost for updating its empirical sampling distribu-
tion and the over-sampling of too hard samples owing to the plethora of easy ones.

5.2 � Analysis on easy data sets

We also trained a DenseNet ( L = 25 , k = 12 ) with momentum on the easy data sets: 
MNIST and Fashion-MNIST. We used the same experimental configuration as in Sect. 5.1, 
except for the training schedule. Generally, because a small learning rate without decay 
was preferred for easy data sets (Loshchilov and Hutter 2016; Gao and Jojic 2017), we 
used a constant learning rate of 0.01 over 80 epochs. Here, the baseline strategy required 
about 1,880 seconds for all cases.

Figure 7 shows the convergence curves of training loss and test error for six batch selec-
tion strategies on MNIST and Fashion-MNIST, and the best test errors in Fig. 7 are sum-
marized in Table 2. We conducted a convergence analysis of the six batch selection strate-
gies, as follows:
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•	 MNIST (easy): As we clarified in Sect.  1, the hard batch selections, Ada-Hard and 
online batch selection, worked well in the easy MNIST data set. They converged faster 
than random batch selection in both training loss and test error. Ada-Boundary showed 
a fast convergence comparable to that of online batch selection; the absolute differ-
ence of test error between them was only 0.02% , which was almost negligible. Quan-
titatively, Ada-Boundary, Ada-Hard, online batch selection, and active bias achieved 
test error relatively lower by 14.58%  (0.48%→0.41% ), 4.17%  (0.48%→0.46% ), 
18.75%  (0.48%→0.39% ), and 4.17%  (0.48%→0.46% ) than random batch selection, 
respectively.

•	 Fashion-MNIST (relatively easy): In both training loss and test error, Ada-Boundary 
achieved significantly faster convergence speed than random batch selection. Ada-Hard 
and online batch selection tended to weakly overfit to “too hard” samples. Their test 
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Fig. 7   Convergence curves of six batch selection strategies using DenseNet with momentum on MNIST 
and Fashion-MNIST

Table 2   The best test error (%) 
of six batch selection strategies 
using DenseNet on two easy data 
sets in Fig. 7

The lowest values are highlighted in bold

Method MNIST Fashion-MNIST

Random batch 0.48 ± 0.02 7.08 ± 0.02
Online batch 0.39 ± 0.02 6.95 ± 0.04
Active bias 0.46 ± 0.01 6.88 ± 0.08
Ada-Hard 0.46 ± 0.01 7.36 ± 0.17
Ada-Uniform 0.68 ± 0.06 9.64 ± 0.25
Ada-Boundary 0.41 ± 0.02 6.51 ± 0.04
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Fig. 8   Convergence curves of six batch selection strategies using DenseNet with SGD 
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error approached that of random batch selection, even when they converged much faster 
in training loss. In summary, Ada-Boundary, online batch selection, and active bias 
achieved test error relatively lower by 8.05% (7.08%→6.51% ), 1.84% (7.08%→6.95% ), 
and 2.82%  (7.08%→6.88% ) than random batch selection, respectively. On the other 
hand, Ada-Hard was relatively higher by 3.80% (7.08%→7.36%).

5.3 � Generalization of the gradient optimizer

To validate the generality of the optimizer, we repeated the experiment in Sects. 5.1 and 
5.2 using the SGD optimizer. Figure 8 shows the convergence curves of six batch selection 
strategies with the SGD optimizer on all the data sets, and we conducted their convergence 
analysis as follows:

•	 MNIST (easy): All adaptive batch selection strategies converged faster than random 
batch selection in both training loss and test error. The convergence curve of Ada-Uni-
form tended to fluctuate.

•	 Fashion-MNIST (relatively easy): Except Ada-Uniform, all strategies showed compa-
rable performance in both training loss and test error, which were slightly faster than 
random batch selection.

•	 CIFAR-10 (relatively hard): Except for Ada-Uniform and active bias, all adaptive batch 
selections converged significantly faster than random batch selection in training loss. 
However, due to the overfitting to “too hard” samples, only Ada-Boundary achieved 
much faster convergence speed than other adaptive batch selections in test error.

•	 CIFAR-100 (hard): Ada-Boundary converged faster than random batch selection in 
both training loss and test error. In contrast, Ada-Hard and online batch selection suf-
fered from the overfitting issue in test error, even when they converged faster than ran-
dom batch selection in training loss. much faster convergence speed than other adaptive 
batch selections in test error.

•	 Tiny-ImageNet (hard): Again, similar to the CIFAR data sets, Ada-Boundary achieved the 
lowest test error while expediting the convergence of training loss. Active bias converged the 
slowest in training error, but its test error was comparable to that of the hard batch selections.

In summary, only Ada-Boundary succeeded in increasing the convergence speed for all data 
sets, regardless of the difficulty level. Quantitatively, compared with random batch selection, 
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Fig. 9   Convergence curves of six batch selection strategies using WideResNet with SGD on CIFAR-10
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Ada-Boundary achieved a significant reduction in test error of 31.80%  (3.43%→2.34% ), 
12.85%  (14.47%→12.61% ), 3.26%  (14.72%→14.24% ), 2.11%  (42.63%→41.73% ), and 
0.58%  (56.70%→56.37% ) in MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and 
Tiny-ImageNet.

5.4 � Generalization of the model

To show the generality of the model, we trained a WideResNet 16-8 (Zagoruyko and 
Komodakis 2016) on the CIFAR-10 data set for 50 epochs. For the experiment, we used the 
SGD optimizer and a constant learning rate of 0.01. The other configurations were the same 
as in Sect.  5.1. Figure 9 shows the convergence curves of six batch selection strategies on 
CIFAR-10. Here, Ada-Boundary also outperformed other batch selection strategies in both 
training loss and test error. Ada-Boundary significantly reduced the test error by 8.38% 
( 17.06%→15.63% ) compared with random batch selection. Owing to the overfitting issue, 
Ada-Hard converged slower than Ada-Boundary in test error, even when it achieved low train-
ing loss comparable to that of Ada-Boundary. The slow convergence speed of online batch 
selection in test error is explained by the same reasoning.

5.5 � Impact of selection pressure s
e

The selection pressure se determines how strongly the boundary samples are selected. 
The larger the se value, the larger the sampling probabilities of the boundary samples, 
so more boundary samples are chosen for the next mini-batch. On the other hand, as 
smaller se value brings Ada-Boundary closer to random batch selection. To analyze the 
impact of the selection pressure se and determine the best value, we trained a DenseNet 
( L = 25 , k = 12 ) with momentum on our four benchmark data sets with varying se val-
ues in the same configuration as outlined in Sects. 5.1 and 5.2.

Table 3   The converged 
training loss of Ada-Boundary 
with varying s

e
 in the same 

configuration as in Sects. 5.1 
and 5.2

Method Converged training loss

MNIST Fashion-MNIST CIFAR-10 CIFAR-100

s
e
= 2.0 0.0087 0.1122 0.0106 0.4171

s
e
= 8.0 0.0083 0.0986 0.0103 0.3520

s
e
= 32.0 0.0077 0.0803 0.0083 0.3399

Table 4   The best test error (%) of Ada-Boundary with varying s
e
 in the same configuration as in Sects. 5.1 

and 5.2

The lowest values are highlighted in bold

Method Best test error

MNIST Fashion-MNIST CIFAR-10 CIFAR-100

s
e
= 2.0 0.452 ± 0.017 6.870 ± 0.037 8.383 ± 0.068 32.740 ± 0.099

s
e
= 8.0 0.425 ± 0.010 6.795 ± 0.128 8.460 ± 0.097 32.934 ± 0.064

s
e
= 32.0 0.412 ± 0.016 6.505 ± 0.043 8.693 ± 0.111 33.543 ± 0.082
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Tables 3 and 4 respectively show the converged training loss and the best test error of 
Ada-Boundary with varying se values on four benchmark data sets. For training loss, the 
convergence speed was accelerated as the se value increased. That is, lower training loss 
was achieved with a larger se value (see Table 3). Similarly, for test error, this trend was 
observed on easy data sets (see MNIST and Fashion-MNIST in Table 4). However, the 
overexposure to the boundary samples when the large se was used incurred an overfitting 
issue on the hard data sets (see CIFAR-10 and CIFAR-100 in Table 4). When using a 
large se value, the test error increased even when the training loss decreased. This means 
that the overexposure to only some part of training samples is not beneficial for the 
generalization of overall training in hard data sets. Therefore, we used se = 32.0 for easy 
data sets, and se = 2.0 for hard data sets in all experiments.

6 � Conclusion and future work

In this paper, we proposed a novel and simple adaptive batch selection algorithm, Ada-
Boundary, that presents the most appropriate samples according to the learning pro-
gress of the model. Toward this goal, we defined the distance from a sample to the 
decision boundary and introduced a quantization method for selecting the samples near 
the boundary with high probability. We performed extensive experimentation using a 
DenseNet for five benchmark data sets with varying difficulty levels. The results showed 
that Ada-Boundary significantly accelerated the training process, and was better gener-
alized for hard data sets. When training an easy data set, Ada-Boundary showed a fast 
convergence comparable to that of the state-of-the-art algorithm; when training hard 
data sets, only Ada-Boundary converged significantly faster than random batch selec-
tion as well as the state-of-the-art algorithm.

The most exciting benefit of Ada-Boundary is its potential to reduce the time needed 
to train a DNN. This becomes more important as the size and complexity of the data 
increases and can be boosted with recent advances of hardware technology. It can be 
easily implemented into various optimizers owing to its simplicity. Our immediate 
future work is to apply Ada-Boundary to other types of DNNs, such as RNN (Mikolov 
et al. 2010) and LSTM (Hochreiter and Schmidhuber 1997), which have a neural struc-
ture completely different from that of CNN. In addition, we plan to investigate the rela-
tionship between the power of a DNN and the improvement in Ada-Boundary.
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