
Vol.:(0123456789)

Machine Learning (2020) 109:1837–1853
https://doi.org/10.1007/s10994-020-05903-6

1 3

Ada‑boundary: accelerating DNN training via adaptive
boundary batch selection

Hwanjun Song1 · Sundong Kim2 · Minseok Kim1 · Jae‑Gil Lee1 

Received: 3 December 2019 / Revised: 21 June 2020 / Accepted: 11 August 2020 /
Published online: 4 September 2020
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
Neural networks converge faster with help from a smart batch selection strategy. In this
regard, we propose Ada-Boundary, a novel and simple adaptive batch selection algorithm
that constructs an effective mini-batch according to the learning progress of the model. Our
key idea is to exploit confusing samples for which the model cannot predict labels with
high confidence. Thus, samples near the current decision boundary are considered to be the
most effective for expediting convergence. Taking advantage of this design, Ada-Boundary
maintained its dominance for various degrees of training difficulty. We demonstrate the
advantage of Ada-Boundary by extensive experimentation using CNNs with five bench-
mark data sets. Ada-Boundary was shown to produce a relative improvement in test errors
by up to 31.80% compared with the baseline for a fixed wall-clock training time, thereby
achieving a faster convergence speed.

Keywords  Batch selection · Acceleration · Convergence · Decision boundary

1  Introduction

Deep neural networks (DNNs) have achieved remarkable performance in many fields,
especially, in computer vision and natural language processing (Goodfellow et al. 2016).
Nevertheless, as the size of data set grows, the training step via stochastic gradient descent

Editors: Ira Assent, Carlotta Domeniconi, Aristides Gionis, Eyke Hüllermeier.

 *	 Jae‑Gil Lee
	 jaegil@kaist.ac.kr

	 Hwanjun Song
	 songhwanjun@kaist.ac.kr

	 Sundong Kim
	 sundong@ibs.re.kr

	 Minseok Kim
	 minseokkim@kaist.ac.kr

1	 Graduate School of Knowledge Service Engineering, KAIST, Daejeon, Korea
2	 Institute for Basic Science, Daejeon, Korea

http://orcid.org/0000-0002-8711-7732
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05903-6&domain=pdf

1838	 Machine Learning (2020) 109:1837–1853

1 3

(SGD) based on mini-batches suffers from extremely high computational cost, which is
mainly due to slow convergence. The common approaches for expediting convergence
include SGD variants (Zeiler 2012; Kingma and Ba 2015) that maintain individual learn-
ing rates for parameters, and batch normalization (Ioffe and Szegedy 2015) that stabilizes
the gradient variance.

Recently, considering the fact that not all samples have an equal impact on training,
many studies have attempted to design sampling schemes based on sample importance
(Wu et al. 2017; Fan et al. 2017; Katharopoulos and Fleuret 2018). Curriculum learning
(Bengio et al. 2009), inspired by human learning, is one of the representative methods for
speeding up the training step by gradually increasing the difficulty level of the training
samples. In contrast, deep learning studies focus on giving higher weights to harder sam-
ples during the entire training process. When the model requires many epochs for conver-
gence, it is known to converge faster with the batches of hard samples than with randomly
selected batches (Schaul et al. 2016; Loshchilov and Hutter 2016; Gao and Jojic 2017;
Song et al. 2020). There are various criteria for judging the hardness of a sample, e.g., the
rank of the loss computed from previous epochs (Loshchilov and Hutter 2016).

Here, a natural question arises: Does the “hard” batch selection always speed up
DNN training? Our answer is partially, yes: It is helpful only when training an easy data
set. According to our in-depth analysis, as demonstrated in Fig. 1a, the hardest samples in a
hard data set (e.g., CIFAR-10) were too hard to learn. They were highly likely to sway the
decision boundary bias towards themselves, as shown in Fig. 1b. On the other hand, in an
easy data set (e.g., MNIST), the hardest samples, though they were only moderately hard,
provided useful information for training. In practice, it has been reported that hard batch
selection successfully speed up training only for the easy MNIST data set (Loshchilov and
Hutter 2016; Gao and Jojic 2017), and our experiments presented in Sect. 5 also confirmed
the previous findings. This limitation calls for a new sampling scheme that supports both
easy and hard data sets.

Decision boundary SGD on a hard batch

+ -

Too hard

Easy case (MNIST)

Hard case (CIFAR-10)

Hard Easy

Pr
ob

ab
ili

ty
Pr

ob
ab

ili
ty Moderately hard

EasyHard

Hard batch

Hard Easy

+
-

+ - + -

(a) Difficulty distribution. (b) Hard sample oriented training.

Fig. 1   Analysis on hard batch selection strategy: a shows the true sample distribution according to the dif-
ficulty computed by Eq. (1) at the training accuracy of 60% . An easy data set (MNIST) does not have “too
hard” samples but “moderately hard” samples colored in gray, whereas a relatively hard data set (CIFAR-
10) has many “too hard” samples colored in black. b Shows the result of SGD on a hard batch. The mod-
erately hard samples are informative to update a model, but the too hard samples make the model overfit to
themselves

1839Machine Learning (2020) 109:1837–1853	

1 3

In this paper, we propose a novel and simple adaptive batch selection strategy, called
Ada-Boundary, that accelerates training and is better generalized to hard data sets. As
opposed to existing hard batch selection, Ada-Boundary picks up the samples with the
most appropriate difficulty, considering the learning progress of the model. The sam-
ples near the current decision boundary are selected with high probability, as shown in
Fig. 2a. Intuitively speaking, the samples far from the decision boundary are not that help-
ful because they are either too hard or too easy: those on the incorrect side are too hard,
and those on the correct side are too easy. This is the reason why we regard the confusing
samples around the decision boundary, which are moderately hard, to have the appropriate
difficulty level.

Overall, the key idea of Ada-Boundary is to use the distance of a sample to the decision
boundary as the hardness of the sample. The beauty of this design is that it does not require
human intervention. The current decision boundary should be directly influenced by the
learning progress of the model. The decision boundary of a DNN moves towards elimi-
nating incorrect samples as the training step progresses, so the difficulty of the samples
near the decision boundary gradually increases as the model is learned. Then, the decision
boundary continually updates to identify the confusing samples, as illustrated in Fig. 2b.
This approach accelerates convergence by providing samples suited to the model at every
SGD iteration, and it is less prone to incur an overfitting issue.

We conducted extensive experiments to demonstrate the superiority of Ada-Boundary.
A popular convolutional neural network (CNN)1 model was trained on five benchmark data
sets for the image classification task. Compared to random batch selection, Ada-Boundary
produced a relative improvement in test errors by up to 31.80% for a fixed wall-clock train-
ing time. Compared to the two state-of-the-art algorithms, online batch (Loshchilov and
Hutter 2016) and active bias (Chang et al. 2017), it respectively improved the test error
by up to 8.14% and 10.07% within the same time frame. Moreover, Ada-Boundary is well-
generalized for different gradient optimizers and CNN models.

2 � Related work

There have been numerous attempts to understand which samples contribute the most
during training. Curriculum learning (Bengio et al. 2009), inspired by the perceived way
that humans and animals learn, first takes easy samples and then gradually increases the

Too easy
(Strongly correct)

Too hard
(Strongly incorrect)

Decision boundary
+ -

EasyHard

Batch
selection

Decision boundary

+ -

Decision boundaryBoundary region

(a) Before update. (b) After update.

Fig. 2   Key idea of Ada-Boundary: a shows the sampling process of Ada-Boundary, b shows the results of
an SGD iteration on the boundary samples

1  The idea is also applicable to DNNs other than CNNs, and we leave this extension to future work.

1840	 Machine Learning (2020) 109:1837–1853

1 3

difficulty of samples using a manual method. Self-paced learning (Kumar et al. 2010) uses
prediction error to determine the easiness of samples in order to alleviate the limitation
of curriculum learning. The researchers assumed that importance was determined by how
easy the samples were. However, easiness does not sufficiently determine when a sample
should be introduced to a learner (Gao and Jojic 2017).

Recently, Tsvetkov et al. (2016) used Bayesian optimization to optimize a curriculum
for training dense, distributed word representations. Sachan and Xing (2016) emphasized
that the right curriculum not only has to arrange data samples in order of difficulty, but
also must introduce a small number of samples that are dissimilar to the samples previ-
ously seen. Shrivastava et al. (2016) proposed a hard-example mining method to eliminate
several heuristics and hyperparameters commonly used to select hard examples. However,
these algorithms are designed to support only a designated task, such as natural language
processing or object detection. The neural data filter proposed by Fan et al. (2017) is
orthogonal to our work because it aims to filter redundant samples from streaming data. As
mentioned earlier, Ada-Boundary generally follows the philosophy of curriculum learning
because it exploits the samples with the most appropriate difficulty at the current training
progress.

More closely related to adaptive batch selection, Loshchilov and Hutter (2016) stored
the history of losses for previously seen samples, and computed sampling probability
based on loss rank. The sample probability to be selected for the subsequent mini-batch
was exponentially decayed with its rank. This allowed the samples with low ranks (i.e.,
high losses) to be considered more frequently for the subsequent mini-batch. Gao and Jojic
(2017)’s work is similar to that of Loshchilov and Hutter (2016) except that gradient norms
are used instead of losses to compute the probability. In contrast to curriculum learning,
both methods focus on hard samples only for training. Also, they ignored the difference in
actual losses or gradient norms by transforming the values to ranks. Similar to our work,
the usefulness of exploiting uncertain samples was witnessed by active bias (Chang et al.
2017) for a different purpose. Their main contribution lies in producing a more accurate
and robust model by choosing samples with high prediction variance, whereas ours lies
in training faster by using confusing samples that have softmax distributions of low vari-
ance. According to our experiments presented in Sect. 5.1, the samples selected by active
bias slowed down the convergence in training loss, though they reduced the generalization
error.

To complement this survey, we mention work done to accelerate the optimization pro-
cess of algorithms based on importance sampling. Needell et al. (2014) re-weighted the
obtained gradients by the inverse of their sampling probabilities to reduce the variance.
Schmidt et al. (2015) biased the sampling toward the Lipschitz constant to quickly find the
solution to a strongly-convex optimization problem arising from the training of conditional
random fields.

3 � Ada‑Boundary Components

The main challenge for Ada-Boundary is to evaluate how close a sample is to the decision
boundary. In this section, we introduce a novel distance measure, and present a method for
computing the sampling probability based on the measure.

1841Machine Learning (2020) 109:1837–1853	

1 3

3.1 � Sample distance based on Softmax distribution

To evaluate the distance from the sample to the decision boundary, we note that the
softmax distribution, which is the output of the softmax layer in neural networks, clearly
indicates how confidently the model predicts the true label, as demonstrated in Fig. 3.

Let h(y|xi;�t) be the softmax distribution for a given sample xi over y ∈ {1, 2,… , k}
labels, where �t is the parameter of a neural network at time t. Then, the distance from a
sample xi with the true label yi to the decision boundary of the neural network with �t is
defined by the directional distance function,

More specifically, the function consists of two terms related to the direction and magni-
tude of the distance, determined by the model’s correctness and confidence, respectively.
The correctness is determined by verifying whether the label with the highest probability
matches the true label yi , and the confidence is computed by the standard deviation of the
softmax distribution. Intuitively, the standard deviation is a nice indicator of confidence
because the value gets closer to zero when the model is confused.

One might argue that the cross-entropy loss, H(p, q) = −p(xi) log(q(xi)) where p(xi)
and q(xi) are the true and softmax distributions for xi , can be adopted for the distance
function. However, because p(xi) is formulated as a one-hot true label vector, the cross-
entropy loss cannot capture the prediction probability for false labels, which is an
important factor in confusing samples.

Another advantage is that our distance function is bounded as opposed to the loss.
For k labels, the maximum value of std(h(y|xi;�t)) is k−1

√
(k − 1) when h(m|xi;�t) = 1

and ∀l≠mh(l|xi;�t) = 0 . Thus, dist(xi, yi;�t) is bounded by

(1)dist(xi, yi;�
t) =

correctness

⏞⏞⏞⏞⏞⏞⏞

sign(xi, yi) ⋅

confidence

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

std
(
h(y|xi;�t)

)
,

where sign(xi, yi) =

{
+1, argmaxy∈{1,…,k}h(y|xi;�t) = yi
−1, otherwise.

(2)−k−1
√
k − 1 ≤ dist(xi, yi;�

t) ≤ k−1
√
k − 1.

ai
rp

la
in ca
r

bi
rd ca

t
de

er
do

g
fr

og
ho

rs
e

sh
ip

tru
ck

ai
rp

la
in ca
r

bi
rd ca

t
de

er
do

g
fr

og
ho

rs
e

sh
ip

tru
ck

True Label: Horse

ai
rp

la
in ca
r

bi
rd ca

t
de

er
do

g
fr

og
ho

rs
e

sh
ip

tru
ck

ai
rp

la
in ca
r

bi
rd ca

t
de

er
do

g
fr

og
ho

rs
e

sh
ip

tru
ck

(a) Strongly correct. (b)Weakly correct. (c)Weakly incorrect. (d) Strongly incorrect.

Fig. 3   Classification of CIFAR-10 samples using the softmax distribution at the training accuracy of 90% .
If the prediction probability of the true label is the highest, the prediction is correct; otherwise, incorrect. If
the highest probability dominates the distribution, the model’s confidence is strong; otherwise, weak

1842	 Machine Learning (2020) 109:1837–1853

1 3

3.2 � Sampling probability based on quantization index

The rank-based approach introduced by Loshchilov and Hutter (2016) is a common
way to assign the sampling probability of being selected for the next mini-batch. This
approach sorts the samples by a certain importance measure in descending order, and
exponentially decays the sampling probability of a given sample according to its rank.
Let N denote the total number of samples. Then, each r-th ranked sample is selected
with the probability p(r), which drops by a factor of exp (log(se)∕N) . Here, se is the
selection pressure parameter that affects the probability gap between the most and the
least important samples. When normalized to sum to 1.0, the probability that the r-th
ranked sample is selected is defined by

In the existing rank-based approach, the rank of a sample is determined by
|dist(xi, yi;�t)| in ascending order, because it is inversely proportional to the sample
importance. However, if the mass of the true sample distribution is skewed to one side
(e.g., easy side) as shown in Fig. 4, the mini-batch samples are selected with high prob-
ability from the skewed side rather than from around the decision boundary where
|dist(xi, yi;�t)| is very small. This problem was attributed to the unconditionally fixed
probability of a given rank. In other words, samples with similar ranks are selected with
similar probabilities, regardless of the magnitude of the distance values.

To incorporate the impact of distance into batch selection, we adopt the quantiza-
tion method (Gray and Neuhoff 1998; Chen and Wornell 2001) and use the quantization
index q instead of rank r. Let � be the quantization step size and d be the output of the
function dist(xi, yi;�t) of a given sample xi . Then, the index q is obtained by the simple
quantizer Q(d),

The quantization index gets larger as sampling moves away from the decision boundary. In
addition, the difference between two indexes reflects the difference in the actual distances.

In Eq. (4), we set � to be k−1
√
k − 1∕N such that the index q is bounded to N (the total

number of samples) by Eq. (2). Then, the sampling probability of a given sample xi with
the true label yi is defined by

(3)p(r) =
1∕ exp (log(se)∕N)

r

∑N

j=1
1∕ exp (log(se)∕N)

j
.

(4)q = Q(d), Q(d) = ⌈�d�∕�⌉.

Fig. 4   Sample distribution
according to the normalized
dist(xi, yi;�

t) on Fashion-MNIST
data set at the training accuracy
of 80% . The distributions of
mini-batch samples selected by
the rank-based approach and the
quantization-based approach are
plotted together with the true
sample distribution

0

0.04

0.08

0.12

-1
-0

.9
-0

.8
-0

.7
-0

.6
-0

.5
-0

.4
-0

.3
-0

.2
-0

.1 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

True
Rank-based
Quantization-based

Normalized Hard Easy

Pr
ob

ab
ili

ty

1843Machine Learning (2020) 109:1837–1853	

1 3

As shown in Fig. 4, our quantization-based method produces a well-balanced distribution,
even if the true sample distribution is skewed.

4 � Ada‑Boundary Algorithm

4.1 � Main proposed algorithm

Algorithm 1 describes the overall procedure of Ada-Boundary. The input to the algorithm
consists of samples of size N (i.e., training data set), a mini-batch of size b, the selection
pressure se , and the threshold � used to decide the warm-up period. In the early stages of
training, because the quantization index for each sample is not confirmed yet, the algorithm
requires a warm-up period of � epochs. Randomly selected mini-batch samples are used for
the warm-up period (Lines 6–7), and their quantization indexes are updated (Lines 12–18).
After the warm-up epochs, the algorithm computes the sampling probability of each sam-
ple by Eq. (5) and selects mini-batch samples based on the probability (Lines 8–11). Then,
the quantization indexes are updated in the same way (Lines 12–18). Here, we compute the
indexes using the previous model with �t after every SGD step, rather than the latest model
with �t+1 , in order to reuse the previously computed softmax distributions; in addition, we
asynchronously update the indexes of the samples that are only included in the mini-batch
to prevent the additional forward propagation of the entire sample, which would induce a
high computational cost.

(5)p(xi, yi) =
1∕ exp (log(se)∕N)

Q(dist(xi,yi;�
t))

∑N

j=1
1∕ exp (log(se)∕N)

Q(dist(xj,yj;�
t))
.

1844	 Machine Learning (2020) 109:1837–1853

1 3

4.2 � Variants of Ada‑Boundary for comparison

For a more sophisticated analysis of sampling, we present two heuristic sampling strate-
gies: (1) Ada-Hard is similar to the existing hard batch strategy (Loshchilov and Hutter
2016), but it uses our distance function instead of the loss. That is, Ada-Hard focuses on
the samples far from the decision boundary in the negative direction; (2) Ada-Uniform is
designed to select samples with a wide range of difficulty, so it samples uniformly over the
distance range regardless of the sample distribution.

We modified a few lines of Algorithm 1 to implement the two variants. In detail, for
Ada-Hard, the quantization index q should be small for the sample located far in the nega-
tive direction. Thus, Ada-Hard can be implemented by modifying the quantizer Q(d) in
Line 16 of Algorithm 1. When we set � = k−1

√
k − 1∕N to make index q bound to N, the

quantizers of Ada-Hard are defined by

Ada-Uniform can be implemented by using F−1(x) to compute the sampling probability
in Line 10 of Algorithm 1, where F(x) is the empirical sample distribution according to
the sample’s distance to the decision boundary. Note that the computational cost of Ada-
Uniform is much higher than those of Ada-Boundary and Ada-Hard because of the compu-
tation for the empirical distribution, which requires the linear time complexity to the total
number of training samples (i.e., O(N)) in every update iteration.

Figure 5 shows the distributions of mini-batch samples drawn by these two variants. The
distribution of Ada-Hard is skewed to the hard side, and that of Ada-Uniform tends to be
uniform.

5 � Evaluation

To validate the superiority of Ada-Boundary, we performed an image classification task
on five benchmark data sets with varying difficulty levels: MNIST (easy),2 classification of
handwritten digits (LeCun 1998), with 60,000 training and 10,000 testing images; Fash-
ion-MNIST (relatively easy),3 classification of various clothing (Xiao et al. 2017), with

(6)Q(d) =

�
⌈d∕2�⌉ + N∕2, if d ≥ 0

⌊d∕2�⌋ + N∕2 + 1, otherwise.

Fig. 5   The distributions of
mini-batch samples selected
by the two variants in the same
configuration as Fig. 4

-1
-0

.9
-0

.8
-0

.7
-0

.6
-0

.5
-0

.4
-0

.3
-0

.2
-0

.1 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Normalized Hard Easy

Pr
ob

ab
ili

ty

0

0.04

0.08

0.12

0.16

0.2
True
Ada-Easy
Ada-Hard
Ada-Uniform

2  http://yann.lecun​.com/exdb/mnist​.
3  https​://githu​b.com/zalan​dores​earch​/fashi​on-mnist​.

http://yann.lecun.com/exdb/mnist
https://github.com/zalandoresearch/fashion-mnist

1845Machine Learning (2020) 109:1837–1853	

1 3

60,000 training and 10,000 testing images; CIFAR-104 (relatively hard) and CIFAR-100
(hard),4 classification of a subset of 80 million categorical images (Krizhevsky et al. 2014),
with 50,000 training and 10,000 testing images; Tiny-ImageNet (hard),5 classification of
a subset of large-scale categorical images (Krizhevsky et al. 2012), with 100,000 train-
ing and 10,000 testing images. We did not apply any data augmentation or pre-processing
procedures.

We experimentally analyzed the performance improvement of Ada-Boundary compared
with not only random batch selection but also four different adaptive batch selection algo-
rithms: random batch selection selects the next batch uniformly at random from the entire
data set; online batch selects hard samples based on the rank of the loss computed from
previous epochs; active bias selects uncertain samples with high variance of true label
probabilities; Ada-Hard and Ada-Uniform, which are the two variants of Ada-Boundary
introduced in Sect. 4.2. All the algorithms were implemented using TensorFlow 2.1.06 and
excuted using eight NVIDIA Titan Volta GPU. For reproducibility, we provide the source
code at https​://githu​b.com/kaist​-dmlab​/Ada-Bound​ary.

For the classification task, we mainly used a densely connected neural net-
work (DenseNet) (Huang et al. 2017), which is widely known to achieve good generali-
zation performance on data sets with varying difficulty levels (Song et al. 2019). In sup-
port of reliable evaluation, we repeated every task five times and reported the average with
its standard error. That is, the training loss (or test error) was averaged for all the trials
at every epoch. To compare the convergence speed among the methods, we plotted the
averaged training loss and test error for an equivalent wall-clock training time. Besides,
because the best test error in a given time has been widely used for the studies on fast and
accurate training (Loshchilov and Hutter 2016; Chang et al. 2017), we reported the average
of the best test errors in tabular form.

5.1 � Analysis on hard data sets

We used six batch selection strategies to train a DenseNet on the hard data sets: CIFAR-
10, CIFAR-100, and Tiny-ImageNet. Specifically, we trained a DenseNet ( L = 25 , k = 12 )
with a momentum optimizer. We used batch normalization (Ioffe and Szegedy 2015), a
momentum of 0.9, and a batch size of 128. As for the algorithm parameters, we used the
best selection pressure se , obtained from se = {2, 8, 32} (see Sect. 5.5 for details), and set
the warm-up threshold � to 15. Technically, a small � is enough to warm-up, but to reduce
the performance variance caused by randomly initialized parameters, we used a larger �
and shared the model parameters for all strategies during the warm-up period. For online
batch selection, we recomputed all the losses across every epoch to reflect the latest losses.
Regarding the training schedule, following the experimental setup of Huang et al. (2017),
we trained the model for 100 epochs and used an initial learning rate of 0.1, which was
divided by 5 at 50% and 75% of the total number of training iterations. Because the baseline
strategy required about 2,300 seconds for the two CIFAR data sets and 14,500 seconds for
the Tiny-ImageNet data set, we excluded the result of other strategies beyond those times.

4  https​://www.cs.toron​to.edu/~kriz/cifar​.html.
5  https​://www.kaggl​e.com/c/tiny-image​net.
6  https​://www.tenso​rflow​.org/versi​ons/r2.1/api_docs.

https://github.com/kaist-dmlab/Ada-Boundary
https://www.cs.toronto.edu/%7ekriz/cifar.html
https://www.kaggle.com/c/tiny-imagenet
https://www.tensorflow.org/versions/r2.1/api_docs

1846	 Machine Learning (2020) 109:1837–1853

1 3

Figure 6 shows the convergence curves of training loss and test error for six batch selec-
tion strategies on three hard data sets: CIFAR-10, CIFAR-100, and Tiny-ImageNet. In

Random batch Online batch Active bias Ada-Hard Ada-Uniform Ada-Boundary

0.005

0.025

0.125

0.625

0 575 1150 1725 2300

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

Overfitting
8.00%

13.00%

18.00%

23.00%

0 575 1150 1725 2300

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(a) CIFAR-10 Training Loss.

0.280

0.560

1.120

2.240

0 575 1150 1725 2300

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

Overfitting
32.00%

42.00%

52.00%

62.00%

0 575 1150 1725 2300

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(c) CIFAR-100 Training Loss.

(b) CIFAR-10 Test Error.

(d) CIFAR-100 Test Error.

1.600

2.300

3.000

3.700

0 3625 7250 10875 14500

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

Overfitting
50.00%

60.00%

70.00%

80.00%

0 3625 7250 10875 14500

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(e) Tiny-ImageNet Training Loss. (f) Tiny-ImageNet Test Error.

Fig. 6   Convergence curves of six batch selection strategies using DenseNet with momentum on CIFAR-10
and CIFAR-100

Table 1   The best test error (%)
of six batch selection strategies
using DenseNet on three hard
data sets in Fig. 6

The lowest values are highlighted in bold

Method CIFAR-10 CIFAR-100 Tiny-ImageNet

Random batch 8.71 ± 0.02 33.54 ± 0.11 51.67 ± 0.41
Online batch 8.78 ± 0.09 35.64 ± 0.03 52.66 ± 0.37
Active bias 8.87 ± 0.09 34.48 ± 1.30 53.42 ± 0.10
Ada-Hard 8.90 ± 0.10 35.40 ± 0.50 52.63 ± 1.19
Ada-Uniform 17.37 ± 0.34 43.08 ± 0.083 65.37 ± 0.45
Ada-Boundary 8.38 ± 0.07 32.74 ± 0.10 51.17 ± 0.49

1847Machine Learning (2020) 109:1837–1853	

1 3

order to improve legibility, only the curves for the baseline and proposed strategies are dark
colored. The best test errors in Fig. 6 are summarized in Table 1. We conducted a conver-
gence analysis of the six batch selection strategies, as follows:

•	 CIFAR-10 (relatively hard): Except Ada-Uniform and active bias, all adaptive batch
selections achieved faster convergence speed than random batch selection in train-
ing loss, but only Ada-Boundary converged faster than random batch selection in
test error. This means that the strategy focused on hard sample results in the overfit-
ting to “too hard” samples, which is indicated by a larger converged test error. Mean-
while, active bias was prone to make the network better generalized on test data, con-
sidering its test error comparable to that of random batch selection despite its much
higher training loss. That is, active bias resulted in better generalization, but slowed
down the training process. Quantitatively, Ada-Boundary achieved test error rela-
tively lower by 3.79% (8.71%→8.38% ) than random batch selection. In contrast, the
test error of Ada-Hard, online batch selection, and active bias was relatively higher by
2.18% (8.71%→8.90% ), 0.80% (8.71%→8.78% ), and 1.84% (8.71%→8.87%).

•	 CIFAR-100 (hard): In both training loss and test error, the convergence curves of all
strategies showed similar trends to those of CIFAR-10. However, as the training dif-
ficulty increased from CIFAR-10 to CIFAR-100, the overfitting of Ada-Hard and
online batch selection was further exacerbated. This emphasizes the need to con-
sider the samples with appropriate difficulty rather than hard samples. Compared
with random batch selection, Ada-Boundary achieved test error relatively lower
by 2.39% (33.54%→32.74% ). On the other hand, the test error of Ada-Hard, online
batch selection, and active bias was relatively higher by 5.55% (33.54%→35.40% ),
6.26% (33.54%→35.64% ), and 2.80% (33.54%→34.48%).

•	 Tiny-ImageNet (hard): The convergence trend was consistent even when the data set
became larger and harder. Only Ada-Boundary achieved test error relatively lower by
0.97% (51.67%→51.17% ) than random batch selection. On the other hand, the test
error of Ada-Hard, online batch selection, and active bias was relatively higher by
1.86% (51.67%→52.63% ), 1.92% (51.67%→52.66% ), and 3.39% (51.67%→53.42%).

In all the cases, the large performance gap between Ada-Uniform and other methods
were attributed to the high computational cost for updating its empirical sampling distribu-
tion and the over-sampling of too hard samples owing to the plethora of easy ones.

5.2 � Analysis on easy data sets

We also trained a DenseNet ( L = 25 , k = 12 ) with momentum on the easy data sets:
MNIST and Fashion-MNIST. We used the same experimental configuration as in Sect. 5.1,
except for the training schedule. Generally, because a small learning rate without decay
was preferred for easy data sets (Loshchilov and Hutter 2016; Gao and Jojic 2017), we
used a constant learning rate of 0.01 over 80 epochs. Here, the baseline strategy required
about 1,880 seconds for all cases.

Figure 7 shows the convergence curves of training loss and test error for six batch selec-
tion strategies on MNIST and Fashion-MNIST, and the best test errors in Fig. 7 are sum-
marized in Table 2. We conducted a convergence analysis of the six batch selection strate-
gies, as follows:

1848	 Machine Learning (2020) 109:1837–1853

1 3

•	 MNIST (easy): As we clarified in Sect. 1, the hard batch selections, Ada-Hard and
online batch selection, worked well in the easy MNIST data set. They converged faster
than random batch selection in both training loss and test error. Ada-Boundary showed
a fast convergence comparable to that of online batch selection; the absolute differ-
ence of test error between them was only 0.02% , which was almost negligible. Quan-
titatively, Ada-Boundary, Ada-Hard, online batch selection, and active bias achieved
test error relatively lower by 14.58% (0.48%→0.41% ), 4.17% (0.48%→0.46% ),
18.75% (0.48%→0.39% ), and 4.17% (0.48%→0.46% ) than random batch selection,
respectively.

•	 Fashion-MNIST (relatively easy): In both training loss and test error, Ada-Boundary
achieved significantly faster convergence speed than random batch selection. Ada-Hard
and online batch selection tended to weakly overfit to “too hard” samples. Their test

Random batch Online batch Active bias Ada-Hard Ada-Uniform Ada-Boundary

0.000

0.020

0.040

0.060

0 470 940 1410 1880

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

0.30%

0.80%

1.30%

1.80%

0 470 940 1410 1880

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(a) MNIST Training Loss. (b) MNIST Test Error.

0.050

0.170

0.290

0.410

0 470 940 1410 1880

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

6.50%

9.00%

11.50%

14.00%

0 470 940 1410 1880

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(c) Fashion-MNIST Training Loss. (d) Fashion-MNIST Test Error.

Fig. 7   Convergence curves of six batch selection strategies using DenseNet with momentum on MNIST
and Fashion-MNIST

Table 2   The best test error (%)
of six batch selection strategies
using DenseNet on two easy data
sets in Fig. 7

The lowest values are highlighted in bold

Method MNIST Fashion-MNIST

Random batch 0.48 ± 0.02 7.08 ± 0.02
Online batch 0.39 ± 0.02 6.95 ± 0.04
Active bias 0.46 ± 0.01 6.88 ± 0.08
Ada-Hard 0.46 ± 0.01 7.36 ± 0.17
Ada-Uniform 0.68 ± 0.06 9.64 ± 0.25
Ada-Boundary 0.41 ± 0.02 6.51 ± 0.04

1849Machine Learning (2020) 109:1837–1853	

1 3

Random batch Online batch Active bias Ada-Hard Ada-Uniform Ada-Boundary

0.050

0.150

0.250

0.350

0 470 940 1410 1880

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

2.00%

5.00%

8.00%

11.00%

0 470 940 1410 1880

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(a)MNIST Training Loss.

0.270

0.470

0.670

0.870

0 470 940 1410 1880

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

11.00%

17.00%

23.00%

29.00%

0 470 940 1410 1880

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(c) Fashion-MNIST Training Loss.

(b)MNIST Test Error.

(d) Fashion-MNIST Test Error.

0.030

0.330

0.630

0.930

0 575 1150 1725 2300

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

Overfitting
14.00%

19.00%

24.00%

29.00%

0 575 1150 1725 2300

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(e) CIFAR-10 Training Loss.

0.800

1.400

2.000

2.600

0 575 1150 1725 2300

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

Overfitting
40.00%

48.00%

56.00%

64.00%

0 575 1150 1725 2300

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(g) CIFAR-100 Training Loss.

(f) CIFAR-10 Test Error.

(h) CIFAR-100 Test Error.

1.800

2.450

3.100

3.750

0 3625 7250 10875 14500

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

Overfitting 55.00%

63.00%

71.00%

79.00%

0 3625 7250 10875 14500

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(i) Tiny-ImageNet Training Loss. (j) Tiny-ImageNet Test Error.

Fig. 8   Convergence curves of six batch selection strategies using DenseNet with SGD 

1850	 Machine Learning (2020) 109:1837–1853

1 3

error approached that of random batch selection, even when they converged much faster
in training loss. In summary, Ada-Boundary, online batch selection, and active bias
achieved test error relatively lower by 8.05% (7.08%→6.51% ), 1.84% (7.08%→6.95% ),
and 2.82% (7.08%→6.88% ) than random batch selection, respectively. On the other
hand, Ada-Hard was relatively higher by 3.80% (7.08%→7.36%).

5.3 � Generalization of the gradient optimizer

To validate the generality of the optimizer, we repeated the experiment in Sects. 5.1 and
5.2 using the SGD optimizer. Figure 8 shows the convergence curves of six batch selection
strategies with the SGD optimizer on all the data sets, and we conducted their convergence
analysis as follows:

•	 MNIST (easy): All adaptive batch selection strategies converged faster than random
batch selection in both training loss and test error. The convergence curve of Ada-Uni-
form tended to fluctuate.

•	 Fashion-MNIST (relatively easy): Except Ada-Uniform, all strategies showed compa-
rable performance in both training loss and test error, which were slightly faster than
random batch selection.

•	 CIFAR-10 (relatively hard): Except for Ada-Uniform and active bias, all adaptive batch
selections converged significantly faster than random batch selection in training loss.
However, due to the overfitting to “too hard” samples, only Ada-Boundary achieved
much faster convergence speed than other adaptive batch selections in test error.

•	 CIFAR-100 (hard): Ada-Boundary converged faster than random batch selection in
both training loss and test error. In contrast, Ada-Hard and online batch selection suf-
fered from the overfitting issue in test error, even when they converged faster than ran-
dom batch selection in training loss. much faster convergence speed than other adaptive
batch selections in test error.

•	 Tiny-ImageNet (hard): Again, similar to the CIFAR data sets, Ada-Boundary achieved the
lowest test error while expediting the convergence of training loss. Active bias converged the
slowest in training error, but its test error was comparable to that of the hard batch selections.

In summary, only Ada-Boundary succeeded in increasing the convergence speed for all data
sets, regardless of the difficulty level. Quantitatively, compared with random batch selection,

Random batch Online batch Active bias Ada-Hard Ada-Uniform Ada-Boundary

0.100

0.500

0.900

1.300

0 670 1340 2010 2680

A
ve

ra
ge

d
Tr

ai
ni

ng
 L

os
s

Time (s)

Overfitting
16.00%

25.00%

34.00%

43.00%

0 670 1340 2010 2680

A
ve

ra
ge

d
Te

st
 E

rr
or

Time (s)
(a) CIFAR-10 Training Loss. (b) CIFAR-10 Test Error.

Fig. 9   Convergence curves of six batch selection strategies using WideResNet with SGD on CIFAR-10

1851Machine Learning (2020) 109:1837–1853	

1 3

Ada-Boundary achieved a significant reduction in test error of 31.80% (3.43%→2.34% ),
12.85% (14.47%→12.61% ), 3.26% (14.72%→14.24% ), 2.11% (42.63%→41.73% ), and
0.58% (56.70%→56.37% ) in MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, and
Tiny-ImageNet.

5.4 � Generalization of the model

To show the generality of the model, we trained a WideResNet 16-8 (Zagoruyko and
Komodakis 2016) on the CIFAR-10 data set for 50 epochs. For the experiment, we used the
SGD optimizer and a constant learning rate of 0.01. The other configurations were the same
as in Sect. 5.1. Figure 9 shows the convergence curves of six batch selection strategies on
CIFAR-10. Here, Ada-Boundary also outperformed other batch selection strategies in both
training loss and test error. Ada-Boundary significantly reduced the test error by 8.38%
( 17.06%→15.63% ) compared with random batch selection. Owing to the overfitting issue,
Ada-Hard converged slower than Ada-Boundary in test error, even when it achieved low train-
ing loss comparable to that of Ada-Boundary. The slow convergence speed of online batch
selection in test error is explained by the same reasoning.

5.5 � Impact of selection pressure s
e

The selection pressure se determines how strongly the boundary samples are selected.
The larger the se value, the larger the sampling probabilities of the boundary samples,
so more boundary samples are chosen for the next mini-batch. On the other hand, as
smaller se value brings Ada-Boundary closer to random batch selection. To analyze the
impact of the selection pressure se and determine the best value, we trained a DenseNet
( L = 25 , k = 12 ) with momentum on our four benchmark data sets with varying se val-
ues in the same configuration as outlined in Sects. 5.1 and 5.2.

Table 3   The converged
training loss of Ada-Boundary
with varying s

e
 in the same

configuration as in Sects. 5.1
and 5.2

Method Converged training loss

MNIST Fashion-MNIST CIFAR-10 CIFAR-100

s
e
= 2.0 0.0087 0.1122 0.0106 0.4171

s
e
= 8.0 0.0083 0.0986 0.0103 0.3520

s
e
= 32.0 0.0077 0.0803 0.0083 0.3399

Table 4   The best test error (%) of Ada-Boundary with varying s
e
 in the same configuration as in Sects. 5.1

and 5.2

The lowest values are highlighted in bold

Method Best test error

MNIST Fashion-MNIST CIFAR-10 CIFAR-100

s
e
= 2.0 0.452 ± 0.017 6.870 ± 0.037 8.383 ± 0.068 32.740 ± 0.099

s
e
= 8.0 0.425 ± 0.010 6.795 ± 0.128 8.460 ± 0.097 32.934 ± 0.064

s
e
= 32.0 0.412 ± 0.016 6.505 ± 0.043 8.693 ± 0.111 33.543 ± 0.082

1852	 Machine Learning (2020) 109:1837–1853

1 3

Tables 3 and 4 respectively show the converged training loss and the best test error of
Ada-Boundary with varying se values on four benchmark data sets. For training loss, the
convergence speed was accelerated as the se value increased. That is, lower training loss
was achieved with a larger se value (see Table 3). Similarly, for test error, this trend was
observed on easy data sets (see MNIST and Fashion-MNIST in Table 4). However, the
overexposure to the boundary samples when the large se was used incurred an overfitting
issue on the hard data sets (see CIFAR-10 and CIFAR-100 in Table 4). When using a
large se value, the test error increased even when the training loss decreased. This means
that the overexposure to only some part of training samples is not beneficial for the
generalization of overall training in hard data sets. Therefore, we used se = 32.0 for easy
data sets, and se = 2.0 for hard data sets in all experiments.

6 � Conclusion and future work

In this paper, we proposed a novel and simple adaptive batch selection algorithm, Ada-
Boundary, that presents the most appropriate samples according to the learning pro-
gress of the model. Toward this goal, we defined the distance from a sample to the
decision boundary and introduced a quantization method for selecting the samples near
the boundary with high probability. We performed extensive experimentation using a
DenseNet for five benchmark data sets with varying difficulty levels. The results showed
that Ada-Boundary significantly accelerated the training process, and was better gener-
alized for hard data sets. When training an easy data set, Ada-Boundary showed a fast
convergence comparable to that of the state-of-the-art algorithm; when training hard
data sets, only Ada-Boundary converged significantly faster than random batch selec-
tion as well as the state-of-the-art algorithm.

The most exciting benefit of Ada-Boundary is its potential to reduce the time needed
to train a DNN. This becomes more important as the size and complexity of the data
increases and can be boosted with recent advances of hardware technology. It can be
easily implemented into various optimizers owing to its simplicity. Our immediate
future work is to apply Ada-Boundary to other types of DNNs, such as RNN (Mikolov
et al. 2010) and LSTM (Hochreiter and Schmidhuber 1997), which have a neural struc-
ture completely different from that of CNN. In addition, we plan to investigate the rela-
tionship between the power of a DNN and the improvement in Ada-Boundary.

Acknowledgements  This work was partly supported by the National Research Foundation of Korea (NRF)
Grant funded by the Korea Government (Ministry of Science and ICT) (No. 2017R1E1A1A01075927) and
Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the
Korea Government (MSIT) (No. 2020-0-00862, DB4DL: High-Usability and Performance In-Memory Dis-
tributed DBMS for Deep Learning).

References

Bengio, Y., J. Louradour, R. Collobert, & J. Weston (2009). Curriculum learning. In International Confer-
ence on Machine Learning (ICML), pp. 41–48.

Chang, H.-S., E. Learned-Miller, & A. McCallum (2017). Active Bias: Training more accurate neural net-
works by emphasizing high variance samples. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 1002–1012.

1853Machine Learning (2020) 109:1837–1853	

1 3

Chen, B., & Wornell, G. W. (2001). Quantization index modulation: A class of provably good methods
for digital watermarking and information embedding. Transactions on Information Theory, 47(4),
1423–1443.

Fan, Y., Tian, F., Qin, T., & Liu, T.-Y. (2017). Neural data filter for bootstrapping stochastic gradient
descent. In International Conference on Learning Representation (ICLR).

Gao, T., & Jojic, V. (2017). Sample importance in training deep neural networks. https​://openr​eview​.net/
forum​?id=r1IRc​tqxg.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.
Gray, R. M., & Neuhoff, D. L. (1998). Quantization. Transactions on Information Theory, 44(6), 2325–2383.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional

networks. In International Conference on Computer Vision and Pattern Recognition (CVPR), pp.
4700–4708.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing inter-
nal covariate shift. In International Conference on Machine Learning (ICML), pp. 448–456.

Katharopoulos, A., & Fleuret, F. (2018). Not all samples are created equal: Deep learning with importance
sampling. In International Conference on Machine Learning (ICML), pp. 2525–2534.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In International Conference
on Learning Representation (ICLR).

Krizhevsky, A., Nair, V., & Hinton, G. (2014). CIFAR-10 and CIFAR-100 datasets. https​://www.cs.toron​
to.edu/~kriz/cifar​.html.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neu-
ral networks. In Advances in Neural Information Processing Systems (NeurIPS), pp. 1097–1105.

Kumar, M. P., Packer, B., & Koller, D. (2010). Self-paced learning for latent variable models. In Advances
in Neural Information Processing Systems (NeurIPS), pp. 1189–1197.

LeCun, Y. (1998). The MNIST database of handwritten digits. http://yann.lecun​.com/exdb/mnist​.
Loshchilov, I., & Hutter, F. (2016). Online batch selection for faster training of neural networks. In Interna-

tional Conference on Learning Representation (ICLR).
Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., & Khudanpur, S. (2010). Recurrent neural network

based language model. In Annual Conference of the International Speech Communication Association
(INTERSPEECH), pp. 1045–1048.

Needell, D., Ward, R., & Srebro, N. (2014). Stochastic gradient descent, weighted sampling, and the randomized
Kaczmarz algorithm. In Advances in Neural Information Processing Systems (NeurIPS), pp. 1017–1025.

Sachan, M., & Xing, E. (2016). Easy questions first? A case study on curriculum learning for question
answering. In Annual Meeting of the Association for Computational Linguistics (ACL), pp. 453–463.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016). Prioritized experience replay. In International
Conference on Learning Representation (ICLR).

Schmidt, M., Babanezhad, R., Ahmed, M., Defazio, A., Clifton, A., & Sarkar, A. (2015). Non-uniform sto-
chastic average gradient method for training conditional random fields. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pp. 819–828.

Shrivastava, A., Gupta, A., & Girshick, R. (2016). Training region-based object detectors with online hard
example mining. In International Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 761–769.

Song, H., Kim, M., & Lee, J.-G. (2019). SELFIE: Refurbishing unclean samples for robust deep learning. In
International Conference on Machine Learning, pp. 5907–5915.

Song, H., Kim, M., Kim, S., & Lee, J.-G. (2020). Carpe diem, seize the samples uncertain “at the moment”
for adaptive batch selection. In International Conference on Information and Knowledge Management
(CIKM).

Tsvetkov, Y., Faruqui, M., Ling, W., MacWhinney, B., & Dyer, C. (2016). Learning the curriculum with
bayesian optimization for task-specific word representation learning. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pp. 130–139.

Wu, C.-Y., Manmatha, R., Smola, A. J., & Krähenbühl, P. (2017). Sampling matters in deep embedding
learning. In International Conference on Computer Vision (ICCV), pp. 2840–2848.

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. arXiv​:1708.07747​.

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. arXiv​:1605.07146​.
Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. arXiv​:1212.5701.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://openreview.net/forum?id=r1IRctqxg
https://openreview.net/forum?id=r1IRctqxg
https://www.cs.toronto.edu/%7ekriz/cifar.html
https://www.cs.toronto.edu/%7ekriz/cifar.html
http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1212.5701

	Ada-boundary: accelerating DNN training via adaptive boundary batch selection
	Abstract
	1 Introduction
	2 Related work
	3 Ada-Boundary Components
	3.1 Sample distance based on Softmax distribution
	3.2 Sampling probability based on quantization index

	4 Ada-Boundary Algorithm
	4.1 Main proposed algorithm
	4.2 Variants of Ada-Boundary for comparison

	5 Evaluation
	5.1 Analysis on hard data sets
	5.2 Analysis on easy data sets
	5.3 Generalization of the gradient optimizer
	5.4 Generalization of the model
	5.5 Impact of selection pressure

	6 Conclusion and future work
	Acknowledgements
	References

