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Abstract
Performance estimation aims at estimating the loss that a predictive model will incur on 
unseen data. This process is a fundamental stage in any machine learning project. In this 
paper we study the application of these methods to time series forecasting tasks. For inde-
pendent and identically distributed data the most common approach is cross-validation. 
However, the dependency among observations in time series raises some caveats about the 
most appropriate way to estimate performance in this type of data. Currently, there is no 
consensual approach. We contribute to the literature by presenting an extensive empirical 
study which compares different performance estimation methods for time series forecast-
ing tasks. These methods include variants of cross-validation, out-of-sample (holdout), and 
prequential approaches. Two case studies are analysed: One with 174 real-world time series 
and another with three synthetic time series. Results show noticeable differences in the 
performance estimation methods in the two scenarios. In particular, empirical experiments 
suggest that blocked cross-validation can be applied to stationary time series. However, 
when the time series are non-stationary, the most accurate estimates are produced by out-
of-sample methods, particularly the holdout approach repeated in multiple testing periods.
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1  Introduction

Performance estimation denotes the process of using the available data to estimate the loss 
that a predictive model will incur in new, yet unseen, observations. Estimating the per-
formance of a predictive model is a fundamental stage in any machine learning project. 
Practitioners carry out performance estimation to select the most appropriate model and 
its parameters. Crucially, the process of performance estimation is one of the most reli-
able approaches to analyse the generalisation ability of predictive models. Such analysis 
is important not only to select the best model, but also to verify that the respective model 
solves the underlying predictive task.

Choosing an appropriate performance estimation method usually depends on the char-
acteristics of the data set. When observations are independent and identically distributed 
(i.i.d.), cross validation is one of the most widely used approaches (Geisser 1975). One 
of the reasons for its popularity is its efficient use of data (Arlot and Celisse 2010). How-
ever, many data sets in real-world applications are not i.i.d., for example, time series. Time 
series forecasting is an important machine learning problem. This task has a high practical 
utility in organizations across many domains of application.

When the observations in a data set are not i.i.d., the standard cross-validation approach 
is not directly applicable. Cross-validation breaks the temporal order of time series obser-
vations, which may lead to unrealistic estimates of predictive performance. In effect, when 
dealing with this type of data sets, practitioners typically apply an out-of-sample (also 
known as holdout) approach to estimate the performance of predictive models. Essentially, 
the predictive model is built in the initial part of the data. The subsequent observations are 
used for testing. Notwithstanding, there are particular scenarios in which cross-validation 
may be beneficial. For example, when the time series is stationary, or the sample size is 
small and data efficiency becomes important (Bergmeir et al. 2018).

Several approaches have been developed in recent decades to estimate the performance 
of forecasting models. However, there is no consensual approach. In this context, we con-
tribute to the literature by carrying out an extensive empirical study which compares sev-
eral approaches which are often used in practice.

We compare a set of estimation methods which can be broadly split into three catego-
ries: out-of-sample (OOS), prequential, and cross-validation (CVAL). OOS approaches 
are commonly used to estimate the performance of models when the data comprises some 
degree of temporal dependency. The core idea behind these approaches is to leave the last 
part of the data for testing. Although this type of approaches do not make a complete use 
of the available data, they preserve the temporal order of observations. This aspect may be 
important to cope with the temporal correlation among consecutive observations, and to 
mimic a realistic deployment scenario. Prequential approaches (Dawid 1984) are also com-
mon in incremental or high-frequency data sets such as data streams (Gama et al. 2014). 
Prequential denotes an evaluation procedure in which an observation (or a set of observa-
tions) is first used for testing, and then to re-train or update the model.

CVAL approaches make a more efficient use of the available data as each observation is 
used to both train and test a model over the different iterations of the procedure. This prop-
erty may be beneficial in some scenarios in which the sample size is small (Bergmeir et al. 
2018). Although the classical K-fold cross validation assumes the data to be i.i.d., some 
variants of it have been developed which mitigate this problem. In effect, some of these 
variants have been shown to provide better estimate of performance relative to OOS meth-
ods in time series tasks (Bergmeir and Benítez 2012; Bergmeir et al. 2014, 2018).
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The key factor that distinguishes OOS and prequential approaches from CVAL ones is 
that the former always preserve the temporal order of observations. This means that a model 
is never tested on past data relative to the training data set. The central research question we 
address in this paper is the following: How do estimation methods compare with each other 
in terms of performance estimation ability for different types of time series data? To accom-
plish this, we applied different estimation methods in two case studies. One is comprised of 
174 real-world time series with potential non-stationarities and the other is a stationary syn-
thetic environment (Bergmeir and Benítez 2012; Bergmeir et al. 2014, 2018).

The results suggest that, as Bergmeir et al. point out (Bergmeir et al. 2018), cross-vali-
dation approaches can be applied to stationary time series. However, many real-world phe-
nomena comprise complex non-stationary sources of variation. In these cases, applying 
holdout in several testing periods shows the best performance.

This paper is an extension to an article already published (Cerqueira et al. 2017). In this 
work, we substantially increase the experimental setup both in methods and data sets used; 
we provide additional analyses such as the impact of stationarity; and a more in-depth and 
critical discussion of the results.

This paper is structured as follows. The literature on performance estimation for time 
series forecasting tasks is reviewed in Sect.  2. Materials and methods are described in 
Sect. 3, including the predictive task, time series data sets, performance estimation meth-
odology, and experimental design. The results of the experiments are reported in Sect. 4. A 
discussion of our results is carried out in Sect. 5. Finally, the conclusions of our empirical 
study are provided in Sect. 6.

In the interest of reproducibility, the methods and data sets are publicly available.1

2 � Background

In this section we provide a background to this paper. We review the typical estimation 
methods used in time series forecasting and explain the motivation for this study.

In general, performance estimation methods for time series forecasting tasks are 
designed to cope with the dependence between observations. This is typically accom-
plished by having a model tested on observations future to the ones used for training.

2.1 � Out‑of‑sample (OOS) approaches

When using OOS performance estimation procedures, a time series is split into two 
parts: an initial fit period in which a model is trained, and a subsequent (temporally) test-
ing period held out for estimating the loss of that model. This simple approach (Hold-
out) is depicted in Fig. 1. However, within this type of procedure one can adopt different 
strategies regarding training/testing split point, growing or sliding window settings, and 
eventual update of the models. In order to produce a robust estimate of predictive perfor-
mance, (Tashman 2000) recommends employing these strategies in multiple test periods. 
One might create different sub-samples according to, for example, business cycles (Fildes 
1989). For a more general setting one can also adopt a randomized approach. This is simi-
lar to random sub-sampling (or repeated holdout) in the sense that they consist of repeat-
ing a learning plus testing cycle several times using different, but possibly overlapping 

1  https​://githu​b.com/vcerq​ueira​/perfo​rmanc​e_estim​ation​.

https://github.com/vcerqueira/performance_estimation.
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data samples (Rep-Holdout). This idea is illustrated in Fig. 2, where one iteration of a 
repeated holdout is shown. A point a is randomly chosen from the available sampling win-
dow (constrained by the training and testing sizes) of a time series Y. This point then marks 
the end of the training set, and the start of the testing set.

2.2 � Prequential

OOS approaches are similar to prequential or interleaved-test-then-train evaluation (Dawid 
1984). Prequential is typically used in data streams mining. The idea is that each obser-
vation is first used to test the model, and then to train the model. This can be applied in 
blocks of sequential instances (Modha and Masry 1998). In the initial iteration, only the 
first two blocks are used, the first for training and the second for testing. In the next itera-
tion, the second block is merged with the first, and the third block is used for test. This 
procedure continues until all blocks are tested (Preq-Bls). This procedure is exemplified 
in the left side of Fig. 3, in which the data is split into 5 blocks.

Fig. 2   Example of one iteration of the repeated holdout procedure. A point a is chosen from the available 
window. Then, a previous part of observations are used for training, while a subsequent part of observations 
are used for testing

Fig. 3   Variants of prequential approach applied in blocks for performance estimation. This strategy can be 
applied using a growing window (left, right), or a sliding window (middle). One can also introduce a gap 
between the training and test sets

Fig. 1   Simple out-of-sample procedure: an initial part of the available observations are used for fitting a 
predictive model. The last part of the data is held out, where the predictive model is tested
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A variant of this idea is illustrated in the middle scheme of Fig.  3. Instead of merg-
ing the blocks after each iteration (growing window), one can forget the older blocks in a 
sliding window fashion (Preq-Sld-Bls). This idea is typically adopted when past data 
becomes deprecated, which is common in non-stationary environments. Another variant 
of the prequential approach is represented in the right side of Fig. 3. This illustrates a pre-
quential approach applied in blocks, where a gap block is introduced (Preq-Bls-Gap). 
The rationale behind this idea is to increase the independence between training and test 
sets.

The prequential approaches can be regarded as variations of the holdout procedure 
applied in multiple testing periods (Rep-Holdout). The core distinction is that the train 
and test prequential splits are not randomized, but pre-determined by the number of blocks 
or repetitions.

2.3 � Cross‑validation approaches

The typical approach when using K-fold cross-validation is to randomly shuffle the data 
and split it in K equally-sized folds or blocks. Each fold is a subset of the data comprising 
t/K randomly assigned observations, where t is the number of observations. After split-
ting the data into K folds, each fold is iteratively picked for testing. A model is trained 
on K-1 folds and its loss is estimated on the left out fold (CV). In fact, the initial random 
shuffle of observations before splitting into different blocks is not intrinsic to cross-valida-
tion (Geisser 1975). Notwithstanding, the random shuffling is a common practice among 
data science professionals. This approach to cross-validation is illustrated in the left side 
of Fig. 4.

2.3.1 � Variants designed for time‑dependent data

Some variants of K-fold cross-validation have been proposed specially designed for 
dependent data, such as time series (Arlot and Celisse 2010). However, theoretical prob-
lems arise by applying this technique directly to this type of data. The dependency among 
observations is not taken into account since cross-validation assumes the observations to 
be i.i.d.. This might lead to overly optimistic estimations and consequently, poor gener-
alisation ability of predictive models on new observations. For example, prior work has 
shown that cross-validation yields poor estimations for the task of choosing the bandwidth 

Fig. 4   Variants of cross-validation estimation procedures



2002	 Machine Learning (2020) 109:1997–2028

1 3

of a kernel estimator in correlated data  (Hart and Wehrly 1986). To overcome this issue 
and approximate independence between the training and test sets, several methods have 
been proposed as variants of this procedure. We will focus on variants designed to cope 
with temporal dependency among observations.

The Blocked Cross-Validation (Snijders 1988) (CV-Bl) procedure is similar to the stand-
ard form described above. The difference is that there is no initial random shuffling of obser-
vations. In time series, this renders K blocks of contiguous observations. The natural order 
of observations is kept within each block, but broken across them. This approach to cross-
validation is also illustrated in the left side of Fig. 4. Since the random shuffle of observations 
is not being illustrated, the figure for CV-Bl is identical to the one shown for CV.

The Modified CV procedure (McQuarrie and Tsai 1998) (CV-Mod) works by removing 
observations from the training set that are correlated with the test set. The data is initially 
randomly shuffled and split into K equally-sized folds similarly to K-fold cross-validation. 
Afterwards, observations from the training set within a certain temporal range of the obser-
vations of the test set are removed. This ensures independence between the training and test 
sets. However, when a significant amount of observations are removed from training, this 
may lead to model under-fit. This approach is also described as non-dependent cross-valida-
tion (Bergmeir and Benítez 2012). The graph in the middle of Fig. 4 illustrates this approach.

The hv-Blocked Cross-Validation (CV-hvBl) proposed by Racine (2000) extends blocked 
cross-validation to further increase the independence among observations. Specifically, 
besides blocking the observations in each fold, which means there is no initial randomly shuf-
fle of observations, it also removes adjacent observations between the training and test sets. 
Effectively, this creates a gap between both sets. This idea is depicted in the right side of Fig. 4.

2.3.2 � Usefulness of cross‑validation approaches

Recently there has been some work on the usefulness of cross-validation procedures for 
time series forecasting tasks. Bergmeir and Benítez (2012) present a comparative study of 
estimation procedures using stationary time series. Their empirical results show evidence 
that in such conditions cross-validation procedures yield more accurate estimates than an 
OOS approach. Despite the theoretical issue of applying standard cross-validation, they 
found no practical problem in their experiments. Notwithstanding, the Blocked cross-vali-
dation is suggested for performance estimation using stationary time series.

Bergmeir et al. (2014) extended their previous work for directional time series forecast-
ing tasks. These tasks are related to predicting the direction (upward or downward) of the 
observable. The results from their experiments suggest that the hv-Blocked CV procedure 
provides more accurate estimates than the standard out-of-sample approach. These were 
obtained by applying the methods on stationary time series.

Finally, Bergmeir et  al. (2018) present a simulation study comparing standard cross-
validation to out-of-sample evaluation. They used three data generating processes and per-
formed 1000 Monte Carlo trials in each of them. For each trial and generating process, a 
stationary time series with 200 values was created. The results from the simulation sug-
gest that cross-validation systematically yields more accurate estimates, provided that the 
model is correctly specified.

In a related empirical study (Mozetič et al. 2018), Mozetič et al. compare estimation pro-
cedures on several large time-ordered Twitter datasets. They find no significant difference 
between the best cross-validation and out-of-sample evaluation procedures. However, they do 
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find that standard, randomized cross-validation is significantly worse than the blocked cross-
validation, and should not be used to evaluate classifiers in time-ordered data scenarios.

Despite the results provided by these previous works we argue that they are limited 
in two ways. First, the used experimental procedure is biased towards cross-validation 
approaches. While these produce several error estimates (one for each fold), the OOS 
approach is evaluated in a one-shot estimation, where the last part of the time series is 
withheld for testing. OOS methods can be applied in several windows for more robust esti-
mates, as recommended by Tashman (2000). By using a single origin, one is prone to par-
ticular issues related to that origin.

Second, the results are based on stationary time series, most of them artificial. Time 
series stationarity is equivalent to identical distribution in the terminology of more tradi-
tional predictive tasks. Hence, the synthetic data generation processes and especially the 
stationary assumption limit interesting patterns that can occur in real-world time series. 
Our working hypothesis is that in more realistic scenarios one is likely to find time series 
with complex sources of non-stationary variations.

In this context, this paper provides an extensive comparative study using a wide set of 
methods for evaluating the performance of univariate time series forecasting models. The 
analysis is carried out using a real-world scenario as well as a synthetic case study used in 
the works described previously (Bergmeir and Benítez 2012; Bergmeir et al. 2014, 2018).

2.4 � Related work on performance estimation with dependent data

The problem of performance estimation has also been under research in different scenarios. 
While we focus on time series forecasting problems, the following works study perfor-
mance estimation methods in different predictive tasks.

2.4.1 � Spatio‑temporal dependencies

Geo-referenced time series are becoming more prevalent due to the increase of data collec-
tion from sensor networks. In these scenarios, the most appropriate estimation procedure is 
not obvious as spatio-temporal dependencies are at play. Oliveira et al. (2018) presented an 
extensive empirical study of performance estimation for forecasting problems with spatio-
temporal time series. The results reported by the authors suggest that both cross-validation 
and out-of-sample methods are applicable in these scenarios. Like previous work in time-
dependent domains (Bergmeir and Benítez 2012; Mozetič et al. 2018), Oliveira et al. sug-
gest the use of blocking when using a cross-validation estimation procedure.

2.4.2 � Data streams mining

Data streams mining is concerned with predictive models that evolve continuously over 
time in response to concept drift  (Gama et al. 2014). Gama et al. (2013) provide a thor-
ough overview of the evaluation of predictive models for data streams mining. The authors 
defend the usage of the prequential estimator with a forgetting mechanism, such as a fading 
factor or a sliding window.

This work is related to ours in the sense that it deals with performance estimation using 
time-dependent data. Notwithstanding, the paradigm of data streams mining is in line with 
sequential analysis  (Wald 1973). As such, the assumption is that the sample size is not 
fixed in advance, and predictive models are evaluated as observations are collected. In our 
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setting, given a time series data set, we want to estimate the loss that a predictive models 
will incur in unseen observations future to that data set.

3 � Materials and methods

In this section we present the materials and methods used in this work. First, we define the 
prediction task. Second, the time series data sets are described. We then formalize the meth-
odology employed for performance estimation. Finally, we overview the experimental design.

3.1 � Predictive task definition

A time series is a temporal sequence of values Y = {y1, y2,… , yt} , where yi is the value of 
Y at time i and t is the length of Y. We remark that we use the term time series assuming 
that Y is a numeric variable, i.e., yi ∈ ℝ,∀ yi ∈ Y .

Time series forecasting denotes the task of predicting the next value of the time series, 
yt+1 , given the previous observations of Y. We focus on a purely auto-regressive modelling 
approach, predicting future values of time series using its past lags.

To be more precise, we use time delay embedding (Takens 1981) to represent Y in an 
Euclidean space with embedding dimension p. Effectively, we construct a set of observa-
tions which are based on the past p lags of the time series. Each observation is composed 
of a feature vector xi ∈ 𝕏 ⊂ ℝ

p , which denotes the previous p values, and a target vector 
yi ∈ 𝕐 ⊂ ℝ , which represents the value we want to predict. The objective is to construct a 
model f ∶ � → �  , where f denotes the regression function.

Summarizing, we generate the following matrix:

Taking the first row of the matrix as an example, the target value is yp+1 , while the attrib-
utes (predictors) are the previous p values {y1,… , yp}.

3.2 � Time series data

Two different case studies are used to analyse the performance estimation methods: a sce-
nario comprised of real-world time series and a synthetic setting used in prior works (Berg-
meir and Benítez 2012; Bergmeir et  al. 2014, 2018) for addressing the issue of perfor-
mance estimation for time series forecasting tasks.

3.2.1 � Real‑world time series

Regarding real-world time series, we use a set of time series from the benchmark database 
tsdl (Hyndman and Yang 2019). From this database, we selected all the univariate time 

Y[n,p] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y1 y2 … yp−1 yp yp+1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

yi−p+1 yi−p+2 … yi−1 yi yi+1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

yt−p+1 yt−p+2 … yt−1 yt yt+1

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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series with at least 500 observations and which have no missing values. This query returned 
149 time series. We also included 25 time series used in previous work by Cerqueira et al. 
(2019). From the set of 62 time series used by the authors, we selected those with at least 
500 observations and which were not originally from the tsdl database (which are already 
retrieved as described above). We refer to the work by Cerqueira et al. (2019) for a descrip-
tion of the time series. In summary, our database of real-world time series comprises 174 
time series. The threshold of 500 observations is included so that learning algorithms have 
enough data to build a good predictive model. The 174 time series represent phenomena 
from different domains of applications. These include finance, physics, economy, energy, 
and meteorology. They also cover distinct sampling frequencies, such as hourly or daily. In 
terms of sample size, the distribution ranges from 506 to 23741 observations. However, we 
truncated to time series to a maximum of 4000 observations to speed up computations. The 
database is available online (c.f. footnote 1). We refer to the sources for further information 
on these time series Hyndman and Yang (2019); Cerqueira et al. (2019).

Stationarity
We analysed the stationarity of the time series comprising the real-world case study. 

Essentially, a time series is said to be stationary if its characteristics do not depend on 
the time that the data is observed (Hyndman and Athanasopoulos 2018). In this work we 
consider a stationarity of order 2. This means that a time series is considered stationary if 
it has constant mean, constant variance, and an auto-covariance that does not depend on 
time. Henceforth we will refer a time series as stationary if it is stationary of order 2.

In order to test if a given time series is stationary we follow the wavelet spectrum test 
described by Nason (2013). This test starts by computing an evolutionary wavelet spec-
tral approximation. Then, for each scale of this approximation, the coefficients of the Haar 
wavelet are computed. Any large Haar coefficient is evidence of a non-stationarity. An 
hypothesis test is carried out to assess if a coefficient is large enough to reject the null 
hypothesis of stationarity. In particular, we apply a multiple hypothesis test with a Bonfer-
roni correction and a false discovery rate (Nason 2013).

In Fig. 5 is shown an example of the application of the wavelet spectrum test to a non-
stationary time series. In the graphic, each red horizontal arrow denotes a non-station-
arity found by the test. The left-hand side axis denotes the scale of the time series. The 

Fig. 5   Application of the wavelet spectrum test to a non-stationary time series. Each red horizontal arrow 
denote a non-stationarity identified by the test
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right-hand axis represents the scale of the wavelet periodogram and where the non-station-
arities are found. Finally, the lengths of the arrows denote the scale of the Haar wavelet 
coefficient whose null hypothesis was rejected. For a thorough description of this method 
we refer to the work by Nason (2013). Out of the 174 time series used in this work, 97 are 
stationary, while the remaining 77 are non-stationary.

3.2.2 � Synthetic time series

We use three synthetic use cases defined in previous works by Bergmeir et  al. (2014, 
(2018). The data generating processes are all stationary and are designed as follows: 

S1	� A stable auto-regressive process with lag 3, i.e., the next value of the time series is 
dependent on the past 3 observations;

S2	� An invertible moving average process with lag 1;
S3	� A seasonal auto-regressive process with lag 12 and seasonal lag 1.

For the first two cases, S1 and S2, real-valued roots of the characteristic polynomial are 
sampled from the uniform distribution [−r; − 1.1] ∪ [1.1, r] , where r is set to 5 (Bergmeir 
and Benítez 2012). Afterwards, the roots are used to estimate the models and create the 
time series. The data is then processed by making the values all positive. This is accom-
plished by subtracting the minimum value and adding 1. The third case S3 is created by 
fitting a seasonal auto-regressive model to a time series of monthly total accidental deaths 
in the USA (Brockwell and Davis 2013). For a complete description of the data generating 
process we refer to the work by Bergmeir and Benítez (2012); Bergmeir et al. (2018). Simi-
larly to Bergmeir et al., for each use case we performed 1000 Monte Carlo simulations. In 
each repetition a time series with 200 values was generated.

3.3 � Performance estimation methodology

Performance estimation addresses the issue of estimating the predictive performance of 
predictive models. Frequently, the objective behind these tasks is to compare different solu-
tions for solving a predictive task. This includes selecting among different learning algo-
rithms and hyper-parameter tuning for a particular one.

Training a learning model and evaluating its predictive ability on the same data has 
been proven to produce biased results due to overfitting (Arlot and Celisse 2010). In effect, 
several methods for performance estimation have been proposed in the literature, which use 
new data to estimate the performance of models. Usually, new data is simulated by split-
ting the available data. Part of the data is used for training the learning algorithm and the 
remaining data is used to test and estimate the performance of the model.

For many predictive tasks the most widely used of these methods is K-fold cross-
validation  (Stone 1974) (c.f. Sect.  2 for a description). The main advantages of this 
method is its universal splitting criteria and efficient use of all the data. However, cross-
validation is based on the assumption that observations in the underlying data are inde-
pendent. When this assumption is violated, for example in time series data, theoreti-
cal problems arise that prevent the proper use of this method in such scenarios. As we 
described in Sect. 2 several methods have been developed to cope with this issue, from 
out-of-sample approaches (Tashman 2000) to variants of the standard cross-validation, 
e.g., block cross-validation (Snijders 1988).
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Our goal in this paper is to compare a wide set of estimation procedures, and test their 
suitability for different types of time series forecasting tasks. In order to emulate a real-
istic scenario we split each time series data in two parts. The first part is used to estimate 
the loss that a given learning model will incur on unseen future observations. This part 
is further split into training and test sets as described before. The second part is used to 
compute the true loss that the model incurred. This strategy allows the computation of 
unbiased estimates of error since a model is always tested on unseen observations.

The workflow described above is summarised in Fig. 6. A time series Y is split into 
an estimation set Yest and a subsequent validation set Yval . First, Yest is used to calculate 
ĝ , which represents the estimate of the loss that a predictive model m will incur on 
future new observations. This is accomplished by further splitting Yest into training and 
test sets according to the respective estimation procedure gi , i ∈ {1,… , u} . The model m 
is built on the training set and ĝi is computed on the test set.

Second, in order to evaluate the estimates ĝi produced by the methods gi , 
i ∈ {1,… , u} , the model m is re-trained using the complete set Yest and tested on the 
validation set Yval . Effectively, we obtain Lm , the ground truth loss that m incurs on new 
data.

In summary, the goal of an estimation method gi is to approximate Lm by ĝi as well as 
possible. In Sect. 3.4.3 we describe how to quantify this approximation.

3.4 � Experimental design

The experimental design was devised to address the following research question: How 
do the predictive performance estimates of cross-validation methods compare to the 
estimates of out-of-sample approaches for time series forecasting tasks?

Fig. 6   Experimental comparison procedure (Cerqueira et al. 2017): a time series is split into an estimation 
set Yest and a subsequent validation set Yval . The first is used to estimate the error ĝ that the model m will 
incur on unseen data, using u different estimation methods. The second is used to compute the actual error 
Lm incurred by m. The objective is to approximate Lm by ĝ as well as possible
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Existing empirical evidence suggests that cross-validation methods provide more 
accurate estimations than traditionally used OOS approaches in stationary time series 
forecasting  (Bergmeir and Benítez 2012; Bergmeir et  al. 2014, 2018) (see Sect.  2). 
However, many real-world time series comprise complex structures. These include cues 
from the future that may not have been revealed in the past. In such cases, preserving 
the temporal order of observations when estimating the predictive ability of models may 
be an important component.

3.4.1 � Embedding dimension and estimation set size

We estimate the optimal embedding dimension (p) (the value which minimises generali-
sation error) using the method of False Nearest Neighbours (Kennel et al. 1992). This 
method analyses the behaviour of the nearest neighbours as we increase p. According to 
Kennel et al. (1992), with a low sub-optimal p many of the nearest neighbours will be 
false. Then, as we increase p and approach an optimal embedding dimension those false 
neighbours disappear. We set the tolerance of false nearest neighbours to 1%. Regard-
ing the synthetic case study, we fixed the embedding dimension to 5. The reason for this 
setup is to try to follow the experimental setup by Bergmeir et al. (2018).

The estimation set ( Yest ) in each time series is the first 70% observations of the time 
series – see Fig. 6. The validation period is comprised of the subsequent 30% observa-
tions ( Yval ). These values are typically used when partitioning data sets for performance 
estimation.

3.4.2 � Estimation methods

In the experiments we apply a total of 11 performance estimation methods, which are 
divided into cross-validation, out-of-sample, and prequential approaches. The cross-val-
idation methods are the following:

CV Standard, randomized K-fold cross-validation;
CV-Bl Blocked K-fold cross-validation;
CV-Mod Modified K-fold cross-validation;
CV-hvBl hv-Blocked K-fold cross-validation;

The out-of-sample approaches are the following:

•	 Holdout A simple OOS approach–the first 70% of YE is used for training and the 
subsequent 30% is used for testing;

•	 Rep-Holdout OOS tested in nreps testing periods with a Monte Carlo simulation 
using 70% of the total observations t of the time series in each test. For each period, 
a random point is picked from the time series. The previous window comprising 60% 
of t is used for training and the following window of 10% of t is used for testing.

Finally, we include the following prequetial approaches:

•	 Preq-Bls Prequential evaluation in blocks in a growing fashion;
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•	 Preq-Sld-Bls Prequential evaluation in blocks in a sliding fashion–the oldest block 
of data is discarded after each iteration;

•	 Preq-Bls-Gap] Prequential evaluation in blocks in a growing fashion with a gap 
block–this is similar to the method above, but comprises a block separating the training 
and testing blocks in order to increase the independence between the two parts of the 
data;

•	 Preq-Grow and Preq-Slide As baselines we also include the exhaustive prequen-
tial methods in which an observation is first used to test the predictive model and then 
to train it. We use both a growing/landmark window (Preq-Grow) and a sliding win-
dow (Preq-Slide).

We refer to Sect. 2 for a complete description of the methods. The number of folds K or 
repetitions nreps in these methods is 10, which is a commonly used setting in the litera-
ture. The number of observations removed in CV-Mod and CV-hvBl (c.f. Sect. 2) is the 
embedding dimension p in each time series.

3.4.3 � Evaluation metrics

Our goal is to study which estimation method provides a ĝ that best approximates Lm . Let 
ĝm
i
 denote the estimated loss by the learning model m using the estimation method g on the 

estimation set, and Lm denote the ground truth loss of learning model m on the test set. The 
objective is to analyze how well ĝm

i
 approximates Lm . This is quantified by the absolute pre-

dictive accuracy error (APAE) metric and the predictive accuracy error (PAE) (Bergmeir 
et al. 2018):

The APAE metric evaluates the error size of a given estimation method. On the other hand, 
PAE measures the error bias, i.e., whether a given estimation method is under-estimating 
or over-estimating the true error.

Another question regarding evaluation is how a given learning model is evaluated 
regarding its forecasting accuracy. In this work we evaluate models according to root mean 
squared error (RMSE). This metric is traditionally used for measuring the differences 
between the estimated values and the actual values.

3.4.4 � Learning algorithms

We applied the following learning algorithms:

RBR A rule-based regression algorithm from the Cubist R package (Kuhn et al. 2014), 
which is a variant of the model tree by Quinlan (1993). The main parameter, the number 
of committees (c.f. Kuhn et al. 2014), was set to 5.;

(1)APAE = |ĝm
i
− Lm|

(2)PAE = ĝm
i
− Lm
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RF A Random Forest algorithm, which is an ensemble of decision trees (Breiman 
2001). We resort to the implementation from the ranger R package (Wright 2015). The 
number of trees in the ensemble was set to 100.;
GLM A generalized linear model (McCullagh 2019) regression with a Gaussian distri-
bution and a Ridge penalty mixing. We used the implementation of the glmnet R pack-
age (Friedman et al. 2010).

The remaining parameters of each method were set to defaults. These three learning algo-
rithms are widely used in regression tasks. For time series forecasting in particular, (Cer-
queira et al. 2019) showed their usefulness when applied as part of a dynamic heterogene-
ous ensemble. In particular, the RBR method showed the best performance among 50 other 
approaches.

4 � Empirical experiments

4.1 � Results with synthetic case study

In this section we start by analysing the average rank, and respective standard deviation, 
of each estimation method and for each synthetic scenario (S1, S2, and S3), according to 
the metric APAE. For example, a rank of 1 in a given Monte Carlo repetition means that 
the respective method was the best estimator in that repetition. These analyses are reported 
in Figs.  7, 8, 9. This initial experiment is devised to reproduce the results by Bergmeir 
et al. (2018). Later, we will analyse how these results compare when using real-world time 
series.

The results shown by the average ranks corroborate those presented by Bergmeir 
and Benítez (2012), Bergmeir et  al. (2014), Bergmeir et  al. (2018). Cross-validation 
approaches, blocked ones in particular, perform better (i.e., show a lower average rank) 
relative to the simple out-of-sample procedure Holdout. This can be concluded from 
all three scenarios: S1, S2, and S3.

Fig. 7   Average rank and respective standard deviation of each estimation methods in case study S1 using 
the RBR learning method
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Focusing on scenario S1, the estimation method with the best average rank is Preq-
Bls-Gap, followed by the other two prequential variants (Preq-Sld-Bls, and 
Preq-Bls). Although the Holdout procedure is clearly a relatively poor estimator, 
the repeated holdout in multiple testing periods (Rep-Holdout) shows a better aver-
age rank than the standard cross validation approach (CV). Among cross validation pro-
cedures, CV-hvBl presents the best average rank.

Scenario S2 shows a seemingly different story relative to S1. In this problem, the 
blocked cross validation procedures show the best estimation ability. Among all, CV-
hvBl shows the best average rank.

Regarding the scenario S3, the outcome is less clear than the previous two scenarios. 
The methods show a closer average rank among them, with large standard deviations. 
Preq-Sld-Bls shows the best estimation ability, followed by the two blocked cross-
validation approaches, CV-Bl and CV-hvBl.

Fig. 8   Average rank and respective standard deviation of each estimation methods in case study S2 using 
the RBR learning method

Fig. 9   Average rank and respective standard deviation of each estimation methods in case study S3 using 
the RBR learning method
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In summary, this first experiment corroborates the experiment carried out by Bergmeir 
et al. (2018). Notwithstanding, other methods that the authors did not test show an interest-
ing estimation ability in these particular scenarios, namely the prequential variants. In this 
section, we focused on the RBR learning algorithm. In Sect. 1 of the appendix, we include 
the results for the GLM and RF learning methods. Overall, the results are similar across the 
learning algorithms.

The synthetic scenarios comprise time series that are stationary. However, real-world 
time series often comprise complex dynamics that break stationarity. When choosing a 
performance estimation method one should take this issue into consideration. To account 
for time series stationarity, in the next section we analyze the estimation methods using 
real-world time series.

4.2 � Results with real‑world data

In this section we analyze the performance estimation ability of each method using a case 
study which includes 174 real-world time series from different domains.

First, in Fig. 10, we show the rank distribution of each performance estimation method 
across the 174 time series. This figure shows a large dispersion of rank across the methods. 
This outcome indicates that there is no particular performance estimation method which 
is the most appropriate for all time series. Crucially, this result also motivates the need to 
study which time series characteristics (e.g. stationarity) most influence which method is 
more adequate for a given task.

4.2.1 � Stationary time series

In Fig. 11, we start by analyzing the average rank, and respective standard deviation, of 
each estimation method using the APAE metric. We focus on the 97 stationary time series 
in the database.

Similarly to the synthetic case study, the blocked cross-validation approaches CV-Bl 
and CV-hvBl show a good estimation ability in terms of average rank. Conversely, the 

Fig. 10   Rank distribution of each estimation method across the 174 real-world time series
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other cross-validation approaches are the worst estimators. This outcome highlights the 
importance of blocking when using cross-validation. Rep-Holdout is the best estimator 
among the OOS approaches, while Preq-Bls shows the best score among the prequential 
methods.

We also study the statistical significance of the obtained results in terms of error size 
(APAE) according to a Bayesian analysis (Benavoli et al. 2017). Particularly, we applied 
the Bayes signed-rank test to compare pairs of methods across multiple problems. We arbi-
trarily define the region of practical equivalence (Benavoli et al. 2017) (ROPE) to be the 
interval [-2.5%, 2.5%] in terms of APAE. Essentially, this means that two methods show 
indistinguishable performance if the difference in performance between them falls within 
this interval. For a thorough description of the Bayesian analysis for comparing predictive 
models we refer to the work by Benavoli et al. (2017). In this analysis, it is necessary to 
use a scale invariant measure of performance. Therefore, we transform the metric APAE 
into the percentage difference of APAE relative to a baseline. In this experiment we fix the 
method Rep-Holdout as the baseline.

According to the illustration in Fig. 12, the probability of Rep-Holdout winning (i.e., 
showing a significantly better estimation ability) is generally larger than the opposite. The 
exception is when it is compared with the blocked cross-validation approaches CV-Bl and 
CV-hvBl.

For stationary time series, the blocked cross-validation approach CV-Bl seems to be 
the best estimation method among those analysed. The average rank analysis suggests that, 
on average, the relative position of this method is better than the other approaches. A more 
rigorous statistical analysis (using the Bayes signed-rank method) suggests that both CV-
Bl and CV-hvBl are significantly better choices relative to Rep-Holdout.

4.2.2 � Non‑stationary time series

In Fig.  13 we present a similar analysis for the 77 non-stationary time series, whose 
results are considerably different relative to stationary time series. In this scenario, 
Rep-Holdout show the best average rank, followed by the blocked cross-validation 
approaches. Again, the standard cross-validation approach CV shows the worst score.

Fig. 11   Average rank and respective standard deviation of each estimation method in stationary real-world 
time series using the RBR learning method
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Figure 14 shows the results of the Bayes signed-rank test. This analysis suggests that 
Rep-Holdout is a significantly better estimator relative to the other approaches when 
we are dealing with non-stationary time series.

To summarise, we compared the performance of estimation methods in a large set 
of real-world time series and controlled for stationarity. The results suggest that, for 
stationary time series, the blocked cross-validation approach CV-Bl is the best option. 
However, when the time series are non-stationary, the OOS approach Rep-Holdout is 
significantly better than the others.

On top of this, the results from the experiments also suggest the following outcomes:

–	 As Tashman pointed out (Tashman 2000), applying the holdout approach in multiple 
testing periods leads to a better performance relative to a single partition of the data set. 

Fig. 12   Proportion of probability of the outcome when comparing the performance estimation ability of the 
respective estimation method with the Rep-Holdout method with stationary real-world time series. The 
probabilities are computed using the Bayes signed-rank test and using the RBR learning method

Fig. 13   Average rank and respective standard deviation of each estimation method in non-stationary real-
world time series using the RBR learning method
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Specifically, Rep-Holdout shows a better performance relative to Holdout in the 
two scenarios;

–	 Prequential applied in blocks and in a growing window fashion (Preq-Bls) is the best 
prequential approach. Specifically, its average rank is better than the online approaches 
Preq-Slide and Preq-Grow; and the blocked approaches in which the window 
is sliding (as opposed to growing – Preq-Sld-Bls) or when a gap is introduced 
between the training and testing sets (Preq-Bls-Gap).

In the Sect. 1 of appendix, we show the results for the GLM and RF learning methods. The 
conclusions drawn from these algorithms are similar to what was reported above.

4.2.3 � Error Bias

In order to study the direction of the estimation error, in Fig.  15 we present for each 
method the (log scaled) percentage difference between the estimation error and the true 
error according to the PAE metric. In this graphic, values below the zero line denote under-
estimations of error, while values above the zero line represent over-estimations. In gen-
eral, the estimation methods tend to over-estimate the error (i.e. are pessimistic estimators). 
The online prequential approaches Preq-Slide and Preq-Grow, and the non-blocked 
versions of cross-validation CV and CV-Mod tend to under-estimate the error (i.e. are opti-
mistic estimators).

4.2.4 � Impact of sample size

Preserving the temporal order of observations, albeit more realistic, comes at a cost since 
less data is available for estimating predictive performance. As (Bergmeir et al. 2018 argue, 
this may be important for small data sets, where a more efficient use of the data (e.g. CV) 
may be beneficial.

Fig. 14   Proportion of probability of the outcome when comparing the performance estimation ability of the 
respective estimation method with the Rep-Holdout method with non-stationary real-world time series. 
The probabilities are computed using the Bayes signed-rank test using the RBR learning method
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Previous work on time series forecasting has shown that sample size matters when 
selecting the predictive model (Cerqueira et al. 2019). Learning algorithms with a flexible 
functional form, e.g. decision trees, tend to work better for larger sample sizes relative to 
traditional forecasting approaches, for example, exponential smoothing.

We carried out an experiment to test whether the sample size of time series has any 
effect on the relative performance of the estimation methods. In this specific analysis, we 
focus on a subset of 90 time series (out of the 174 ones) with at least 1000 observations. 
Further, we truncated these to 1000 observations so all time series have equal size. Then, 
we proceed as follows. We repeated the performance estimation methodology described in 
Sect. 3.3 for increasing sample sizes. In the first iteration, each time series comprises an 
estimation set of 100 observations, and a validation set of 100 observations. The methodol-
ogy is applied under these conditions. In the next iterations, the estimation set grows by 
100 observations (to 200), and the validation set represents the subsequent 100 points. The 
process is repeated until the time series is fully processed.

We measure the average rank of each estimation method across the 90 time series after 
each iteration according to the APAE metric. These scores are illustrated in Fig. 16. The 
estimation set size in shown in the x-axis, while the average rank score is on the y-axis. 
Overall, the relative positions of each method remain stable as the sample size grows. 
This outcome suggests that this characteristic is not crucial when selecting the estimation 
method.

We remark that this analysis is restricted to the sample sizes tested (up to 1000 obser-
vations). For large scale data sets the recommendation by Dietterich (1998), and usually 
adopted in practice, is to apply a simple out-of-sample estimation procedure (Holdout).

4.2.5 � Descriptive model

What makes an estimation method appropriate for a given time series is related to the char-
acteristics of the data. For example, in the previous section we analyzed the impact that 
stationarity has in terms of what is the best estimation method.

The real-world time series case study comprises a set of time series from differ-
ent domains. In this section we present, as a descriptive analysis, a tree-based model 
that relates some characteristics of time series according to the most appropriate esti-
mation method for that time series. Basically, we create a predictive task in which the 

Fig. 15   Log percentage difference of the estimated loss relative to the true loss for each estimation method 
in the real-world case study, and using the RBR learning method. Values below the zero line represent 
under-estimations of error. Conversely, values above the zero line represent over-estimations of error
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attributes are some characteristics of a time series, and the categorical target variable is 
the estimation method that best approximates the true loss in that time series. We use 
CART (Breiman 2017) (classification and regression tree) algorithm for obtaining the 
model for this task. The characteristics used as predictor variables are the following 
summary statistics:

–	 Trend, estimating according to the ratio between the standard deviation of the time 
series and the standard deviation of the differenced time series;

–	 Skewness, for measuring the symmetry of the distribution of the time series;
–	 Kurtosis, as a measure of flatness of the distribution of the time series relative to a nor-

mal distribution;
–	 5-th and 95-th Percentiles (Perc05, Perc95) of the standardized time series;
–	 Inter-quartile range (IQR), as a measure of the spread of the standardized time series;
–	 Serial correlation, estimated using a Box-Pierce test statistic;
–	 Long-range dependence, using a Hurst exponent estimation with wavelet transform;
–	 Maximum Lyapunov Exponent, as a measure of the level of chaos in the time series;
–	 a boolean variable, indicating whether or not the respective time series is stationary 

according to the wavelet spectrum test (Nason 2013).

These characteristics have been shown to be useful in other problems concerning time 
series forecasting (Wang et al. 2006). The features used in the final decision tree are writ-
ten in boldface. The decision tree is shown in Fig. 17. The numbers below the name of the 
method in each node denote the number of times the respective method is best over the 
number of time series covered in that node.

Some of the estimation methods do not appear in the tree model. The tree leaves, which 
represent a decision, include the estimation methods CV-Bl, Rep-Holdout, Preq-
Slide, and Preq-Bls-Gap.

The estimation method in the root node is CV-Bl, which is the method which is the best 
most of the times across the 174 time series. The first split is performed according to the 

Fig. 16   Average rank of each performance estimation method with an increasing training sample size
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kurtosis of time series. Basically, if the kurtosis is not above 2, the tree leads to a leaf node 
with Preq-Slide as the most appropriate estimation method. Otherwise, the tree contin-
ues with more tests in order to find the most suitable estimation method for each particular 
scenario.

5 � Discussion

5.1 � Impact of the results

In the experimental evaluation we compare several performance estimation methods in two 
distinct scenarios: (1) a synthetic case study in which artificial data generating processes 
are used to create stationary time series; and (2) a real-world case study comprising 174 
time series from different domains. The synthetic case study is based on the experimental 
setup used in previous studies by Bergmeir et al. for the same purpose of evaluating perfor-
mance estimation methods for time series forecasting tasks (Bergmeir and Benítez 2012; 
Bergmeir et al. 2014, 2018).

Bergmeir et  al. show in previous studies  (Bergmeir and Benitez 2011; Bergmeir and 
Benítez 2012) that the blocked form of cross-validation, denoted here as CV-Bl, yields 
more accurate estimates than a simple out-of-sample evaluation (Holdout) for stationary 
time series forecasting tasks. The method CV is also suggested to be “a better choice than 
OOS[Holdout] evaluation” as long as the data are well fitted by the model  (Bergmeir 
et al. 2018). To some extent part of the results from our experiments corroborate these con-
clusions. Specifically, this is verified by the APAE incurred by the estimation procedures 
in the synthetic case studies. In our experiments we found out that, in the synthetic case 
study, prequential variants provide a good estimation ability, which is often better relative 
to cross validation variants. Furthermore, the results in the synthetic stationary case stud-
ies do not reflect those obtained using real-world time series. On one hand, we corroborate 
the conclusions of previous work (Bergmeir and Benítez 2012) that blocked cross-valida-
tion (CV-Bl) is applicable to stationary time series. On the other hand, when dealing with 
non-stationary data sets, holdout applied with multiple randomized testing periods (Rep-
Holdout) provides the most accurate performance estimates.

Fig. 17   Decision tree that maps the characteristics of time series to the most appropriate estimation method. 
Graphic created using the rpart.plot framework (Milborrow 2018)
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In a real-world environment we are prone to deal with time series with complex struc-
tures and different sources of non-stationary variations. These comprise nuances of the 
future that may not have revealed themselves in the past  (Tashman 2000). Consequently, 
we believe that in these scenarios, Rep-Holdout is a better option as performance esti-
mation method relative to cross-validation approaches.

5.2 � Scope of the real‑world case study

In this work we center our study on univariate numeric time series. Nevertheless, we 
believe that the conclusions of our study are independent of this assumption and should 
extend for other types of time series. The objective is to predict the next value of the time 
series, assuming immediate feedback from the environment. Moreover, we focus on time 
series with a high sampling frequency, for example, hourly or daily data. The main reason 
for this is because high sampling frequency is typically associated with more data, which is 
important for fitting the predictive models from a machine learning point of view. Standard 
forecasting benchmark data are typically more centered around low sampling frequency 
time series, for example the M competition data (Makridakis et al. 1982).

5.3 � Future work

We showed that stationarity is a crucial time series property to take into account when select-
ing the performance estimation method. On the other hand, data sample size appears not be 
have a significant effect, though the analysis is restricted to time series up to 1000 data points.

We studied the possibility of there being other time series characteristics which may 
be relevant for performance estimation. We built a descriptive model, which partitions the 
best estimation method according to different time series characteristics, such as kurtosis 
or trend. We believe that this approach may be interesting for further scientific enquiry. For 
example, one could leverage this type of model to automatically select the most appropri-
ate performance estimation method. Such model could be embedded into an automated 
machine learning framework.

Our conclusions were drawn from a database of 174 time series from distinct domains 
of application. In future work, it would be interesting to carry out a similar analysis on time 
series from specific domains, for example, finance. The stock market contains rich financial 
data which attracts a lot of attention. Studying the most appropriate approach to evaluate 
predictive models embedded within trading systems is an interesting research direction.

6 � Final remarks

In this paper we analyse the ability of different methods to approximate the loss that a 
given predictive model will incur on unseen data. We focus on performance estimation for 
time series forecasting tasks. Since there is currently no settled approach in these problems, 
our objective is to compare different available methods and test their suitability.

We analyse several methods that can be generally split into out-of-sample approaches 
and cross-validation methods. These were applied to two case studies: a synthetic environ-
ment with stationary time series and a real-world scenario with potential non-stationarities.

In stationary time series, the blocked cross-validation method (CV-Bl) is shown to 
have a competitive estimation ability. However, when non-stationarities are present, the 
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out-of-sample holdout procedure applied in multiple testing periods (Rep-Holdout) is a 
significantly better choice.
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Appendix

Synthetic time series results with GLM and RF

See Figs.  18, 19, 20, 21, 22, 23, 24.

Fig. 18   Average rank and respective standard deviation of each estimation methods in case study S1–using 
GLM learning method (complement to Fig. 7)

Fig. 19   Average rank and respective standard deviation of each estimation methods in case study S1–using 
RF learning method (complement to Figure 7)
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Fig. 20   Average rank and respective standard deviation of each estimation methods in case study S2 - using 
GLM learning method (complement to Figure 8)

Fig. 21   Average rank and respective standard deviation of each estimation methods in case study S2–using 
RF learning method (complement to Fig. 8)

Fig. 22   Average rank and respective standard deviation of each estimation methods in case study S3–using 
GLM learning method (complement to Fig. 9)
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Real‑world time series results with GLM and RF

6.0.1 Stationary time series

See Figs. 24, 25, 26, 27.

Fig. 23   Average rank and respective standard deviation of each estimation methods in case study S3–using 
RF learning method (complement to Fig. 9)

Fig. 24   Average rank and respective standard deviation of each estimation method in stationary real-world 
time series using the GLM learning method (complement to Fig. 11)
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Fig. 25   Average rank and respective standard deviation of each estimation method in stationary real-world 
time series using the RF learning method (complement to Fig. 11)

Fig. 26   Proportion of probability of the outcome when comparing the performance estimation ability of the 
respective estimation method with the Rep-Holdout method with stationary real-world time series. The 
probabilities are computed using the Bayes signed-rank test and using the GLM learning method (comple-
ment to Fig. 12)
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6.0.2 Non‑stationary time series

See Figs. 28, 29, 30, 31.

Fig. 27   Proportion of probability of the outcome when comparing the performance estimation ability of the 
respective estimation method with the Rep-Holdout method with stationary real-world time series. The 
probabilities are computed using the Bayes signed-rank test and using the RF learning method (complement 
to Fig. 12)

Fig. 28   Average rank and respective standard deviation of each estimation method in non-stationary real-
world time series using the GLM learning method (complement to Fig. 13)
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Fig. 29   Average rank and respective standard deviation of each estimation method in non-stationary real-
world time series using the RF learning method (complement to Fig. 13)

Fig. 30   Proportion of probability of the outcome when comparing the performance estimation ability of the 
respective estimation method with the Rep-Holdout method with non-stationary real-world time series. 
The probabilities are computed using the Bayes signed-rank test and using the GLM learning method (com-
plement to Fig. 14)
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6.0.3 Error bias using the GLM and RF methods

See Figs. 32, 33.

Fig. 31   Proportion of probability of the outcome when comparing the performance estimation ability of the 
respective estimation method with the Rep-Holdout method with non-stationary real-world time series. 
The probabilities are computed using the Bayes signed-rank test and using the RF learning method (com-
plement to Fig. 14)

Fig. 32   Log percentage difference of the estimated loss relative to the true loss for each estimation method 
in the RWTS case study, and using the GLM learning method. Values below the zero line represent under-
estimations of error. Conversely, values above the zero line represent over-estimations of error (complement 
to Fig. 15)
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