
Vol.:(0123456789)

Machine Learning (2021) 110:723–754
https://doi.org/10.1007/s10994-020-05911-6

1 3

Probabilistic inductive constraint logic

Fabrizio Riguzzi1 · Elena Bellodi2 · Riccardo Zese2  · Marco Alberti1 · Evelina Lamma2

Received: 22 March 2020 / Revised: 22 July 2020 / Accepted: 26 August 2020 /
Published online: 10 November 2020
© The Author(s) 2020

Abstract
Probabilistic logical models deal effectively with uncertain relations and entities typical of
many real world domains. In the field of probabilistic logic programming usually the aim is
to learn these kinds of models to predict specific atoms or predicates of the domain, called
target atoms/predicates. However, it might also be useful to learn classifiers for interpreta-
tions as a whole: to this end, we consider the models produced by the inductive constraint
logic system, represented by sets of integrity constraints, and we propose a probabilistic
version of them. Each integrity constraint is annotated with a probability, and the resulting
probabilistic logical constraint model assigns a probability of being positive to interpreta-
tions. To learn both the structure and the parameters of such probabilistic models we pro-
pose the system PASCAL for “probabilistic inductive constraint logic”. Parameter learning
can be performed using gradient descent or L-BFGS. PASCAL has been tested on 11 data-
sets and compared with a few statistical relational systems and a system that builds rela-
tional decision trees (TILDE): we demonstrate that this system achieves better or compara-
ble results in terms of area under the precision–recall and receiver operating characteristic
curves, in a comparable execution time.

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Ute Schmid, Jay
Pujara.

 *	 Riccardo Zese
	 riccardo.zese@unife.it

	 Fabrizio Riguzzi
	 fabrizio.riguzzi@unife.it

	 Elena Bellodi
	 elena.bellodi@unife.it

	 Marco Alberti
	 marco.alberti@unife.it

	 Evelina Lamma
	 evelina.lamma@unife.it

1	 Dipartimento di Matematica e Informatica – University of Ferrara, via Machiavelli 30,
44121 Ferrara, Italy

2	 Dipartimento di Ingegneria – University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy

http://orcid.org/0000-0001-8352-6304
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05911-6&domain=pdf

724	 Machine Learning (2021) 110:723–754

1 3

1  Introduction

Uncertain information is being taken into account in an increasing number of applica-
tion fields. Probabilistic logical models are a suitable framework to handle uncertain
information, but usually require expensive inference and learning procedures. For this
reason, in the last decade many languages that impose limitations to the form of sen-
tences have been proposed.

A possible way to pursue this goal is the application of learning from interpretations
(De Raedt and Džeroski 1994; Blockeel et al. 1999) instead of the classical setting of
learning from entailment. In fact, given fixed bounds on the maximal length of clauses
and the maximal arity of literals, first-order clausal theories are polynomial-sample
polynomial-time PAC-learnable (De Raedt and Džeroski 1994). Moreover, examples in
learning from interpretations can be considered in isolation (Blockeel et al. 1999), so
coverage tests are local and learning algorithms take a time that is linear in the number
of examples.

A particularly interesting system that learns from interpretations is inductive con-
straint logic (ICL) (De Raedt and Van Laer 1995), based on the language of constraint
logic theories. It performs discriminative learning and it generates models in the form
of sets of integrity constraints. It can be seen as the dual of ILP systems based on learn-
ing from entailment.

In this paper we propose a probabilistic version of integrity constraints, called prob-
abilistic constraint logic theories (PCLTs) (Alberti et al. 2016), where each integrity
constraint is annotated with a probability. Under our formalism, models assign a prob-
ability of being positive to interpretations. This probability can be computed in a time
that is logarithmic in the number of groundings of the constraints that are violated in an
interpretation.

We also present the system PASCAL for “probabilistic inductive constraint logic”
that learns both the structure and the parameters of these models.

On an experimental level, PASCAL has been compared with: (1) SLIPCOVER,
LIFTCOVER and LEMUR, three state-of-art PLP systems, (2) Markov logic networks
(MLNs) and (3) TILDE, a relational decision tree induction algorithm.

SLIPCOVER (Bellodi and Riguzzi 2015) performs structure learning of Logic Pro-
grams with Annotated Disjunctions (LPADs) (Vennekens et al. 2004) using knowledge
compilation for parameter learning, by means of the language of binary decision diagrams.
The head of each clause in a LPAD is composed of a disjunction of logical atoms, each
annotated with the probability of being true when the body holds; probabilities in the head
must sum up to 1. LEMUR (Di Mauro et al. 2015) learns LPADs by means of a Monte
Carlo tree search algorithm. LIFTCOVER (Nguembang Fadja and Riguzzi 2018) performs
structure learning of liftable PLP programs, characterized by clauses all having a single
atom of the same predicate in the head, annotated with a probability. All algorithms are
specialized for discriminative learning, i.e. they guarantee good predictions for the so-
called target predicates (the ones appearing in the clauses’ head). TILDE (Blockeel and
Raedt 1998) has been adapted to probabilistically classify interpretations.

PASCAL differs from all the previous algorithms in that:

•	 it learns probabilistic integrity constraints, i.e. clauses which are annotated with a
probability as a whole, while SLIPCOVER, LIFTCOVER and LEMUR learn proba-
bilistic clauses with annotated heads;

725Machine Learning (2021) 110:723–754	

1 3

•	 it performs probabilistic classification of interpretations instead of classifying target atoms
(as done by SLIPCOVER, LIFTCOVER, LEMUR and the probabilistic adaptation of
TILDE);

•	 it is based on a more expressive language than the one allowed by SLIPCOVER, LIFT-
COVER, LEMUR and TILDE: probabilistic integrity constraints admit every predicate of
the domain both for the head and the body, while LPADs clauses admit only target predi-
cates in the head and TILDE clauses only the positive class for the head;

•	 it encodes a distribution on the class variable given the atom variables.

Due to the first three characteristics above, PASCAL can be seen as the dual of SLIPCOVER/
LIFTCOVER/LEMUR.

Results show that PASCAL is able to achieve better or comparable results both in terms of
quality of the learnt models (measured by the area under the Precision-Recall and the Receiver
Operating Characteristic curves) and learning time with respect to all systems. SLIPCOVER,
LIFTCOVER and LEMUR, in turn, were shown to be comparable with state-of-art ILP sys-
tems (Bellodi and Riguzzi 2015; Nguembang Fadja and Riguzzi 2018).

Finally, we believe that PCLTs may be a suitable formalism to introduce probabilistic rea-
soning in the framework of interaction protocols in societies of agents (Alberti et al. 2008),
where the language of Constraint Logic Theories was defined to verify the compliance of
interacting agents (or query answering in Gavanelli et al. (2015)) to a set of integrity con-
straints, integrated with a knowledge based expressed as an abductive logic program. PCLTs
might allow to monitor and verify, for instance at run-time, the compliance of a partial, and
still not complete, interpretation (i.e., a narrative of occurred events, but not yet completed).

The paper is organized as follows: Sect. 2 introduces integrity constraints and ICL,
Sect. 3 presents probabilistic integrity constraints, Sect. 4 introduces the parameter learn-
ing problem, Sect. 5 illustrates PASCAL, Sect. 6 discusses related work, Sect. 7 describes
the experiments performed and Sect. 8 concludes the paper.

2 � Inductive constraint logic (ICL)

ICL (De Raedt and Van Laer 1995) performs discriminative learning from interpretations.
It learns logical theories in the form of Constraint Logic Theories (CLTs).

2.1 � Logic preliminaries

We consider a logic without function symbols so a signature is a pair (�c,�p) where �c is
a set of constants, and �p is a set of predicate symbols with arity, containing the equality
binary predicate ≈.

A first-order theory is built upon a signature and a countable set of variables. A term is
a constant, or a variable. An atom is a predicate symbol applied to as many terms as the
symbol’s arity. A literal L is either an atom A (also called a positive literal) or its negation
¬A (a negative literal).

A normal logic program �� is a set of formulas, called clauses, of the form

where H is an atom and all the Bi s are literals. H is called the head of the clause and
B1,… ,Bn is called the body. If the body is empty the clause is called a fact.

(1)H ← B1,… ,Bn

726	 Machine Learning (2021) 110:723–754

1 3

A term, atom, literal or clause is ground if it does not contain variables. A substitution
� is an assignment of variables to terms: � = {V1∕t1,… ,Vn∕tn} . The application of a sub-
stitution � = {V1∕t1,… ,Vn∕tn} to a term, atom, literal or clause r, indicated with r� , is the
replacement of each variable Vi appearing in r and in � with ti . r� is called an instance of r.
� is a grounding for r if r� is ground.

The semantics of first-order formulas is given by providing interpretations for the con-
stant and predicate symbols over a universe of individuals. We consider Herbrand inter-
pretations, whose universe are the ground terms of the language. The Herbrand base of a
language is the set BH = {p(t1,… , tn)|p is a predicate symbol of arity n and t1,… , tn are
ground terms}.

A Herbrand interpretation for a theory is a subset of the Herbrand base for the language
built over the constant and predicate symbols that occur in the theory; the atoms included
in an interpretation are true in the interpretation. Given an interpretation I, an atom A is
true in I, written I ⊧ A , if A ∈ I , and the negation of an atom ¬A is true in I, written I ⊧ ¬A ,
if A ∉ I.

Given a logic program, there are various ways to assign it a meaning, corresponding
to different semantics. A semantics associates a program with a model or a set of mod-
els, usually Herbrand interpretations. We consider here the Clark’s completion semantics
(Clark 1978) that assigns a Herbrand interpretation to a program. We indicate such an
interpretation for a normal program �� with M(��).

2.2 � ICL

A constraint logic theory (CLT) is a set of integrity constraints. In the following, we recall
the definition of an integrity constraint from Lamma et al. (2008).

An integrity constraint (IC) is a formula C of the form

where each Li is a logical literal (i.e., a logical atom or the negation of a logical atom) and
each Aj is a logical atom. L1,… , Lb is called the body of C (Body(C)) and A1;… ;Ah is
called the head of C (Head(C)).

The semantics of ICs is based on interpretations as in first-order logic (FOL). We now
define the truth of an integrity constraint in an interpretation.

An IC C is true in an interpretation I ( I ⊧ C ) if and only if, for each grounding substitu-
tion � such that each literal in Body(C)� is true in I, at least one atom in Head(C)� is true in
I. Thus, the body of an IC is read as a conjunction and its head as a disjunction.

A CLT can be complemented with a normal logic program �� expressing background
knowledge about a domain.

With a slight abuse of notation, we indicate with �� ∪ I the normal logic program com-
posed of �� and the fact Ai ← for each atom Ai ∈ I . We indicate �� ∪ I ’s model accord-
ing to Clark’s completion semantics (Clark 1978) by M(�� ∪ I) . Intuitively, M(�� ∪ I) is
I augmented by the atoms that can be derived by ��.

Given a normal logic program �� , an interpretation I, and an integrity constraint C, we
say that I satisfies C given a background knowledge �� , or C is true in I given �� , if and
only if M(�� ∪ I) ⊧ C.

We say that a CLT T is true in an interpretation I given �� (or T satisfies I given �� , T
covers I given �� , or I is positive given T and �� ) if and only if I satisfies each constraint
in T given ��.

(2)L1,… , Lb → A1;… ;Ah

727Machine Learning (2021) 110:723–754	

1 3

If T is true in I ( I ⊧ T  ) we say that I is a model of T. If at least one constraint of the
theory is false in an interpretation I, the whole theory T is false in I.

An IC is range-restricted if all the variables that occur in its head also occur
in its body. As shown in De Raedt and Dehaspe (1997), a range-restricted IC
L1,… , Lb → A1;… ;Ah is true in an interpretation I given a background knowledge �� if
and only if the query

fails against a Prolog database containing the atoms of I as facts together with the rules of
the normal program �� . Note that if �� is range-restricted, every answer to a query Q
against �� ∪ I completely instantiates Q. Since, by definition, each variable in each query
¬Aj occurs in a query Li , ¬Aj is ground when it is called.

Example 1  (from Alberti et al. (2016)) The Bongard Problems were introduced by the Rus-
sian scientist M. Bongard in his book (Bongard 1970). Each problem consists of a number
of pictures, some positive and some negative. The goal is to discriminate between the two
classes. Each picture is composed of one or more figures, such as triangles, squares, cir-
cles, etc. Each figure has some properties, such as being small, large, pointing in a direc-
tion, etc. Moreover, relationships are defined between figures, such as inside, above, larger,
and so on. Figure 1 shows some of these pictures.

Each picture can be defined by a set of atoms describing the properties and relationships
of the figures in the pictures, i.e., an interpretation.

For instance, the left picture consists of a small triangle (identified by number 2) inside
a small square (1) inside a large triangle (0).

The interpretation that describes the picture is

Additional properties and relationships can be defined, for example by means of the fol-
lowing background knowledge ��:

(3)?−L1,… , Lb,¬A1,… ,¬Ah.

(4)
Il = {triangle(0), large(0), square(1), small(1), inside(1, 0),

triangle(2), small(2), inside(2, 1)}

(5)in(A,B) ← inside(A,B).

(6)in(A,D) ← inside(A,C), in(C,D).

Fig. 1   Bongard pictures

728	 Machine Learning (2021) 110:723–754

1 3

 Thus M(�� ∪ Il) will contain, besides all the atoms in Il , the atoms in(1, 0), in(2, 1) and
in(2, 0).

The IC

requires any figure contained in a square to be a square itself. C is false in Il given ��
because, for the grounding substitution � = {S∕1, T∕2} , Body(C)� is true and the only dis-
junct in Head(C)� is false.

In the center picture instead C is true given �� because all the figures contained in
squares are squares.

Learning from interpretations in ILP (De Raedt and Džeroski 1994; Blockeel et al.
1999) can be summarized as follows.

Given

•	 a set I+ = {I1,… , IQ} of positive interpretations (positive examples)
•	 a set I− = {IQ+1,… , IR} of negative interpretations (negative examples)
•	 a normal logic program �� (background knowledge)
•	 a hypothesis space H

Find: an hypothesis T ∈ H such that

•	 for all I+ ∈ I
+ , M(�� ∪ I+) ⊧ T

•	 for all I− ∈ I
− , M(�� ∪ I−) ̸⊧ T

Thus we look for a CLT that discriminates the positive from the negative interpretations.
ICL learns from interpretations using a covering loop on the negative examples, an

approach that is dual to the covering loop of top-down ILP algorithms that learn from
entailment. ICL starts from an empty theory and adds one IC at a time. After the addi-
tion of an IC, the set of negative examples that are ruled out by the IC is removed from
I
− . The covering loop ends when no more ICs can be generated or when I− becomes

empty (all the negative examples are ruled out). ICL is shown in Algorithm 1.

(7)C = square(S), in(T , S) → square(T)

729Machine Learning (2021) 110:723–754	

1 3

The IC to be added in every iteration of the covering loop is returned by the pro-
cedure FindBestIC, shown in Algorithm 2. It uses a beam search with P(⊖|C) as the
heuristic function, where P(⊖|C) is the probability that an input example is negative
given that it is ruled out by the IC C, i.e., it is the precision on negative examples. The
search starts from the IC true → false that rules out all the negative examples but also all
the positive examples and gradually refines that clause in order to make it more general.
The maximum size of the beam is a user-defined parameter. The heuristic of each gener-
ated refinement is compared with the one of the best IC found so far and, if it is larger,
the best IC is updated. At the end of the refinement cycle, the best IC found is returned.

The refinement operator exploits �-subsumption for defining a generality relation
among ICs: an IC C �-subsumes an IC D, written C ≤� D , if there exists a substitution
� such that C𝜃 ⊆ D where C and D are seen as logical clauses (sets of literals). The
generality relation for ICs is defined in terms of �-subsumption as for learning from
entailment but in the opposite direction: an IC D is more general than an IC C ( D ≤g C )
if C ≤� D . So true → false is the most specific constraint and the search in FindBestIC
proceeds bottom up.

Refinements are obtained by using a refinement operator that adds a literal to the
body or head of the IC or applies a substitution.

Extended IC language In the following, we recall the extended syntax and semantics
for ICs from Lamma et al. (2008), which we use in this work. In the extended language,
an integrity constraint (IC) is a formula C of the form

where each Li is a literal and each Pj and Nk is a conjunction of literals. L1,… , Lb is called
the body of C (Body(C)) and ∃(P1);… ;∃(Pn);∀¬(N1);… ; ∀¬(Nm) is called the head of C
(Head(C)). The semicolon here represents a disjunction.

We call each Pj a P conjunction and each Nk an N conjunction. We call each ∃(Pj) a P
disjunct and each ∀¬(Nk) an N disjunct.

(8)L1,… , Lb → ∃(P1);… ;∃(Pn);∀¬(N1);… ;∀¬(Nm)

730	 Machine Learning (2021) 110:723–754

1 3

The variables that occur in the body are quantified universally with scope the IC. The
variables in the head that do not occur in the body are quantified existentially if they occur
in a P disjunct and universally if they occur in a N disjunct, with scope the disjunct they
occur in.

A P disjunct ∃(Pj) is true in an interpretation I if and only if there exists a grounding
substitution �P that makes Pj�P true. A N disjunct ∀¬(Nk) is true in an interpretation I if and
only if for each grounding substitution �N Nk�N is false in I.

An IC C is true in an interpretation I ( I ⊧ C ) if and only if, for each substitution � such
that each literal in Body(C)� is ground and true in I, at least one disjunct in Head(C)� is
true in I.

Similarly to disjunctive clauses, the truth of an IC as in formula (8) in an interpretation
M(�� ∪ I) can be tested by running the query:

in a database containing the clauses of �� and atoms of I as facts. If the N conjunctions in
the head share some variables, then the following query must be issued

that ensures that the N conjunctions are tested separately without instantiating the vari-
ables. If the query finitely fails, the IC is true in the interpretation; if the query succeeds,
the IC is false in the interpretation. Therefore, �� should be written so as to avoid infinite
loops; for example, if �� is acyclic then the evaluation will terminate for a large class of
queries (Apt and Bezem 1991).

The algorithm DPML (Lamma et al. 2008) was proposed for learning these extended
constraints. DPML modifies ICL by using a different refinement operator. Given an IC D,
the set of refinements �(D) of D is obtained by performing one of the following operations:

•	 adding a literal to the body;
•	 adding a disjunct to the head: the disjunct can be

•	 a formula ∃(d1 ∧… ∧ dk) where {d1,… , dk} is the set of literals allowed in a P dis-
junct,

•	 a formula ∀¬(d) where d is a literal allowed in a N disjunct;

•	 removing a literal from a P disjunct in the head;
•	 adding a literal to a N disjunct in the head.

3 � Probabilistic inductive constraint logic

A Probabilistic Constraint Logic Theory (PCLT) is a set of probabilistic integrity con-
straints Ci of the form

Each constraint Ci is associated with a probability pi ∈ [0, 1] and a PCLT T is a set of
probabilistic constraints {p1∶∶C1,… , pn∶∶Cn}.

A PCLT T defines a probability distribution on ground constraint logic theories called
possible theories in this way: for each grounding of the body of each IC, we include the IC
in a possible theory with probability pi and we assume all groundings to be independent.

(9)?−Body(C), not(P1),… not(Pn),N1,… ,Nm

(10)?−Body(C), not(P1),… , not(Pn), not(not(N1),… , not(Nm))

(11)pi ∶∶ L1,… , Lb → ∃(P1);… ;∃(Pn);∀¬(N1);… ;∀¬(Nm)

731Machine Learning (2021) 110:723–754	

1 3

The probability is to be interpreted as the strength of the IC: a probability pi means that
the sum of the probabilities of the possible theories where a grounding of the constraint is
present is pi.

The notion of possible theory is similar to notion of world in ProbLog (De Raedt et al.
2007) where a world is a normal logic program. However, in De Raedt et al. (2007) the
term world is used to denote both logic programs and (least) Herbrand models in literature.
In general, the use of the term world is ambiguous and there is no standard de facto for
the terminology to be used. For example, Sato rarely uses the word “world” (Sato 1995).
For these reasons, to avoid using ambiguous terminology we use the expression “possible
theories ”.

Let us assume that constraint Ci has ni substitutions �i1 , ..., �ini that ground its body. Let
Ci1,… ,Cini

 be the clauses Ci�i1 ,… ,Ci�ini
 and let us call the ICs Cij instantiations of Ci , i.e.,

its partial groundings. Thus, the probability of a possible theory w is given by the product:

P(W = w) so defined is a probability distribution over the set of possible theories W. In the
following, we will indicate P(W = w) simply as P(w).

The probability P(⊕|w, I) of the positive class given an interpretation I, a background
knowledge �� and a possible theory w is defined as the probability that w satisfies I given
��.1 Of course, its value is P(⊕|w, I) = 1 if M(�� ∪ I) ⊧ w and 0 otherwise. The probabil-
ity P(⊕|I) of the positive class given an interpretation I and a background �� is the prob-
ability of a PCLT T satisfying I given �� . From now on we always assume �� as given
and we do not mention it again. P(⊕|I) is given by

The probability P(⊖|I) of the negative class given an interpretation I is the probability of I
not satisfying T and is given by 1 − P(⊕|I).

Computing P(⊕|I) with Formula (13) is impractical as there is an exponential number
of possible theories. We can associate a Boolean random variable Xij to each instantiated
constraint Cij with the meaning that Xij = 1 in a possible theory if Cij is included in the pos-
sible theory. As pi is associated with Ci , P(Xij) = pi and P(Xij) = 1 − pi . Let � be the set of
the Xij variables. These variables are all mutually independent. A valuation � is an assign-
ment of a truth value to all variables in � . There is clearly a one to one correspondence
between possible theories and valuations. A valuation can be represented as a set contain-
ing Xij or Xij for each Xij and corresponds to the formula �� obtained by conjoining all the
Xij variables:

Suppose a ground IC Cij is violated in I. The possible theories where Xij holds in the respec-
tive valuation are thus excluded from the summation in Formula (13). We must keep only

(12)P(W = w) =

n∏

i=1

∏

Cij∈w

pi

∏

Cij∉w

(1 − pi).

(13)P(⊕|I) =
∑

w∈W

P(⊕,w|I) =
∑

w∈W

P(⊕|w, I)P(w|I) =
∑

w∈W,M(��∪I)⊧w

P(w)

(14)�� =

n⋀

i=1

⋀

Xij∈�

Xij

⋀

Xij∈�

Xij.

1  �� is omitted from the formula for the sake of brevity.

732	 Machine Learning (2021) 110:723–754

1 3

the possible theories where Xij holds in the respective valuation for all ground constraints
Cij violated in I. So I satisfies all the possible theories where the formula

is true in the respective valuations, so

where mi is the number of groundings of Ci that are not satisfied in I, since the random
variables are all mutually independent. Since computing ab is O(log b) with the “square and
multiply” algorithm (Gordon 1998), P(⊕|I) can be computed in a time that is O(n logm)
where m is the maximum number of groundings of constraints that are violated. Example 2
shows the application of Eq. 16 to the Bongard Problems domain. Example 3 shows how
the computation of the probability has lower complexity than that required, for instance, by
LPADs in a similar domain.

Example 2  (Example 1 continued) Consider the PCLT

In the left picture of Fig. 1 the body of C1 is true for the single substitution T/2 and S/1 thus
m1 = 1 and P(⊕|Il) = 0.5 . In the right picture of Fig. 1 the body of C1 is true for three cou-
ples (triangle, square) thus m1 = 3 and P(⊕|Ir) = 0.125.

Example 3  Consider the following LPAD (Vennekens et al. 2004), inspired to the Bongard
Problems:

plus an interpretation describing a picture. Notice that we have made the clauses for in/2
probabilistic. We can use this program to classify the picture, that is, we can ask the query
class(pos) and obtain its probability. To do so, inference algorithms find all explanations
of the query atom and then make them mutually exclusive. Finding all explanations for the
query means finding all the rule groundings that contribute to the truth of the query, and
making the explanations mutually exclusive is a #P-hard problem. PCLTs do not have this
problem because each constraint is independent of the others and we do not allow prob-
abilities in the background knowledge.

Counting the number of groundings that are violated is a generalization of subsump-
tion testing, which is NP-complete (Kapur and Narendran 1986) in the length of both
clauses to be tested for subsumption. However, since the length of the clauses we con-
sider in learning is limited by an hyperparameter that is usually small enough, finding
the number of groundings is not an issue.

(15)𝜙 =

n⋀

i=1

⋀

M(��∪I)̸⊧Cij

Xij

(16)P(⊕|I) = P(𝜙) =

n∏

i=1

(1 − pi)
mi

(17){C1 = 0.5 ∶∶ triangle(T), square(S), in(T , S) → false}

class(pos) ∶ 0.3 ←triangle(T), square(S), in(T , S).

in(A,B) ∶ 0.3 ←inside(A,B).

in(A,D) ∶ 0.3 ←inside(A,C), in(C,D).

733Machine Learning (2021) 110:723–754	

1 3

3.1 � Discussion of the variable independence assumption

Considering the variables mutually independent may seem a strong restriction. However, in
this section we will show that this is not a limitation and that under this assumption we can
model every conditional probability distribution of the class variable given the atom vari-
ables, possibly by resorting to the addition of extra random variables.

Given a PCLT T containing a positive or negative class and a Herbrand base, we want
to define a conditional probability distribution over a random variable C representing the
class, given the value of the random variables A1,… ,An representing the Herbrand base.

In this way, the probability distribution represents the conditional dependence of the
class given an interpretation, where the interpretation defines the value of the atoms of the
Herbrand base, without modelling at the same time the dependence among atoms of the
Herbrand base.

This is strictly related to the definition of discriminative models with conditional ran-
dom fields (Lafferty et al. 2001) to model a relationship between class variables and input
variables, rather than a relationship among input variables.

We can create a Bayesian network as shown in Figure 2 defined by the PCLT T. In
this Bayesian network the variables associated with ground atoms are all parents of the
class variable.2 For example, suppose we want to model a general conditional dependence
between the class atom and a Herbrand base containing two atoms: a and b. This depend-
ence can be represented with the Bayesian network of Figure 3, where the conditional
probability table (CPT) has four parameters, p1,… , p4 , so it is the most general. Let us call
P′ the distribution defined by this network.

This model can be represented with the following PCLT

(18)C1 = 1 − p1∶∶ ¬a,¬b → false

(19)C2 = 1 − p2∶∶ ¬a, b → false

(20)C3 = 1 − p3∶∶ a,¬b → false

(21)C4 = 1 − p4∶∶ a, b → false

Fig. 2   Bayesian Network repre-
senting the dependence between
the class of an interpretation and
the Herbrand base B

H

BH

A1 . . . An

C

2  Which differs from a naive Bayes model because there the input variables (ground atoms) are all children
of the class variable. This is a significant difference because the model in Figure 2 can have up to 2n param-
eters if n is the number of ground atoms.

734	 Machine Learning (2021) 110:723–754

1 3

If we consider the interpretation {} assigning value false to each atom of the Herbrand
base, only constraint C1 is violated. Thus, the probability that the class variable assumes
value ⊕ is

If we consider the opposite interpretation {a, b} , only constraint C4 is violated and the prob-
ability of the positive class P(C = ⊕|a, b) = p4 is equivalent to the probability assigned by
the Bayesian network P�(C = ⊕|a, b) . It is easy to see that this holds also for the other pos-
sible interpretations, proving that the probability assigned to the positive class by the above
PCLT always coincides with the one assigned by the Bayesian network of Figure 3.

Using the above PCLT is equivalent to representing the Bayesian network of Fig. 3
with the Bayesian network of Fig. 4, where a Boolean variable Xi represents whether
constraint Ci is included in the possible theory (i.e., if it is enforced) and a Boolean vari-
able Yi whether constraint Ci is violated. Let us call P′′ the distribution defined by this
network. The conditional probability tables for nodes Xi s are P��(Xi = 1) = 1 − pi , those
for nodes Yi s encode the deterministic functions

(22)P(C = ⊕|¬a,¬b) = 1 − (1 − p1) = p1 = P�(C = ⊕|¬a,¬b)

a b

C

P ′(C|a, b) C
a b � ⊕
0 0 1− p1 p1
0 1 1− p2 p2
1 0 1− p3 p3
1 1 1− p4 p4

Fig. 3   Bayesian Network representing the dependence between class C and atoms a, b 

X1 X2 X3 X4 a b

Y1 Y2 Y3 Y4

C

Fig. 4   Bayesian Network modeling the distribution P′′ over C, a, b, X
1
,…X

4
 , Y

1
,…Y

4

735Machine Learning (2021) 110:723–754	

1 3

and that for C encodes the deterministic function

where C is interpreted as a Boolean variable with 1 corresponding to ⊕ and 0 to ⊖ . If we
want to compute P��(C|¬a,¬b) we get

where � = {X1,… ,X4} and � = {Y1,… , Y4} . Similarly, it is possible to show that P and
P′′ coincide for the other possible interpretations. If we look at the network in Fig. 4 we see
that the � variables are mutually unconditionally independent, showing that it is possible
to represent any conditional dependence of C from the Herbrand base by using independ-
ent random variables. Of course, not assuming independence may result in a finer mod-
eling of the domain. However, this would preclude PCLTs’ nice computational properties.
Achieving tractability requires approximations and we think that constraint independence
is a reasonable assumption, similar to the independence among probabilistic choices in the
distribution semantics for PLP.

Moreover, PCLTs can compactly encode the dependence because they can take advan-
tage of context specific independence (Poole and Zhang 2003). For example, in the CPT
in Table 1 the probability of C = ⊕ does not depend on b when a is true. This dependence
can be encoded with

(23)Y1 = X1 ∧ ¬a ∧ ¬b

(24)Y2 = X2 ∧ ¬a ∧ b

(25)Y3 = X3 ∧ a ∧ ¬b

(26)Y4 = X4 ∧ a ∧ b

(27)C = ¬Y1 ∧ ¬Y2 ∧ ¬Y3 ∧ ¬Y4

(28)

P��(C|¬a¬b) =
∑

�,�

P��(X1)…P��(X4)P
��(Y1|X1,¬a,¬b)…P��(Y4|X4,¬a,¬b)

P��(C|Y1, Y2, Y3, Y4)

= p1

∑

X2,X3,X4,Y2,Y3,Y4

P��(X2)…P��(X4)P
��(C|Y1 = 0, Y2, Y3, Y4)

P��(Y2|X2,¬a,¬b)…P��(Y4|X4,¬a,¬b)

= p1

∑

X2,X3,X4

P��(X2)…P��(X4)P
��(C|Y1 = 0, Y2 = 0, Y3 = 0,

Y4 = 0)P��(Y2 = 0|X2,¬a,¬b)…P��(Y4 = 0|X4,¬a,¬b)

= p1

∑

X2,X3,X4

P��(X2)…P��(X4)

= p1

(29)C1 = 1 − p1∶∶ ¬a,¬b → false

(30)C2 = 1 − p2∶∶ ¬a, b → false

(31)C3 = 1 − p3∶∶ a → false

736	 Machine Learning (2021) 110:723–754

1 3

4 � Learning the parameters of probabilistic constraint logic theories

Let us consider first the parameter learning problem that can be expressed as follows.
Given

•	 a PCLT theory T
•	 a set I+ = {I1,… , IQ} of positive interpretations
•	 a set I− = {IQ+1,… , IR} of negative interpretations
•	 a normal logic program ��

Find: the parameters of T such that the likelihood

is maximized. The likelihood is given by the probability that the example labels are
observed for each example.

The likelihood can be unfolded to

where mlq ( mlr ) is the number of instantiations of Cl that are false in Iq ( Ir ) and n is the
number of ICs. Let us compute the derivative of the likelihood with respect to the param-
eter pi . We first aggregate the positive examples

where ml+ =
∑Q

q=1
mlq . Then the partial derivative with respect to pi is

(32)L =

Q∏

q=1

P(⊕|Iq)
R∏

r=Q+1

P(⊖|Ir)

(33)L =

Q∏

q=1

n∏

l=1

(1 − pl)
mlq

R∏

r=Q+1

(
1 −

n∏

l=1

(1 − pl)
mlr

)

(34)L =

n∏

l=1

(1 − pl)
ml+

R∏

r=Q+1

(
1 −

n∏

l=1

(1 − pl)
mlr

)

Table 1   A CPT with context
specific independence

P
�(C|a, b) C

a b ⊖ ⊕

0 0 1 − p
1

p
1

0 1 1 − p
2

p
2

1 0 1 − p
3

p
3

1 1 1 − p
3

p
3

737Machine Learning (2021) 110:723–754	

1 3

 The equation �L
�pi

= 0 does not admit a closed form solution so we must use optimization to
find the maximum of L.

We can optimize the likelihood with gradient descent (Cauchy 1847), where weights are
updated using the formula

(35)

𝜕L

𝜕pi
=

𝜕
∏n

l=1
(1 − pl)

ml+

𝜕pi

R�

r=Q+1

�
1 −

n�

l=1

(1 − pl)
mlr

�

+

n�

l=1

(1 − pl)
ml+

𝜕
∏R

r=Q+1

�
1 −

∏n

l=1
(1 − pl)

mlr

�

𝜕pi

= −mi+(1 − pi)
mi+−1

n�

l=1,l≠i

(1 − pl)
ml+

R�

r=Q+1

�
1 −

n�

l=1

(1 − pl)
mlr

�

+

n�

l=1

(1 − pl)
ml+

R�

r=Q+1

mir(1 − pi)
mir−1

n�

l=1,l≠i

(1 − pl)
mlr

⋅

R�

r�=Q+1,r�≠r

�
1 −

n�

l=1

(1 − pl)
mlr�

�

= −mi+(1 − pi)
mi+−1

n�

l=1,l≠i

(1 − pl)
ml+

(1 − pi)
mi+

(1 − pi)
mi+

R�

r=Q+1

�
1 −

n�

l=1

(1 − pl)
mlr

�
+

n�

l=1

(1 − pl)
ml+

R�

r=Q+1

mir

∏n

l=1
(1 − pl)

mlr

1 − pi

R�

r�=Q+1,r�≠r

�
1 −

n�

l=1

(1 − pl)
mlr�

�
⋅

1 −
∏n

l=1
(1 − pl)

mlr

1 −
∏n

l=1
(1 − pl)

mlr

= −
mi+(1 − pi)

mi+−1L

(1 − pi)
mi

+

R�

r=Q+1

mir

∏n

l=1
(1 − pl)

mlrL

(1 − pi)(1 −
∏n

l=1
(1 − pl)

mlr)

= −
mi+L

1 − pi
+

R�

r=Q+1

mir

∏n

l=1
(1 − pl)

mlrL

(1 − pi)(1 −
∏n

l=1
(1 − pl)

mlr)

=
L

1 − pi

�
R�

r=Q+1

mir

∏n

l=1
(1 − pl)

mlr

1 −
∏n

l=1
(1 − pl)

mlr

− mi+

�

=
L

1 − pi

�
R�

r=Q+1

mir

P(⊕�Ir)
P(⊖�Ir)

− mi+

�

(36)�n+1 = �n − �∇�L(�) = �n − �∇�

�L

��

738	 Machine Learning (2021) 110:723–754

1 3

where � is the learning rate defining the size of the step done by gradient descent along the
gradient and � is the vector containing the parameters pi , or with a second order method
such as limited-memory BFGS (L-BFGS) (Nocedal 1980).

In the experiments we report results only for gradient descent, as it outperforms
L-BFGS in most cases in terms of area under the PR and ROC curves, and execution time.

5 � Learning the structure of probabilistic constraint logic theories

The structure learning problem can be expressed as
Given

•	 a set I+ = {I1,… , IQ} of positive interpretations
•	 a set I− = {IQ+1,… , IR} of negative interpretations
•	 a normal logic program ��
•	 a language bias

Find: a PCLT T such that the likelihood

is maximized.
The PASCAL algorithm solves this problem by first identifying good candidate ICs and

then searching for a theory guided by the log likelihood (LL) of the data.

5.1 � The PASCAL algorithm

PASCAL is shown in Algorithm 3. It takes as input the positive and negative interpreta-
tions and a list of settings defining the hypothesis space. It returns a theory T of probabil-
istic ICs. After the search in the space of ICs, encoded in lines 2 - 19, PASCAL performs a
greedy search in the space of theories, described in lines 20–28.

Thanks to the last part of the algorithm, based on a greedy search, PASCAL uses a
search bias that should work against overfitting. This is confirmed by Section 7, where the
experimental results computed through cross-validation are comparable with those of other
systems.

(37)L =

Q∏

q=1

P(⊕|Iq)
R∏

r=Q+1

P(⊖|Ir)

739Machine Learning (2021) 110:723–754	

1 3

Language bias The search over the space of constraints to identify the candidate ones is
performed according to a language bias expressed by means of mode declarations. Follow-
ing (Muggleton 1995), a mode declaration m is either a head declaration modeh(r, s) or a
body declaration modeb(r, s), where s, the schema, is a ground literal, and r is an integer
called the recall. A schema is a template for literals in the head or body of a constraint and
can contain special placemark terms of the form #type, +type and -type, which stand,
respectively, for ground terms, input variables and output variables of a type. An input
variable in a body literal of a constraint must be an output variable in a preceding body
literal in the IC. Similarly, an input variable in the head must be either an output variable in
a preceding literal in the same disjunct or in a body literal in the IC. If M is a set of mode
declarations, L(M) is the language of M, i.e. the set of ICs A1;… ;An ∶− L1,… , Lb such
that the head atoms Ai (resp. body literals Li ) are obtained from some head (resp. body)
declaration in M by replacing all # placemarks with ground terms and all + (resp. -) place-
marks with input (resp. output) variables.

ICs Search The first phase aims at searching the space of constraints for a set of promis-
ing ones in terms of log-likelihood (LL). In this step, a beam search is performed: initially
the beam contains only the empty clause true → false with score LL0 = −∞ . Then, PAS-
CAL enters the refinement cycle (Alg. 3, lines 6–16) in order to output a list of at most
BeamSize candidate ICs sorted by decreasing LL. BeamSize is a user-defined setting stor-
ing the maximum size of the beam.

For each IC C, refinements are generated by means of the operators described in Sec-
tion 2 where the literals allowed in the body and in the head are defined by the mode decla-
rations. Moreover, the user can set the following bounds:

•	 MLB, the maximum number of literals in the body of ICs;

740	 Machine Learning (2021) 110:723–754

1 3

•	 MD, the maximum number of disjuncts in the head of ICs;
•	 MLP and MLN, the maximum number of literals allowed in a P disjunct and a N dis-

junct respectively.

In line 10 of Algorithm 3 parameter learning is executed on a theory composed of the
single refined clause - {C�} - by function LearnParams, employing either gradient descent
or L-BFGS. The initial values for the parameters are randomly set. The resulting log likeli-
hood LL′′ is used as the score of the updated IC C′′ . The scored refinements are inserted
back into the beam in order of decreasing score. If the beam exceeds the maximum size
BeamSize, the last element is removed. Function Insert at line 11 is used to update the
beam.

Beam search is repeated until the beam becomes empty or a maximum number of Steps
is reached.

Theory search The second phase is a greedy search in the space of theories starting
with an empty theory T with the lowest value of LL (line 20). Then one IC at a time is
added from the Beam . After each addition, parameter learning is run on the extended the-
ory T ∪ C and the log likelihood LL′ of the data is computed as the score of the resulting
theory T ′ . If LL′ is better than the current best, the IC is kept in the theory, otherwise it is
discarded. This is done for each clause in Beam , until the Beam is empty or a maximum
number NC of ICs, defined by the user, is reached. In line 28 a PCLT T is returned.

5.2 � Execution example

We now show an example of execution for the BUPA dataset that is used later in the
experiments. BUPA3 is a medical dataset for diagnosing liver disorders. The dataset uses
9 predicates, alkphos/2, gammagt/2, mcv/2, sgot/2, sgpt/2, drinks/2,
bupa_name/1, bupa_type/1, bupa/2. Each interpretation records a list of ground
facts representing values for blood tests (the first five predicates) and the number of half-
pints drunk per day (the sixth) for a single male individual. The last three predicates were
artificially created by researchers who defined the BUPA dataset in order to split data into
train and test sets and give a target predicate, bupa/2, to learn. Positive interpretations
represent individuals who have liver disorders.

An example of positive interpretation is:

For a negative interpretation, ‘pos’ in bupa_k is replaced with ‘neg’. Note that the first
argument of each fact is the interpretation’s ID (also called key), which is not a descriptive

alkphos(1, t1, 92).

mcv(1, t1, 85).

gammagt(1, t1, 31).

drinks(1, t1, 0.000).

sgot(1, t1, 27).

sgpt(1, t1, 45).

bupak(1, pos).

3  https​://relat​ional​.fit.cvut.cz/datas​et/Bupa.

https://relational.fit.cvut.cz/dataset/Bupa

741Machine Learning (2021) 110:723–754	

1 3

argument of the individual represented by the interpretation. For this reason, it has not
been counted in the predicates’ arity listed above.

The language bias used is

 and the algorithm settings take the following values: BeamSize=2, MLB=2, MD=2,
MLP=MLN=1, NC=8.

When searching the space of ICs, the starting IC true → false is extracted from the ini-
tial Beam and is refined using the modeb declarations. Modeh declarations are considered
but do not produce revisions as they all have an input argument; since the body is empty,
no variable can be placed in the input argument. This leads to the following clauses in the
first beam cycle:

1.	 First refinement: C′

 After gradient descent optimization: C′′

 with LL = −216.919 . The couple ( C��,−216.919 ) is inserted in the beam.
2.	 Second refinement: C′

 After gradient descent optimization: C′′

 with LL = −217.806 . The couple ( C��,−217.806 ) is inserted in the beam.
Six refinements are generated (one for each modeb), the best being (clause with the largest
LL = −214.592)

modeh(1, alkphos(+arg1,−alkv)).

modeh(1, drinks(+arg1,−drinkv)).

modeh(1, gammagt(+arg1,−gammav)).

modeh(1,mcv(+arg1,−mcvv)).

modeh(1, sgpt(+arg1,−sgptv)).

modeh(1, sgot(+arg1,−sgotv)).

modeb(1, alkphos(−arg1,−alkv)).

modeb(1, drinks(−arg1,−drinkv)).

modeb(1, gammagt(−arg1,−gammav)).

modeb(1,mcv(−arg1,−mcvv)).

modeb(1, sgpt(−arg1,−sgptv)).

modeb(1, sgot(−arg1,−sgotv)).

0.5∶∶alkphos(A,B) → false.

0.360146∶∶alkphos(A,B) → false.

0.5∶∶drinks(A,B) → false.

0.356961∶∶drinks(A,B) → false.

0.368780∶∶gammagt(A,B) → false.

742	 Machine Learning (2021) 110:723–754

1 3

In the second beam cycle, C:

is extracted (being at the top of the beam) and its body is refined based on all modeb decla-
rations, as MLB = 2 , leading to:

1.	 First refinement: C′

 After gradient descent optimization: C′′

 with LL = −213.732 . The couple ( C��,−213.732 ) is inserted in the beam.
2.	 Second refinement: according to the placemark terms in the modeb declarations, also

the refinement C′ :

 can be generated and optimized.
3.	 These two types of refinements are repeated by generating and optimizing all rules of

the form:

 with L2 being every modeb literal except for gammagt/2.
4.	 Then, all refinements of the form:

 are generated and optimized, with P1 and N1 disjuncts containing one of each modeh
atom at a time (as MLP = MLN = 1 ). This is possible because the input arguments of
the modeh declarations can be replaced with variables appearing in the body.

5.	 After having built all possible refinements based on the literal gammagt/2, the current
best theory ( LL = −213.732 ) is still

	  0.372082∶∶gammagt(A,B), alkphos(C,D) → false.

Now, C:

is extracted, being the second clause in the beam with LL = −215.119 , and the previous
1–4 steps are repeated using sgot/2.

This is the end of the second beam cycle, terminating with the best theory found among
all refinements:

0.372082∶∶gammagt(A,B), alkphos(C,D) → false , which is therefore put at the top of
the beam.

In the third beam cycle, C:

gammagt(A,B) → false

0.5∶∶gammagt(A,B), alkphos(C,D) → false.

0.372082∶∶gammagt(A,B), alkphos(C,D) → false.

0.5∶∶gammagt(A,B), alkphos(A,C) → false.

0.5∶∶gammagt(A,B), L2 → false.

0.5∶∶gammagt(A,B) → ∃(P1).

0.5∶∶gammagt(A,B) → ∀¬(N1).

0.5∶∶sgot(A,B) → false.

0.372082∶∶gammagt(A,B), alkphos(C,D) → false.

743Machine Learning (2021) 110:723–754	

1 3

is extracted and all refinements of the form:

are generated and optimized, with Pi and Ni containing one of each modeh atom at a time.
Two disjuncts can be present in the head as MD = 2 ; given that MLB = 2 , no further lit-
eral can be added to the body. After having built all possible refinements, the current best
theory ( LL = −213.732 ) is still

0.372082∶∶gammagt(A,B), alkphos(C,D) → false.
Now, C:

is extracted, being the second clause in the beam with LL = −213.885 , and it is refined by
applying the operations listed at the end of Sect. 2.2.

Beam cycles go on until the beam becomes empty and the best IC found so far is kept in
Beam (line 17 of Alg. 3), in this case

0.372082∶∶gammagt(A,B), alkphos(C,D) → false.

When the repeat-until cycle ends, Beam has kept the best ICs for the theory search.
When searching the space of theories, PASCAL generates the theory:

with a log likelihood of −187.826 . Note that the last clause was the first best IC found.

6 � Related work

The approach for assigning a semantics to PCLTs is inspired by the distribution seman-
tics (Sato 1995): a probabilistic theory defines a distribution over non-probabilistic theories
by assuming independence among the choices in probabilistic constructs. The distribu-
tion semantics has emerged as one of the most successful approaches in probabilistic logic
programming (PLP) and underlies many languages such as Probabilistic Horn Abduction
(Poole 1993), independent choice logic (Poole 1997), PRISM (Sato and Kameya 1997),
Logic Programs with Annotated Disjunctions (Vennekens et al. 2004) and ProbLog (De
Raedt et al. 2007).

According to the distribution semantics, probabilistic inference aims at computing the
probability that a ground atom is true. However, performing such task requires an expensive
procedure that is usually based on knowledge compilation. For example, ProbLog (De Raedt
et al. 2007) and PITA (Riguzzi and Swift 2010, 2013) build a Boolean formula and compile
it into a language from which the computation of the probability is linear in the size of the

0.5∶∶gammagt(A,B), alkphos(C,D) → ∃(P1).

0.5∶∶gammagt(A,B), alkphos(C,D) → ∃(P1);∃(P2).

0.5∶∶gammagt(A,B), alkphos(C,D) → ∀¬(N1).

0.5∶∶gammagt(A,B), alkphos(C,D) → ∀¬(N1);∀¬(N2).

0.5∶∶gammagt(A,B), alkphos(C,D) → ∃(P1);∀¬(N1).

(38)0.5∶∶gammagt(A,C), alkphos(D,E) → ∀¬(sgot(A,B)).

0.178997∶∶mcv(A,C), drinks(D,B) → ∀¬(drinks(A,B));∀¬(mcv(A,C)).

0.179310∶∶gammagt(A,C), drinks(A,D) → ∀¬(sgot(A,B)).

0.179607∶∶sgpt(A,B), drinks(A,C) → false.

0.180221∶∶gammagt(A,B), alkphos(C,D) → false.

744	 Machine Learning (2021) 110:723–754

1 3

resulting formula. However, the compilation procedure is #P in the number of random vari-
ables. On the contrary, computing the probability of the positive class given an interpretation
in a PCLT is O(n logm) , where n is the number of clauses and m is the maximum number of
groundings, and computing m is polynomial in the database size.

PASCAL is related to the systems SLIPCASE (Bellodi and Riguzzi 2012) and SLIP-
COVER (Bellodi and Riguzzi 2015) that learn probabilistic logic programs under the distri-
bution semantics. However, these perform classification of target atoms rather than of inter-
pretations. Recently, the LIFTCOVER algorithm (Nguembang Fadja and Riguzzi 2019) was
proposed to perform discriminative learning of probabilistic logic programs that are limited
to one layer of rules combined with noisy–or. PCLTs are the dual of this PLP formalism as
ICL is the dual of the learning from entailment setting in ILP. In fact in Nguembang Fadja and
Riguzzi (2019) a single firing rule is enough to make the query true with a nonzero probabil-
ity, while in PCLTs one single violated constraint is enough to make the class negative with a
nonzero probability. The higher the number of firing rules (violated constraints), the higher is
the probability of the positive (negative) class.

PCLTs can be related to Markov Logic Networks (Richardson and Domingos 2006), as
they share the capability to encode constraints on possible interpretations. The difference
between them relies in the fact that MLNs can either encode a joint distribution over all atoms
with a generative approach, or encode conditional probability distributions with a discrimi-
native approach (Singla and Domingos 2005): in the latter case their aim is to predict some
query atom variables given the others. PASCAL performs discriminative learning too, but its
aim is to classify interpretations, that is, encoding the probability distribution of the class vari-
able given the atom variables. Given a PCLT, it is possible to obtain an MLN encoding the
same distribution over the class variable given the values of all the atoms.

For example, the PCLT (18–21) can be emulated with the following MLN:

where C is an atom representing the class. If we compute the conditional probability of C
given an interpretation I, we get the same results of the PCLT. In fact, consider the empty
interpretation and call P′′′ the distribution defined by the MLN. We get

(39)ln(1 − p1)¬a ∧ ¬b ∧ ¬C

(40)ln(p1)¬a ∧ ¬b ∧ C

(41)ln(1 − p2)¬a ∧ b ∧ ¬C

(42)ln(p2)¬a ∧ b ∧ C

(43)ln(1 − p3)a ∧ ¬b ∧ ¬C

(44)ln(p3)a ∧ ¬b ∧ C

(45)ln(1 − p4)a ∧ b ∧ ¬C

(46)ln(p4)a ∧ b ∧ C

745Machine Learning (2021) 110:723–754	

1 3

where Z is the partition function. Similarly for the other interpretations. So PCLTs are a
specialization of MLNs that, by focusing on a simpler problem, allow better performance
of inference algorithms.

In other words, it is only possible to encode PCLTs with MLNs but not viceversa.
Finally, as regards parameter learning, in Singla and Domingos (2005) parameters are

learned using gradient descent as in PASCAL and, to limit the complexity, authors approx-
imate expected counts by considering only the map state of the query variables. Differently
from them, we do not need to perform approximations when computing the gradient as the
model was specifically designed with discriminative inference in mind.

Tractable Markov logic (TML) (Domingos and Webb 2012) is a subset of Markov logic,
where inference is kept tractable by imposing restrictions on the language: in particular,
only subclass/instance, subpart and relation rules and facts can be expressed, and class
hierarchies are required to be forests. Our work differs from TML in two respects. First,
inference in TML computes the conditional probability of a query given a theory, while we
compute the conditional probability of a class given an interpretation. Second, PCLT con-
straints are more general than the rules that can be expressed in TML.

PCLTs are also related to FOProbLog (Bruynooghe et al. 2010), an algorithm which
defines a probability distribution on interpretations built using ground atoms from the Her-
brand base. In a theory, probability values are associated with facts, which are used as
activators of the formulae of the theory. To compute the probability of a class C it builds
the set of total choices. Then, it extends the total choices by adding ground atoms from the
Herbrand base, extensions that are called models. Note that some of these models may be
inconsistent, but in this case their probability is 0, thus we concentrate only on consistent
extensions. Once all the models are collected, the probability of a query Q is defined as an
interval [p1, p2] , where p1 is the sum of the probabilities of the models where the query can
be proved. On the other hand, p2 = 1 − p¬Q , where p¬Q is the probability of the query ¬Q
computed in the same way of the probability of Q. The probability interval for the query
¬Q will be [1 − p1, p¬Q] . So FOProbLog is similar to MLNs, it defines a probability distri-
bution over interpretations or queries, while we define a probability distribution over the
class only, thus tackling a simpler problem.

Another system related to PASCAL is 1BC (Flach and Lachiche 2004), that induces
first-order features in the form of conjunctions of literals and combines them using naive
Bayes in order to classify examples. First-order features are similar to integrity constraints
with an empty head: they check the existence of values for the variables that satisfy the
conjunction. The probability of a feature is computed by relative frequency in 1BC. This
can lead to suboptimal results if compared to PASCAL, where the probabilities are opti-
mized to maximize the likelihood.

Another system which is close to our approach is TILDE (Blockeel and Raedt 1998)
which applies first-order logical decision trees (FOLDT) to the problem of learning
from interpretations. A FOLDT is a binary decision tree in which each node of the tree

(47)

P���(C = ⊕|¬a,¬b) = P���(C = ⊕,¬a,¬b)∕P���(¬a,¬b)

=

eln(p1)

Z

eln(1−p1)+eln p1

Z

=
eln(p1)

eln(1−p1) + eln p1

(48)=
p1

1 − p1 + p1
= p1

746	 Machine Learning (2021) 110:723–754

1 3

represents a conjunction of literals defined by the path to that node. Free variables in the
literals can be shared across many nodes under the limitation that, starting from the first
node that introduces the variable, all the other nodes must be in the left branch of their
parent node. Such a limitation is due to the fact that each variable introduced is existen-
tially quantified. The resulting learned clauses are used to classify interpretations given a
set of possible classes. These clauses can be associated with the probability distribution
of classes in the leaf that corresponds to the learned clause, therefore, TILDE can be used
also to perform probabilistic classification. In this way, TILDE can act like relational prob-
ability trees (Neville et al. 2003), which build classification trees considering a larger fea-
ture space that also includes aggregation operators. However, both TILDE and relational
probability trees can only return a probability value that is associated with the leaves of the
constructed tree. Instead, PASCAL returns a wider range of values, because it considers
also the number of satisfied groundings of the ICs during inference.

7 � Experiments

We compared PASCAL with:

•	 the PLP algorithms LIFTCOVER (Nguembang Fadja and Riguzzi 2018), SLIPCOVER
(Bellodi and Riguzzi 2015) and LEMUR (Di Mauro et al. 2015);

•	 the MLNs algorithms BUSL (Mihalkova and Mooney 2007), LSM (Kok and Domin-
gos 2010), MLN-BC/MLN-BT (Khot et al. 2011);

•	 TILDE (Blockeel and Raedt 1998) as a representative of (probabilistic) relational clas-
sifiers.

We performed tests on the datasets of Nguembang Fadja and Riguzzi (2018) plus the Bon-
gard dataset (Bongard 1970), to which the Bongard Problem of Example 1 is inspired.

Note that SLIPCOVER, LIFTCOVER and LEMUR can be seen as a baseline for com-
parison with respect to PASCAL, since they have already been compared with many state-
of-art systems in our previous works (Bellodi and Riguzzi 2015; Di Mauro et al. 2015),
demonstrating that they were competitive or superior with respect to the MLNs learning
systems.

All PLP systems, included PASCAL, are implemented in SWI-Prolog (Wielemaker
et al. 2012).

Datasets Datasets are specific for the learning from entailment setting as they were used
in Nguembang Fadja and Riguzzi (2018) to compare LIFTCOVER with SLIPCOVER:
they are composed of a set of mega-interpretations, each possibly containing more than
one example (i.e., fact for a target predicate). However, those mega-interpretations contain
in practice a single fact for the target predicate, so it is possible to classify each mega-
interpretation as positive or negative depending on the target predicate example. For this
reason, we could apply PASCAL by considering each mega-interpretation as an input
interpretation.

Table 2 shows the datasets’ features: number of different predicates, total number of
tuples, number of positive and negative examples, and number of folds for cross-validation.

Algorithms’ settings SLIPCOVER/LIFTCOVER/LEMUR and TILDE allow modeh
and predict declarations only for the target predicate(s), respectively. PASCAL, instead, by

747Machine Learning (2021) 110:723–754	

1 3

learning models that provide predictions at the level of interpretations, allows modeh dec-
larations for all predicates of the domain (see Sect. 5.2).

As described in Sect, 5.1, PASCAL offers the following settings: the size BeamSize of
the beam, the maximum number of disjuncts MD per IC, the maximum number of liter-
als MLP contained in positive disjuncts and the maximum number of literals MLN con-
tained in negative disjuncts, the maximum number of body literals MLB , the maximum
number MaxSteps of IC search iterations, and the maximum number of ICs NC that may
be inserted into the final program. Table 3 summarizes the values taken by these settings.
They were chosen with the objective of keeping the computation time below 24 hours per
fold.

TILDE was executed with default values for its settings.
SLIPCOVER and LIFTCOVER settings can be found in Table 2

of Nguembang Fadja and Riguzzi (2018) for all datasets except Bon-
gard. We applied SLIPCOVER and LIFTCOVER on Bongard by setting
NB = 100,NI = 20,NInt = 4,NS = NA = 1,NV = 4,WMin = 0,NIS = 50 (see Section 7
of Nguembang Fadja and Riguzzi 2018). LIFTCOVER can exploit either an expecta-
tion maximization (EM) algorithm (Dempster et al. 1977) or L-BFGS (Nocedal 1980)

Table 2   Characteristics of the
datasets for the experiments:
number of predicates (Pred.), of
tuples (i.e., ground atoms), of
positive ( I+ ) and negative ( I− )
examples, of folds

Dataset Pred. Tuples I
+

I
− Folds

Financial 9 92,658 34 223 10
Bupa 12 2781 145 200 5
Mondial 11 10,985 572 616 5
Mutagenesis 20 15,249 125 126 10
Sisyb 9 354,507 3705 9229 10
Sisya 9 358,839 10723 6544 10
Pyrimidine 29 2037 20 20 4
Yeast 12 53,988 1299 5456 10
Triazine 62 10,079 20 20 4
Carcinogenesis 36 24,533 182 155 1
Bongard 5 2792 130 265 1

Table 3   Settings controlling PASCAL

Dataset BeamSize MLB MD MLP MLN NC Learning rate

Bupa 2 3 2 1 1 8 0.5
Carcinogenesis 1 3 2 1 1 7 0.5
Financial 1 2 1 1 1 8 0.05
Mondial 1 2 1 1 1 8 0.5
Mutagenesis 2 2 1 1 1 8 0.5
Pyrimidine 2 3 2 1 1 8 0.5
Sisya 1 2 1 1 1 4 0.05
Sisyb 1 2 0 0 0 8 0.05
Triazine 2 3 2 1 1 8 0.5
Yeast 2 2 2 1 1 4 0.5
Bongard 1 2 2 1 1 8 0.5

748	 Machine Learning (2021) 110:723–754

1 3

to maximize the log-likelihood during parameter learning, so results show both variants.
LEMUR settings can be found in subsection 7.1 of Di Mauro et al. (2015) for the three
datasets in common (Carcinogenesis, Mondial, Mutagenesis).

Results Experiments with PASCAL were performed on GNU/Linux machines with
Intel Xeon E5-2697 v4 (Broadwell) at 2.30 GHz, using cross-validation.

TILDE can only be executed on 32-bit machines: we used a GNU/Linux machine
with Intel Core 2 Quad CPU Q6600 at 2.40GHz and 3.6 GB of RAM, using cross vali-
dation. To compare the results of TILDE with the others we scaled its runtime of a fac-
tor 2.4/2.3.

LEMUR, MLN-BC and MLN-BT in Di Mauro et al. (2015) were executed on GNU/
Linux machines with an Intel Core 2 Duo E6550 (2.333 GHz) processor: in order to
compare their runtime, we scaled PASCAL learning time of a factor 2300/2333 based
on the different CPU clock speeds.

Results for all the other systems are referred to the same machines used for PASCAL.
For performance evaluation, we considered the Area Under the Precision Recall and

ROC curves (AUCPR and AUCROC respectively) using the methods described in Davis
and Goadrich (2006); Provost and Fawcett (2001).

Tables 4, 5 and 6 show the AUC-PR, AUC-ROC and learning time in seconds respec-
tively, averaged over the folds, for PASCAL, SLIPCOVER, LIFTCOVER and TILDE.
SLIPCOVER and LIFTCOVER results are taken from Tables 3, 4 and 5 of Nguembang
Fadja and Riguzzi (2018).

In Tables 7, 8 and 9 we report the AUC-PR, AUC-ROC and running time achieved
by PASCAL, LEMUR, MLN-BC (with and without sampling) and MLN-BT (with and
without sampling) on the datasets in common. LSM and BUSL were also considered,
but they are not included in the tables because they were not able to complete the task
due to an out of memory error. LEMUR, MLN-BC, MLN-BT results are taken from
Tables 3, 4 and 6 of Di Mauro et al. (2015).

Table 10 shows the p-value of a paired two-tailed t-test of the difference in AUC-PR
and AUC-ROC between PASCAL and TILDE on all datasets, except for Carcinogen-
esis/Bongard, where we did not apply cross-validation, and Sisyb, where we got the

Table 4   Average AUC-PR. LIFT-EM and LIFT-LBFGS columns show the results for LIFTCOVER using
respectively EM and L-BFGS for parameter learning

In bold the best results for each dataset

Dataset SLIPCOVER LIFT-EM LIFT-LBFGS PASCAL TILDE

Bupa 1 1 1 1 0.420
Carcinogenesis 0.745 0.672 0.561 0.770 0.707
Financial 0.173 0.126 0.187 0.317 0.123
Mondial 0.776 0.763 0.723 0.652 0.650
Mutagen. 0.920 0.971 0.725 0.902 0.851
Pyrimidine 0.956 1 0.819 0.990 0.769
Sisya 0.708 0.706 0.706 0.622 0.621
Sisyb 0.287 0.286 0.286 0.286 0.286
Triazine 0.560 0.734 0.760 0.855 0.685
Yeast 0.428 0.502 0.448 0.469 0.588
Bongard 0.899 0.966 0.970 0.635 0.300

749Machine Learning (2021) 110:723–754	

1 3

same AUC values over all folds with both algorithms. The p-value is not reported for
the other systems as data were not available.

Discussion As regards the quality of the theories learnt, Tables 4, 5, 7, and 8 show
that PASCAL achieves the best AUC-PR 3 times out of 11 and comparable AUC-PR
in the other cases except for Bongard. LIFTCOVER-EM and PASCAL are the best
algorithms according to AUC-ROC in 4 cases out of 11 (Sisyb is not counted); in the
other cases PASCAL gets comparable AUC-ROC except for Bongard and Sisya. PLP
algorithms always beat MLNs. By looking at the characteristics of the datasets, we can
observe that the three datasets where PASCAL performs well - Triazine, Financial and
Carcinogenesis - have a small number of examples but a large number of different predi-
cates, possibly indicating that the expressive language bias is beneficial when the data-
set is not very big but has a rich structure.

The quality of the models built by PASCAL is especially influenced by the language
bias and the choice of the settings’ values which define the search space of the candidate
ICs; datasets’ size impacts execution time and search space. The values reported in Table 3
generated the PCLTs described in Table 11, in terms of average size of the theories (num-
ber of learnt ICs), average size of the constraints (number of atoms), characteristics of the
constraints (number of P and N disjuncts).

As regards learning time, LIFTCOVER-EM is the fastest system, as can be seen in
Tables 6 and 9. Note that, in spite of the greater expressiveness allowed by PASCAL lan-
guage bias (w.r.t. to the other PLP systems), that is responsible for a larger search space,
PASCAL learning times are in line with all algorithms, and in 3 cases out of 11 it is even
the second best. Also, with respect to MLNs learning time, PASCAL is always faster
except Carcinogenesis (Table 9).

T-tests show that area differences between PASCAL and TILDE are statistically signifi-
cant, with a confidence level of 0.05, in 7 out of 14 cases.

Table 5   Average AUC-ROC. LIFT-EM and LIFT-LBFGS columns show the results for LIFTCOVER using
respectively EM and L-BFGS for parameter learning

In bold the best results for each dataset

Dataset SLIPCOVER LIFT-EM LIFT-LBFGS PASCAL TILDE

Bupa 1 1 1 1 0.500
Carcinogenesis 0.695 0.766 0.472 0.763 0.667
Financial 0.568 0.432 0.535 0.745 0.478
Mondial 0.630 0.663 0.643 0.495 0.500
Mutagen. 0.826 0.931 0.649 0.806 0.778
Pyrimidine 0.925 1 0.850 0.993 0.815
Sisya 0.719 0.372 0.721 0.502 0.499
Sisyb 0.500 0.500 0.500 0.500 0.500
Triazine 0.544 0.713 0.760 0.803 0.600
Yeast 0.733 0.786 0.721 0.794 0.718
Bongard 0.944 0.975 0.987 0.749 0.500

750	 Machine Learning (2021) 110:723–754

1 3

Table 6   Average learning time in seconds. LIFT-EM and LIFT-LBFGS columns show the results for LIFT-
COVER using respectively EM and L-BFGS for parameter learning

In bold the best results
The running time of TILDE is scaled

Dataset SLIPCOVER LIFT-EM LIFT-LBFGS PASCAL TILDE

Bupa 1.349 0.243 1.239 12.324 2.831
Carcinogenesis 25568 7.850 76.490 156.711 42.245
Financial 0.178 0.235 0.246 12.745 26.630
Mondial 6.490 5.911 3.984 20.139 2.191
Mutagen. 12.110 12.770 122.800 19.303 5.803
Pyrimidine 54.620 54.990 126.100 48.040 2.631
Sisya 45.750 0.932 2.252 329.781 1070.457
Sisyb 37.000 0.226 0.412 6.339 414.773
Triazine 728.200 56.690 109.100 22.618 5.236
Yeast 202.400 0.502 69.300 57.856 175.486
Bongard 3.113 20.602 4.278 2.954 5.913

Table 7   Average AUC-PR for the systems LEMUR, MLN-BC, MLN-BC with sampling (MLN-BC samp.),
MLN-BT and MLN-BT with sampling (MLN-BT samp.), compared to PASCAL

In bold the best results

Dataset LEMUR MLN-BC MLN-BC
samp.

MLN-BT MLN-BT
samp.

PASCAL

Carcinogenesis 0.691 0.619 0.633 0.503 0.494 0.770
Mondial 0.864 0.585 0.742 0.735 0.781 0.652
Mutagenesis 0.952 0.690 0.831 0.872 – 0.902

Table 8   Average AUC-ROC for the systems LEMUR, MLN-BC, MLN-BC with sampling (MLN-BC
samp.), MLN-BT and MLN-BT with sampling (MLN-BT samp.), compared to PASCAL

In bold the best results

Dataset LEMUR MLN-BC MLN-BC samp. MLN-BT MLN-BT samp. PASCAL

Carcinogenesis 0.721 0.632 0.641 0.361 0.441 0.763
Mondial 0.782 0.390 0.594 0.601 0.662 0.495
Mutagenesis 0.952 0.553 0.741 0.867 0.823 0.806

Table 9   Average time in seconds for the systems LEMUR, MLN-BC, MLN-BC with sampling (MLN-BC
samp.), MLN-BT and MLN-BT with sampling (MLN-BT samp.)

The running time of PASCAL is scaled
Best results are given in bold

Dataset LEMUR MLN-BC MLN-BC samp. MLN-BT MLN-BT samp. PASCAL

Carcinogenesis 11230 55 45 175 181 154.49
Mondial 23435 45 709 114 359 19.85
Mutagenesis 22 65 64 1438 2368 19.03

751Machine Learning (2021) 110:723–754	

1 3

8 � Conclusions

We proposed the PASCAL algorithm for learning probabilistic constraint logic theories
from interpretations, a probabilistic extension of integrity constraints (ICs) presented in
Alberti et al. (2016). PASCAL can exploit either gradient descent or L-BFGS for tuning
the parameters. PASCAL is the first system able to learn probabilistic ICs, and has been
demonstrated to achieve comparable or better performance in terms of AUC-PR and AUC-
ROC than several state-of-the-art statistical relational learners, based on probabilistic logic
programs or on Markov Logic Networks, in a comparable execution time.

The main limitation of PASCAL is that it performs discriminative learning, not genera-
tive learning. As such it is not suitable for building domain models but rather for build-
ing predictive models, allowing the classification of interpretations but not capturing the
dependencies among ground atoms.

In the future we plan to apply PASCAL to domains from the field of Business Pro-
cess Management, which we believe can benefit from a probabilistic evaluation of business
workflows.

Table 10   p-values of a paired two-tailed t-test when comparing the AUC-ROC and AUC-PR of PASCAL
with respect to TILDE

In bold when the significance level is smaller than 0.05

Dataset TILDE/AUC-ROC TILDE/AUC-PR

Bupa 0 1.87E-3
Financial 4.94E-4 8.71E-3
Mondial 0.783 0.894
Mutagenesis 0.604 0.144
Pyrimidine 0.069 0.058
Sisya 0.010 0.191
Triazine 0.106 0.069
Yeast 2.66E-5 1.64E-6

Table 11   Characteristics of the PCLTs generated by PASCAL for each dataset

Dataset Avg theory size Avg ICs size Avg No P dis. Avg No N dis.

Bupa 8 3.5 1 0.5
Carcinogenesis 7 3 1 1
Financial 4.9 3 0.5 0.5
Mondial 7 2.5 0.5 0
Mutagenesis 8 2.5 0.5 0.5
Pyrimidine 8 3 0.5 1
Sisya 3.8 2.5 0.25 0.6
Sisyb 2.3 2.7 0 0
Triazine 8 3 0.75 1
Yeast 4 2.7 1.75 0
Bongard 8 3 1 0.5

752	 Machine Learning (2021) 110:723–754

1 3

Another future work, anticipated in the Introduction, regards investigating how to
introduce probabilistic reasoning in the framework of interaction protocols in societies
of agents, suitably extending the declarative and operational semantics of Alberti et al.
(2008), in order to be able to monitor and verify the compliance of a partial, and still not
complete, interpretation (i.e., a narrative of occurred events, but not yet completed).

PASCAL will be also included in the cplint framework and made available in the
cplint-on-SWISH web application (Alberti et al. 2016) at http://cplin​t.eu to facilitate exper-
imenting with it.

Acknowledgements  We thank the anonymous reviewers for their insightful comments on previous drafts of
this article. This work was partially supported by the “GNCS-INdAM”.

Funding  Open access funding provided by Università degli Studi di Ferrara within the CRUI-CARE
Agreement.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

Alberti, M., Bellodi, E., Cota, G., Lamma, E., Riguzzi, F., & Zese, R. (2016). Probabilistic constraint logic theo-
ries. In: A. Hommersom, S. Abdallah (Eds.) Proceedings of the 3nd international workshop on probabil-
istic logic programming (PLP), CEUR Workshop Proceedings (vol. 1661, pp. 15–28). Sun SITE Central
Europe, Aachen, Germany. http://ceur-ws.org/Vol-1661/#paper​-02

Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., & Torroni, P. (2008). Verifiable agent interaction
in abductive logic programming: The SCIFF framework. ACM Transactions on Computer Logic, 9(4),
29:1–29:43.

Alberti, M., Cota, G., Riguzzi, F., & Zese, R. (2016). Probabilistic logical inference on the web. In: G. Adorni,
S. Cagnoni, M. Gori, M. Maratea (Eds.) AI*IA 2016, Lecture Notes in Computer Science, vol. 10037, pp.
351–363. Springer https​://doi.org/10.1007/978-3-319-49130​-1_26.

Apt, K. R., & Bezem, M. (1991). Acyclic programs. New Generation Computing, 9(3–4), 335–363.
Bellodi, E., & Riguzzi, F. (2012). Learning the structure of probabilistic logic programs. In S. Muggleton, A.

Tamaddoni-Nezhad, & F. Lisi (Eds.) 22nd international conference on inductive logic programming,
LNCS (Vol. 7207, pp. 61–75). Berlin: Springer.

Bellodi, E., & Riguzzi, F. (2015). Structure learning of probabilistic logic programs by searching the clause
space. Theory and Practice of Logic Programming, 15(2), 169–212. https​://doi.org/10.1017/S1471​06841​
30006​89.

Blockeel, H., De Raedt, L., Jacobs, N., & Demoen, B. (1999). Scaling up inductive logic programming by learn-
ing from interpretations. Data Mining and Knowledge Discovery, 3(1), 59–93.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees. Artificial Intel-
ligence, 101(1–2), 285–297. https​://doi.org/10.1016/S0004​-3702(98)00034​-4.

Bongard, M. M. (1970). Pattern recognition. Spartan Books: Hayden Book Co., Spartan Books
Bruynooghe, M., Mantadelis, T., Kimmig, A., Gutmann, B., Vennekens, J., Janssens, G., & De Raedt, L.

(2010). Problog technology for inference in a probabilistic first order logic. In ECAI 2010 - 19th European
conference on artificial intelligence, Lisbon, Portugal, August 16–20, 2010, proceedings, frontiers in artifi-
cial intelligence and applications, vol. 215, pp. 719–724. IOS Press.

Cauchy, A. (1847). Méthode générale pour la résolution des systemes d’équations simultanées. Comptes Rendus
Academic Science Paris, 225(83), 536–538.

Clark, K. L. (1978). Negation as failure. In H. Gallaire & J. Minker (Eds.), Logic and data bases. Boston, MA:
Springer. https​://doi.org/10.1007/978-1-4684-3384-5_11.

http://cplint.eu
http://creativecommons.org/licenses/by/4.0/
http://ceur-ws.org/Vol-1661/#paper-02
https://doi.org/10.1007/978-3-319-49130-1_26
https://doi.org/10.1017/S1471068413000689
https://doi.org/10.1017/S1471068413000689
https://doi.org/10.1016/S0004-3702(98)00034-4
https://doi.org/10.1007/978-1-4684-3384-5_11

753Machine Learning (2021) 110:723–754	

1 3

Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and ROC curves. In ECML 2006
pp. 233–240). ACM

De Raedt, L., & Dehaspe, L. (1997). Clausal discovery. Machine Learning, 26(2–3), 99–146.
De Raedt, L., & Džeroski, S. (1994). First-Order jk-Clausal Theories are PAC-Learnable. Artificial Intelligence,

70(1–2), 375–392.
De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A probabilistic Prolog and its application in link

discovery. In: M.M. Veloso (Ed.) IJCAI 2007 (Vol. 7, pp. 2462–2467). AAAI Press/IJCAI.
De Raedt, L., & Van Laer, W. (1995). Inductive constraint logic. In: ALT 1995, Lecture Notes in Artificial Intel-

ligence (Vol. 997, pp. 80–94). Springer.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–38.
Di Mauro, N., Bellodi, E., & Riguzzi, F. (2015). Bandit-based Monte-Carlo structure learning of probabilistic

logic programs. Machine Learning, 100(1), 127–156. https​://doi.org/10.1007/s1099​4-015-5510-3.
Domingos, P., & Webb, W.A. (2012). A tractable first-order probabilistic logic. In J. Hoffmann, B. Selman

(Eds.) Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI-12). AAAI Press.
Flach, P. A., & Lachiche, N. (2004). Naive Bayesian classification of structured data. Machine Learning, 57(3),

233–269. https​://doi.org/10.1023/B:MACH.00000​39778​.69032​.ab.
Gavanelli, M., Lamma, E., Riguzzi, F., Bellodi, E., Zese, R., & Cota, G. (2015). An abductive framework for

datalog± ontologies. In: M.D. Vos, T. Eiter, Y. Lierler, F. Toni (Eds.) Technical communications of the
31st international conference on logic programming (ICLP 2015), CEUR workshop proceedings (vol.
1433). CEUR-WS.org.

Gordon, D. M. (1998). A survey of fast exponentiation methods. Journal of Algorithms, 27(1), 129–146. https​
://doi.org/10.1006/jagm.1997.0913.

Kapur, D., & Narendran, P. (1986). Np-completeness of the set unification and matching problems. In Interna-
tional conference on automated deduction (pp 489–495). Springer.

Khot, T., Natarajan, S., Kersting, K., & Shavlik, J.W. (2011). Learning Markov Logic Networks via functional
gradient boosting. In Proceedings of the 11th IEEE international conference on data mining (pp. 320–
329). IEEE.

Kok, S., & Domingos, P. (2010). Learning Markov logic networks using structural motifs. In: J. Fürnkranz,
T. Joachims (Eds.) ICML 2010 (pp. 551–558). Omnipress.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In 18th International Conference on Machine Learning (vol. 1, pp. 282–289).

Lamma, E., Mello, P., Riguzzi, F., & Storari, S. (2008). Applying inductive logic programming to process min-
ing. In Proceedings of the 17th international conference on inductive logic programming, ILP 2007, no.
4894 in lecture notes in artificial intelligence (pp. 132–146). Springer, Heidelberg, Germany. https​://doi.
org/10.1007/978-3-540-78469​-2_16.

Mihalkova, L., & Mooney, R.J. (2007). Bottom-up learning of Markov logic network structure. In Proceedings
of the 24th International Conference on Machine Learning (pp. 625–632). ACM.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13, 245–286.
Neville, J., Jensen, D.D., Friedland, L., & Hay, M. (2003). Learning relational probability trees. In: L. Getoor,

T.E. Senator, P.M. Domingos, C. Faloutsos (Eds.) Proceedings of the ninth ACM SIGKDD international
conference on knowledge discovery and data mining, Washington, DC, USA, August 24–27, 2003, pp.
625–630. ACM Press.

Nguembang Fadja, A., & Riguzzi, F. (2018). Lifted discriminative learning of probabilistic logic programs.
Machine Learning,. https​://doi.org/10.1007/s1099​4-018-5750-0.

Nguembang Fadja, A., & Riguzzi, F. (2019). Lifted discriminative learning of probabilistic logic programs.
Machine Learning, 108(7), 1111–1135. https​://doi.org/10.1007/s1099​4-018-5750-0. http://ml.unife​.it/wp-
conte​nt/uploa​ds/Paper​s/NguRi​g-ML18.pdf.

Nocedal, J. (1980). Updating Quasi-Newton matrices with limited storage. Mathematics of Computation,
35(151), 773–782.

Poole, D. (1993). Logic programming, abduction and probability: A top-down anytime algorithm for estimating
prior and posterior probabilities. New Generat. Comput., 11(3), 377–400.

Poole, D. (1997). The independent choice logic for modelling multiple agents under uncertainty. Artificial Intel-
ligence, 94, 7–56.

Poole, D., & Zhang, N. L. (2003). Exploiting contextual independence in probabilistic inference. Journal of
Artificial Intelligence Research, 18, 263–313.

Provost, F. J., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42(3),
203–231.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1–2), 107–136.

https://doi.org/10.1007/s10994-015-5510-3
https://doi.org/10.1023/B:MACH.0000039778.69032.ab
https://doi.org/10.1006/jagm.1997.0913
https://doi.org/10.1006/jagm.1997.0913
https://doi.org/10.1007/978-3-540-78469-2_16
https://doi.org/10.1007/978-3-540-78469-2_16
https://doi.org/10.1007/s10994-018-5750-0
https://doi.org/10.1007/s10994-018-5750-0
http://ml.unife.it/wp-content/uploads/Papers/NguRig-ML18.pdf
http://ml.unife.it/wp-content/uploads/Papers/NguRig-ML18.pdf

754	 Machine Learning (2021) 110:723–754

1 3

Riguzzi, F., & Swift, T. (2010). Tabling and answer subsumption for reasoning on logic programs with anno-
tated disjunctions. In: ICLP TC 2010, LIPIcs (Vol. 7, pp. 162–171). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik. https​://doi.org/10.4230/LIPIc​s.ICLP.2010.162.

Riguzzi, F., & Swift, T. (2013). Welldefinedness and efficient inference for probabilistic logic programming
under the distribution semantics. Theory and Practice of Logic Programming, 13(2), 279–302. https​://doi.
org/10.1017/S1471​06841​10006​64.

Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In: L. Sterling
(Ed.) ICLP 1995 (pp. 715–729). Cambridge: MIT Press.

Sato, T., & Kameya, Y. (1997). PRISM: A language for symbolic-statistical modeling. In: IJCAI (Vol. 97, pp.
1330–1339).

Singla, P., & Domingos, P. (2005). Discriminative training of Markov logic networks. In: 20th national confer-
ence on artificial intelligence (AAAI 2005) (pp. 868–873). AAAI Press/The MIT Press.

Vennekens, J., Verbaeten, S., & Bruynooghe, M. (2004). Logic programs with annotated disjunctions. In:
B. Demoen, V. Lifschitz (Eds.) ICLP 2004, lecture notes in computer science (vol. 3131, pp. 431–445).
Springer. https​://doi.org/10.1007/978-3-540-27775​-0_30

Wielemaker, J., Schrijvers, T., Triska, M., & Lager, T. (2012). SWI-Prolog. Theory and Practice of Logic Pro-
gramming, 12(1–2), 67–96. https​://doi.org/10.1017/S1471​06841​10004​94.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.4230/LIPIcs.ICLP.2010.162
https://doi.org/10.1017/S1471068411000664
https://doi.org/10.1017/S1471068411000664
https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1017/S1471068411000494

	Probabilistic inductive constraint logic
	Abstract
	1 Introduction
	2 Inductive constraint logic (ICL)
	2.1 Logic preliminaries
	2.2 ICL

	3 Probabilistic inductive constraint logic
	3.1 Discussion of the variable independence assumption

	4 Learning the parameters of probabilistic constraint logic theories
	5 Learning the structure of probabilistic constraint logic theories
	5.1 The PASCAL algorithm
	5.2 Execution example

	6 Related work
	7 Experiments
	8 Conclusions
	Acknowledgements
	References

