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Abstract
We propose a stochastic approximation (SA) based method with randomization of samples 
for policy evaluation using the least squares temporal difference (LSTD) algorithm. Our 
proposed scheme is equivalent to running regular temporal difference learning with linear 
function approximation, albeit with samples picked uniformly from a given dataset. Our 
method results in an O(d) improvement in complexity in comparison to LSTD, where d is 
the dimension of the data. We provide non-asymptotic bounds for our proposed method, 
both in high probability and in expectation, under the assumption that the matrix underly-
ing the LSTD solution is positive definite. The latter assumption can be easily satisfied for 
the pathwise LSTD variant proposed by Lazaric (J Mach Learn Res 13:3041–3074, 2012). 
Moreover, we also establish that using our method in place of LSTD does not impact the 
rate of convergence of the approximate value function to the true value function. These rate 
results coupled with the low computational complexity of our method make it attractive for 
implementation in big data settings, where d is large. A similar low-complexity alterna-
tive for least squares regression is well-known as the stochastic gradient descent (SGD) 
algorithm. We provide finite-time bounds for SGD. We demonstrate the practicality of our 
method as an efficient alternative for pathwise LSTD empirically by combining it with the 
least squares policy iteration algorithm in a traffic signal control application. We also con-
duct another set of experiments that combines the SA-based low-complexity variant for 
least squares regression with the LinUCB algorithm for contextual bandits, using the large 
scale news recommendation dataset from Yahoo.
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1  Introduction

Several machine learning problems involve solving a linear system of equations from a 
given set of training data. In this paper, we consider the problem of policy evaluation in 
reinforcement learning (RL). The objective here is to estimate the value function V� of a 
given policy � . Temporal difference (TD) methods are well-known in this context, and they 
are known to converge to the fixed point V� = T

�(V�) , where T� is the Bellman operator 
(see Sect. 3.1 for a precise definition).

The TD algorithm stores an entry representing the value function estimate for each state, 
making it computationally difficult to implement for problems with large state spaces. A 
popular approach to alleviate this curse of dimensionality is to parameterize the value func-
tion using a linear function approximation architecture. For every s in the state space S , we 
approximate V�(s) ≈ ���(s) , where �(⋅) is a d-dimensional feature vector with d << |S| , 
and � is a tunable parameter. The function approximation variant of TD is known to con-
verge to the fixed point of �� = �T

�(��) , where � is the orthogonal projection onto the 
space within which we approximate the value function, and � is the feature matrix that 
characterizes this space (Tsitsiklis and Van Roy 1997). For a detailed treatment of this sub-
ject matter, the reader is referred to the classic textbooks (Bertsekas and Tsitsiklis 1996; 
Sutton and Barto 1998).

Batch reinforcement learning is a popular paradigm for policy learning. Here, we 
are provided with a (usually) large set of state transitions D ≜ {(si, ri, s

�
i
), i = 1,… , T)} 

obtained by simulating the underlying Markov decision process (MDP). For every 
i = 1,… , T  , the 3-tuple (si, ri, s�i) corresponds to a transition from state si to s′

i
 and the 

resulting reward is denoted by ri . The objective is to learn an approximately optimal policy 
from this set. Least squares policy iteration (LSPI) (Lagoudakis and Parr 2003) is a well-
known batch RL algorithm in this context, and it is based on the idea of policy iteration. A 
fundamental component of LSPI is least squares temporal difference (LSTD) (Bradtke and 
Barto 1996), which is introduced next.

LSTD estimates the fixed point of �T
� , for a given policy � , using empirical data D . 

The LSTD estimate is given as the solution to

We consider a special variant of LSTD called pathwise LSTD, proposed by Lazaric et al. 
(2012). The idea behind pathwise LSTD is to (i) have the dataset D created using a sample 
path simulated from the underlying MDP for the policy � , and (ii) set s�

T
= 0 while com-

puting ĀT defined above. The latter setting ensures the existence of the LSTD solution 𝜃̂T 
under the condition that the family of features on the dataset D are linearly independent.

Our primary focus in this work is to solve the LSTD system in a computationally effi-
cient manner. Solving (1) is computationally expensive, especially when d is large. For 
instance, in the case when Ā−1

T
 is invertible, the complexity of the approach above is 

O(d2T) , where Ā−1
T

 is computed iteratively using the Sherman–Morrison lemma. On the 
other hand, if we employ the Strassen algorithm or the Coppersmith–Winograd algorithm 
for computing Ā−1

T
 , the complexity is of the order O(d2.807) and O(d2.375) , respectively, in 

addition to O(d2T) complexity for computing ĀT . An approach for solving (1) without 
explicitly inverting ĀT is computationally expensive as well.

(1)

𝜃̂T = Ā−1
T
b̄T ,

where ĀT ≜ 1

T

T∑
i=1

𝜙(si)(𝜙(si) − 𝛽𝜙(s�
i
))�, and b̄T ≜ 1

T

T∑
i=1

ri𝜙(si).
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From the above discussion, it is evident that LSTD scales poorly with the number of 
features, making it inapplicable for large datasets with many features. We propose the 
batchTD algorithm to alleviate the high computation cost of LSTD in high dimensions. 
The batchTD algorithm replaces the inversion of the ĀT matrix by the following iterative 
procedure that performs a fixed point iteration (see Fig. 1 for an illustration): Set �0 arbi-
trarily and update

where each in is chosen uniformly at random from the set {1,… , T} , and �n are step-sizes 
that satisfy standard stochastic approximation conditions. The random sampling is suffi-
cient to ensure convergence to the LSTD solution. The update iteration (2) is of order O(d), 
and our bounds show that after T iterations, the iterate �T is very close to LSTD solution, 
with high probability. The advantage of the scheme above is that it incurs a computational 
cost of O(dT), while a traditional LSTD solver based on Sherman–Morrison lemma would 
require O(d2T).

The update rule in (2) resembles that of TD(0) with linear function approximation, jus-
tifying the nomenclature ‘batchTD’. Note that regular TD(0) with linear function approxi-
mation uses a sample path from the Markov chain underlying the policy considered. In 
contrast, the batchTD algorithm performs the update iteration using a sample picked uni-
formly at random from a dataset. We establish, through non-asymptotic bounds, that using 
batchTD in place of LSTD does not impact the convergence rate of LSTD to the true value 
function. The advantage with batchTD is the low computational cost in comparison to 
LSTD.

From a theoretical standpoint, the scheme (2) comes under the purview of stochastic 
approximation (SA). Stochastic approximation is a well-known technique that was origi-
nally proposed for finding zeroes of a nonlinear function in the seminal work of Robbins 
and Monro (1951). Iterate averaging is a standard approach to accelerate the convergence 
of SA schemes and was proposed independently by Ruppert (1991) and Polyak and Judit-
sky (1992). Non asymptotic bounds for Robbins Monro schemes have been provided by 
Frikha and Menozzi (2012) and extended to incorporate iterate averaging by Fathi and 
Frikha (2013). The reader is referred to Kushner and Yin (2003) for a textbook introduc-
tion to SA.

Improving the complexity of TD-like algorithms is a popular line of research in RL. 
The popular Computer Go setting (Silver et al. 2007), with dimension d = 106 , and several 
practical application domains (e.g. transportation, networks) involve high-feature dimen-
sions. Moreover, considering that linear function approximation is effective with a large 
number of features, our O(d) improvement in complexity of LSTD by employing a TD-like 
algorithm on batch data is meaningful. For other algorithms treating this complexity prob-
lem, see GTD (Sutton et al. 2009a), GTD2 (Sutton et al. 2009b), iLSTD (Geramifard et al. 

(2)�n = �n−1 + �n

(
rin + ���

n−1
�(s�

in
) − ��

n−1
�(sin )

)
�(sin ),

Fig. 1   Overall flow of the the batchTD algorithm
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2007) and the references therein. In particular, iLSTD is suitable for settings where the 
features admit a sparse representation.

In the context of improving the complexity of LSTD, our contributions can be sum-
marized as follows: First, through finite sample bounds, we show that our batchTD algo-
rithm (2) converges to the pathwise LSTD solution at the optimal rate of O(n−1∕2) in 
expectation (see Theorem 4.2 in Sect. 4). By projecting the iterate (2) onto a compact 
and convex subset of ℝd , we are able to establish high probability bounds on the error ‖‖‖𝜃n − 𝜃̂T

‖‖‖2 . In particular, we show that, with probability 1 − � , the batchTD iterate �n 
constructs an �-approximation of the corresponding pathwise LSTD solution with 
O(d ln(1∕�)∕�2) complexity, irrespective of the number of batch samples T. The above 
rate results are for a step-size choice that is inversely proportional to the number of iter-
ations of (2), and also require the knowledge of the minimum eigenvalue of the symmet-
ric part of ĀT . We overcome the latter dependence on the knowledge of the minimum 
eigenvalue through iterate averaging. As an aside, we note that using completely parallel 
arguments to those used in arriving at non-asymptotic bounds for batchTD, one could 
derive bounds for the regular TD algorithm with linear function approximation, albeit 
for the special case when the underlying samples arrive in an i.i.d. fashion. Second, 
through a performance bound, we establish that using our batchTD algorithm in place 
of LSTD does not impact the rate of convergence of the approximate value function to 
the true value function.

Third, we investigate the rates when larger step sizes ( �(n−�) where � ∈ (1/2, 1)) are 
used in conjunction with averaging of the iterates, i.e., the well known Polyak-Ruppert 
averaging scheme. The rate obtained in high probability for the iterate-averaged variant is 
of the order O(n−�∕2) , with the added advantage that, unlike non-averaged case, the step-
size choice does not require knowledge of the minimum eigenvalue of the symmetric part 
of ĀT . Further, with iterate averaging the complexity of the algorithm stays at O(d) per iter-
ation, as before. Fourth, we consider a traffic control application, and implement a variant 
of LSPI which uses the batchTD algorithm in place of LSTD. In particular, for the experi-
ments we employ step-sizes that were used to derive the non-asymptotic bounds mentioned 
above. We demonstrate that running batchTD for a short number of iterations ( ∼ 500 ) on 
big-sized problems with feature dimension ∼ 4000 , one gets a performance that is almost 
as good as regular LSTD at a significantly lower computational cost.

We now turn our attention to solving least squares regression problems via the popu-
lar stochastic gradient descent (SGD) method. Many practical machine learning algo-
rithms require computing the least squares solution at each iteration in order to make a 
decision. As in the case of LSTD, classic least squares solution schemes such as Sher-
man–Morrison lemma are of complexity of the order O(d2) . A practical alternative is to 
use a SA based iterative scheme that is of the order O(d). Such SA-based schemes when 
applied to the least squares parameter estimation context are well known in the ML lit-
erature as SGD algorithms.

We also analyze the low-complexity SGD alternative for the classic least squares 
parameter estimation problem. Using the same template as for the results of batchTD, 
we derive non-asymptotic bounds, which hold both in high probability as well as in 
expectation, for the tracking error ‖𝜃n − 𝜃̂T‖2 . Here �n is the SGD iterate, while 𝜃̂T is the 
least squares solution. We describe a fast variant of the LinUCB (Li et al. 2010) algo-
rithm for contextual bandits, where the SGD iterate is used in place of the least squares 
solution. We demonstrate the empirical usefulness of the SGD-based LinUCB algo-
rithm using the large scale news recommendation dataset from Yahoo (Webscope 2011). 
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We observe that, using the step-size suggested by our bounds, the SGD-based LinUCB 
algorithm exhibits low tracking error, while providing significant computational gains.

The rate results coupled with the low complexity of our schemes, in the context of 
LSTD as well as least squares regression, make them more amenable to practical imple-
mentation in the canonical big data settings, where the dimension d is large. This is amply 
demonstrated in our applications in transportation and recommendation systems domains, 
where we establish that batchTD and SGD perform almost as well as regular LSTD and 
regression solvers, albeit with much less computation (and with less memory). Note that 
the empirical evaluations are for higher level machine learning algorithms—least squares 
policy iteration (LSPI) (Lagoudakis and Parr 2003), and linear bandits (Dani et al. 2008; Li 
et al. 2010), which use LSTD and regression in their inner loops.

The rest of the paper is organized as follows: In Sect.  2, we discuss related work. In 
Sect. 2.2 we present the batchTD algorithm, and in Sect. 4 we provide the non-asymptotic 
bounds for this algorithm. In Sect.  5, we analyze a variant of our algorithm that incor-
porates iterate averaging. In Sect.  6, we compare our bounds to those in recent work. 
In Sect. 7, we describe a variant of LSPI that uses batchTD in place of LSTD. Next, in 
Sect.  8, we provide detailed proofs of convergence, and derivation of rates. We provide 
experiments on a traffic signal control application in Sect. 9. In Sect. 10, we provide exten-
sions to solve the problem of least squares regression and in Sect. 11, we provide a set of 
experiments that tests a variant of the LinUCB algorithm using a SGO subroutine for least 
squares regression. Finally, in Sect. 12 we provide the concluding remarks.

2 � Literature review

2.1 � Previous work related to LSTD

In Chapter 6 of Konda (2002), the authors establish that LSTD has the optimal asymptotic 
convergence rate, while by Antos et al. (2008) and Lazaric et al. (2012), the authors pro-
vide a finite time analysis for LSTD and LSPI. Recent work by Tagorti and Scherrer (2015) 
provides sample complexity bounds for LSTD(� ). LSPE(� ), which is an algorithm that is 
closely related to LSTD(� ), is analyzed by Yu and Bertsekas (2009). The authors there pro-
vide asymptotic rate results for LSPE(� ), and show that it matches that of LSTD(� ). Also 
related is the work by Pires and Szepesvári (2012), where the authors study linear systems 
in general, and as a special case, provide error bounds for LSTD with improved depend-
ence on the underlying feature dimension.

A closely related contribution that is geared towards improving the computational 
complexity of LSTD is iLSTD (Geramifard et al. 2007). However, the analysis for iLSTD 
requires that the feature matrix be sparse, while we provide finite-time bounds for our fast 
LSTD algorithm without imposing sparsity on the features. Another line of related pre-
vious work is GTD (Sutton et al. 2009a), and its later enhancement GTD2 (Sutton et al. 
2009b). The latter algorithms feature an update iteration that can be viewed as gradient 
descent and operate in the online setting similar to the regular TD algorithm with function 
approximation. However, the advantage with GTD/GTD2 is that these algorithms are prov-
ably convergent to the TD fixed point even when the policy used for collecting samples 
differs from the policy being evaluated—the so-called off-policy setting. Recent work by 
Liu et  al. (2015) provides finite time analysis for the GTD algorithm. Unlike GTD-like 
algorithms, we operate in an offline setting with a batch of samples provided beforehand. 
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LSTD is a popular algorithm here, but has a bad dependency in terms of computational 
complexity on the feature dimension, and we bring this down from O(d2) to O(d) by run-
ning an algorithm that closely resembles TD on the batch of samples. This algorithm is 
shown to retain the convergence rate of LSTD.

To the best of our knowledge, efficient SA algorithms that approximate LSTD without 
impacting its rate of convergence have not been proposed before in the literature. The high 
probability bounds that we derive for batchTD do not directly follow from earlier work 
on LSTD algorithms. Concentration bounds for SA schemes have been derived by Frikha 
and Menozzi (2012). While we use their technique for proving the high-probability bound 
on batchTD iterate (see Theorem 4.2), our analysis is more elementary, and we make all 
the constants explicit for the problem at hand. Moreover, in order to eliminate a possible 
exponential dependence of the constants in the resulting bound on the reciprocal of the 
minimum eigenvalue of the symmetric part of ĀT , we depart from the argument by Frikha 
and Menozzi (2012).

Finite sample analysis of TD with linear function approximation has received more 
attention in recent works (cf. Dalal et al. 2018; Bhandari et al. 2018; Lakshminarayanan 
and Szepesvari 2018). A detailed comparison of our bounds to those in the aforementioned 
references is provided in Sect. 6.

This paper is an extended version of an earlier work (see Prashanth et al. 2014). This 
work corrects the errors in the earlier work by using significant deviations in the proofs, 
and includes additional simulation experiments. Finally, by Narayanan and Szepesvári 
(2017), the authors list a few problems with the results and proofs in the conference version 
(Prashanth et  al. 2014), and the corrections incorporated in this work address the com-
ments by Narayanan and Szepesvári (2017).

2.2 � Previous work related to SGD

Finite time analysis of SGD methods have been provided by Bach and Moulines (2011). 
While the bounds by Bach and Moulines (2011) are given in expectation, many machine 
learning applications require high probability bounds, which we provide for our case. 
Regret bounds for online SGD techniques have been given by Zinkevich (2003); Hazan 
and Kale (2011). The gradient descent algorithm by Zinkevich (2003) is in the setting of 
optimising the average of convex loss functions whose gradients are available, while that 
by Hazan and Kale (2011) is for strongly convex loss functions.

In comparison to previous work w.r.t. least squares regression, we highlight the follow-
ing differences:

Earlier works on strongly convex optimization (cf. Hazan and Kale 2011) require the 
knowledge of the strong convexity constant in deciding the step-size. While one can regu-
larize the problem to get rid of the step-size dependence on � , it is not straightforward to 
choose the regularization constant. Notice that for SGD type schemes, one requires that the 
matrix ĀT have a minimum positive eigenvalue � . Equivalently, this implies that the origi-
nal problem is regularized with T� . This may turn out to be too high a regularization and 
hence it is desirable to have SGD get rid of this dependence without changing the problem 
itself. This is precisely what iterate-averaged SGD achieves, i.e., optimal rates both in high 
probability and expectation even for the un-regularized problem. To the best of our knowl-
edge, there is no previous work that provides non-asymptotic bounds, both in high prob-
ability and in expectation, for iterate-averaged SGD.
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Our analysis is for the classic SGD scheme that is anytime, whereas the epoch-GD algo-
rithm by Hazan and Kale (2011) requires the knowledge of the time horizon.

While the algorithm by Bach and Moulines (2013) is shown to exhibit the optimal rate 
of convergence without assuming strong convexity, the bounds there are in expectation 
only. In contrast, for the special case of strongly convex functions, we derive high-proba-
bility bounds in addition to bounds in expectation. Furthermore, the bound in expectation 
from Bach and Moulines (2011) is not optimal for a strongly convex function in the sense 
that the initial error (which depends on where the algorithm started) is not forgotten as fast 
as the rate that we derive.

On a minor note, our analysis is simpler since we work directly with least squares prob-
lems, and we make all the constants explicit for the problems considered.

3 � TD with uniform sampling on batch data (batchTD)

We propose here a stochastic approximation variant of the LSTD algorithm, whose iterates 
converge to the same fixed point as the regular LSTD algorithm, while incurring much 
smaller overall computational cost. The algorithm, which we call batchTD, is a simple sto-
chastic approximation scheme that updates incrementally using samples picked uniformly 
from batch data. The results that we present establish that the batchTD algorithm computes 
an �-approximation to the LSTD solution 𝜃̂T with probability 1 − � , while incurring a com-
plexity of the order O(d ln(1∕�)∕�2) , irrespective of the number of samples T. In turn, this 
enables us to give a performance bound for the approximate value function computed by 
the batchTD algorithm.

In the following section, we provide a brief background on LSTD and pathwise LSTD. 
In the subsequent section, we present our batchTD algorithm.

3.1 � Background

Consider an MDP with state space S and action space A , both assumed to be finite. Let 
p(s, a, s�) , s, s� ∈ S, a ∈ A denote the probability of transitioning from state s to s′ on action 
a. Let � be a stationary randomized policy, i.e., �(s, ⋅) is a distribution over A , for any 
s ∈ S . The value function V� is defined by

where st denotes the state of the MDP at time t, � ∈ [0, 1) the discount factor, and r(s, a) 
denotes the instantaneous reward obtained in state s under action a. The value function V� 
can be expressed as the fixed point of the Bellman operator T� defined by

When the cardinality of S is huge, a popular approach is to parameterize the value func-
tion using a linear function approximation architecture, i.e., for every s ∈ S , approximate 
V�(s) ≈ �(s)�� , where �(s) is a d-dimensional feature vector for state s with d ≪ |S| , and � 
is a tunable parameter. With this approach, the idea is to find the best approximation to the 

(3)V�(s) ≜ �

[
∞∑
t=0

� t
∑
a∈A

r(st, a)�(st, a) ∣ s0 = s

]
,

(4)T�(V)(s) ≜ ∑
a∈A

�(s, a)

(
r(s, a) + �

∑
s�

p(s, a, s�)V(s�)

)
.
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value function V� in B = {�� ∣ � ∈ ℝ
d} , which is a vector subspace of ℝ|S| . In this setting, 

it is no longer feasible to find the fixed point V� = T
�V� . Instead, one can approximate V� 

within B by solving the following projected system of equations:

In the above, � denotes the feature matrix with rows �(s)�,∀s ∈ S , and � is the orthogo-
nal projection onto B . Assuming that the matrix � has full column rank, it is easy to derive 
that � = �(����)−1��� , where � is the diagonal matrix whose diagonal elements form 
the stationary distribution (assuming it exists) of the Markov chain associated with the pol-
icy �.

The solution �∗ of (5) can be re-written as follows (cf. Bertsekas 2012, Section 6.3):

 where P = [P(s, s�)]s,s�∈S is the transition probability matrix with components 
P(s, s�) =

∑
a∈A �(s, a)p(s, a, s�) , R is the vector with components 

∑
a∈A �(s, a)r(s, a) , for 

each s ∈ S , and � the stationary distribution (assuming it exists) of the Markov chain for 
the underlying policy �.

In the absence of knowledge of the transition dynamics P and stationary distribu-
tion � , LSTD is an approach which can approximate the solution �∗ using a batch 
of samples obtained from the underlying MDP. In particular it requires a dataset, 
D = {(si, ri, s

�
i
), i = 1,… , T)} , where each tuple in the dataset (si, ri, s�i) represents a state-

reward-next-state triple chosen by the policy. The LSTD solution approximates A, b, and �∗ 
with ĀT , b̄T using the samples in D as follows:

 Denoting the current state feature (T × d)-matrix by � ≜ (�(s1)
�,… ,�(sT )) , next 

state feature (T × d)-matrix by �� ≜ (�(s�
1
)�,… ,�(s�

T
)) , and reward (T × 1)-vector by 

R = (r1,… , rT )
� , we can rewrite ĀT and b̄T as follows1:

It is not clear whether ĀT is invertible for an arbitrary dataset D . One way to ensure invert-
ibility is to adopt the approach of pathwise LSTD, proposed by Lazaric et  al. (2012). 
The pathwise LSTD algorithm is an on-policy version of LSTD. It obtains samples, 
D by simulating a sample path of the underlying MDP using policy � , so that s�

i
= si+1 

for i = 1,… , T − 1 . The dataset thus obtained is perturbed slightly by setting the feature 
of the next state of the last transition, �(s�

T
) , to zero. This perturbation, as suggested by 

Lazaric et al. (2012), is crucial to ensure that the system of the equations that we solve as 
an approximation to (6) is well-posed. For the sake of completeness, we make this precise 
in the following discussion, which is based on Sections 2 and 3 of Lazaric et al. (2012).

(5)��∗ = �T
�(��∗).

(6)A�∗ = b, where A ≜ ��� (I − �P)� and b ≜ ���R,

(7)

𝜃̂T = Ā−1
T
b̄T ,

where ĀT ≜ 1

T

T∑
i=1

𝜙(si)(𝜙(si) − 𝛽𝜙(s�
i
))�, and b̄T ≜ 1

T

T∑
i=1

ri𝜙(si).

ĀT =
1

T
(𝛷�𝛷 − 𝛽𝛷�𝛷�), and b̄T =

1

T
𝛷�R.

1  By an abuse of notation, we shall use � to denote the feature matrix for TD as well as LSTD and the 
composition of � should be clear from the context.
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Define the empirical Bellman operator T̂ ∶ ℝ
T → ℝ

T as follows: For any y ∈ ℝ
T,

 Let R̂ be a T × 1 vector with entries ri , i = 1,… , T  and (V̂y)i = yi+1 if i < n and 0 other-
wise. Then, it is clear that T̂y = R̂ + 𝛽V̂y.

Let GT ≜ {(𝜙(s1)
�𝜃,… ,𝜙(sT )

�𝜃)� ∣ 𝜃 ∈ ℝ
d} ⊂ ℝ

T be the vector sub-space of ℝT within 
which pathwise LSTD approximates the true values of the value function corresponding to 
the states s1,… , sT , and it is the empirical analogue of B defined earlier. It is easy to see that 
GT = {�� ∣ � ∈ ℝ

d} . Let 𝛱̂ be the orthogonal projection onto GT using the empirical norm, 
which is defined as follows: ‖f‖2

T
≜ T−1

∑T

i=1
f (si)

2 , for any function f. Notice that 𝛱̂ T̂ is a 
contraction mapping, since

Hence, by the Banach fixed point theorem, there exists some v∗ ∈ GT such that 𝛱̂ T̂v∗ = v∗.
Suppose that the feature matrix � is full rank—an assumption that is standard in the analy-

sis of TD-like algorithms and also beneficial in the sense that it ensures that the system of 
equations we attempt to solve is well-posed. Then, it is easy to see that there exists a unique 𝜃̂T 
such that v∗ = 𝛷𝜃̂T . Moreover, replacing ĀT in (7) with

where P̂ is a T × T  matrix with P̂(i, i + 1) = 1 for i = 1,… , T − 1 , and 0 otherwise. It is 
clear that ĀT is invertible and 𝜃̂T is the unique solution to (7).

Remark 1  (Regular versus Pathwise LSTD) For a large dataset D generated from a sample 
path of the underlying MDP for policy � , the difference in the matrix used as ĀT in LSTD 
and pathwise LSTD is negligible. In particular, the difference in �2-norm of ĀT composed 
with and without zeroing out the next state in the last transition of D can be upper bounded 
by a constant multiple of 1

T
 . As mentioned earlier, zeroing out the next state in the last tran-

sition of D together with a full-rank � makes the system of equations in (7) well-posed. As 
an aside, the batchTD algorithm, which we describe below, would work as a good approxi-
mation to LSTD, as long as one ensures that ĀT is positive definite. Pathwise LSTD pre-
sents one approach to achieve the latter requirement, and it is an interesting future research 
direction to derive other conditions that ensure ĀT is positive definite.

3.2 � Update rule and pseudocode for the batchTD algorithm

The idea is to perform an incremental update that is similar to TD, except that the samples are 
drawn uniformly randomly from the dataset D . Recall that, in the case of pathwise LSTD, the 
dataset corresponds to those along a sample path simulated from the underlying MDP for a 
given policy � , i.e., s�

i
= si+1 , i = 1,… , T − 1 and s�

T
= 0.

The full pseudocode for batchTD is given in Algorithm 1. Starting with an arbitrary �0 , we 
update the parameter �n as follows:

(8)(T̂y)i ≜
{

ri + 𝛽yi+1, for 1 ≤ i < T , and

rT , for i = T .

���𝛱̂ T̂y − 𝛱̂ T̂z
���T ≤���T̂y − T̂z

���T = 𝛽
���V̂y − V̂z

���T ≤ 𝛽‖y − z‖T .

(9)ĀT =
1

T
𝛷�(I − 𝛽P̂)𝛷,
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where each in is chosen uniformly randomly from the set {1,… , T} . In other words, we 
pick a sample with uniform probability 1/T from the set D = {(si, ri, s

�
i
), i = 1,… , T)} , 

and use it to perform a fixed point iteration in (10). The quantities �n above are step sizes 
that are chosen in advance, and satisfy standard stochastic approximation conditions, i.e., ∑

n �n = ∞ , and 
∑

n 𝛾
2
n
< ∞ . The operator �  projects the iterate �n onto the nearest point in 

a closed ball C ⊂ ℝ
d with a radius H that is large enough to include 𝜃̂T . Note that projection 

via �  amounts to scaling down the �2-norm of the iterate �n so that it does not exceed H, 
and is a computationally inexpensive operation.

In the next section, we present non-asymptotic bounds for the error ‖‖‖𝜃n − 𝜃̂T
‖‖‖2 that hold 

with high probability, and in expectation, for the projected iteration in (10). Further, we 
also provide an error bound that holds in expectation for a variant of (10) without involving 
the projection operation. From the bounds presented below, we can infer that, for a step 
size choice that is inversely proportional to the number n of iterations, obtaining the opti-
mal O

�
1∕

√
n
�
 requires the knowledge of the minimum eigenvalue � of 1

2

(
ĀT + Ā�

T

)
 , where 

ĀT is a matrix made from the features used in the linear approximation (see assumption 
(A1) below). Subsequently, in Sect. 5, we present non-asymptotic bounds for a variant of 
the batchTD algorithm, which employs iterate averaging. The bounds for iterate-averaged 
batchTD establish that the knowledge of eigenvalue � is not needed to obtain a rate of con-
vergence that can be made arbitrarily close to O

�
1∕

√
n
�
 . 

-

4 � Main results for the batchTD algorithm

Map of the results: Theorem 4.1 proves almost sure convergence of batchTD iterate �n to 
LSTD solution 𝜃̂T , with and without projection. Theorem 4.2 provides finite time bounds 
both in high probability, and in expectation for the error ‖𝜃n − 𝜃̂T‖2 , where �n is given by 
(10). We require high probability bounds to qualify the rate of convergence of the approxi-
mate value function ��n to the true value function, i.e., a variant of Theorem 1 by Lazaric 
et al. (2012) for the case of the batchTD algorithm. Theorem 4.5 presents a performance 
bound for the special case when the dataset D comes from a sample path of the underly-
ing MDP for the given policy � . Note that the first three results above hold irrespective of 
whether the dataset D is based on a sample path or not. However, the performance bound 
is for a sample path dataset only, and is used to illustrate that using batchTD in place of 

(10)�n = �
(
�n−1 + �n

(
rin + ���

n−1
�(s�

in
) − ��

n−1
�(sin )

)
�(sin )

)
,
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regular LSTD does not harm the overall convergence rate of the approximate value func-
tion to the true value function.

We state all the results in Sects. 4.2–4.5 and provide detailed proofs of all the claims in 
Sect. 8. Also, all the results are by default for the projected version of the batchTD algo-
rithm, i.e., �n given by (10), while Sect.  4.4 presents the results for the projection-free 
batchTD variant. In particular, the latter section provides both asymptotic convergence and 
a bound in expectation for the error ‖𝜃n − 𝜃̂T‖2 for the projection-free variant of batchTD.

4.1 � Assumptions

We make the following assumptions for the analysis of the batchTD algorithm: 

(A1)	� The matrix ĀT is positive definite, which implies the smallest eigenvalue � of its 
symmetric part 1

2

(
ĀT + Ā�

T

)
 is greater than zero.2

(A2)	� Bounded features: ‖‖𝜙(si)‖‖2 ≤ 𝛷max < ∞, for i = 1,… , T .
(A3)	� Bounded rewards: |ri| ≤ Rmax < ∞ for i = 1,… , T .
(A4)	� The set C ≜ {� ∈ ℝ

d ∣ ‖�‖2 ≤ H} used for projection through �  satisfies 
H >

‖b̄T‖2

𝜇
 , where � is as defined in (A1).

 In the following sections, we present results for the generalized setting, i.e., the dataset D 
does not necessarily come from a sample path of the underlying MDP, but we assume that 
the matrix ĀT is positive definite (see (A1)). For pathwise LSTD, (A1) can be replaced by 
the following assumption: 

(A1’)	� The matrix � is full rank.

Recall that the pathwise LSTD algorithm perturbs the data set slightly, as discussed in 
Sect. 3.1 above. Thus, from (9), we have

The inequality above holds because ���P̂v
���2 ≤ ‖v‖2 , and ���P̂�v

���2 ≤ ‖v‖2 , leading to the fact 
that 𝜆min

(
I −

𝛽

2

(
P̂ + P̂�

)) ≥ (1 − 𝛽). Thus, it is easy to infer that (A1’) implies (A1), using 
(11) in conjunction with the fact that a full rank � implies 𝜇′ > 0.

Note that the dataset is assumed to be fixed for all the results presented below.

4.2 � Asymptotic convergence

Theorem 4.1  Assume (A1)–(A4), and also that the step sizes �n ∈ ℝ+ satisfy 
∑

n �n = ∞, 
and 

∑
n 𝛾

2
n
< ∞. Then, for the iterate �n updated according to (10), we have

Proof  See Sect. 8.1. 	�  ◻

(11)� ≥ (1 − �)

T
��, where �� ≜ �min(�

��).

(12)𝜃n → 𝜃̂T a.s. as n → ∞.

2  A real matrix A is positive definite if and only if the symmetric part 1
2
(A + A�) is positive definite.
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4.3 � Non‑asymptotic bounds

The main result that bounds the computational error ‖‖‖𝜃n − 𝜃̂T
‖‖‖2 with explicit constants is 

given below.

Theorem  4.2  (Error bounds for batchTD) Assume (A1)–(A4). Set �n =
c0c

(c+n)
 such that 

c0 ∈ (0,�((1 + �)2�4
max

)−1] and c0c >
1

𝜇
. Then, for any 𝛿 > 0, we have

In the above, K1(n) and K2(n) are functions of order O(1), defined by3:

Proof  See Sect. 8.2. 	�  ◻

A few remarks are in order.

Remark 2  (Initial versus sampling error) The bound in expectation above can be re-written 
as

The first term on the RHS above is the initial error, while the second term is the sampling 
error. The initial error depends on the initial point �0 of the algorithm. The sampling error 
arises out of a martingale difference sequence that depends on the random deviation of the 
stochastic update from the standard fixed point iteration. From (15), it is evident that the 
initial error is forgotten at the rate O

(
1

nc0c�∕2

)
 . Since c0c𝜇 > 1 , the former rate is faster 

than the rate O(1∕
√
n) at which the sampling error decays.

Remark 3  (Rate dependence on the minimum eigenvalue � ) We note that setting c such 
that c0c� = � ∈ (1,∞) we can rewrite the constants in Theorem 4.2 as:

(13)�
���𝜃n − 𝜃̂T

���2 ≤
K1(n)√
n + c

, and

(14)ℙ

����𝜃n − 𝜃̂T
���2 ≤

K2(n)√
n + c

�
≥ 1 − 𝛿.

K1(n) ≜
���𝜃0 − 𝜃̂T

���2
√
(c + 1)c0c𝜇

√
(n + c)c0c𝜇−1

+
2ec0c

�
Rmax + (1 + 𝛽)H𝛷2

max

�
√
2c0c𝜇 − 1

, and

K2(n) ≜ 2
√
ec0c

�
Rmax + (1 + 𝛽)H𝛷2

max

�
�

log 𝛿−1

c0c𝜇 − 1
+ K1(n).

(15)�
���𝜃n − 𝜃̂T

���2 ≤
���𝜃0 − 𝜃̂T

���2
√
(c + 1)c0c𝜇

(n + c)c0c𝜇∕2
+

2ec0c
�
Rmax + (1 + 𝛽)H𝛷2

max

�
√
2c0c𝜇 − 1

√
n + c

.

3  For notational convenience, we have chosen to ignore the dependence of K
1
 and K

2
 on the confidence 

parameter �.
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So both the bounds in expectation and high probability have a linear dependence on the 
reciprocal of � . Note also that the constant (Rmax + (1 + �)H�2

max
) is nothing more than a 

bound on the size of the random innovations made by the algorithm at each time step.

Remark 4  (Eigenvalue dependence on � ) Notice that the eigenvalue � is implicitly depend-
ent on �:

Clearly, as � increases, it is harder to satisfy the assumption that 𝜇 > 0 . Moreover, for 
pathwise LSTD (see Sect. 3.1), the inequality in (11) underlines an implicit linear depend-
ence of the rates on the reciprocal of (1 − �) . However, the bounds’ exact sensitivity to this 
reciprocal is data-dependent.

Remark 5  (Regularization) To obtain the best performance from the batchTD algorithm, 
we need to know the value of � . However, we can get rid of this dependency easily by 
explicitly regularizing the problem. In other words, instead of the LSTD solution (7), we 
obtain the following regularized variant:

where � is now a constant set in advance. The update rule for this variant is

This algorithm retains all the properties of the non-regularized batchTD algorithm, except 
that it converges to the solution of (16) rather than to that of (7). In particular, the conclu-
sions of Theorem 4.2 hold without requiring assumption (A1), but measuring ||𝜃n − 𝜃̂

reg

T
||2 , 

the error to the regularized fixed point 𝜃̂reg
T

.

Remark 6  (Computational complexity) Our theoretical results in Theorem 4.2 show that, 
with probability 1 − � , batchTD constructs an �-approximation of the pathwise LSTD 
solution with O(d ln(1∕�)∕�2) complexity. In other words, for the batchTD estimate to be 
within a distance 𝜖 > 0 of the LSTD solution, the number of iterations of (10) would be 
proportional to d ln(1∕�)

�2
 . This observation coupled with the fact that each iteration of (10) 

is of order O(d) establishes the advantage of batchTD over pathwise LSTD from a time-
complexity viewpoint.

However, batchTD requires storing the entire dataset for the purpose of random sam-
pling. To reduce the storage requirement of batchTD, one could uses mini-batching of the 

K1(n) =

���𝜃0 − 𝜃̂T
���2
√
(c + 1)𝜂

√
(n + c)(𝜂−1)

+
2e𝜂

𝜇
√
(2𝜂 − 1)

�
Rmax + (1 + 𝛽)H𝛷2

max

�
, and

K2(n) = 2
√
e
𝜂

𝜇

�
Rmax + (1 + 𝛽)H𝛷2

max

�
�

log 𝛿−1

(𝜂 − 1)
+ K1(n).

𝜇 ≜ 1

2
𝜆min(ĀT + Ā�

T
) =

1

2T
𝜆min

(
2𝛷�𝛷 − 𝛽

(
𝛷��𝛷 +𝛷�𝛷�

))
.

(16)𝜃̂
reg

T
= (ĀT + 𝜇I)−1b̄T ,

(17)�reg
n

=(1 − �n�)�n−1 + �n

(
rin + ���

n−1
�(s�

in
) − ��

n−1
�(sin )

)
�(sin ).
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dataset, i.e., store smaller subsets of the dataset and run batchTD updates on these mini-
batches. It is an interesting direction for future work to analyze such an approach and rec-
ommend appropriate mini-batch sizes based on the parameters of the underlying policy 
evaluation problem. For the case of regression, such an approach has been recommended in 
earlier works, cf. Roux et al. (2012).

Remark 7  (TD with linear function approximation) One could use completely parallel 
arguments to that in the proof of Theorem 4.2 to obtain rate results for TD(0) with linear 
function approximation under i.i.d. samples. A similar observation holds for the bounds 
presented below for the projection-free variant of batchTD in Theorem  4.4, and for the 
iterate-averaged variant of batchTD in Theorem 5.1.

The bounds for TD with linear function approximation under i.i.d. sampling would be 
a side benefit, while the primary message from our work is that one could run TD(0) on 
a batch, and obtain a computational advantage, with performance comparable to that of 
LSTD. We have used pathwise LSTD to drive home this point.

Finally, note that the regular TD with linear function approximation is under non i.i.d. 
sampling (or involving a Markov noise component), and deriving non-asymptotic bounds 
for such a setting is beyond the scope of this paper.

4.4 � Projection‑free variant of the batchTD algorithm

Here we consider a projection-free variant of batchTD that updates according to (10), but 
with � (�) = �, ∀� ∈ ℝ

d . We now present the results for batchTD without a non-trivial 
projection, under assumptions similar to the projected variant of batchTD, i.e., bounded 
rewards, features, and a positive lower bound on the minimum eigenvalue � of the symmet-
ric part of ĀT . The results include asymptotic convergence and a bound in expectation on 
the error ‖𝜃n − 𝜃̂T‖2 . However, we are unable to derive bounds in high probability without 
having the iterates explicitly bounded using �  , and it would be a interesting future research 
direction to get rid of this operator for the bounds in high probability.

Theorem 4.3  Assume (A1)–(A3), and also that the step sizes �n ∈ ℝ+ satisfy 
∑

n �n = ∞, 
and 

∑
n 𝛾

2
n
< ∞. Then, for the iterate �n updated according to (10) without projection (i.e., 

�  is the identity map), we have

Proof  See Sect. 8.2. 	�  ◻

Using a slightly different proof technique, we are able to give a bound in expectation for 
the error of the non-projected batchTD, in the result below.

(18)𝜃n → 𝜃̂T a.s. as n → ∞.
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Theorem 4.4  (Expectation error bound for batchTD without projection) Assume (A2)–
(A4). Set �n =

c0c

(c+n)
 such that c0 ∈ (0,�((1 + �)2�4

max
)−1] and c0c� ∈ (1,∞). Then, we have 

where K1(n) is a function of order O(1), defined by:

Proof  See Sect. 8.3. 	�  ◻

4.5 � Performance bound

We can combine our error bounds above with the performance bound derived by Lazaric 
et al. (2012) for pathwise LSTD. The theorem below shows that using batchTD in place of 
pathwise LSTD does not impact the overall convergence rate.

Theorem 4.5  (Performance bound) Let ṽn ≜ 𝛷𝜃n denote the approximate value function 
obtained after n steps of batchTD, and let v denote the true value function, evaluated at the 
states s1,… , sT along the sample path. Then, under the assumptions (A1)–(A4), with prob-
ability 1 − 2� (taken w.r.t. the random path sampled from the MDP, and the randomization 
in batchTD), we have

where ‖f‖2
T
≜ 1

T

T∑
i=1

f (si)
2, for any function f and �′ is the minimum eigenvalue of 1

T
��� 

(see also (11)).

Proof  The result follows by combining Theorem  4.2 above with Theorem  1 of Lazaric 
et al. (2012) using a triangle inequality. 	�  ◻

Remark 8  The approximation and estimation errors (first and second terms in the RHS of 
(20)) are artifacts of function approximation and least squares methods, respectively. The 
third term is a consequence of using batchTD in place of the LSTD. Setting n = T  in the 
above theorem, we observe that using our scheme in place of LSTD does not impact the 
rate of convergence of the approximate value function ṽn to the true value function v. 

(19)�
���𝜃n − 𝜃̂T

���2 ≤
K1(n)√
n + c

,

K1(n) ≜
√
3
���𝜃0 − 𝜃̂T

���2
√
(c + 1)c0c𝜇

√
(n + c)c0c𝜇−1

+
2
√
3ec0c

�
Rmax + (1 + 𝛽)

���𝜃̂T
���2𝛷

2
max

�
√
2c0c𝜇 − 1

.

(20)

‖v − ṽn‖T ≤ ‖v −𝛱v‖T√
1 − 𝛽2

�����������
������������� �����

+
𝛽Rmax𝛷max

(1 − 𝛽)

�
d

𝜇�

⎛
⎜⎜⎜⎝

�
8 ln

2d

𝛿

T
+

1

T

⎞
⎟⎟⎟⎠

���������������������������������������������������
���������� �����

+
𝛷maxK2(n)√

n + c
���������

������������� �����

.
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Further, the performance bound in Theorem 4.5, considering only the dimension d, mini-
mum eigenvalue � and sample size T, is of the order O

� √
d

�
√
T

�
 , which is better than the 

order O
(

d

�T1∕4

)
 on-policy performance bound for GTD/GTD2 in Proposition 4 of Liu et al. 

(2015).

Remark 9  (Generalization bounds) While Theorem 4.5 holds for only states along the sam-
ple path s1,… , sT , it is possible to generalize the result to hold for states outside the sample 
path. This approach has been adopted by Lazaric et al. (2012) for regular LSTD, and the 
authors there provide performance bounds over the entire state space assuming a stationary 
distribution exists for the given policy � , and the underlying Markov chain is mixing fast 
(see Lemma 4 by Lazaric et al. (2012)). In the light of the result in Theorem 4.5 above, it 
is straightforward to provide generalization bounds similar to Theorems 5 and 6 of Lazaric 
et al. (2012) for batchTD as well, and the resulting rates from these generalization bound 
variants for batchTD are the same as that for regular LSTD. We omit these obvious gener-
alizations, and refer the reader to Section 5 of Lazaric et al. (2012) for further details.

5 � Iterate averaging

Iterate averaging is a popular approach for which it is not necessary to know the value of 
the constant � (see (A1) in Sect. 4) to obtain the (optimal) approximation error of order 
O(n−1∕2) . Introduced independently by Ruppert (1991) and Polyak and Juditsky (1992), the 
idea here is to use a larger step-size �n ≜ c0(c∕(c + n))� , and then use the averaged iterate, 
defined as follows:

where �n is the iterate of the batchTD algorithm, presented earlier. The following result 
bounds the the distance of the averaged iterate to the LSTD solution.

Theorem  5.1  (Error Bound for iterate averaged batchTD) Assume (A1)–(A4). Set 
�n = c0

(
c

c+n

)�

, with � ∈ (1∕2, 1) and c, c0 > 0. Then, for any 𝛿 > 0, and any 

n > n0 ≜ max{⌊
�

2c0(1+𝛽
2)𝛷4

max

𝜇
)1∕𝛼 − 1

�
c⌋, 0}, we have

where

(21)𝜃̄n ≜ 1

n + 1

n∑
i=0

𝜃i,

(22)�
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
KIA
1
(n)

(n + c)𝛼∕2
, and

(23)ℙ

(‖‖‖𝜃̄n − 𝜃̂T
‖‖‖2 ≤

KIA
2
(n)

(n + c)𝛼∕2

)
≥ 1 − 𝛿,
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Proof  The proof of both the high probability bound as well as the bound in expectation pro-
ceed by splitting the analysis into the error before and after n0 . The individual terms in the 
definition of KIA

2
(n) can be classified based on whether they are bounding the error before 

or after n0 . In particular, the term labelled (E4) in the definition of KIA
2
(n) is a bound on the 

error before n0 , while the terms collected under (E3) are a bound on the error after n0.
While the proof of the bound in expectation involves splitting the analysis before and 

after n0 , the resulting bound via KIA
1
(n) does not have a clear split into additive terms that 

directly correspond to before or after n0 . However, from the proof presented later, it is 
apparent that C1 arises out of a bound on the initial error before n0 , the term involving 
the factor labelled (E1) in the definition of KIA

1
(n) arises out of a bound on the sampling 

error before n0 . Further, C0 arises out of a bound on the initial error after n0 , and the term 
labelled (E2) in KIA

1
(n) is used to bound the sampling error after n0.

For a detailed proof, the reader is referred to Sect. 8.4. 	�  ◻

A few remarks are in order.

Remark 10  (Explicit constants) Unlike Fathi and Frikha (2013), where the authors provide 
concentration bounds for general stochastic approximation schemes, our results provide an 
explicit n0 , after which the error of iterate averaged batchTD is nearly of the order O(1/n).

Remark 11  (Rate dependence on eigenvalue) From the bounds in Theorem 5.1, it is evi-
dent that the dependency on the knowledge of � for the choice of c can be removed through 
averaging of the iterates, while obtaining a rate that is close to 1∕

√
n . In particular, iterate 

KIA
1
(n) ≜ C0

�
C1C2

���𝜃0 − 𝜃̂T
���2 +

√
e
�

2𝛼

1 − 𝛼

� 1

2(1−𝛼)

+ 2c0C1C2

�
Rmax + (1 + 𝛽)H𝛷2

max

�√
n0

�������������������������������������������������������
(E1)

�
1

(n + 1)(n + c)−
𝛼

2

+
�
Rmax + (1 + 𝛽)H𝛷2

max

�
c𝛼c0

�
2c0𝜇c

𝛼
� 𝛼

2(1−𝛼)

�����������������������������������������������������������������
E2

,

C0 ≜
∞�
n=1

exp
�
−c0𝜇c

𝛼(n + c)1−𝛼
�
, C1 ≜ exp

�
2c0(1 + 𝛽)𝛷2

max
(n0 + 1)

�
,

C2 ≜ exp
�
c0𝜇c

𝛼(n0 + c + 1)1−𝛼
�
, and

KIA
2
(n) ≜

⎧⎪⎪⎨⎪⎪⎩

4
√
log 𝛿−1

𝜇2c2
0

1

𝜇

�
2𝛼 +

�
2𝛼

c0𝜇c
𝛼

� 1

1−𝛼

+
2(1 − 𝛼)(c0𝜇)

𝛼

𝛼

�

���������������������������������������������������������������������������������
(E3)

+

√
n0e

(1+𝛽)𝛷2
max

c0(2n0+1)

(1 + 𝛽)𝛷2
max

(n + 1)
���������������������������

(E4)

⎫⎪⎪⎬⎪⎪⎭

1

(n + 1)(n + c)−
𝛼

2

+ KIA
1
(n).
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averaging results in a rate that is of the order O
(
1∕n(1−�)∕2

)
 , where the exponent � has to 

be chosen strictly less than 1. Setting � = 1 causes the constant C0 as well as KIA
1
(n),KIA

2
(n) 

to blowup and hence, there is a loss of �∕2 in the rate, when compared to non-averaged 
batchTD. However, unlike the latter, iterate averaged batchTD does not need the knowl-
edge of � in setting the step size �n.

Remark 12  (Decay rate of initial error) The bound in expectation in Theorem 5.1 can be 
re-written as follows:

Thus, the initial error is forgotten at the rate O(1/n), and this is slower than the correspond-
ing rate obtained for the case of non-averaged batchTD (see Remark 2). Hence, as sug-
gested by earlier works on stochastic approximation (cf. Fathi and Frikha 2013), it is pre-
ferred to average after a few iterations since the initial error is not forgotten faster than the 
sampling error with averaging.

Remark 13  (Computational cost vs. accuracy) Let 𝜖, 𝛿 > 0 . Then, the number of iterations 
n requires to achieve an accuracy � , i.e., ‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤ 𝜖 with probability 1 − � , is of the 
order O

(
1

�2∕�
log

(
1

�

))
 . On the other hand, the corresponding number of iterations for the 

non-averaged case (see Theorem 4.2) is O
(

1

�2
log

(
1

�

))
.

6 � Recent works: a comparison

Non-asymptotic bounds for TD(0) with linear function approximation are derived in three 
recent works—see Dalal et  al. (2018); Bhandari et  al. (2018); Lakshminarayanan and 
Szepesvari (2018). In Dalal et  al. (2018); Lakshminarayanan and Szepesvari (2018), the 
authors consider the i.i.d. sampling case, while the authors by Bhandari et al. (2018) pro-
vide bounds in the i.i.d. as well as the more general Markov noise settings. As noted ear-
lier in Remark 7, our analysis could be re-used to derive bounds for TD with linear func-
tion approximation in the i.i.d. sampling scenario, while the case of Markov noise is not 
handled by us. This observation justifies a comparison of the bounds that we derive for 
batchTD to those in the aforementioned references for TD under i.i.d. sampling, and we 
provide this comparison below.

In comparison to the references Bhandari et al. (2018) and Lakshminarayanan and Sze-
pesvari (2018), we would like to point out that we derive non-asymptotic bounds that hold 
with high probability, in addition to bounds that hold in expectation. The aforementioned 
references provide bounds that hold in expectation only.

The bound in expectation that we derived in Theorem 4.2 matches the bound derived 
in Bhandari et al. (2018), up to constants. Note that our result in Theorem 4.2, as well as 
those in (Bhandari et al. 2018) are for the projected variant of TD(0). In addition, we also 
provide a bound in expectation in Theorem 4.4 for the projection-free variant of TD(0).

�
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
C0C1C2

‖‖‖𝜃0 − 𝜃̂T
‖‖‖2

(n + 1)
+

const

(n + c)𝛼∕2
.
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Continuing the comparison with Bhandari et al. (2018), the bounds in their work require 
the knowlege of the minimum eigenvalue � , which is unknown in a typical RL setting. We 
get rid of this problematic eigenvalue dependence through iterate averaging, while obtain-
ing a nearly optimal rate of the order O

(
n�∕2

)
 , where 1

2
< 𝛼 < 1.

The bounds by Dalal et  al. (2018) are for TD(0) with linear function approximation 
under the i.i.d. sampling case, allowing a comparison of bounds for batchTD with their 
results. The bound in expectation on the error ‖‖�n − �∗‖‖2 in Theorem 3.1 of Dalal et al. 
(2018) is O( 1

n�
) , where 0 < 𝜎 <

1

2
 . Here �n is the TD(0) iterate, and �∗ is the TD fixed point. 

In contrast, the bound we obtain in Theorem 4.3 is O( 1√
n
) . Both results are for the projec-

tion-free variant. However, our bound involves a stepsize that requires the knowledge of � 
(see (A1)), while their stepsize is �(

1

n2�
) . Our results for the iterate-averaged variant in 

Theorem 5.1 get rid of this stepsize dependence, and the rate we obtain for this variant are 
comparable to that in Theorem 3.1 of Dalal et al. (2018).

Continuing the comparison with Dalal et al. (2018), we first note that the high-probabil-
ity bound in 4.2 in our work, which is for the case when � is known, has a rate of order 
O
�

1√
n

�
 , while the iterate averaged variant in Theorem 5.1 exhibits a rate O

(
1

n�∕2

)
 , where 

0 < 𝛼 <
1

2
 . On the other hand, the rate from the bounds in Theorem  3.6 of Dalal et  al. 

(2018), is limited by a problem-dependent parameter � that is below the minimum eigen-
value (which is � in our notation). Further, our high probability bound in Theorem  4.2 
applies for all n, while that in Theorem 5.1 is for all n ≥ n0 , with n0 explicitly specified (as 
a function of the underlying parameters). In contrast, the bound in Theorem 3.6 of Dalal 
et al. (2018) applies to sufficiently large n, where the threshold beyond which the bound 
applies is not explicitly specified. Finally, we project the iterates to keep it bounded, while 
the bounds by Dalal et al. (2018) do not involve a projection operator. Note that we require 
projection for the high-probability bounds, while we derive a bound in expectation for the 
projection-free variant (see Theorem 4.4).

In Lakshminarayanan and Szepesvari (2018), the authors derive non-asymptotic bounds 
in expectation, which could be applied for TD(0) with linear function approximation, or 
even to our batchTD algorithm. Lakshminarayanan and Szepesvari (2018) derive lower 
bounds, while we focus on Theorem  1, which contains the upper bound. Our bound in 
expectation in Theorem 4.2 is comparable to that in Theorem 1 there, since the overall rate 
is O( 1√

n
) in either case, and both results assume knowledge about underlying dynamics 

(through the minimum eigenvalue � in our case, while through a certain distribution con-
stant for setting the stepsize there). Further, unlike Lakshminarayanan and Szepesvari 
(2018), we derive bounds for the iterate-averaged variant, which gets rid of the problematic 
stepsize dependence, at a compromise in the rate, which turns out to be O( 1

n�
) , with 𝛼 <

1

2
.

7 � Fast LSPI using batchTD (fLSPI)

LSPI (Lagoudakis and Parr 2003) is a well-known algorithm for control based on the pol-
icy iteration procedure for MDPs. We propose a computationally efficient variant of LSPI, 
which we shall henceforth refer to as fLSPI. The latter algorithm works by substituting the 
regular LSTDQ with batchTDQ—an algorithm that is quite similar to batchTD described 
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earlier. We first briefly describe the LSPI algorithm and later provide a detailed description 
of fLSPI.

7.1 � Background for LSPI

We are given a set of samples D ≜ {(si, ai, ri, s
�
i
), i = 1,… , T)} , where each sample i 

denotes a one-step transition of the MDP from state si to s′
i
 under action ai , while resulting 

in a reward ri . The objective is to find an approximately optimal policy using this set. This 
is in contrast with the goal of LSTD, which aims to approximate the state-value function of 
a particular policy (see Sect. 3.1).

For a given stationary policy � , the Q-value function Q�(s, a) for any state s ∈ S and 
action a ∈ A(S) is defined as follows:

 In the above, the initial state s and the action a in s are fixed, and thereafter the actions 
taken are governed by the policy � . This function can be thought of as the value func-
tion for a policy � in state s, given that the first action taken is the action a. As before, we 
parameterize the Q-value function using a linear function approximation architecture,

where �(s, a) is a d-dimensional feature vector corresponding to the tuple (s, a) and � is a 
tunable policy parameter.

LSPI is built in the spirit of policy iteration algorithms. These perform policy evalua-
tion and policy improvement in tandem. For the purpose of policy evaluation, LSPI uses a 
LSTD-like algorithm called LSTDQ, which learns an approximation to the Q- (state-action 
value) function. It does this for any policy � , by solving the linear system

As in the case of LSTD, the above can be seen as approximately solving a system of equa-
tions similar to (6), but in this case for the Q-value function. The pathwise LSTDQ variant 
is obtained by forming the dataset D from a sample path of the underlying MDP for a given 
policy � , and also zeroing out the feature vector of the next state-action tuple in the last 
sample of the dataset.

The policy improvement step uses the approximate Q-value function to derive a greed-
ily updated policy as follows:

Since this policy is provably better than � , iterating this procedure allows LSPI to find an 
approximately optimal policy.

(24)Q�(s, a) ≜ �

[
∞∑
t=0

� tr(st,�(st)) ∣ s0 = s, a0 = a

]
.

(25)Q�(s, a) ≈ ���(s, a),

(26)

𝜃̂T = Ā−1
T
b̄T , where

ĀT =
1

T

T∑
i=1

𝜙(si, ai)(𝜙(si, ai) − 𝛽𝜙(s�
i
,𝜋(s�

i
)))�, and b̄T =

1

T

T∑
i=1

ri𝜙(si, ai).

��(s) = arg max
a∈A

���(s, a).
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7.2 � fLSPI algorithm

The fLSPI algorithm works by substituting the regular LSTDQ with its computationally 
efficient variant batchTDQ. The overall structure of fLSPI is given in Algorithm 2.

For a given policy � , batchTDQ approximates LSTDQ solution (26) by an iterative 
update scheme as follows (starting with an arbitrary �0):

From Sect. 2.2, it is evident that the claims in Proposition 8.1 and Theorem 4.2 hold for the 
above scheme as well. 

Remark 14  Error bounds for fLSPI can be derived along the lines of those for regular on-
policy LSPI by Lazaric et al. (2012), and we omit the details.

8 � Convergence proofs

Let Fn denotes the �-field generated by �0,… , �n , n ≥ 0 . Let

Recall that we denote the current state feature (T × d)-matrix by � ≜ (�(s1)
�,… ,�(sT )) , 

the next state feature (T × d)-matrix by �� ≜ (�(s�
1
)�,… ,�(s�

T
)) , and the reward (T × 1)

-vector by R = (r1,… , rT )
� . Recall also that the LSTD solution is given by

Finally we note also that the pathwise LSTD solution has the same form as above, except 
that 𝛷� ≜ P̂𝛷 = (𝜙(s�

1
)�,… ,𝜙(s�

T−1
)�, ��) , where � is the d × 1-zero-vector.

(27)�k = �k−1 + �k

(
rik + ���

k−1
�(s�

ik
,�(s�

ik
)) − ��

k−1
�(sik , aik )

)
�(sik , aik )

(28)fn(�) ≜
(
rin + ����(s�

in
) − ���(sin )

)
�(sin ).

𝜃̂T = Ā−1
T
b̄T , where ĀT =

1

T
(𝛷�𝛷 − 𝛽𝛷�𝛷�) and b̄T =

1

T
𝛷�R.
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8.1 � Proof of asymptotic convergence

Proof of Theorem 4.3 (batchTD without projection):

Proof  We first rewrite (10) as follows:

where �Mn = fn(�n−1) − �(fn(�n−1) ∣ Fn−1) is a martingale difference sequence, with fn(⋅) 
as defined in (28).

The ODE associated with (29) is

In the above, q(𝜃(t)) ≜ −ĀT𝜃(t) + b̄T.
To show that �n converges a.s. to 𝜃̂T , one requires that the iterate �n remains bounded a.s. 

Both boundedness and convergence can be inferred from Theorems 2.1–2.2(i) of Borkar 
and Meyn (2000), provided we verify assumptions (A1)–(A2) there. These assumptions are 
as follows: 

(a1) The function q is Lipschitz. For any � ∈ ℝ , define q�(�) = q(��)∕� . Then, there 
exists a continuous function q∞ such that q� → q∞ as � → ∞ uniformly on compact sets. 
Furthermore, the origin is a globally asymptotically stable equilibrium for the ODE

(a2) The martingale difference {�Mn, n ≥ 1} is square-integrable with

for some C0 < ∞.
We now verify (a1) and (a2) in our context. Notice that q𝜂(𝜃) ≜ −ĀT𝜃 + b̄T∕𝜂 converges 

to q∞(𝜃(t)) = −ĀT𝜃(t) as � → ∞ . Since the matrix ĀT is positive definite by (A1), the 
aforementioned ODE has the origin as its globally asymptotically stable equilibrium. This 
verifies (a1).

For verifying (a2), notice that

 The first inequality follows from the fact that for any scalar random variable Y, 
�
(
Y − E

[
Y ∣ Fn

])2 ≤ �Y2 , while the second inequality follows from (A2) and (A3). The 
claim follows. 	�  ◻

Proof of Theorem 4.1 (batchTD with projection):

Proof  We first rewrite (10) as follows:

where �Mn , Fn and fn(�) are as defined in (28).

(29)𝜃n = 𝜃n−1 + 𝛾n
(
−ĀT𝜃n−1 + b̄T + 𝛥Mn

)
,

(30)𝜃̇(t) = q(𝜃(t)), t ≥ 0.

(31)𝜃̇(t) = −q∞(𝜃(t)).

�[‖‖�Mn+1
‖‖22 ∣ Fn] ≤ C0(1 +

‖‖�n‖‖22), n ≥ 0,

�[‖‖�Mn+1
‖‖22 ∣ Fn] ≤�[‖‖fn+1(�2)‖‖22 ∣ Fn]

≤(Rmax�max + (1 + �)�2
max

‖‖�n‖‖2)2

(32)𝜃n = 𝛶
(
𝜃n−1 + 𝛾n

(
−ĀT𝜃n−1 + b̄T + 𝛥Mn

))
,
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From (A3) and the fact that the iterate �n is projected onto a compact and convex set 
C , it is easy to see that the norm of the martingale difference �Mn is upper bounded by 
2
(
Rmax�max + (1 + �)H�2

max

)
 . Thus, (32) can be seen as a discretization of the ODE

where 𝛶̌ (𝜃) = lim𝜏→0

[
(𝛶 (𝜃 + 𝜏f (𝜃)) − 𝜃)∕𝜏

]
 , for any bounded continuous f. The operator 

𝛶̌  ensures that � governed by (33) evolves within the set C that contains 𝜃̂T . As in the proof 
of Lemma 4.1 by Yu (2015), we have

where the inequality follows from (A1). From the foregoing, we have that ���𝜃̂T
���2 ≤

‖b̄T‖2

𝜇
< H ⇒ 𝜃̂T ∈ C . Following similar arguments as before, it can be inferred 

that at any boundary point � of C , ⟨𝜃,−Āt𝜃 + b̄T⟩ < 0 , and hence the ODE (33) has the ori-
gin as its globally asymptotically stable equilibrium. The claim now follows from Theo-
rem 2 in Chapter 2 of Borkar (2008) (or even Theorem 5.3.1 on pp. 191–196 of Kushner 
and Clark (1978)). 	�  ◻

8.2 � Proofs of finite‑time error bounds for batchTD

To obtain high probability bounds on the computational error ‖𝜃n − 𝜃̂T‖2 , we consider sep-
arately the deviation of this error from its mean (see (34) below), and the size of its mean 
itself (see (35) below). In this way the first quantity can be directly decomposed as a sum 
of martingale differences, and then a standard martingale concentration argument applied, 
while the second quantity can be analyzed by unrolling iteration (10).

Proposition 8.1 below gives these results for general step sequences. The proof involves 
two martingale analyses, which also form the template for the proofs for the least squares 
regression extension (see Sect.  10), and the iterate averaged variant of batchTD (see 
Theorem 5.1).

After proving the results for general step sequences, we give the proof of Theorem 4.2, 
which gives explicit rates of convergence of the computational error in high probability for 
a specific choice of step sizes.

Proposition 8.1  Let zn = 𝜃n − 𝜃̂T, where �n is given by (10). Under (A1)–(A4), we have 
∀𝜖 > 0 , 

(1)	 a bound in high probability for the centered error: 

 where Lk ≜ �k
∏n

j=k+1
(1 − �j(2� − �j(1 + �)2�4

max
))1∕2,

(2)	 and a bound in expectation for the non-centered error: 

(33)𝜃̇(t) = 𝛶̌ (−ĀT𝜃(t) + b̄T ), t ≥ 0,

0 = ⟨𝜃̂T ,−ĀT 𝜃̂T + b̄T⟩ ≤ −𝜇
���𝜃̂T

���
2

2
+ ��b̄T��2���𝜃̂T

���2,

(34)ℙ
���zn��2 − 𝔼��zn��2 ≥ �

� ≤ exp

⎛
⎜⎜⎜⎜⎝
−

�2

4
�
Rmax + (1 + �)H�2

max

�2 n∑
k=1

L2
k

⎞
⎟⎟⎟⎟⎠
,
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As mentioned earlier, the initial error relates to the starting point �0 of the algorithm, 
while the sampling error arises out of a martingale difference sequence (see Step 1 in 
Sect. 8.2.2 below for a precise definition).

We establish later, in Sect. 8.2.3, that under a suitable choice of step sizes, the initial 
error is forgotten faster than the sampling error.

We claim that the terms of the form 1 − �j(2� − �j�
4
max

(1 + �)2) , which go into a prod-
uct in the Lipschitz constant Li as well as in the initial/sampling error terms of the expecta-
tion bound, are positive. This claim can be seen as follows:

where the inequality above follows from the fact that � ≤ (1 + �)�2
max

.
In Sect.  8.2.3, to establish the rates of Theorem 4.2, we first prove that 

∑n

i=1
Li is an 

order 1/n term, and the claim of positivity of Li is necessary for the aforementioned proof.

8.2.1 � Proof of Proposition 8.1 part (1)

Proof  The proof gives a martingale analysis of the centered computational error. It pro-
ceeds in three steps:

Step 1 (Decomposition of error into a sum of martingale differences)
Recall that zn ≜ 𝜃n − 𝜃̂T . We rewrite ‖‖zn‖‖2 − �‖‖zn‖‖2 as follows:

where gk ≜ �[‖‖zn‖‖2||Fk ] , Dk ≜ gk − �[gk
||Fk−1 ] , and Fk denotes the �-field generated by 

the random variables {�i, i ≤ k} for k ≥ 0.
Recall that fk(�) ≜ (���(sik ) − (rik + ����(s�

ik
)))�(sik ) denotes the random innovation at 

time k, given that �k−1 = �.
Step 2 (Showing that gk is a Lipschitz function of the random innovation fk)4

The next step is to show that the functions gk are Lipschitz continuous in the random 
innovation at time k, with Lipschitz constants Lk . It then follows immediately that the 

(35)

�
(‖‖zn‖‖2

)2 ≤
[

n∏
k=1

(
1 − �k(2� − �k(1 + �)2�4

max
)
)‖‖z0‖‖2

]2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
������� �����

+ 4

n∑
k=1

�2
k

[
n−1∏
j=k

(1 − �j(2� − �j(1 + �)2�4
max

)

]2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�������� �����

(
Rmax + (1 + �)H�2

max

)2
.

(36)
1 − �j

(
2� − �j�

4
max

(1 + �)2
) ≥ 1 − 2�j(1 + �)�2

max
+ �2

j
�4

max
(1 + �)2

=
(
1 − �j(1 + �)�2

max

)2 ≥ 0,

(37)‖‖zn‖‖2 − �‖‖zn‖‖2 =
n∑

k=1

(
gk − gk−1

)
=

n∑
k=1

Dk,

4  For notational convenience, we have not chosen to make the dependence of gk on the random innovation 
fk explicit. The Lipschitzness of gk as a function of fk is clear from equation (43) presented below.
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martingale difference Dk is a Lipschitz function of the kth random innovation with the same 
Lipschitz constant, which is the property leveraged in Step 3 below. In order to obtain Lip-
schitz constants with no exponential dependence on the inverse of (1 − �)� we depart from 
the general scheme of Frikha and Menozzi (2012), and use our knowledge of the form of the 
random innovation fk to eliminate the noise due to the rewards between time k and time n:

Let �k
j
(�) denote the value of the random iterate at instant j evolving according to (10) 

and beginning from the value � at time k.
First we note that as the projection, �  , is non-expansive,

Expanding the random innovation terms, we have

where aj ≜ [�(sij )�(sij )
� − ��(sij )�(s

�
ij
)�] . Note that

Recall that �� ≜ (�(s1),… ,�(sT )) , and ��� ≜ (�(s1)
�,… ,�(sT )

�) . Let 
� ≜ diag(‖‖�(s1)‖‖22,… , ‖‖�(sT )‖‖22) . Then, for any vector � , we have

For the equality in (39), we have used that 
∑T

k=1
�(sk)�(sk)

� = ��� , and similar identities. 
Further, the inequality in (40) can be inferred using the following fact:

�

(‖‖‖�
k
j
(�) − �k

j
(��)

‖‖‖2 ∣ Fj−1

)

≤ �

(‖‖‖�
k
j−1

(�) − �k
j−1

(��) − �j[fj(�
k
j−1

(�)) − fj(�
k
j−1

(��))]
‖‖‖2 ∣ Fj−1

)
.

(38)

�k
j−1

(�) − �k
j−1

(��) − �j[fj(�
k
j−1

(�)) − fj(�
k
j−1

(��))]

= �k
j−1

(�) − �k
j−1

(��) − �j[�(sij )�(sij )
� − ��(sij )�(s

�
ij
)�](�k

j−1
(�) − �k

j−1
(��))

= [I − �jaj](�
k
j−1

(�) − �k
j−1

(��)),

a�
j
aj = �(sij )�(sij )

��(sij )�(sij )
�

− �
(
�(sij )�(sij )

��(sij )�(s
�
ij
)� + �(s�

ij
)�(sij )

��(sij )�(sij )
�

)

+ �2�(s�
ij
)�(sij )

��(sij )�(s
�
ij
)�

=
‖‖‖�(sij )

‖‖‖
2

2

[
�(sij )�(sij )

�

− �(�(sij )�(s
�
ij
)� + �(s�

ij
)�(sij )

�) + �2�(s�
ij
)�(s�

ij
)�
]
.

(39)

�

�
��

�
I − �jaj

���
I − �jaj

�
� ∣ Fj−1

�

= ���(I − �j[a
�

j
+ aj − �ja

�

j
aj])� ∣ Fj−1)

= ‖�‖2
2
− �j�

� 1

T

�
2��� − �

�
���� +����

�

− �j

�
���� − �

�
����� +�����

�
+ �2������

��
�

(40)≤ ‖�‖2
2
− �j2�‖�‖22 + �2

j
��

1

T

�
���� − �

�
����� +�����

��
� + �2‖�‖2

2
�4

max

(41)≤ (1 − �j(2� − �j�
4
max

(1 + �)2))‖�‖2
2
.
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where we have used assumption (A1) for the last inequality above. The last term in (40) 
follows from ����′���′�� ≤ ‖�‖2

2
�4

max
 , where we have used assumption (A2) that ensures 

features are bounded. The inequality in (41) can be inferred as follows:

 In the above, we have used the boundedness of features to infer ��������� ≤ ‖�‖2
2
�4

max
 , 

and ����′���′�� ≤ ‖�‖2
2
�4

max
.

Hence, from the tower property of conditional expectations, it follows that:

Finally, writing f and f ′ for two possible values of the random innovation at time k, and 
writing � = �k−1 + �kf  and �� = �k−1 + �kf

� and using Jensen’s inequality, we have that

which proves that the functions gk are Lk-Lipschitz in the random innovations at time k. 
Recall that Dk = gk − gk−1 , and hence, the Lipschitz constant of Dk is max

(
Lk, Lk−1

)
 . How-

ever, from (36), we have Lk > Lk−1 , leading to a Lipschitz constant of Lk for Dk.
Step 3 (Applying a sub-Gaussian concentration inequality)
Now we derive a standard martingale concentration bound in the lemma below. Note 

that, for any 𝜆 > 0,

𝜆min

(
2𝛷�𝛷 − 𝛽

(
𝛷��𝛷 +𝛷�𝛷�

))
= 𝜆min

(
(𝛷�𝛷 − 𝛽𝛷��𝛷) + (𝛷�𝛷 − 𝛽𝛷��𝛷)�

)

= 𝜆min

(
T
(
ĀT + Ā�

T

)) ≥ 2T𝜇,

��
�
��𝖳�� +�𝖳���

�
�� ≤ 2‖�‖2

2
�4

max

⇒ −2‖�‖2
2
�4

max
≤ �𝖳

�
��𝖳�� +�𝖳���

�
�

⇒ �𝖳(�𝖳�� − �
�
��𝖳�� +�𝖳���

�
+ �2��𝖳���)�

≤ ‖�‖2
2
(1 + 2� + �2)�4

max
= (1 + �)2�4

max
‖�‖2

2
.

(42)

�

[‖‖‖�
k
n
(�) − �k

n
(��)

‖‖‖
2

2

]
= �

[
�

(‖‖‖�
k
n
(�) − �k

n
(��)

‖‖‖
2

2
∣ Fn−1

)]

≤ (
1 − �n

(
2� − �n�

4
max

(1 + �)2
))
�

[‖‖‖�
k
n−1

(�) − �k
n−1

(��)
‖‖‖
2

2

]

≤
[

n∏
j=k+1

(
1 − �j

(
2� − �j�

4
max

(1 + �)2
))]‖‖� − ��‖‖22

(43)

||||�
[‖‖‖𝜃n − 𝜃̂T

‖‖‖2||𝜃k = 𝜃
]
−�

[‖‖‖𝜃n − 𝜃̂T
‖‖‖2||𝜃k = 𝜃�

]||||
≤ �

[‖‖‖𝛩
k
n
(𝜃) − 𝛩k

n

(
𝜃�
)‖‖‖2

] ≤ Lk
‖‖f − f �‖‖2,

ℙ(‖‖zn‖‖2 − 𝔼‖‖zn‖‖2 ≥ �) = ℙ

(
n∑

k=1

Dk ≥ �

)
≤ exp(−��)𝔼

(
exp

(
�

n∑
k=1

Dk

))

= exp(−��)𝔼

(
exp

(
�

n−1∑
k=1

Dk

)
𝔼

(
exp(�Dn)

||Fn−1

))
.
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The last equality above follows from (37), while the first inequality follows from Markov’s 
inequality.

Let Z be a zero-mean random variable (r.v) satisfying |Z| ≤ B w.p. 1, and g be a L-Lip-
schitz function g. Letting Z′ denote an independent copy of Z and � a Rademacher r.v., we 
have

In the above, we have used Jensen’s inequality in (44), the fact that distribution of 
g(Z) − g(Z�) is the same as �(g(Z) − g(Z�)) in (45), a result from Example 2.2 in Wain-
wright (2019) in (46), the fact that g is L-Lipschitz in (47), and the boundedness of Z in 
(48).

Note that by (A3), and the projection step of the algorithm, we have that 
|fk(𝜃k−1)| < (Rmax + (1 + 𝛽)H𝛷2

max
) is a bounded random variable, and, conditioned on 

Fk−1 , Dk is Lipschitz in fk(�k−1) with constant Lk . Hence, we obtain

leading to

The proof of Proposition 8.1 part (1) follows by optimizing over � in (49). 	�  ◻

8.2.2 � Proof of Proposition 8.1 part (2)

Proof  The proof of this result also follows a martingale analysis. In contrast to the high 
probability bound, here we work directly with the error, rather than the centered error, and 
split it into predictable and martingale parts. Bounding the predictable part then bounds 
the influence of the initial error, and bounding the martingale part bounds the error due to 
sampling.

(44)
�(exp (�g(Z))) = �

(
exp

(
�
(
g(Z) − �(g(Z�)

)))

≤ �
(
exp

(
�
(
g(Z) − g(Z�)

)))

(45)= �
(
exp

(
��

(
g(Z) − g(Z�)

)))

(46)≤ �

(
exp

(
�2
(
g(Z) − g(Z�)

)2
∕2

))

(47)≤ �

(
exp

(
�2L2

(
Z − Z�

)2
∕2

))

(48)≤ exp
(
�2B2L2∕2

)
.

�
(
exp(�Dn)

||Fn−1

) ≤ exp

(
�2
(
Rmax + (1 + �)H�2

max

)2
L2
n

2

)
,

(49)ℙ(‖‖zn‖‖2 − 𝔼‖‖zn‖‖2 ≥ �) ≤ exp(−��) exp

(
�2
(
Rmax + (1 + �)H�2

max

)2
2

n∑
k=1

L2
k

)
.
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Step 1 (Extract a martingale difference from the update)
First, by using that ĀT = �((𝜙(sin ) − 𝛽𝜙(s�

in
))𝜙(sin )

� ∣ Fn−1) and that 
�(fn(𝜃̂T ) ∣ Fn−1) = 0 , we can rearrange the update rule (10) to get

where �Mn ∶= fn(�n−1) − �(fn(�n−1) ∣ Fn−1) is a martingale difference.
Step 2 (Apply Jensen’s inequality to the square of the norm)
From Jensen’s inequality, and the fact that the projection in the update rule (10) is non-

expansive, we obtain

Note that the cross-terms have vanished in (50) since �Mn is martingale difference, inde-
pendent of the other terms, given Fn−1.

Step 3 (Unroll the iteration)
Using assumptions (A1) and (A2)

Furthermore, by assumption (A3), and the projection step, the martingale differences �Mn 
are bounded in norm by 2(Rmax + (1 + �)H�2

max
) . By applying the tower property of condi-

tional expectations repeatedly together with (51) we arrive at the following bound:

	�  ◻

8.2.3 � Derivation of rates given in Theorem 4.2
Proof  To obtain the rates specified in the bound in expectation in Theorem 4.2, we sim-
plify the bound in expectation in Proposition 8.1 using the choice �n =

c0c

(c+n)
 , with 

c0 ∈ (0,�((1 + �)2�4
max

)−1] and 2c0c� ∈ (1,∞) . Consider the sampling error term in (35) 
under the aforementioned choice for the step size.

𝜃n−1 − 𝜃̂T − 𝛾nfn(𝜃n−1) = 𝜃n−1 − 𝜃̂T − 𝛾n(�(fn(𝜃n−1) + 𝛥Mn)

=
(
I − 𝛾nĀT

)
zn−1 − 𝛾n𝛥Mn,

(50)

�
���zn��2 ∣ Fn−1

�2 ≤ �(⟨zn, zn⟩ ∣ Fn−1)

≤ �(⟨𝜃n−1 − 𝜃̂T − 𝛾nfn(𝜃n−1), 𝜃n−1 − 𝜃̂T − 𝛾nfn(𝜃n−1)⟩ ∣ Fn−1)

= �(⟨�I − 𝛾nĀT

�
zn−1 − 𝛾n𝛥Mn,

�
I − 𝛾nĀT

�
zn−1 − 𝛾n𝛥Mn⟩ ∣ Fn−1)

= z�
n−1

�
I − 𝛾nĀT

���
I − 𝛾nĀT

�
zn−1 + 𝛾2

n
�
�⟨𝛥Mn,𝛥Mn⟩ ∣ Fn−1

�

≤ ��zn−1��22���
�
I − 𝛾nĀT

���
I − 𝛾nĀT

����2 + 𝛾2
n
�

���𝛥Mn
��22 ∣ Fn−1

�
.

(51)
‖‖(I − 𝛾nĀT )

�(I − 𝛾nĀT )
‖‖2 = ‖‖(I − 𝛾n((Ā

�

T
+ ĀT ) − 𝛾nĀ

�

T
ĀT )

‖‖2 ≤ 1 − 𝛾n(2𝜇 − 𝛾n(1 + 𝛽)2𝛷4
max

)

�
(‖‖zn‖‖2

)2 ≤
[

n∏
k=1

(
1 − �k(2� − �k(1 + �)2�4

max
)
)‖‖z0‖‖2

]2

+ 4

n∑
k=1

�2
k

[
n−1∏
j=k

(1 − �j(2� − �j(1 + �)2�4
max

)

]2(
Rmax + (1 + �)H�2

max

)2
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In the above, the inequality in (52) uses the fact that 1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4
max

> 0 , a claim 
that was established earlier in (36). The inequality in (53) uses c0 ∈ (0,�((1 + �)2�4

max
)−1] . 

The inequality in (54) follows by using ln(1 + u) ≤ u . To infer the inequality in (55), we 
use 

∑n

j=k+1
(c + j)−1 ≥ ∫ n+c+1

x=c+k+1
x−1dx , which holds because the LHS is the upper Riemann 

sum of RHS. Now, evaluating the integral of x−1 , the exponential term inside the summand 
of (54) becomes:

and the inequality in (55) follows by substituting the bound on the RHS above. We obtain 
the final inequality, (56), by upper bounding the term 

∑n

k=1
(k + c + 1)2c0c�(k + c)−2 on the 

RHS of (55) as follows:

(52)

n∑
k=1

�2
k

[
n∏

j=k+1

(1 − �j(2� − �j(1 + �)2�4
max

)

]2

=

n∑
k=1

�2
k
exp

(
2

n∑
j=k+1

ln
(
1 − �j(2� − �j(1 + �)2�4

max
)
))

(53)

=

n∑
k=1

c2
0
c2

(c + k)2
exp

(
2

n∑
j=k+1

ln

(
1 −

c0c

c + j

(
2� −

c0c

c + j
(1 + �)2�4

max

)))

≤
n∑

k=1

c2
0
c2

(c + k)2
exp

(
2

n∑
j=k+1

ln

(
1 −

c0c�

c + j

))

(54)≤
n∑

k=1

c2
0
c2

(c + k)2
exp

(
−2c0c�

(
n∑

j=k+1

1

c + j

))

(55)≤ c2
0
c2(c + n + 1)−2c0c�

n∑
k=1

(c + k + 1)2c0c�(c + k)−2

(56)≤ c2
0
c2e2

(2c0c� − 1)(n + c + 1)

exp

(
−2c0c�

n∑
j=k+1

(c + j)−1

)
≤ exp

(
−2c0c�[ln(c + n + 1) − ln(c + k + 1)]

)

= (c + n + 1)−2c0c�(c + k + 1)2c0c�,

(57)

n∑
k=1

(k + c + 1)2c0c�(k + c)−2 =

n∑
k=1

(((k + c)(1 + 1∕(k + c)))2c0c�(k + c)−2

≤
n∑

k=1

(1 + 1∕c)2c(k + c)2c0c�(k + c)−2



588	 Machine Learning (2021) 110:559–618

1 3

where the inequality in (58) holds because

Further, the inequality in (58) follows from the fact that (1 + 1∕c)2c ≤ e2 for all c > 0 , and 
the inequality in (59) follows by comparison of a sum with an integral together with the 
assumption that c0c𝜇 > 1.

Similarly, the initial error term in (35) can be simplified from the hypothesis that 
c0c� ∈ (1,∞) and c0 ∈ (0,�((1 + �)2�4

max
)−1] as follows:

The last inequality above follows again from a comparison with an integral: ∑n

j=1

1

c+j
≥ ∫ c+n

c+1
x−1dx = ln

n+c

c+1
 . Hence, we obtain

and the result concerning the bound in expectation in Theorem 4.2 now follows.
We now derive the rates for the high-probability bound in Theorem 4.2. With �n =

c0c

(c+n)
 , 

and c0 ∈ (0,�((1 + �)2�4
max

)−1] , we have

(58)≤ e2
n∑

k=1

(k + c)2(c0c�−1)

(59)
≤ e2 �

n+1

x=0

(x + c)2(c0c�−1)dx

=
e2(n + c + 1)−(1−2c0c�)

(2c0c� − 1)
,

c0� ≤ �2

�4
max

(1 + �)2
≤
(

�

�2
max

)2

≤ 1.

(60)

n∏
k=1

(1 − �k(2� − �k(1 + �)2�4
max

)

≤ exp

(
−c0c�

n∑
j=1

1

c + j

)
≤ (

c + 1

n + c

)c0c�

(61)
�
���𝜃n − 𝜃̂T

���2 ≤
⎛
⎜⎜⎝

���𝜃0 − 𝜃̂T
���2
√
(c + 1)c0c𝜇

√
(n + c)c0c𝜇−1

+
2ec0c(Rmax + (1 + 𝛽)H𝛷2

max
)√

2c0c𝜇 − 1

⎞⎟⎟⎠
×

�
1

n + c
,

(62)

n∑
i=1

L2
i
=

n∑
i=1

c2
0
c2

(c + i)2

n∏
j=i+1

(
1 −

c0c

(c + j)

(
2� − (1 + �)2�4

max

c0c

(c + j)

))

≤
n∑

i=1+1

c2
0
c2

(c + i)2

n∏
j=i+1

(
1 −

c0c�

(c + j)

)
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Inequality (62) follows from the assumption on c0 . To obtain the inequality (63), as in the 
rates for the bound in expectation, we have taken the exponential of the logarithm of the 
product, brought the product outside the logarithm as a sum, and applied the inequality 
ln(1 − x) ≤ x which holds for x ∈ [0, 1) . The inequality in (64) can be inferred in a manner 
analogous to that in (55), while that in (65) follows in a similar manner as (58).

We now find three regimes for the rate of convergence, based on the choice of c. Each 
case is again derived from a comparison of the sum in (65) with an appropriate integral: 

(i)	�
∑n

i=1
L2
i
= O((n + c)c0c�) when c0c� ∈ (0, 1),

(ii)	�
∑n

i=1
L2
i
= O

�
n−1 ln n

�
 when c0c� = 1 , and

(iii)	�
∑n

i=1
L2
i
≤ c2

0
c2e

(c0c�−1)
(n + c)−1 when c0c� ∈ (1,∞).

 Thus, setting c ∈ (1∕(c0�),∞) , the high probability bound from Proposition 8.1 gives

where K�,c,c0,�
≜ c2

0
c2e

(
Rmax + (1 + �)H�2

max

)2
(c0c� − 1)

 . The high probability bound in Theo-

rem 4.2 now follows. 	�  ◻

8.3 � Proof of expectation bound for batchTD without projection

The proof of the theorem follows just as the proof of Theorem 4.2 but using the following 
proposition in place of Proposition 8.1 part 2. The proof of the following proposition dif-
fers from that of Proposition 8.1 part 2 in that the decomposition of the computational error 
extracts a noise term dependent only on 𝜃̂T rather than on �n , and so projection is not needed.

Proposition 8.2  Let zn = 𝜃n − 𝜃̂T, where �n is given by (10) with � (�) = �, ∀� ∈ ℝ
d. 

Under (A1)–(A4), we have ∀𝜖 > 0,

(63)≤
n∑
i=1

c2
0
c2

(c + i)2
exp

(
−c0c�

n∑
j=i+1

1

(c + j)

)

(64)≤ c2
0
c2

(n + c)c0c�

n∑
i=1

(i + c + 1)c0c�(i + c)−2.

(65)≤ c2
0
c2e

(n + c)c0c�

n∑
i=1

(i + c)−(2−c0c�).

(66)ℙ

(‖‖‖𝜃n − 𝜃̂T
‖‖‖2 − 𝔼

‖‖‖𝜃n − 𝜃̂T
‖‖‖2 ≥ 𝜖

) ≤ exp

(
−
𝜖2(n + c)

4K𝜇,c,c0,𝛽

)
,



590	 Machine Learning (2021) 110:559–618

1 3

Proof  The proof involves two steps.
Step 1 (Unrolling the error recursion)
First, by rearranging the update rule (10) we obtain an iteration for the computational 

error zn = 𝜃n − 𝜃̂T , and subsequently unroll this iteration:

where �n
k
≜ ∏n

j=k

�
I − �j(�(sij ) − ��(s�

ij
))�(sij )

�

�
 for 1 ≤ k ≤ n , and �n

k
= I for k > n.5 In 

the above, we have used that the random increment at time n has the form 
fn(�) = (���(sin ) − (rin + ����(s�

in
)))�(sin ) . Notice that by the definition of the LSTD solu-

tion, we have that �(fn(𝜃̂T ) ∣ Fn−1) = 0 , and so fn(𝜃̂T ) is a zero mean random variable.
Step 2 (Taking the expectation of the norm)
From Jensen’s inequality, we obtain

where we have used the identity ‖x − y‖2
2
≤ 3‖x‖2

2
+ 3‖y‖2

2
 for any two vectors x, y.

Using assumptions (A1) and (A2), we have

(67)

�
(‖‖zn‖‖2

)2 ≤ 3

[
n∏

k=1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)‖‖z0‖‖2

]2

�����������������������������������������������������������������������
������� �����

+ 3

n∑
k=1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4
max

)

]2(
Rmax + (1 + 𝛽)

‖‖‖𝜃̂T
‖‖‖2𝛷

2
max

)2

�������������������������������������������������������������������������������������������������������������������������
�������� �����

zn = 𝜃n − 𝜃̂T = 𝜃n−1 − 𝜃̂T − 𝛾nfn(𝜃n−1)

=
(
I − 𝛾n(𝜙(sin ) − 𝛽𝜙(s�

in
))𝜙(sin )

�

)
zn−1 − 𝛾nfn(𝜃̂T )

= 𝛱n
1
z0 −

n∑
k=1

𝛾k𝛱
n
k+1

fk(𝜃̂T ).

(68)�
(‖‖zn‖‖2

)2 ≤ 3z�
0
�
(
𝛱n

1
�𝛱n

1

)
z0 + 3

n∑
k=1

𝛾2
k
�
(
fk(𝜃̂T )

�𝛱n
k+1

�𝛱n
k+1

fk(𝜃̂T )
)
,

(69)

�����(
�
I − �n(�(sin ) − ��(s�

in
))�(sin )

�

���
I − �n(�(sin ) − ��(s�

in
))�(sin ))

�

�����2
=
�����

�
I − �n((�(sin ) − ��(s�

in
))�(sin )

� − �n�(sin )(�(sin ) − ��(s�
in
))�

+ �2
n

�����(sin )
���
2

2
− 2�⟨�(s�

in
),�(sin )⟩ + �2

����(s
�
in
)
���
2

2

�
�(sin ))�(sin ))

�

������2
≤ 1 − �n(2� − �n(1 + �)2�4

max
).

5  One usually sees terms of the form �(sij )(�(sij ) − ��(s�
ij
)) , whereas we use a transposed form to simplify 

handling the products that get written through the �n
j
 matrices.
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Furthermore, by assumption (A3), the random variables fn(𝜃̂T ) are bounded in norm by 
( Rmax + (1 + 𝛽)

‖‖‖𝜃̂T
‖‖‖2𝛷

2
max

 ). So, by applying the tower property of conditional expectations 
repeatedly together with (69) we arrive at the following bound:

	�  ◻

Proof of  Theorem  4.4  We need to prove that ����𝜃n − 𝜃̂T
���2 ≤

K1(n)√
n + c

, where �n is the 

batchTD iterate that is not projected, and K1(n) is as defined in Theorem 4.4. Once we have 
Proposition 8.2 in place, the bound mentioned before follows using a completely parallel 
argument to that used in Sect. 8.2.3 to prove the bound in expectation in Theorem 4.2 for 
projected batchTD. 	�  ◻

8.4 � Proofs of finite time bounds for iterate averaged batchTD

For establishing the bounds in expectation and high probability, we follow the technique 
from Fathi and Frikha (2013), where the authors provide concentration bounds for gen-
eral stochastic approximation schemes. However, unlike them, we make all the constants 
explicit and more importantly, we provide an explicit iteration index n0 after which the 
distance between averaged iterate 𝜃̄n and LSTD solution 𝜃̂T is nearly of the order O(1/n). 
For providing such a n0 , we have to deviate from Fathi and Frikha (2013) in several steps 
of the proof.

Proof of the bound in expectation in Theorem 5.1  We bound the expected error by directly 
averaging the errors of the non-averaged iterates, i.e.,

For simplifying the RHS above, we apply the bounds in expectation given in Proposition 
8.1. Recall that the rates in Theorem 4.2 are for step sizes of the form �n =

c0c

c+n
 , while iter-

ate averaged batchTD uses a different step size sequence. In the following, we specialize 
the bound in expectation in Proposition 8.1 for the new choice of step-size sequence and 
subsequently, average the resulting bound using (70) to obtain the final rate in expectation 
in Theorem 5.1. Let �n ≜ c0(c∕(c + n))� . We assume n > n0 , i.e.,

Using Proposition 8.1 followed by a split of the individual terms into those before and after 
n0 , we have

�
���zn��2

� ≤
⎛
⎜⎜⎝
3

�
n�

k=1

(1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4
max

)��z0��2
�2

+ 3

n�
k=1

𝛾2
k

�
n−1�
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4
max

)

�2�
Rmax + (1 + 𝛽)

���𝜃̂T
���2𝛷

2
max

�2⎞⎟⎟⎠

1

2

.

(70)�
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
1

n + 1

n∑
k=0

�
‖‖‖𝜃k − 𝜃̂T

‖‖‖2.

(71)
c0c

𝛼

(c + n)𝛼
(1 + 𝛽)2𝛷4

max
< 𝜇.
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(72)

�

(‖‖‖𝜃n − 𝜃̂T
‖‖‖2
)2 ≤

[
n∏

k=1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)‖‖z0‖‖2

]2

+ 4

n∑
k=1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

=

[
n0∏
k=1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)
×

n∏
k=n0+1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)‖‖z0‖‖2

]2

+ 4

n0∑
k=1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

+ 4

n∑
k=n0+1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

≤
[

n0∏
k=1

(
1 + (1 + 𝛽)𝛷2

max
c
0

)2 n∏
k=n0+1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)‖‖z0‖‖2

]2

+ 4

n0∑
k=1

c2
0

[
n0∏
j=k

(
1 + (1 + 𝛽)𝛷2

max
c
0

)2
]2[ n−1∏

j=n0+1

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2

×
(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

+ 4

n∑
k=n0+1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

(73)

≤
[(

1 + c0(1 + �)�2
max

)2n0 n∏
k=n0+1

(
1 −

�c0c
�

(c + k)�

)
‖‖z0‖‖2

]2

+ 4n0c
2
0

(
1 + c0(1 + �)�2

max

)4n0
[

n−1∏
j=n0+1

(
1 −

�c0c
�

(c + j)�

)](
Rmax + (1 + �)H�2

max

)2

+ 4

n∑
k=n0+1

c2
0
c2�

(c + k)2�

[
n−1∏
j=k

(
1 −

�c0c
�

(c + j)�

)]2(
Rmax + (1 + �)H�2

max

)2

≤
[
exp

(
2c0(1 + �)�2

max
n0
)
exp

(
−�c0

n∑
k=n0+1

c�

(c + k)�

)
‖‖z0‖‖2

]2

+ 4n0c
2
0
exp

(
4c0(1 + �)�2

max
n0
)
exp

(
−2�c0

n−1∑
j=n0+1

c�

(c + j)�

)

×
(
Rmax + (1 + �)H�2

max

)2

+ 4

n∑
k=n0+1

c2
0
c2�

(c + k)2�
exp

(
−2�c0

n−1∑
j=k

c�

(c + j)�

)(
Rmax + (1 + �)H�2

max

)2
.
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In the above, the inequality in (72) can be inferred from the following:

where we have used the fact that 𝜇 > 0 and 𝛾k < c0 . To obtain the inequality in (73), we 
have split the product at n0 , and, when k ≤ n0 , we have used (1 + x)n0 = en0 ln(1+x) ≤ exn0 and 
when k > n0 , we have applied (71). For the final inequality above, we have exponentiated 
the logarithm of the products, and used the inequality ln(1 + x) < x in several places.

With C1 and C2 as defined in the statement of Theorem 5.1, we have that

In the above, the inequality in (75) follows by an application of Jensen’s Inequality together 
with the fact that 

∑n−1

j=k
(c + j)−� ≥ ∫ n

j=k
(c + j)−�dj = (c + n)1−� − (c + k)1−� . To obtain the 

inequality in (76), we have upper bounded the sum with an integral, the validity of which 
follows from the observation that x ↦ x−2�ex

1−� is convex for x ≥ 1 . Finally, for arriving at 
the inequality in (77), we have applied the change of variables y = (2c0�c

�)1∕(1−�)x.

(74)

(
1 − �k(2� − �k(1 + �)2�4

max
)
) ≤ (

1 + 2(1 + �)�2
max

�k + (1 + �)2�4
max

�2
k

)

≤ (
1 + (1 + �)�2

max
c0
)2
,

(75)

�
‖‖‖𝜃n − 𝜃̂T

‖‖‖2 ≤ C1 exp
(
−c0𝜇c

𝛼
(
(n + c)1−𝛼 − (n0 + c + 1)1−𝛼

))‖‖‖𝜃0 − 𝜃̂T
‖‖‖2

+
(
Rmax + (1 + 𝛽)H𝛷2

max

)
.

(
4n0c

2
0
C2
1
exp

(
−2c0𝜇c

𝛼((n + c)1−𝛼 − (n0 + c + 1)1−𝛼
)

+

n∑
k=n0+1

c2
0

(
c

k + c

)2𝛼

exp
(
−2c0𝜇c

𝛼((n + c)1−𝛼 − (k + c)1−𝛼
)) 1

2

(76)

= exp
(
−c0𝜇c

𝛼(n + c)1−𝛼
)

×

[
C1C2

‖‖‖𝜃0 − 𝜃̂T
‖‖‖2 +

(
Rmax + (1 + 𝛽)H𝛷2

max

)

×

{
4n0c

2
0
C2
1
C2
2
+

n∑
k=n0+1

c2
0

(
c

k + c

)2𝛼

exp
(
2c0𝜇c

𝛼((k + c)1−𝛼
)}

1

2 ]

≤ exp
(
−c0𝜇c

𝛼(n + c)1−𝛼
)

×

[
C1C2

‖‖‖𝜃0 − 𝜃̂T
‖‖‖2 +

(
Rmax + (1 + 𝛽)H𝛷2

max

)

×

{
4n0c

2
0
C2
1
C2
2
+ c2𝛼c2

0 �
n+c

1

x−2𝛼 exp
(
2c0𝜇c

𝛼x1−𝛼
)
dx

} 1

2
]

(77)

≤ exp
(
−c0𝜇c

𝛼(n + c)1−𝛼
)

×

[
C1C2

‖‖‖𝜃0 − 𝜃̂T
‖‖‖2 +

(
Rmax + (1 + 𝛽)H𝛷2

max

)

×

{
4n0c

2
0
C2
1
C2
2
+ c2𝛼c2

0

(
2c0𝜇c

𝛼
) 2𝛼

1−𝛼

× �
(n+c)(2c0𝜇c𝛼)

1∕(1−𝛼)

(2c0𝜇c𝛼)
1∕(1−𝛼)

y−2𝛼 exp(y1−𝛼)dy

} 1

2
]
.
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Now, since y−2� ≤ 2

1−�
((1 − �)y−2� − �y−(1+�)) when y ≥ (

2�

1−�

) 1

1−� , we have

and furthermore, since y ↦ y−2� exp(y1−�) is non-decreasing for y ≤ (
2�

1−�

) 1

1−� , we have

Plugging these into (77), we obtain

The bound in expectation in the theorem statement can be inferred by using the inequality 
above in

followed by a straightforward bound on the sum of the first exponential term on the RHS of 
(78), using the constant C0 . 	� ◻

Proof of  the  high probability bound in  Theorem  5.1  The proof of the high probability 
bound is considerably more involved than the proof of the bound in expectation in Theo-
rem 5.1. We first state and prove a bound on the error in high probability for the averaged 
iterates in Proposition 8.3 below. This result is for general step-size sequences, and can be 
seen as the iterate average counterpart to Proposition 8.1. 	�  ◻

Proposition 8.3  Let zn = 𝜃̄n − 𝜃̂T. Under (A1)–(A3) we have, for all � ≥ 0 and ∀n ≥ 1,

�
(n+c)(2c0�c�)

1∕(1−�)

(
2�

1−�

) 1
1−�

y−2� exp(y1−�)dy

≤ 2

1 − � �
(n+c)(2c0�c�)

1∕(1−�)

(
2�

1−�

) 1
1−�

((1 − �)y−2� − �y−(1+�)) exp(y1−�)dy

≤ 2

1 − �
exp

(
2c0�c

�(n + c)1−�
)
(n + c)−�

(
2c0�c

�
)−�∕(1−�)

.

�
(

2�

1−�

) 1
1−�

1

y−2� exp(y1−�)dy ≤ e
(

2�

1 − �

) 1

1−�

.

(78)

�
���𝜃n − 𝜃̂

T

���2 ≤ exp
�
−c

0
𝜇c𝛼(n + c)1−𝛼

�

×

�
C
1
C
2

���𝜃0 − 𝜃̂
T

���2 +
√
e

�
2𝛼

1 − 𝛼

� 1

2(1−𝛼)

c
𝛼
c
0

�
2c

0
𝜇c𝛼

� 𝛼

(1−𝛼)

+ 2c
0
C
1
C
2

�
R
max

+ (1 + 𝛽)H𝛷2

max

�√
n
0

�

+

�
2

1 − 𝛼

�
R
max

+ (1 + 𝛽)H𝛷2

max

�
c
𝛼
c
0

�
2c

0
𝜇c𝛼

� 𝛼

2(1−𝛼) .(n + c)−
𝛼

2

�
‖‖‖𝜃̄n+1 − 𝜃̂T

‖‖‖2 ≤
1

n + 1

n∑
k=0

�
‖‖‖𝜃k − 𝜃̂T

‖‖‖2,

ℙ(��zn��2 − 𝔼��zn��2 ≥ �) ≤ exp

⎛
⎜⎜⎜⎜⎝
−

�2

2(Rmax + (1 + �)H�2
max

)2
n∑

m=1

L2
m

⎞
⎟⎟⎟⎟⎠
,
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where Li ≜ �i

n+1

�
∑n−1

l=i+1

l∏
j=i

�
1 − �j+1(2� − (1 + �)2�4

max
�j+1))

�1∕2
�

.

Proof  Recall that zn denotes the error of the algorithm at time n, which in this case is 
zn = 𝜃̄n − 𝜃̂T . The proof follows the scheme of the proof of Proposition 8.1, part (1), given 
in Sect. 8.2:

Step 1 As before, we decompose the centered error ‖‖zn‖‖2 − �‖‖zn‖‖2 as follows:

where Dk ≜ gk − �[gk
||Fk−1 ] and gk ≜ �[‖‖zn‖‖2||Fk ].

Step 2 We need to prove that the functions gk are Lipschitz continuous in the random 
innovation at time k with the new constants Lk . Recall from Step 2 of the proof of the high 
probability bound in Theorem 8.1 in Sect. 8.2 that the random variable �k

n
(�) is defined to 

be the value of the iterate at time n that evolves according to (10), and beginning from � at 
time k. Now we define

Then, letting f and f ′ denote two possible values for the random innovation at time k, and 
setting � = �k−1 + �kf  and �� = �k−1 + �kf

� , we have

where we have used (42) derived in Step 2 of the proof the high probability bound in Prop-
osition 8.1. Hence, as in Step 2 of the proof of Proposition 8.1, part (1), we find that gk is Lk
-Lipschitz in the random innovation at time k, and this implies Dk is Lk-Lipschitz.

Step 3 follows in a similar manner to the proof of Proposition 8.1, part (1). 	�  ◻

We now bound the sum of squares of the Lipschitz constants Lm when the iterates are 
averaged, and the step-sizes are chosen to be �n = c0

(
c

c+n

)�

 for some � ∈ (1∕2, 1) . This 
is a crucial step that helps in establishing the order O(n−�∕2) rate for the high-probability 
bound in Theorem 4.2, independent of the choice of c. Recall that in order to obtain this 
rate for the algorithm without averaging, one had to choose c0�c ∈ (1,∞).

Lemma 8.1  Under conditions of Theorem 5.1, we have

(79)‖‖zn‖‖2 − �‖‖zn‖‖2 =
n∑

k=1

Dk,

𝛩̄k
n
(𝜃̄, 𝜃) =

k𝜃̄

n + 1
+

1

n + 1

n∑
j=k

𝛩k
j
(𝜃).

(80)

�
‖‖‖𝛩̄

k
n

(
𝜃̄k−1, 𝜃

)
− 𝛩̄k

n

(
𝜃̄k−1, 𝜃

�
)‖‖‖2 = �

‖‖‖‖‖
1

n + 1

n∑
l=k

(
𝛩k

l
(𝜃) − 𝛩k

l

(
𝜃�
))‖‖‖‖‖2

≤ 1

n + 1

n∑
l=k

l∏
j=k+1

(
1 − 𝛾j

(
2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max

))1∕2‖‖f − f �‖‖2

(81)
n∑
i=1

L2
i
≤ n0

(n + 1)2

[
e(1+�)�

2
max

c0(2n0+1)

(1 + �)�2
max

]2
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Proof  Recall from the statement of Theorem 5.1 that n satisfies,

Recall also from the formula in Proposition 8.3, that:

We split the bound on the sum into two terms as follows:

The first term in (84) is simplified as follows:

In the above, the inequality in (85) follows from (74). , while the inequality in (85) applies 
the form of the step sizes. In obtaining the inequality in (86), we have replaced i with 1. For 
the inequality in (87), we have used the formula for the sum of a geometric series, and for 
the final inequality we have used that (1 + x)n0 = en0 ln(1+x) ≤ exn0.

We now analyze the second term in (84). Notice that

(82)+
1

�2

{
2� +

[[
2�

c0�c
�

] 1

1−�

+
2(1 − �)(c0�)

�

�

]}2

1

n + 1
.

(83)
c0c

𝛼

(c + n)𝛼
(1 + 𝛽)2𝛷4

max
< 𝜇.

Li =
�i

n + 1

(
n−1∑
l=i+1

l∏
j=i

(
1 − �j+1(2� − (1 + �)2�4

max
�j+1))

)1∕2
)
.

(84)
n∑
i=1

L2
i
=

n0−1∑
i=1

L2
i
+

n∑
i=n0

L2
i
.

(85)

n0−1∑
i=1

L2
i
=

n0−1∑
i=1

[
�i

n + 1

(
n0∑

l=i+1

l∏
j=i

(
1 − �j+1(2� − (1 + �)2�4

max
�j+1))

)1∕2
)]2

≤ 1

(n + 1)2

n0−1∑
i=1

[
c0

(
n0∑

l=i+1

l∏
j=i

(
1 + (1 + �)�2

max
c0)

))]2

(86)≤ 1

(n + 1)2

n0−1∑
i=1

[
c0(1 + (1 + �)�2

max
c0)

2n0

n0∑
l=1

(
1 + (1 + �)�2

max
c0
)−l

]2

(87)≤ 1

(n + 1)2
c2
0
n0

[
(1 + (1 + �)�2

max
c0)

2n0+1

(1 + �)�2
max

c0

]2

(88)≤ n0

(n + 1)2

[
e(1+�)�

2
max

c0(2n0+1)

(1 + �)�2
max

]2
.
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To produce the final bound, we bound the summand (A) highlighted in line (89) by a con-
stant, uniformly over all values of i and n, as follows:

where the inequality in (90) follows from the convexity of e−
c0�

2
x , while that in (91) follows 

by applying an Abel transform.
From the foregoing, the summand term (A) highlighted in (89) can be bounded by

(89)

n∑
i=n

0

L2
i
=

n∑
i=n

0

[
𝛾i

n + 1

(
n−1∑
l=i+1

l∏
j=i

(
1 − 𝛾j+1(2𝜇 − (1 + 𝛽)2𝛷4

max
𝛾j+1))

)1∕2
)]2

≤ 1

(n + 1)2

n∑
i=n

0

[
𝛾i

(
n−1∑
l=i+1

exp

(
−

l∑
j=i

𝛾j+1(2𝜇 − (1 + 𝛽)2𝛷4

max
𝛾j+1))

))]2

<
1

(n + 1)2

n∑
i=n

0

[
c
0

(
c

c + i

)𝛼
(

n−1∑
l=i+1

exp

(
−c

0
𝜇

l∑
j=i

(
c

c + j

)𝛼
))]

�������������������������������������������������������������������������������
≜(A)

2

.

(90)

n−1∑
l=i+1

exp

(
−c

0
�

l∑
j=1

(
c

c + i

)�
)

=

n−1∑
l=i+1

[(
c

c + l

)�

exp

(
−c

0
�

l∑
j=1

(
c

c + i

)�
)](

c + l

c

)�

≤
n−1∑
l=i+1

[
1

c
0
�

(
exp

(
−c

0
�

l−1∑
j=1

(
c

c + i

)�
)

− exp

(
−c

0
�

l∑
j=1

(
c

c + i

)�
))](

c + l

c

)�

(91)

=
1

c0�

{
−
(

c

c + n

)−�

exp

(
−c0�

n∑
j=1

(
c

c + i

)�
)

+
(

c

c + i + 1

)−�

exp

(
−c0�

i+1∑
j=1

(
c

c + i

)�
)

+

n−1∑
l=i+1

exp

(
−c0�

l∑
j=1

(
c

c + i

)�
)[(

c

c + l + 1

)−�

−
(

c

c + l

)−�]}
,

(A) ≤ 1

�

((
c + i + 1

c + i

)�

+
1

(c + i)�

n−1∑
l=i+1

exp

(
−c0�c

� ((c + l)1−� − (c + i)1−�)

1 − �

)
((c + l + 1)� − (c + l)�)

)
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Now, using convexity of x� followed by comparison with an integral, and then a change of 
variable, we have

For the second inequality, we have used that the mapping x → e−d(c+x)
1−�

(c + x)−(1−�) is 
decreasing in x for all x > 1.

By taking the derivative and setting it to zero, we find that l ↦ exp
(
−

c� l

(1−�)

)
l

2�

1−� is 
decreasing on [2�∕c� ,∞) , and so we deduce that when c0�(c + i + 1)1−� ≥ 2�∕c�,

When c0𝜇(c + i + 1)1−𝛼 < 2𝛼∕c𝛼 we can bound the summand of (92) by 1, and

Hence, we conclude that

	�  ◻

Proof  (High probability bound in Theorem 5.1) Once we have established the bound in 
expectation for batchTD with iterate averaging, and the bound on sum of squares of Lip-
schitz constants in the lemma above, the proof of the high probability bound is straight-
forward, and follows by arguments similar to that used in establishing the corresponding 
claim for non-averaged batchTD (see Sect. 8.2.3). 	�  ◻

(92)
n−1∑
l=i+1

exp

(
−c0�

c�((c + l)1−� − (c + i)1−�)

(1 − �)

)
((c + l + 1)� − (c + l)�)

(93)

≤
n−1∑
l=i+1

exp

(
−c0�

c�((c + l)1−� − (c + i)1−�)

(1 − �)

)
�(c + l)−(1−�)

≤ � exp

(
c0�

c�(c + i)1−�

(1 − �)

)[
�

n−1

i

exp

(
−c0�

c�(c + l)1−�

(1 − �)

)
(c + l)−(1−�)dl

]

= � exp

(
c0�

c�(c + i)1−�

(1 − �)

)[
�

c0�(c+n−1)
1−�

c0�(c+i)
1−�

exp

(
−

c�l

(1 − �)

)
l
2�−1

1−� dl

]
.
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(
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(1 − �)

)
�

c0�(c+n)
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1−�
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−

c�l

(1 − �)

)
l
2�−1

1−� dl

≤ (c0�)
2�

1−� (c + i + 1)2� �
c0�(c+n)

1−�

c0�(c+i+1)
1−�

l
−1

1−� dl ≤ 1 − �

�
((c0�(c + i + 1))� .

c0𝜇(c + i + 1)1−𝛼 <
2𝛼

c𝛼
⟹ (c + i + 1)1−𝛼 <

2𝛼

c0𝜇c
𝛼

⟹ i <

[
2𝛼
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𝛼
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1−𝛼

− c − 1.
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i=n0

L2
i
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2� +
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+
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9 � Traffic control application

9.1 � Simulation setup

The idea behind the experimental setup is to study both LSPI and the variant of LSPI, 
fLSPI, where we use batchTDQ as a subroutine to approximate the LSTDQ solution. Algo-
rithm 2 provides the pseudo-code for the latter algorithm.

We consider a traffic signal control application for conducting the experiments. The 
problem here is to adaptively choose the sign configurations for the signalized intersections 
in the road network considered, in order to maximize the traffic flow in the long run. Let L 
be the total number of lanes in the road network considered. Further, let qi(t), i = 1,… , L 
denote the queue lengths and ti(t), i = 1,… , L the elapsed time (since signal turned to red) 
on the individual lanes of the road network. Following Prashanth and Bhatnagar (2011), 
the traffic signal control MDP is formulated as follows: 

State	� st =
(
q1(t),… , qL(t), t1(t),… , tL(t)

)
,

Action	� at belongs to the set of feasible sign configurations,

Single-stage cost	�

 where ui,wi ≥ 0 such that ui + wi = 1 for i = 1, 2 , and u2 > w2 . Here, the set Ip is the set of 
prioritized lanes.
 Function approximation is a standard technique employed to handle high-dimensional 
state spaces (as is the case with the traffic signal control MDP on large road networks). 
We employ the feature selection scheme from Prashanth and Bhatnagar (2012), which is 
briefly described in the following: the features �(s, a) corresponding to any state-action 
tuple (s, a) is an L-dimensional vector, with one bit for each line in the road network. The 
feature value �i(s, a), i = 1,… , L corresponding to lane i is chosen as described in Table 1, 

h(st) = u1

[∑
i∈Ip

u2 ⋅ qi(t) +
∑
i∉Ip

w2 ⋅ qi(t)
]

+ w1

[∑
i∈Ip

u2 ⋅ ti(t) +
∑
i∉Ip

w2 ⋅ ti(t)
]
,

Table 1   Features for the traffic 
control application

State Action Feature �
i
(s, a)

qi < L
1
 and ti < T

1
Red 0.01
Green 0.06

qi < L
1
 and ti ≥ T

1
Red 0.02
Green 0.05

L
1
≤ qi < L

2
 and ti < T

1
Red 0.03
Green 0.04

L
1
≤ qi < L

2
 and ti ≥ T

1
Red 0.04
Green 0.03

qi ≥ L
2
 and ti < T

1
Red 0.05
Green 0.02

qi ≥ L
2
 and ti ≥ T

1
Red 0.06
Green 0.01
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with qi and ti denoting the queue length and elapsed times for lane i. Thus, as the size of the 
network increases, the feature dimension scales in a linear fashion.

Note that the feature selection scheme depends on certain thresholds L1 and L2 on the 
queue length and T1 on the elapsed times. The motivation for using such graded thresh-
olds is owing to the fact that queue lengths are difficult to measure precisely in practice. 
We set (L1,L2, T1) = (6, 14, 130) in all our experiments, and this choice has been used, for 
instance, by Prashanth and Bhatnagar (2012).

We implement both LSPI as well as fLSPI for the above problem. The experiments 
involve two stages—an initial training stage where LSPI/fLSPI is run to find an approxi-
mately optimal policy, and a test stage where ten independent simulations are run using 
the policy that LSPI/fLSPI converged to in the training stage. In the training stage, for 
both LSPI and fLSPI, we collect T = 10000 samples from an exploratory policy that picks 
the actions in a uniformly random manner. For both LSPI and fLSPI, we set � = 0.9 and 
� = 0.1 . We set � , the number of batchTDQ iterations in fLSPI, to 500. This choice is 
motivated by an experiment where we observed that at 500 steps, batchTD is already very 
close to LSTDQ, and taking more steps did not result in any significant improvements for 
fLSPI. We implement the regularized variant of LSTDQ, with regularization constant � set 
to 1. The step-size �k used in the update iteration of batchTDQ is set as recommended by 
Theorem 4.2.

9.2 � Results

We use total arrived road users (TAR), and runtimes as performance metrics for comparing 
the algorithms implemented. TAR is a throughput metric that denotes the total number of 
road users who have reached their destination, while runtimes are measured for the policy 
evaluation step in LSPI/fLSPI. For batchTDQ, which is the policy evaluation algorithm in 
fLSPI, we also report the tracking error, which measures the distance in �2 norm between 
the batchTD iterate �k , k = 1,… , � and LSTDQ solution 𝜃̂T.

We report the tracking error and total arrived road users (TAR) in Figs. 2 and 3, respec-
tively. The run-times obtained from our experimental runs for LSPI and fLSPI is presented 
in Fig.  4. Iteration 1 for fLSPI is used for reporting the tracking error and we observed 
similar behavior across iterations, i.e., we observed that batchTD iterate �� is close to the 

(a) (b)

Fig. 2   Tracking error of batchTDQ in iteration 1 of fLSPI on two grid networks
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corresponding LSTDQ solution in each iteration of fLSPI. The experiments are performed 
for four different grid networks of increasing size and hence, increasing feature dimension.

From Fig.  2a, b, we observe that batchTD algorithm converges rapidly to the corre-
sponding LSTDQ solution. Further, from the runtime plots (see Fig.  4), we notice that 
fLSPI is several orders of magnitude faster than regular LSPI. From a traffic application 
standpoint, we observe in Fig. 3a, b that fLSPI results in a throughput (TAR) performance 
that is on par with LSPI. Moreover, the throughput observed for LSPI/fLSPI is higher than 
that for a traffic light control (TLC) algorithm that cycles through the sign configurations 
in a round-robin fashion, with a fixed green time period for each sign configuration. We 
report the TAR results in Fig. 3a, b for two such fixed timing TLCs with periods 10 and 
20, respectively denoted Fixed10 and Fixed20. The rationale behind this comparison is 
that fixed timing TLCs are the de facto standard. Moreover, the results establish that LSPI 

(a) (b)

Fig. 3   Performance comparison of LSPI and fLSPI using throughput (TAR) on two grid networks

Fig. 4   Run-times of LSPI and 
fLSPI on four road networks
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outperforms fixed timing TLCs that we implemented and fLSPI gives performance compa-
rable to that of LSPI, but at a lower computational cost.

10 � Extension to least squares regression

In this section, we describe the classic parameter estimation problem using the method of 
least squares, the standard approach to solve this problem, and the low-complexity SGD 
alternative. Subsequently, we outline the fast LinUCB algorithm that uses a SGD iterate in 
place of least squares solutions, and present the numerical experiments for this algorithm 
on a news recommendation application.

10.1 � Least squares regression and SGD

In this setting, we are given a set of samples D ≜ {(xi, yi), i = 1,… , T} with the underlying 
observation model yi = x�

i
�∗ + �i ( �i is a bounded, zero-mean random variable, and �∗ is an 

unknown parameter). The least squares estimate 𝜃̂T minimizes 
∑T

i=1
(yi − ��xi)

2 . It can be 
shown that 𝜃̂T = Ā−1

T
bT , where ĀT = T−1

∑T

i=1
xix

�

i
 and b̄T = T−1

∑T

i=1
xiyi.

Notice that, unlike the RL setting, 𝜃̂T here is the minimizer of an empirical loss function. 
However, as in the case of LSTD, the computational cost of a Sherman–Morrison lemma 
based approach for solving the above would be of the order O(d2T) . As in the case of the 
batchTD algorithm, we update the SGD iterate �n using a SA scheme as follows (starting 
with an arbitrary �0),

where, each in is chosen uniformly randomly from {1,… , T} , and �n are step-sizes chosen 
in advance.

Unlike batchTD which is a fixed point iteration, the above is a stochastic gradient 
descent procedure. Nevertheless, using the same proof template as for batchTD earlier, we 
can derive bounds on the computational error, i.e., the distance between �n and the least 
squares solution 𝜃̂T , both in high probability as well as expectation.

10.2 � Main results

10.2.1 � Assumptions

As in the case of batchTD, we make some assumptions on the step sizes, features, noise 
and the matrix ĀT : 

(A1)	� The step sizes �n satisfy 
∑

n �n = ∞ , and 
∑

n 𝛾
2
n
< ∞.

(A2)	� Boundedness of xi , i.e., ‖‖xi‖‖2 ≤ �max , for i = 1,… , T .
(A3)	� The noise {�i} is i.i.d., zero mean and |�i| ≤ � , for i = 1,… , T .
(A4)	� The matrix ĀT is positive definite, and its smallest eigenvalue is at least 𝜇 > 0.

 Assumptions (A2) and (A3) are standard in the context of least squares minimization. As 
for batchTD, in cases when the fourth assumption is not satisfied we can employ either 
explicit regularization or iterate averaging to produce similar results.

(94)�n = �n−1 + �n(yin − ��
n−1

xin )xin ,
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10.2.2 � Asymptotic convergence

An analogue of Theorem 4.1 holds as follows:

Theorem 10.1  Under (A1)–(A4), the iterate 𝜃n → 𝜃̂T a.s. as n → ∞, where �n is given by 
(96) and 𝜃̂T = Ā−1

T
b̄T.

Proof  Follows in a similar manner as the proof of Theorem 4.1. 	�  ◻

10.2.3 � Finite time bounds

An analogue of Theorem 4.2 for this setting holds as follows:

Theorem  10.2  (Error Bound for iterates of SGD) Assume (A1)–(A4). Choosing 
�n =

c0c

(c+n)
 , and c such that c0�2

max
∈ (0, 1) and �c0c ∈ (1,∞), for any 𝛿 > 0,

where

In the above, h(n) ≜ �‖�∗‖2 + ���0��2 + ��maxΓn

�
�2

max
+ ��max.

Proof  See Sect. 10.4. 	�  ◻

With step-sizes specified in Theorem 10.2, we see that the initial error is forgotten faster 
than the sampling error, which vanishes at the rate Õ

(
n−1∕2

)
 , where Õ(⋅) is like O(⋅) with 

the log factors discarded. Thus, the rate derived in Theorem 10.2 matches the asymptoti-
cally optimal convergence rate for SGD type schemes (cf. Nemirovsky and Yudin 1983).

10.3 � Iterate averaging

The expectation and high-probability bounds in Theorem 10.2 as well as earlier works on 
SGD (cf. Hazan and Kale 2011) require the knowledge of the strong convexity constant � . 
Iterate averaged SGD gets rid of this dependence while exhibiting the optimal convergence 
rates both in high probability and expectation and this claim is made precise in the follow-
ing theorem.

Theorem  10.3  (Error Bound for iterate averaged SGD) Under (A2)–(A3), choosing 
�n = c0

(
c

(c+n)

)�

, with � ∈ (1∕2, 1), and c0�2
max

∈ (0, 1), we have, for any 𝛿 > 0,

𝔼
���𝜃n − 𝜃̂T

���2 ≤
KLS
1√
n + c

, and ℙ

�
���𝜃n − 𝜃̂T

���2 ≤
KLS
2√
n + c

�
≥ 1 − 𝛿,

KLS
1
(n) ≜

√
cc0c𝜇

���𝜃0 − 𝜃̂T
���2

(n + c)𝜇c0c−
1

2

+
2ec0ch(n)

2c0c𝜇 − 1
,

KLS
2
(n) ≜ 2

√
ec0ch(n)

�
log 𝛿−1

𝜇c0c − 1
+ K1(n).
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where, writing C0 ≜ ∑∞

n=1
exp(−�c0c

�n1−� and C1 ≜ (exp
(
c0�c

�(1 + c)1−�
)
,

and

Proof  The proof is similar to that of Theorem 5.1 and is provided in "Appendix 1". 	�  ◻

Remark 15  Note that, unlike in the case of Theorem 5.1, there is no dependence on a quantity 
n0 which defines a time when the step sizes have become sufficiently small. This is because 
for the regression setting here, the assumption that c0�2

max
∈ (0, 1) already ensures that the 

step sizes are sufficiently small. If it was not possible to set c0 in this way, then a similar 
bound including a dependence on the smallest n such that 𝛾n𝛷2

max
< 1 would be derivable.

10.4 � Proofs for least squares regression extension

The overall schema of the proof here is the same as that used to prove Theorem  4.2. 
Proposition 10.1 below is an analogue of Proposition 8.1 for the least squares setting. 
From this proposition the derivation of the rates in Theorem 10.2 is essentially the same 
as for Theorem 4.2 and 𝜃̂T = Ā−1

T
bT.

Proposition 10.1  Let zn = 𝜃n − 𝜃̂T, where �n is given by (94), Under (A1)–(A4), and 
assuming that �n�2

max
≤ 1 for all n, we have ∀𝜖 > 0 , 

(1)	 a bound in high probability for the centered error: 

 where 

 and Γn ≜ ∑n

i=1
�i.

(95)𝔼
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
KIA
1
(n)

(n + c)𝛼∕2
and ℙ

(
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
KIA
2
(n)

(n + c)𝛼∕2

)
≥ 1 − 𝛿,

KIALS
1

(n) ≜ C0

�
C1

���0 − �T
��2 + 2h(n)c�c0

�
2c0�c

�
� �

(1−�)

√
e
�

2�

1 − �

� 1

2(1−�)

�

+ 2h(n)c�c0
�
2c0�c

�
� �

2(1−�) (n + c)1−
�

2 ,

KIALS
2

(n) ≜ 4
√
log �−1

�2c2
0

1

�

�
2� +

��
2�

c0�c
�

� 1

1−�
+

2(1−�)(c0�)
�

�

��

(n + c)(1−�)∕2
+ KIALS

1
(n).

(96)ℙ
���zn��2 − 𝔼��zn��2 ≥ �

� ≤ exp

�
−

�2

4h(n)2
∑n

i=1
L2
i

�
,

Li ≜ �i

n−1�
j=i

(1 − �j+1�(2 −�2
max

�j+1))
1∕2,

h(n) ≜ �‖�∗‖2 + ���0��2 + ��maxΓn

�
�2

max
+ ��max,
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(2)	 and a bound in expectation for the non-centered error: 

The proof of the Proposition 10.1 has the same scheme as the proof of Proposition 
8.1. The major difference is that the update rule is no longer the update rule of a fixed 
point iteration, but of a gradient descent scheme. In the following proofs, we give only 
the major differences with the proof of Proposition 8.1: 

High-probability bound	� There are two alterations to the proof of the high probability 
bound in Proposition 8.1: slightly different Lipschitz constants 
are derived according to the different form of the random inno-
vation (Step 2 of the proof of Proposition 8.1); the constant by 
which the the size of the random innovations is bounded is dif-
ferent, and projection is not necessary to achieve this bound 
(Step 3 of the proof of Proposition 8.1).

Bound in expectation	� The overall scheme of this proof is similar to that used in prov-
ing the expectation bound in Proposition 8.2. However, we see 
differences in the proof wherever the update rule is unrolled, and 
bounds on the various quantities in the resulting expansion need 
to be obtained.

Proof of Proposition 10.1 part (1)  First we derive the Lipschitz dependency of the ith iterate 
on the random innovation at time j < i , as in Step 2 of Proposition 8.1.

Let �i
j
(�) denote the mapping that returns the value of the iterate updated according to 

(94) at instant j, given that �i = � . Now we note that

and

Using Jensen’s inequality, the tower property of conditional expectations, and Cauchy-
Schwarz inequality, we can deduce that

 Notice that since �n�2
max

∈ (0, 1) , the largest eigenvalue of 𝛾nĀT must be less than 1. 
Hence, a repeated application of (98), together with (A1) yields the following

(97)
�
���zn��2

�2 ≤
n�
j=1

�
1 − 𝜇𝛾j

����𝜃0 − 𝜃̂T
���2

���������������������������������
������� �����

+

⎛
⎜⎜⎝

n−1�
k=1

4h(k)2𝛾2
k+1

�
n�

j=k+1

�
1 − 𝜇𝛾j

��2⎞
⎟⎟⎠

1

2

�������������������������������������������������������
�������� �����

.

�i
n
(�) − �i

n
(��) =

(
I − �nxinx

T
in

)[
�i

n−1
(�) − �i

n−1
(��)

]
,

�
I − �nxinx

T
in

�T�
I − �nxinx

T
in

�
=
�
I − �n(2 − ‖xin‖22�n)xinxTin

�
.

(98)
�
�‖𝛩i

n
(𝜃) − 𝛩i

n
(𝜃�)‖2 ∣ 𝛩i

n−1
(𝜃),𝛩i

n−1
(𝜃�)

�

≤ �‖I − 𝛾n(2 −𝛷2
max
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.
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Finally putting all this together, if f and f ′ denote two possible values for the random inno-
vation at time i, and letting � = �i−1 + �if  and �� = �i−1 + �if

� , then we have

Finally we need to bound the size of the random innovations. Recall that in Proposition 8.1, 
the bound on the size of the iterates followed from the projection step in the algorithm. In 
this case, we can derive a bound for the iterates directly:

where we have used that �jxij x
�

j
 is a positive semi-definite matrix. Now, we can bound the 

random innovation by

The proof now follows just as in Proposition 8.1. 	�  ◻

Proof of Proposition 10.1 part (2)  First we extract a martingale difference from the update 
rule (94). Let fn(𝜃) ≜ (xin − (𝜃 − 𝜃̂T )

�xin )xin , and let F(�) ≜ �(fn(�) ∣ Fn−1) , where Fn−1 is 
the �-field generated by the random variables {i1,… , in−1} as before. Then

the �Mn = F(�n−1) − fn(�n−1) is a martingale difference.
Now since 𝜃̂T is the least squares solution, F(𝜃̂T ) = 0 . Moreover F(⋅) is linear, and so we 

obtain the following recursion:

where 𝛱n
k
≜ ∏n

j=k

�
I − 𝛾jĀT

�
.

By Jensen’s inequality, we have

�

[‖‖‖�
i
n
(�) − �i

n
(��)

‖‖‖
2

2

]
≤ ‖‖� − ��‖‖22
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(1 − ��j+1(2 −�2
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2
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Notice that the largest eigenvalue of 𝛾nĀT is smaller than 1, since �n�2
max

∈ (0, 1) . So, 
I − 𝛾nĀT is positive definite, and, by (A1), has largest eigenvalue 1 − �n� . Hence

Finally we need to bound the variance of the martingale difference. Using (A2) and (A3), a 
calculation shows that

where we have used the bound in (99). Hence �[‖‖�Mn
‖‖22] ≤ 4h(n)2.

The result now follows from (100) and (101). 	�  ◻

11 � Fast LinUCB using SA and application to news‑recommendation

11.1 � Background for LinUCB

As illustrated in Fig. 5, at each iteration n, the objective is to choose an article from a pool 
of K articles with respective features x1(n),… , xK(n) . Let xn denote the chosen article at 

(100)�(��zn��2) ≤ �
�(⟨zn, zn⟩)

� 1

2 =

�
����n

1
z0
��22 +

n�
k=1

�2
k
�
����

n
k+1

�Mk
���
2

2

� 1

2

(101)
‖‖‖𝛱

n
k+1

‖‖‖2 =
‖‖‖‖‖‖

n∏
j=k+1

(
I − 𝛾jĀT

)‖‖‖‖‖‖2
≤

n∏
j=k+1

(1 − 𝛾j𝜇).

��,it
⟨fit (�t−1), fit (�t−1)⟩,��⟨F(�t−1),F(�t−1)⟩ ≤ h(n),

Fig. 5   Operational model of LinUCB
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time n. LinUCB computes a regularized least squares (RLS) solution 𝜃̂n based on the cho-
sen arms xi and rewards yi seen so far, i = 1,… , n − 1 as follows:

Note that {xi, yi} do not come from a distribution. Instead, at every iteration n, the arm xn 
chosen by LinUCB is based on the RLS solution 𝜃̂n . The latter is used to estimate the UCB 
values for each of the K articles as follows:

 The algorithm then chooses the article with the largest UCB value, and the cycle is 
repeated. 

11.2 � Fast LinUCB using SA (fLinUCB‑SA)

We implement a fast variant of LinUCB, where SGD is used for two purposes (See Algo-
rithm 3 for the pseudocode): 

Least squares approximation	� Here we use fLS-SA as a subroutine to approxi-
mate 𝜃̂n . In particular, at any instant n of the 
LinUCB algorithm, we run the update (94) for � 
steps, and use the resulting �� to derive the UCB 
values for each arm.

UCB confidence term approximation	� Here we use an SGD scheme for approximating the 
confidence term of the UCB values (103). For a 
given arm k = 1,… ,K , let 𝜙̂k(n) = A−1

n
xk(n) 

(102)𝜃̂n = argmin
𝜃

n�
i=1

(yi − 𝜃�xi)
2 + 𝜆‖𝜃‖2

2
.

(103)UCB(xk(n)) ≜ xk(n)
�𝜃̂n + 𝜅

√
xk(n)

�A−1
n
xk(n), k = 1,… ,K.
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denote the confidence estimate in the UCB value 
(103). Recall that An =

n∑
i=1

xix
�

i
 . It is easy to see 

that 𝜙̂k(n) is the solution to the following problem: 

 Solving the above problem incurs a complexity of O(d2) . An SGD alternative with a per-
iteration complexity of O(d) approximates the solution to (104) by using the following iter-
ative scheme: 

 where il is chosen uniformly at random in the set {1,… , n}.
For fLinUCB-SA in both the simulation setups presented subsequently, we set � to 1, � 

to 1, �, �′ to 100 and �0 to the d = 136-dimensional zero vector. Further, the step-sizes �k 
are chosen as c∕(2(c + k)) , with c = 1.33n , and this choice is motivated by Theorem 10.2.

Remark 16  The choice of the number of steps �, �′ for SGD schemes in fLinUCB-SA is 
an arbitrary one. Our aim is simply to show that using an SGO iterates in place of an exact 
solution to the least squares, and confidence estimates does not significantly decrease per-
formance of LinUCB, while it does drastically decrease the complexity.

11.3 � Experiments on Yahoo! dataset

The motivation in this experimental setup is to establish the usefulness of fLS-SA in a 
higher level machine learning algorithm such as LinUCB. In other words, the objective is 
to test the performance of LinUCB with SGD approximating least squares, and show that 
the resulting algorithm gains in runtime, while exhibiting slightly weaker performance as 
compared to regular LinUCB.

For conducting the experiments, we use the framework provided by the ICML explo-
ration and exploitation challenge (Mary et  al. 2012), based on the user click log dataset 
(Webscope 2011) for the Yahoo! front page today module (see Fig. 6). We run each algo-
rithm on several data files corresponding to different days in October, 2011.

Each data file has an average of nearly two million records of user click information. 
Each record in the data file contains various information obtained from a user visit. These 
include the displayed article, whether the user clicked on it or not, user features and a list 
of available articles that could be recommended. The precise format is described in Mary 
et al. (2012). The evaluation of the algorithms in this framework is done in an off-line man-
ner using a procedure described in Li et al. (2011).

We report the tracking error and runtimes from our experimental runs in Figs. 7 and 
8, respectively. As in the case of batchTDQ, the tracking error is the distance in �2 norm 
between the fLS-SA iterate �n and the RLS solution 𝜃̂n at each instant n of the LinUCB 
algorithm. The runtimes in Fig. 8 are for five different data files corresponding to five days 
in October, 2009 of the dataset (Webscope 2011), and we compare the classic RLS solver 
time against fLS-SA time for each day of the dataset considered.

From Fig.  7, we observe that, in iteration n = 165 of the LinUCB algorithm, fLS-
SA algorithm iterate �� (n) converges rapidly to the corresponding RLS solution 𝜃̂n . The 

(104)min
�

n∑
i=1

(x�
i
�)2

2
−

xk(n)
��

n
.

(105)�k(l) = �k(l − 1) + �l(n
−1xk(n) − (�k(l − 1)�xil )xil ),
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choice 165 for the iteration is arbitrary, as we observed similar behavior across itera-
tions of LinUCB.

The CTR score value is the ratio of the number of clicks that an algorithm gets to the 
total number of iterations it completes, multiplied by 10000 for ease of visualization. 
We observed that the CTR score for the regular LinUCB algorithm with day 2’s data 
file as input was 470, while that of fLinUCB-SA was 390, resulting in about 20% loss 
in performance. Considering that the dataset contains very sparse features and also the 
fact that the rewards are binary, with a reward of 1 occurring rarely, we believe LinUCB 
has not seen enough data to have converged UCB values, and hence the observed loss in 
CTR may not be conclusive.

Fig. 6   The Featured tab in 
Yahoo! Today module (src: Li 
et al. 2010)

Fig. 7   Distance between fLS-SA iterate �
k
(n) and 𝜃̂

n
 in iteration n = 165 of fLinUCB-SA, with day 2’s data 

file as input
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12 � Conclusions and future work

We analyzed the TD algorithm with linear function approximation, under uniform sampling 
from a dataset. We provided convergence rate results for this algorithm, both in high prob-
ability and in expectation. Furthermore, we also established that using our batchTD scheme 
in place of LSTD does not impact the rate of convergence of the approximate value function 
to the true value function. These results coupled with the fact that the batchTD algorithm 
possesses lower computational complexity in comparison to traditional techniques makes 
it attractive for implementation in big data settings, where the feature dimension is large, 
regardless of the density of the feature vectors. On a traffic signal control application, we 
demonstrated the practicality of a low-complexity alternative to LSPI that uses batchTDQ in 
place of LSTDQ for policy evaluation. We also extended our analysis to bound the error of an 
SGD scheme for least squares regression, and conducted a set of experiments that combines 
the SGD scheme with the LinUCB algorithm on a news-recommendation platform.

Unlike LSTD, TD is an online algorithm and a finite-time analysis there would require 
notions of mixing time for Markov chains in addition to the solution scheme that we 
employed in this work. This is because the asymptotic limit for TD(0) is the fixed point of 
the Bellman operator, which assumes that the underlying MDP is begun from the stationary 
distribution, say � . However, the samples provided to TD(0) come from simulations of the 
MDP that are not begun from � , making the finite time analysis challenging. It would be an 
interesting future research direction to use the proof technique employed to analyze batchTD, 
and incorporate the necessary deviations to handle the more general Markov noise.

We outline a few future research directions for improving batchTD algorithm devel-
oped here: (i) develop extensions of batchTD to approximate LSTD(� ); (ii) choose a cyclic 
sampling scheme instead of the uniform random sampling. Cycling through the samples is 
advantageous because the samples need not be stored, and one can then think of batchTD 
with cyclic sampling as an incremental algorithm in the spirit of TD; and (iii) leverage 
recent enhancements to SGD in the context of least squares regression, cf. Dieuleveut 
et  al. (2016). An orthogonal direction of future research is to develop online algorithms 

Fig. 8   Performance comparison of the algorithms using runtimes on various days of the dataset
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that track the corresponding batch solutions, efficiently and this has been partially accom-
plished by Korda et al. (2015), and Tarrès and Yao (2011).

Appendix 1: Proof of Theorem 10.3

The proof of Theorem 10.3 relies on a general rate result built from Proposition 10.1

Proposition 13.1  Under (A1)–(A3) we have, for all � ≥ 0 and ∀n ≥ 1,

 where Li ≜ �i

n

�
∑n−1

l=i+1

l∏
j=i

�
1 − ��j+1(2 −�2

max
�j+1))

�1∕2
�

, and h(n) is as in Proposition 

10.1.

Proof  This proof follows exactly the proof of Proposition 8.3, except that it uses the form 
of Li for non-averaged iterates as derived in Proposition 10.1 part (1), rather than as derived 
in Proposition 8.1 part (1). 	�  ◻

We specialise this result with the choice of step size �n ≜ (c0c
�)∕(n + c)� . First, we 

prove the form of the Li constants for this choice of step size in the lemma below.

Lemma 13.1  Under conditions of Theorem 10.3, we have

Second, we bound the expected error by directly averaging the errors of the non-aver-
aged iterates:

and directly applying the bounds in expectation given in Proposition 8.1.

Lemma 13.2  Under conditions of Theorem 10.3, we have

where C0 and C1 are as defined in Theorem 10.3.
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Proof of Lemma 13.1

Recall from the statement of Theorem 10.3 that

Recall also from the formula in Proposition 13.1, that

Notice that

To produce the final bound, we bound the summand (A) highlighted in line (91) by a con-
stant, uniformly over all values of i and n, exactly as in the proof of Lemma 8.1. Thus, we 
have

The rest of the proof follows that of Theorem 4.2. 	�  ◻

Proof of Lemma 13.2

Recall that �n ≜ c0

(
c

(c+n)

)�

 . Recall that in Theorem 10.3 we have assumed that

 Using (99), we have
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To obtain (109), we have applied (108). For the final inequality, we have exponentiated the 
logarithm of the products, and used the inequality ln(1 + x) < x in several places.

Continuing the derivation, we have
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As in the proof of Theorem 5.1, for arriving at (111), we have used Jensen’s inequality, and 
that 

∑n−1

j=k
(c + j)−� ≥ ∫ n

j=k
(c + j)1−�dj = (c + n)1−� − (c + k)1−� . To obtain (112), we have 

upper bounded the sum with an integral, the validity of which follows from the observa-
tion that x ↦ x−2�ex

1−� is convex for x ≥ 1 . Finally, for (113), we have applied the change of 
variables y = (2c0�c

�)1∕(1−�)x.

Now, since y−2� ≤ 2

1−�
((1 − �)y−2� − �y−(1+�)) when y ≥ (

2�

1−�

) 1

1−� , we have

and furthermore, since y ↦ y−2� exp(y1−�) is decreasing for y ≤ (
2�

1−�

) 1

1−� , we have

Plugging these into (113), we obtain

Hence, we obtain

	�  ◻
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