
Vol.:(0123456789)

Machine Learning (2021) 110:559–618
https://doi.org/10.1007/s10994-020-05912-5

1 3

Concentration bounds for temporal difference learning
with linear function approximation: the case of batch data
and uniform sampling

L. A. Prashanth1  · Nathaniel Korda2 · Rémi Munos3

Received: 4 August 2014 / Revised: 28 January 2020 / Accepted: 8 September 2020 /
Published online: 4 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
We propose a stochastic approximation (SA) based method with randomization of samples
for policy evaluation using the least squares temporal difference (LSTD) algorithm. Our
proposed scheme is equivalent to running regular temporal difference learning with linear
function approximation, albeit with samples picked uniformly from a given dataset. Our
method results in an O(d) improvement in complexity in comparison to LSTD, where d is
the dimension of the data. We provide non-asymptotic bounds for our proposed method,
both in high probability and in expectation, under the assumption that the matrix underly-
ing the LSTD solution is positive definite. The latter assumption can be easily satisfied for
the pathwise LSTD variant proposed by Lazaric (J Mach Learn Res 13:3041–3074, 2012).
Moreover, we also establish that using our method in place of LSTD does not impact the
rate of convergence of the approximate value function to the true value function. These rate
results coupled with the low computational complexity of our method make it attractive for
implementation in big data settings, where d is large. A similar low-complexity alterna-
tive for least squares regression is well-known as the stochastic gradient descent (SGD)
algorithm. We provide finite-time bounds for SGD. We demonstrate the practicality of our
method as an efficient alternative for pathwise LSTD empirically by combining it with the
least squares policy iteration algorithm in a traffic signal control application. We also con-
duct another set of experiments that combines the SA-based low-complexity variant for
least squares regression with the LinUCB algorithm for contextual bandits, using the large
scale news recommendation dataset from Yahoo.

Editor: Csaba Szepesvari.

A portion of this work was done when the authors were at INRIA Lille - Nord Europe.

 *	 L. A. Prashanth
	 prashla@cse.iitm.ac.in

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0362-6730
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05912-5&domain=pdf

560	 Machine Learning (2021) 110:559–618

1 3

1  Introduction

Several machine learning problems involve solving a linear system of equations from a
given set of training data. In this paper, we consider the problem of policy evaluation in
reinforcement learning (RL). The objective here is to estimate the value function V� of a
given policy � . Temporal difference (TD) methods are well-known in this context, and they
are known to converge to the fixed point V� = T

�(V�) , where T� is the Bellman operator
(see Sect. 3.1 for a precise definition).

The TD algorithm stores an entry representing the value function estimate for each state,
making it computationally difficult to implement for problems with large state spaces. A
popular approach to alleviate this curse of dimensionality is to parameterize the value func-
tion using a linear function approximation architecture. For every s in the state space S , we
approximate V�(s) ≈ ���(s) , where �(⋅) is a d-dimensional feature vector with d << |S| ,
and � is a tunable parameter. The function approximation variant of TD is known to con-
verge to the fixed point of �� = �T

�(��) , where � is the orthogonal projection onto the
space within which we approximate the value function, and � is the feature matrix that
characterizes this space (Tsitsiklis and Van Roy 1997). For a detailed treatment of this sub-
ject matter, the reader is referred to the classic textbooks (Bertsekas and Tsitsiklis 1996;
Sutton and Barto 1998).

Batch reinforcement learning is a popular paradigm for policy learning. Here, we
are provided with a (usually) large set of state transitions D ≜ {(si, ri, s

�
i
), i = 1,… , T)}

obtained by simulating the underlying Markov decision process (MDP). For every
i = 1,… , T  , the 3-tuple (si, ri, s�i) corresponds to a transition from state si to s′

i
 and the

resulting reward is denoted by ri . The objective is to learn an approximately optimal policy
from this set. Least squares policy iteration (LSPI) (Lagoudakis and Parr 2003) is a well-
known batch RL algorithm in this context, and it is based on the idea of policy iteration. A
fundamental component of LSPI is least squares temporal difference (LSTD) (Bradtke and
Barto 1996), which is introduced next.

LSTD estimates the fixed point of �T
� , for a given policy � , using empirical data D .

The LSTD estimate is given as the solution to

We consider a special variant of LSTD called pathwise LSTD, proposed by Lazaric et al.
(2012). The idea behind pathwise LSTD is to (i) have the dataset D created using a sample
path simulated from the underlying MDP for the policy � , and (ii) set s�

T
= 0 while com-

puting ĀT defined above. The latter setting ensures the existence of the LSTD solution 𝜃̂T
under the condition that the family of features on the dataset D are linearly independent.

Our primary focus in this work is to solve the LSTD system in a computationally effi-
cient manner. Solving (1) is computationally expensive, especially when d is large. For
instance, in the case when Ā−1

T
 is invertible, the complexity of the approach above is

O(d2T) , where Ā−1
T

 is computed iteratively using the Sherman–Morrison lemma. On the
other hand, if we employ the Strassen algorithm or the Coppersmith–Winograd algorithm
for computing Ā−1

T
 , the complexity is of the order O(d2.807) and O(d2.375) , respectively, in

addition to O(d2T) complexity for computing ĀT . An approach for solving (1) without
explicitly inverting ĀT is computationally expensive as well.

(1)

𝜃̂T = Ā−1
T
b̄T ,

where ĀT ≜ 1

T

T∑
i=1

𝜙(si)(𝜙(si) − 𝛽𝜙(s�
i
))�, and b̄T ≜ 1

T

T∑
i=1

ri𝜙(si).

561Machine Learning (2021) 110:559–618	

1 3

From the above discussion, it is evident that LSTD scales poorly with the number of
features, making it inapplicable for large datasets with many features. We propose the
batchTD algorithm to alleviate the high computation cost of LSTD in high dimensions.
The batchTD algorithm replaces the inversion of the ĀT matrix by the following iterative
procedure that performs a fixed point iteration (see Fig. 1 for an illustration): Set �0 arbi-
trarily and update

where each in is chosen uniformly at random from the set {1,… , T} , and �n are step-sizes
that satisfy standard stochastic approximation conditions. The random sampling is suffi-
cient to ensure convergence to the LSTD solution. The update iteration (2) is of order O(d),
and our bounds show that after T iterations, the iterate �T is very close to LSTD solution,
with high probability. The advantage of the scheme above is that it incurs a computational
cost of O(dT), while a traditional LSTD solver based on Sherman–Morrison lemma would
require O(d2T).

The update rule in (2) resembles that of TD(0) with linear function approximation, jus-
tifying the nomenclature ‘batchTD’. Note that regular TD(0) with linear function approxi-
mation uses a sample path from the Markov chain underlying the policy considered. In
contrast, the batchTD algorithm performs the update iteration using a sample picked uni-
formly at random from a dataset. We establish, through non-asymptotic bounds, that using
batchTD in place of LSTD does not impact the convergence rate of LSTD to the true value
function. The advantage with batchTD is the low computational cost in comparison to
LSTD.

From a theoretical standpoint, the scheme (2) comes under the purview of stochastic
approximation (SA). Stochastic approximation is a well-known technique that was origi-
nally proposed for finding zeroes of a nonlinear function in the seminal work of Robbins
and Monro (1951). Iterate averaging is a standard approach to accelerate the convergence
of SA schemes and was proposed independently by Ruppert (1991) and Polyak and Judit-
sky (1992). Non asymptotic bounds for Robbins Monro schemes have been provided by
Frikha and Menozzi (2012) and extended to incorporate iterate averaging by Fathi and
Frikha (2013). The reader is referred to Kushner and Yin (2003) for a textbook introduc-
tion to SA.

Improving the complexity of TD-like algorithms is a popular line of research in RL.
The popular Computer Go setting (Silver et al. 2007), with dimension d = 106 , and several
practical application domains (e.g. transportation, networks) involve high-feature dimen-
sions. Moreover, considering that linear function approximation is effective with a large
number of features, our O(d) improvement in complexity of LSTD by employing a TD-like
algorithm on batch data is meaningful. For other algorithms treating this complexity prob-
lem, see GTD (Sutton et al. 2009a), GTD2 (Sutton et al. 2009b), iLSTD (Geramifard et al.

(2)�n = �n−1 + �n

(
rin + ���

n−1
�(s�

in
) − ��

n−1
�(sin)

)
�(sin),

Fig. 1   Overall flow of the the batchTD algorithm

562	 Machine Learning (2021) 110:559–618

1 3

2007) and the references therein. In particular, iLSTD is suitable for settings where the
features admit a sparse representation.

In the context of improving the complexity of LSTD, our contributions can be sum-
marized as follows: First, through finite sample bounds, we show that our batchTD algo-
rithm (2) converges to the pathwise LSTD solution at the optimal rate of O(n−1∕2) in
expectation (see Theorem 4.2 in Sect. 4). By projecting the iterate (2) onto a compact
and convex subset of ℝd , we are able to establish high probability bounds on the error ‖‖‖𝜃n − 𝜃̂T

‖‖‖2 . In particular, we show that, with probability 1 − � , the batchTD iterate �n
constructs an �-approximation of the corresponding pathwise LSTD solution with
O(d ln(1∕�)∕�2) complexity, irrespective of the number of batch samples T. The above
rate results are for a step-size choice that is inversely proportional to the number of iter-
ations of (2), and also require the knowledge of the minimum eigenvalue of the symmet-
ric part of ĀT . We overcome the latter dependence on the knowledge of the minimum
eigenvalue through iterate averaging. As an aside, we note that using completely parallel
arguments to those used in arriving at non-asymptotic bounds for batchTD, one could
derive bounds for the regular TD algorithm with linear function approximation, albeit
for the special case when the underlying samples arrive in an i.i.d. fashion. Second,
through a performance bound, we establish that using our batchTD algorithm in place
of LSTD does not impact the rate of convergence of the approximate value function to
the true value function.

Third, we investigate the rates when larger step sizes ( �(n−�) where � ∈ (1/2, 1)) are
used in conjunction with averaging of the iterates, i.e., the well known Polyak-Ruppert
averaging scheme. The rate obtained in high probability for the iterate-averaged variant is
of the order O(n−�∕2) , with the added advantage that, unlike non-averaged case, the step-
size choice does not require knowledge of the minimum eigenvalue of the symmetric part
of ĀT . Further, with iterate averaging the complexity of the algorithm stays at O(d) per iter-
ation, as before. Fourth, we consider a traffic control application, and implement a variant
of LSPI which uses the batchTD algorithm in place of LSTD. In particular, for the experi-
ments we employ step-sizes that were used to derive the non-asymptotic bounds mentioned
above. We demonstrate that running batchTD for a short number of iterations ( ∼ 500 ) on
big-sized problems with feature dimension ∼ 4000 , one gets a performance that is almost
as good as regular LSTD at a significantly lower computational cost.

We now turn our attention to solving least squares regression problems via the popu-
lar stochastic gradient descent (SGD) method. Many practical machine learning algo-
rithms require computing the least squares solution at each iteration in order to make a
decision. As in the case of LSTD, classic least squares solution schemes such as Sher-
man–Morrison lemma are of complexity of the order O(d2) . A practical alternative is to
use a SA based iterative scheme that is of the order O(d). Such SA-based schemes when
applied to the least squares parameter estimation context are well known in the ML lit-
erature as SGD algorithms.

We also analyze the low-complexity SGD alternative for the classic least squares
parameter estimation problem. Using the same template as for the results of batchTD,
we derive non-asymptotic bounds, which hold both in high probability as well as in
expectation, for the tracking error ‖𝜃n − 𝜃̂T‖2 . Here �n is the SGD iterate, while 𝜃̂T is the
least squares solution. We describe a fast variant of the LinUCB (Li et al. 2010) algo-
rithm for contextual bandits, where the SGD iterate is used in place of the least squares
solution. We demonstrate the empirical usefulness of the SGD-based LinUCB algo-
rithm using the large scale news recommendation dataset from Yahoo (Webscope 2011).

563Machine Learning (2021) 110:559–618	

1 3

We observe that, using the step-size suggested by our bounds, the SGD-based LinUCB
algorithm exhibits low tracking error, while providing significant computational gains.

The rate results coupled with the low complexity of our schemes, in the context of
LSTD as well as least squares regression, make them more amenable to practical imple-
mentation in the canonical big data settings, where the dimension d is large. This is amply
demonstrated in our applications in transportation and recommendation systems domains,
where we establish that batchTD and SGD perform almost as well as regular LSTD and
regression solvers, albeit with much less computation (and with less memory). Note that
the empirical evaluations are for higher level machine learning algorithms—least squares
policy iteration (LSPI) (Lagoudakis and Parr 2003), and linear bandits (Dani et al. 2008; Li
et al. 2010), which use LSTD and regression in their inner loops.

The rest of the paper is organized as follows: In Sect. 2, we discuss related work. In
Sect. 2.2 we present the batchTD algorithm, and in Sect. 4 we provide the non-asymptotic
bounds for this algorithm. In Sect. 5, we analyze a variant of our algorithm that incor-
porates iterate averaging. In Sect. 6, we compare our bounds to those in recent work.
In Sect. 7, we describe a variant of LSPI that uses batchTD in place of LSTD. Next, in
Sect. 8, we provide detailed proofs of convergence, and derivation of rates. We provide
experiments on a traffic signal control application in Sect. 9. In Sect. 10, we provide exten-
sions to solve the problem of least squares regression and in Sect. 11, we provide a set of
experiments that tests a variant of the LinUCB algorithm using a SGO subroutine for least
squares regression. Finally, in Sect. 12 we provide the concluding remarks.

2 � Literature review

2.1 � Previous work related to LSTD

In Chapter 6 of Konda (2002), the authors establish that LSTD has the optimal asymptotic
convergence rate, while by Antos et al. (2008) and Lazaric et al. (2012), the authors pro-
vide a finite time analysis for LSTD and LSPI. Recent work by Tagorti and Scherrer (2015)
provides sample complexity bounds for LSTD(� ). LSPE(� ), which is an algorithm that is
closely related to LSTD(� ), is analyzed by Yu and Bertsekas (2009). The authors there pro-
vide asymptotic rate results for LSPE(� ), and show that it matches that of LSTD(� ). Also
related is the work by Pires and Szepesvári (2012), where the authors study linear systems
in general, and as a special case, provide error bounds for LSTD with improved depend-
ence on the underlying feature dimension.

A closely related contribution that is geared towards improving the computational
complexity of LSTD is iLSTD (Geramifard et al. 2007). However, the analysis for iLSTD
requires that the feature matrix be sparse, while we provide finite-time bounds for our fast
LSTD algorithm without imposing sparsity on the features. Another line of related pre-
vious work is GTD (Sutton et al. 2009a), and its later enhancement GTD2 (Sutton et al.
2009b). The latter algorithms feature an update iteration that can be viewed as gradient
descent and operate in the online setting similar to the regular TD algorithm with function
approximation. However, the advantage with GTD/GTD2 is that these algorithms are prov-
ably convergent to the TD fixed point even when the policy used for collecting samples
differs from the policy being evaluated—the so-called off-policy setting. Recent work by
Liu et al. (2015) provides finite time analysis for the GTD algorithm. Unlike GTD-like
algorithms, we operate in an offline setting with a batch of samples provided beforehand.

564	 Machine Learning (2021) 110:559–618

1 3

LSTD is a popular algorithm here, but has a bad dependency in terms of computational
complexity on the feature dimension, and we bring this down from O(d2) to O(d) by run-
ning an algorithm that closely resembles TD on the batch of samples. This algorithm is
shown to retain the convergence rate of LSTD.

To the best of our knowledge, efficient SA algorithms that approximate LSTD without
impacting its rate of convergence have not been proposed before in the literature. The high
probability bounds that we derive for batchTD do not directly follow from earlier work
on LSTD algorithms. Concentration bounds for SA schemes have been derived by Frikha
and Menozzi (2012). While we use their technique for proving the high-probability bound
on batchTD iterate (see Theorem 4.2), our analysis is more elementary, and we make all
the constants explicit for the problem at hand. Moreover, in order to eliminate a possible
exponential dependence of the constants in the resulting bound on the reciprocal of the
minimum eigenvalue of the symmetric part of ĀT , we depart from the argument by Frikha
and Menozzi (2012).

Finite sample analysis of TD with linear function approximation has received more
attention in recent works (cf. Dalal et al. 2018; Bhandari et al. 2018; Lakshminarayanan
and Szepesvari 2018). A detailed comparison of our bounds to those in the aforementioned
references is provided in Sect. 6.

This paper is an extended version of an earlier work (see Prashanth et al. 2014). This
work corrects the errors in the earlier work by using significant deviations in the proofs,
and includes additional simulation experiments. Finally, by Narayanan and Szepesvári
(2017), the authors list a few problems with the results and proofs in the conference version
(Prashanth et al. 2014), and the corrections incorporated in this work address the com-
ments by Narayanan and Szepesvári (2017).

2.2 � Previous work related to SGD

Finite time analysis of SGD methods have been provided by Bach and Moulines (2011).
While the bounds by Bach and Moulines (2011) are given in expectation, many machine
learning applications require high probability bounds, which we provide for our case.
Regret bounds for online SGD techniques have been given by Zinkevich (2003); Hazan
and Kale (2011). The gradient descent algorithm by Zinkevich (2003) is in the setting of
optimising the average of convex loss functions whose gradients are available, while that
by Hazan and Kale (2011) is for strongly convex loss functions.

In comparison to previous work w.r.t. least squares regression, we highlight the follow-
ing differences:

Earlier works on strongly convex optimization (cf. Hazan and Kale 2011) require the
knowledge of the strong convexity constant in deciding the step-size. While one can regu-
larize the problem to get rid of the step-size dependence on � , it is not straightforward to
choose the regularization constant. Notice that for SGD type schemes, one requires that the
matrix ĀT have a minimum positive eigenvalue � . Equivalently, this implies that the origi-
nal problem is regularized with T� . This may turn out to be too high a regularization and
hence it is desirable to have SGD get rid of this dependence without changing the problem
itself. This is precisely what iterate-averaged SGD achieves, i.e., optimal rates both in high
probability and expectation even for the un-regularized problem. To the best of our knowl-
edge, there is no previous work that provides non-asymptotic bounds, both in high prob-
ability and in expectation, for iterate-averaged SGD.

565Machine Learning (2021) 110:559–618	

1 3

Our analysis is for the classic SGD scheme that is anytime, whereas the epoch-GD algo-
rithm by Hazan and Kale (2011) requires the knowledge of the time horizon.

While the algorithm by Bach and Moulines (2013) is shown to exhibit the optimal rate
of convergence without assuming strong convexity, the bounds there are in expectation
only. In contrast, for the special case of strongly convex functions, we derive high-proba-
bility bounds in addition to bounds in expectation. Furthermore, the bound in expectation
from Bach and Moulines (2011) is not optimal for a strongly convex function in the sense
that the initial error (which depends on where the algorithm started) is not forgotten as fast
as the rate that we derive.

On a minor note, our analysis is simpler since we work directly with least squares prob-
lems, and we make all the constants explicit for the problems considered.

3 � TD with uniform sampling on batch data (batchTD)

We propose here a stochastic approximation variant of the LSTD algorithm, whose iterates
converge to the same fixed point as the regular LSTD algorithm, while incurring much
smaller overall computational cost. The algorithm, which we call batchTD, is a simple sto-
chastic approximation scheme that updates incrementally using samples picked uniformly
from batch data. The results that we present establish that the batchTD algorithm computes
an �-approximation to the LSTD solution 𝜃̂T with probability 1 − � , while incurring a com-
plexity of the order O(d ln(1∕�)∕�2) , irrespective of the number of samples T. In turn, this
enables us to give a performance bound for the approximate value function computed by
the batchTD algorithm.

In the following section, we provide a brief background on LSTD and pathwise LSTD.
In the subsequent section, we present our batchTD algorithm.

3.1 � Background

Consider an MDP with state space S and action space A , both assumed to be finite. Let
p(s, a, s�) , s, s� ∈ S, a ∈ A denote the probability of transitioning from state s to s′ on action
a. Let � be a stationary randomized policy, i.e., �(s, ⋅) is a distribution over A , for any
s ∈ S . The value function V� is defined by

where st denotes the state of the MDP at time t, � ∈ [0, 1) the discount factor, and r(s, a)
denotes the instantaneous reward obtained in state s under action a. The value function V�
can be expressed as the fixed point of the Bellman operator T� defined by

When the cardinality of S is huge, a popular approach is to parameterize the value func-
tion using a linear function approximation architecture, i.e., for every s ∈ S , approximate
V�(s) ≈ �(s)�� , where �(s) is a d-dimensional feature vector for state s with d ≪ |S| , and �
is a tunable parameter. With this approach, the idea is to find the best approximation to the

(3)V�(s) ≜ �

[
∞∑
t=0

� t
∑
a∈A

r(st, a)�(st, a) ∣ s0 = s

]
,

(4)T�(V)(s) ≜ ∑
a∈A

�(s, a)

(
r(s, a) + �

∑
s�

p(s, a, s�)V(s�)

)
.

566	 Machine Learning (2021) 110:559–618

1 3

value function V� in B = {�� ∣ � ∈ ℝ
d} , which is a vector subspace of ℝ|S| . In this setting,

it is no longer feasible to find the fixed point V� = T
�V� . Instead, one can approximate V�

within B by solving the following projected system of equations:

In the above, � denotes the feature matrix with rows �(s)�,∀s ∈ S , and � is the orthogo-
nal projection onto B . Assuming that the matrix � has full column rank, it is easy to derive
that � = �(����)−1��� , where � is the diagonal matrix whose diagonal elements form
the stationary distribution (assuming it exists) of the Markov chain associated with the pol-
icy �.

The solution �∗ of (5) can be re-written as follows (cf. Bertsekas 2012, Section 6.3):

 where P = [P(s, s�)]s,s�∈S is the transition probability matrix with components
P(s, s�) =

∑
a∈A �(s, a)p(s, a, s�) , R is the vector with components

∑
a∈A �(s, a)r(s, a) , for

each s ∈ S , and � the stationary distribution (assuming it exists) of the Markov chain for
the underlying policy �.

In the absence of knowledge of the transition dynamics P and stationary distribu-
tion � , LSTD is an approach which can approximate the solution �∗ using a batch
of samples obtained from the underlying MDP. In particular it requires a dataset,
D = {(si, ri, s

�
i
), i = 1,… , T)} , where each tuple in the dataset (si, ri, s�i) represents a state-

reward-next-state triple chosen by the policy. The LSTD solution approximates A, b, and �∗
with ĀT , b̄T using the samples in D as follows:

 Denoting the current state feature (T × d)-matrix by � ≜ (�(s1)
�,… ,�(sT)) , next

state feature (T × d)-matrix by �� ≜ (�(s�
1
)�,… ,�(s�

T
)) , and reward (T × 1)-vector by

R = (r1,… , rT)
� , we can rewrite ĀT and b̄T as follows1:

It is not clear whether ĀT is invertible for an arbitrary dataset D . One way to ensure invert-
ibility is to adopt the approach of pathwise LSTD, proposed by Lazaric et al. (2012).
The pathwise LSTD algorithm is an on-policy version of LSTD. It obtains samples,
D by simulating a sample path of the underlying MDP using policy � , so that s�

i
= si+1

for i = 1,… , T − 1 . The dataset thus obtained is perturbed slightly by setting the feature
of the next state of the last transition, �(s�

T
) , to zero. This perturbation, as suggested by

Lazaric et al. (2012), is crucial to ensure that the system of the equations that we solve as
an approximation to (6) is well-posed. For the sake of completeness, we make this precise
in the following discussion, which is based on Sections 2 and 3 of Lazaric et al. (2012).

(5)��∗ = �T
�(��∗).

(6)A�∗ = b, where A ≜ ��� (I − �P)� and b ≜ ���R,

(7)

𝜃̂T = Ā−1
T
b̄T ,

where ĀT ≜ 1

T

T∑
i=1

𝜙(si)(𝜙(si) − 𝛽𝜙(s�
i
))�, and b̄T ≜ 1

T

T∑
i=1

ri𝜙(si).

ĀT =
1

T
(𝛷�𝛷 − 𝛽𝛷�𝛷�), and b̄T =

1

T
𝛷�R.

1  By an abuse of notation, we shall use � to denote the feature matrix for TD as well as LSTD and the
composition of � should be clear from the context.

567Machine Learning (2021) 110:559–618	

1 3

Define the empirical Bellman operator T̂ ∶ ℝ
T → ℝ

T as follows: For any y ∈ ℝ
T,

 Let R̂ be a T × 1 vector with entries ri , i = 1,… , T and (V̂y)i = yi+1 if i < n and 0 other-
wise. Then, it is clear that T̂y = R̂ + 𝛽V̂y.

Let GT ≜ {(𝜙(s1)
�𝜃,… ,𝜙(sT)

�𝜃)� ∣ 𝜃 ∈ ℝ
d} ⊂ ℝ

T be the vector sub-space of ℝT within
which pathwise LSTD approximates the true values of the value function corresponding to
the states s1,… , sT , and it is the empirical analogue of B defined earlier. It is easy to see that
GT = {�� ∣ � ∈ ℝ

d} . Let 𝛱̂ be the orthogonal projection onto GT using the empirical norm,
which is defined as follows: ‖f‖2

T
≜ T−1

∑T

i=1
f (si)

2 , for any function f. Notice that 𝛱̂ T̂ is a
contraction mapping, since

Hence, by the Banach fixed point theorem, there exists some v∗ ∈ GT such that 𝛱̂ T̂v∗ = v∗.
Suppose that the feature matrix � is full rank—an assumption that is standard in the analy-

sis of TD-like algorithms and also beneficial in the sense that it ensures that the system of
equations we attempt to solve is well-posed. Then, it is easy to see that there exists a unique 𝜃̂T
such that v∗ = 𝛷𝜃̂T . Moreover, replacing ĀT in (7) with

where P̂ is a T × T matrix with P̂(i, i + 1) = 1 for i = 1,… , T − 1 , and 0 otherwise. It is
clear that ĀT is invertible and 𝜃̂T is the unique solution to (7).

Remark 1  (Regular versus Pathwise LSTD) For a large dataset D generated from a sample
path of the underlying MDP for policy � , the difference in the matrix used as ĀT in LSTD
and pathwise LSTD is negligible. In particular, the difference in �2-norm of ĀT composed
with and without zeroing out the next state in the last transition of D can be upper bounded
by a constant multiple of 1

T
 . As mentioned earlier, zeroing out the next state in the last tran-

sition of D together with a full-rank � makes the system of equations in (7) well-posed. As
an aside, the batchTD algorithm, which we describe below, would work as a good approxi-
mation to LSTD, as long as one ensures that ĀT is positive definite. Pathwise LSTD pre-
sents one approach to achieve the latter requirement, and it is an interesting future research
direction to derive other conditions that ensure ĀT is positive definite.

3.2 � Update rule and pseudocode for the batchTD algorithm

The idea is to perform an incremental update that is similar to TD, except that the samples are
drawn uniformly randomly from the dataset D . Recall that, in the case of pathwise LSTD, the
dataset corresponds to those along a sample path simulated from the underlying MDP for a
given policy � , i.e., s�

i
= si+1 , i = 1,… , T − 1 and s�

T
= 0.

The full pseudocode for batchTD is given in Algorithm 1. Starting with an arbitrary �0 , we
update the parameter �n as follows:

(8)(T̂y)i ≜
{

ri + 𝛽yi+1, for 1 ≤ i < T , and

rT , for i = T .

���𝛱̂ T̂y − 𝛱̂ T̂z
���T ≤���T̂y − T̂z

���T = 𝛽
���V̂y − V̂z

���T ≤ 𝛽‖y − z‖T .

(9)ĀT =
1

T
𝛷�(I − 𝛽P̂)𝛷,

568	 Machine Learning (2021) 110:559–618

1 3

where each in is chosen uniformly randomly from the set {1,… , T} . In other words, we
pick a sample with uniform probability 1/T from the set D = {(si, ri, s

�
i
), i = 1,… , T)} ,

and use it to perform a fixed point iteration in (10). The quantities �n above are step sizes
that are chosen in advance, and satisfy standard stochastic approximation conditions, i.e., ∑

n �n = ∞ , and
∑

n 𝛾
2
n
< ∞ . The operator � projects the iterate �n onto the nearest point in

a closed ball C ⊂ ℝ
d with a radius H that is large enough to include 𝜃̂T . Note that projection

via � amounts to scaling down the �2-norm of the iterate �n so that it does not exceed H,
and is a computationally inexpensive operation.

In the next section, we present non-asymptotic bounds for the error ‖‖‖𝜃n − 𝜃̂T
‖‖‖2 that hold

with high probability, and in expectation, for the projected iteration in (10). Further, we
also provide an error bound that holds in expectation for a variant of (10) without involving
the projection operation. From the bounds presented below, we can infer that, for a step
size choice that is inversely proportional to the number n of iterations, obtaining the opti-
mal O

�
1∕

√
n
�
 requires the knowledge of the minimum eigenvalue � of 1

2

(
ĀT + Ā�

T

)
 , where

ĀT is a matrix made from the features used in the linear approximation (see assumption
(A1) below). Subsequently, in Sect. 5, we present non-asymptotic bounds for a variant of
the batchTD algorithm, which employs iterate averaging. The bounds for iterate-averaged
batchTD establish that the knowledge of eigenvalue � is not needed to obtain a rate of con-
vergence that can be made arbitrarily close to O

�
1∕

√
n
�
 .

-

4 � Main results for the batchTD algorithm

Map of the results: Theorem 4.1 proves almost sure convergence of batchTD iterate �n to
LSTD solution 𝜃̂T , with and without projection. Theorem 4.2 provides finite time bounds
both in high probability, and in expectation for the error ‖𝜃n − 𝜃̂T‖2 , where �n is given by
(10). We require high probability bounds to qualify the rate of convergence of the approxi-
mate value function ��n to the true value function, i.e., a variant of Theorem 1 by Lazaric
et al. (2012) for the case of the batchTD algorithm. Theorem 4.5 presents a performance
bound for the special case when the dataset D comes from a sample path of the underly-
ing MDP for the given policy � . Note that the first three results above hold irrespective of
whether the dataset D is based on a sample path or not. However, the performance bound
is for a sample path dataset only, and is used to illustrate that using batchTD in place of

(10)�n = �
(
�n−1 + �n

(
rin + ���

n−1
�(s�

in
) − ��

n−1
�(sin)

)
�(sin)

)
,

569Machine Learning (2021) 110:559–618	

1 3

regular LSTD does not harm the overall convergence rate of the approximate value func-
tion to the true value function.

We state all the results in Sects. 4.2–4.5 and provide detailed proofs of all the claims in
Sect. 8. Also, all the results are by default for the projected version of the batchTD algo-
rithm, i.e., �n given by (10), while Sect. 4.4 presents the results for the projection-free
batchTD variant. In particular, the latter section provides both asymptotic convergence and
a bound in expectation for the error ‖𝜃n − 𝜃̂T‖2 for the projection-free variant of batchTD.

4.1 � Assumptions

We make the following assumptions for the analysis of the batchTD algorithm:

(A1)	� The matrix ĀT is positive definite, which implies the smallest eigenvalue � of its
symmetric part 1

2

(
ĀT + Ā�

T

)
 is greater than zero.2

(A2)	� Bounded features: ‖‖𝜙(si)‖‖2 ≤ 𝛷max < ∞, for i = 1,… , T .
(A3)	� Bounded rewards: |ri| ≤ Rmax < ∞ for i = 1,… , T .
(A4)	� The set C ≜ {� ∈ ℝ

d ∣ ‖�‖2 ≤ H} used for projection through � satisfies
H >

‖b̄T‖2

𝜇
 , where � is as defined in (A1).

 In the following sections, we present results for the generalized setting, i.e., the dataset D
does not necessarily come from a sample path of the underlying MDP, but we assume that
the matrix ĀT is positive definite (see (A1)). For pathwise LSTD, (A1) can be replaced by
the following assumption:

(A1’)	� The matrix � is full rank.

Recall that the pathwise LSTD algorithm perturbs the data set slightly, as discussed in
Sect. 3.1 above. Thus, from (9), we have

The inequality above holds because ���P̂v
���2 ≤ ‖v‖2 , and ���P̂�v

���2 ≤ ‖v‖2 , leading to the fact
that 𝜆min

(
I −

𝛽

2

(
P̂ + P̂�

)) ≥ (1 − 𝛽). Thus, it is easy to infer that (A1’) implies (A1), using
(11) in conjunction with the fact that a full rank � implies 𝜇′ > 0.

Note that the dataset is assumed to be fixed for all the results presented below.

4.2 � Asymptotic convergence

Theorem 4.1  Assume (A1)–(A4), and also that the step sizes �n ∈ ℝ+ satisfy
∑

n �n = ∞,
and

∑
n 𝛾

2
n
< ∞. Then, for the iterate �n updated according to (10), we have

Proof  See Sect. 8.1. 	� ◻

(11)� ≥ (1 − �)

T
��, where �� ≜ �min(�

��).

(12)𝜃n → 𝜃̂T a.s. as n → ∞.

2  A real matrix A is positive definite if and only if the symmetric part 1
2
(A + A�) is positive definite.

570	 Machine Learning (2021) 110:559–618

1 3

4.3 � Non‑asymptotic bounds

The main result that bounds the computational error ‖‖‖𝜃n − 𝜃̂T
‖‖‖2 with explicit constants is

given below.

Theorem 4.2  (Error bounds for batchTD) Assume (A1)–(A4). Set �n =
c0c

(c+n)
 such that

c0 ∈ (0,�((1 + �)2�4
max

)−1] and c0c >
1

𝜇
. Then, for any 𝛿 > 0, we have

In the above, K1(n) and K2(n) are functions of order O(1), defined by3:

Proof  See Sect. 8.2. 	� ◻

A few remarks are in order.

Remark 2  (Initial versus sampling error) The bound in expectation above can be re-written
as

The first term on the RHS above is the initial error, while the second term is the sampling
error. The initial error depends on the initial point �0 of the algorithm. The sampling error
arises out of a martingale difference sequence that depends on the random deviation of the
stochastic update from the standard fixed point iteration. From (15), it is evident that the
initial error is forgotten at the rate O

(
1

nc0c�∕2

)
 . Since c0c𝜇 > 1 , the former rate is faster

than the rate O(1∕
√
n) at which the sampling error decays.

Remark 3  (Rate dependence on the minimum eigenvalue � ) We note that setting c such
that c0c� = � ∈ (1,∞) we can rewrite the constants in Theorem 4.2 as:

(13)�
���𝜃n − 𝜃̂T

���2 ≤
K1(n)√
n + c

, and

(14)ℙ

����𝜃n − 𝜃̂T
���2 ≤

K2(n)√
n + c

�
≥ 1 − 𝛿.

K1(n) ≜
���𝜃0 − 𝜃̂T

���2
√
(c + 1)c0c𝜇

√
(n + c)c0c𝜇−1

+
2ec0c

�
Rmax + (1 + 𝛽)H𝛷2

max

�
√
2c0c𝜇 − 1

, and

K2(n) ≜ 2
√
ec0c

�
Rmax + (1 + 𝛽)H𝛷2

max

�
�

log 𝛿−1

c0c𝜇 − 1
+ K1(n).

(15)�
���𝜃n − 𝜃̂T

���2 ≤
���𝜃0 − 𝜃̂T

���2
√
(c + 1)c0c𝜇

(n + c)c0c𝜇∕2
+

2ec0c
�
Rmax + (1 + 𝛽)H𝛷2

max

�
√
2c0c𝜇 − 1

√
n + c

.

3  For notational convenience, we have chosen to ignore the dependence of K
1
 and K

2
 on the confidence

parameter �.

571Machine Learning (2021) 110:559–618	

1 3

So both the bounds in expectation and high probability have a linear dependence on the
reciprocal of � . Note also that the constant (Rmax + (1 + �)H�2

max
) is nothing more than a

bound on the size of the random innovations made by the algorithm at each time step.

Remark 4  (Eigenvalue dependence on � ) Notice that the eigenvalue � is implicitly depend-
ent on �:

Clearly, as � increases, it is harder to satisfy the assumption that 𝜇 > 0 . Moreover, for
pathwise LSTD (see Sect. 3.1), the inequality in (11) underlines an implicit linear depend-
ence of the rates on the reciprocal of (1 − �) . However, the bounds’ exact sensitivity to this
reciprocal is data-dependent.

Remark 5  (Regularization) To obtain the best performance from the batchTD algorithm,
we need to know the value of � . However, we can get rid of this dependency easily by
explicitly regularizing the problem. In other words, instead of the LSTD solution (7), we
obtain the following regularized variant:

where � is now a constant set in advance. The update rule for this variant is

This algorithm retains all the properties of the non-regularized batchTD algorithm, except
that it converges to the solution of (16) rather than to that of (7). In particular, the conclu-
sions of Theorem 4.2 hold without requiring assumption (A1), but measuring ||𝜃n − 𝜃̂

reg

T
||2 ,

the error to the regularized fixed point 𝜃̂reg
T

.

Remark 6  (Computational complexity) Our theoretical results in Theorem 4.2 show that,
with probability 1 − � , batchTD constructs an �-approximation of the pathwise LSTD
solution with O(d ln(1∕�)∕�2) complexity. In other words, for the batchTD estimate to be
within a distance 𝜖 > 0 of the LSTD solution, the number of iterations of (10) would be
proportional to d ln(1∕�)

�2
 . This observation coupled with the fact that each iteration of (10)

is of order O(d) establishes the advantage of batchTD over pathwise LSTD from a time-
complexity viewpoint.

However, batchTD requires storing the entire dataset for the purpose of random sam-
pling. To reduce the storage requirement of batchTD, one could uses mini-batching of the

K1(n) =

���𝜃0 − 𝜃̂T
���2
√
(c + 1)𝜂

√
(n + c)(𝜂−1)

+
2e𝜂

𝜇
√
(2𝜂 − 1)

�
Rmax + (1 + 𝛽)H𝛷2

max

�
, and

K2(n) = 2
√
e
𝜂

𝜇

�
Rmax + (1 + 𝛽)H𝛷2

max

�
�

log 𝛿−1

(𝜂 − 1)
+ K1(n).

𝜇 ≜ 1

2
𝜆min(ĀT + Ā�

T
) =

1

2T
𝜆min

(
2𝛷�𝛷 − 𝛽

(
𝛷��𝛷 +𝛷�𝛷�

))
.

(16)𝜃̂
reg

T
= (ĀT + 𝜇I)−1b̄T ,

(17)�reg
n

=(1 − �n�)�n−1 + �n

(
rin + ���

n−1
�(s�

in
) − ��

n−1
�(sin)

)
�(sin).

572	 Machine Learning (2021) 110:559–618

1 3

dataset, i.e., store smaller subsets of the dataset and run batchTD updates on these mini-
batches. It is an interesting direction for future work to analyze such an approach and rec-
ommend appropriate mini-batch sizes based on the parameters of the underlying policy
evaluation problem. For the case of regression, such an approach has been recommended in
earlier works, cf. Roux et al. (2012).

Remark 7  (TD with linear function approximation) One could use completely parallel
arguments to that in the proof of Theorem 4.2 to obtain rate results for TD(0) with linear
function approximation under i.i.d. samples. A similar observation holds for the bounds
presented below for the projection-free variant of batchTD in Theorem 4.4, and for the
iterate-averaged variant of batchTD in Theorem 5.1.

The bounds for TD with linear function approximation under i.i.d. sampling would be
a side benefit, while the primary message from our work is that one could run TD(0) on
a batch, and obtain a computational advantage, with performance comparable to that of
LSTD. We have used pathwise LSTD to drive home this point.

Finally, note that the regular TD with linear function approximation is under non i.i.d.
sampling (or involving a Markov noise component), and deriving non-asymptotic bounds
for such a setting is beyond the scope of this paper.

4.4 � Projection‑free variant of the batchTD algorithm

Here we consider a projection-free variant of batchTD that updates according to (10), but
with � (�) = �, ∀� ∈ ℝ

d . We now present the results for batchTD without a non-trivial
projection, under assumptions similar to the projected variant of batchTD, i.e., bounded
rewards, features, and a positive lower bound on the minimum eigenvalue � of the symmet-
ric part of ĀT . The results include asymptotic convergence and a bound in expectation on
the error ‖𝜃n − 𝜃̂T‖2 . However, we are unable to derive bounds in high probability without
having the iterates explicitly bounded using �  , and it would be a interesting future research
direction to get rid of this operator for the bounds in high probability.

Theorem 4.3  Assume (A1)–(A3), and also that the step sizes �n ∈ ℝ+ satisfy
∑

n �n = ∞,
and

∑
n 𝛾

2
n
< ∞. Then, for the iterate �n updated according to (10) without projection (i.e.,

� is the identity map), we have

Proof  See Sect. 8.2. 	� ◻

Using a slightly different proof technique, we are able to give a bound in expectation for
the error of the non-projected batchTD, in the result below.

(18)𝜃n → 𝜃̂T a.s. as n → ∞.

573Machine Learning (2021) 110:559–618	

1 3

Theorem 4.4  (Expectation error bound for batchTD without projection) Assume (A2)–
(A4). Set �n =

c0c

(c+n)
 such that c0 ∈ (0,�((1 + �)2�4

max
)−1] and c0c� ∈ (1,∞). Then, we have

where K1(n) is a function of order O(1), defined by:

Proof  See Sect. 8.3. 	� ◻

4.5 � Performance bound

We can combine our error bounds above with the performance bound derived by Lazaric
et al. (2012) for pathwise LSTD. The theorem below shows that using batchTD in place of
pathwise LSTD does not impact the overall convergence rate.

Theorem 4.5  (Performance bound) Let ṽn ≜ 𝛷𝜃n denote the approximate value function
obtained after n steps of batchTD, and let v denote the true value function, evaluated at the
states s1,… , sT along the sample path. Then, under the assumptions (A1)–(A4), with prob-
ability 1 − 2� (taken w.r.t. the random path sampled from the MDP, and the randomization
in batchTD), we have

where ‖f‖2
T
≜ 1

T

T∑
i=1

f (si)
2, for any function f and �′ is the minimum eigenvalue of 1

T
���

(see also (11)).

Proof  The result follows by combining Theorem 4.2 above with Theorem 1 of Lazaric
et al. (2012) using a triangle inequality. 	� ◻

Remark 8  The approximation and estimation errors (first and second terms in the RHS of
(20)) are artifacts of function approximation and least squares methods, respectively. The
third term is a consequence of using batchTD in place of the LSTD. Setting n = T in the
above theorem, we observe that using our scheme in place of LSTD does not impact the
rate of convergence of the approximate value function ṽn to the true value function v.

(19)�
���𝜃n − 𝜃̂T

���2 ≤
K1(n)√
n + c

,

K1(n) ≜
√
3
���𝜃0 − 𝜃̂T

���2
√
(c + 1)c0c𝜇

√
(n + c)c0c𝜇−1

+
2
√
3ec0c

�
Rmax + (1 + 𝛽)

���𝜃̂T
���2𝛷

2
max

�
√
2c0c𝜇 − 1

.

(20)

‖v − ṽn‖T ≤ ‖v −𝛱v‖T√
1 − 𝛽2

�����������
������������� �����

+
𝛽Rmax𝛷max

(1 − 𝛽)

�
d

𝜇�

⎛
⎜⎜⎜⎝

�
8 ln

2d

𝛿

T
+

1

T

⎞
⎟⎟⎟⎠

���
���������� �����

+
𝛷maxK2(n)√

n + c
���������

������������� �����

.

574	 Machine Learning (2021) 110:559–618

1 3

Further, the performance bound in Theorem 4.5, considering only the dimension d, mini-
mum eigenvalue � and sample size T, is of the order O

� √
d

�
√
T

�
 , which is better than the

order O
(

d

�T1∕4

)
 on-policy performance bound for GTD/GTD2 in Proposition 4 of Liu et al.

(2015).

Remark 9  (Generalization bounds) While Theorem 4.5 holds for only states along the sam-
ple path s1,… , sT , it is possible to generalize the result to hold for states outside the sample
path. This approach has been adopted by Lazaric et al. (2012) for regular LSTD, and the
authors there provide performance bounds over the entire state space assuming a stationary
distribution exists for the given policy � , and the underlying Markov chain is mixing fast
(see Lemma 4 by Lazaric et al. (2012)). In the light of the result in Theorem 4.5 above, it
is straightforward to provide generalization bounds similar to Theorems 5 and 6 of Lazaric
et al. (2012) for batchTD as well, and the resulting rates from these generalization bound
variants for batchTD are the same as that for regular LSTD. We omit these obvious gener-
alizations, and refer the reader to Section 5 of Lazaric et al. (2012) for further details.

5 � Iterate averaging

Iterate averaging is a popular approach for which it is not necessary to know the value of
the constant � (see (A1) in Sect. 4) to obtain the (optimal) approximation error of order
O(n−1∕2) . Introduced independently by Ruppert (1991) and Polyak and Juditsky (1992), the
idea here is to use a larger step-size �n ≜ c0(c∕(c + n))� , and then use the averaged iterate,
defined as follows:

where �n is the iterate of the batchTD algorithm, presented earlier. The following result
bounds the the distance of the averaged iterate to the LSTD solution.

Theorem 5.1  (Error Bound for iterate averaged batchTD) Assume (A1)–(A4). Set
�n = c0

(
c

c+n

)�

, with � ∈ (1∕2, 1) and c, c0 > 0. Then, for any 𝛿 > 0, and any

n > n0 ≜ max{⌊
�

2c0(1+𝛽
2)𝛷4

max

𝜇
)1∕𝛼 − 1

�
c⌋, 0}, we have

where

(21)𝜃̄n ≜ 1

n + 1

n∑
i=0

𝜃i,

(22)�
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
KIA
1
(n)

(n + c)𝛼∕2
, and

(23)ℙ

(‖‖‖𝜃̄n − 𝜃̂T
‖‖‖2 ≤

KIA
2
(n)

(n + c)𝛼∕2

)
≥ 1 − 𝛿,

575Machine Learning (2021) 110:559–618	

1 3

Proof  The proof of both the high probability bound as well as the bound in expectation pro-
ceed by splitting the analysis into the error before and after n0 . The individual terms in the
definition of KIA

2
(n) can be classified based on whether they are bounding the error before

or after n0 . In particular, the term labelled (E4) in the definition of KIA
2
(n) is a bound on the

error before n0 , while the terms collected under (E3) are a bound on the error after n0.
While the proof of the bound in expectation involves splitting the analysis before and

after n0 , the resulting bound via KIA
1
(n) does not have a clear split into additive terms that

directly correspond to before or after n0 . However, from the proof presented later, it is
apparent that C1 arises out of a bound on the initial error before n0 , the term involving
the factor labelled (E1) in the definition of KIA

1
(n) arises out of a bound on the sampling

error before n0 . Further, C0 arises out of a bound on the initial error after n0 , and the term
labelled (E2) in KIA

1
(n) is used to bound the sampling error after n0.

For a detailed proof, the reader is referred to Sect. 8.4. 	� ◻

A few remarks are in order.

Remark 10  (Explicit constants) Unlike Fathi and Frikha (2013), where the authors provide
concentration bounds for general stochastic approximation schemes, our results provide an
explicit n0 , after which the error of iterate averaged batchTD is nearly of the order O(1/n).

Remark 11  (Rate dependence on eigenvalue) From the bounds in Theorem 5.1, it is evi-
dent that the dependency on the knowledge of � for the choice of c can be removed through
averaging of the iterates, while obtaining a rate that is close to 1∕

√
n . In particular, iterate

KIA
1
(n) ≜ C0

�
C1C2

���𝜃0 − 𝜃̂T
���2 +

√
e
�

2𝛼

1 − 𝛼

� 1

2(1−𝛼)

+ 2c0C1C2

�
Rmax + (1 + 𝛽)H𝛷2

max

�√
n0

���
(E1)

�
1

(n + 1)(n + c)−
𝛼

2

+
�
Rmax + (1 + 𝛽)H𝛷2

max

�
c𝛼c0

�
2c0𝜇c

𝛼
� 𝛼

2(1−𝛼)

���
E2

,

C0 ≜
∞�
n=1

exp
�
−c0𝜇c

𝛼(n + c)1−𝛼
�
, C1 ≜ exp

�
2c0(1 + 𝛽)𝛷2

max
(n0 + 1)

�
,

C2 ≜ exp
�
c0𝜇c

𝛼(n0 + c + 1)1−𝛼
�
, and

KIA
2
(n) ≜

⎧⎪⎪⎨⎪⎪⎩

4
√
log 𝛿−1

𝜇2c2
0

1

𝜇

�
2𝛼 +

�
2𝛼

c0𝜇c
𝛼

� 1

1−𝛼

+
2(1 − 𝛼)(c0𝜇)

𝛼

𝛼

�

���
(E3)

+

√
n0e

(1+𝛽)𝛷2
max

c0(2n0+1)

(1 + 𝛽)𝛷2
max

(n + 1)
���������������������������

(E4)

⎫⎪⎪⎬⎪⎪⎭

1

(n + 1)(n + c)−
𝛼

2

+ KIA
1
(n).

576	 Machine Learning (2021) 110:559–618

1 3

averaging results in a rate that is of the order O
(
1∕n(1−�)∕2

)
 , where the exponent � has to

be chosen strictly less than 1. Setting � = 1 causes the constant C0 as well as KIA
1
(n),KIA

2
(n)

to blowup and hence, there is a loss of �∕2 in the rate, when compared to non-averaged
batchTD. However, unlike the latter, iterate averaged batchTD does not need the knowl-
edge of � in setting the step size �n.

Remark 12  (Decay rate of initial error) The bound in expectation in Theorem 5.1 can be
re-written as follows:

Thus, the initial error is forgotten at the rate O(1/n), and this is slower than the correspond-
ing rate obtained for the case of non-averaged batchTD (see Remark 2). Hence, as sug-
gested by earlier works on stochastic approximation (cf. Fathi and Frikha 2013), it is pre-
ferred to average after a few iterations since the initial error is not forgotten faster than the
sampling error with averaging.

Remark 13  (Computational cost vs. accuracy) Let 𝜖, 𝛿 > 0 . Then, the number of iterations
n requires to achieve an accuracy � , i.e., ‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤ 𝜖 with probability 1 − � , is of the
order O

(
1

�2∕�
log

(
1

�

))
 . On the other hand, the corresponding number of iterations for the

non-averaged case (see Theorem 4.2) is O
(

1

�2
log

(
1

�

))
.

6 � Recent works: a comparison

Non-asymptotic bounds for TD(0) with linear function approximation are derived in three
recent works—see Dalal et al. (2018); Bhandari et al. (2018); Lakshminarayanan and
Szepesvari (2018). In Dalal et al. (2018); Lakshminarayanan and Szepesvari (2018), the
authors consider the i.i.d. sampling case, while the authors by Bhandari et al. (2018) pro-
vide bounds in the i.i.d. as well as the more general Markov noise settings. As noted ear-
lier in Remark 7, our analysis could be re-used to derive bounds for TD with linear func-
tion approximation in the i.i.d. sampling scenario, while the case of Markov noise is not
handled by us. This observation justifies a comparison of the bounds that we derive for
batchTD to those in the aforementioned references for TD under i.i.d. sampling, and we
provide this comparison below.

In comparison to the references Bhandari et al. (2018) and Lakshminarayanan and Sze-
pesvari (2018), we would like to point out that we derive non-asymptotic bounds that hold
with high probability, in addition to bounds that hold in expectation. The aforementioned
references provide bounds that hold in expectation only.

The bound in expectation that we derived in Theorem 4.2 matches the bound derived
in Bhandari et al. (2018), up to constants. Note that our result in Theorem 4.2, as well as
those in (Bhandari et al. 2018) are for the projected variant of TD(0). In addition, we also
provide a bound in expectation in Theorem 4.4 for the projection-free variant of TD(0).

�
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
C0C1C2

‖‖‖𝜃0 − 𝜃̂T
‖‖‖2

(n + 1)
+

const

(n + c)𝛼∕2
.

577Machine Learning (2021) 110:559–618	

1 3

Continuing the comparison with Bhandari et al. (2018), the bounds in their work require
the knowlege of the minimum eigenvalue � , which is unknown in a typical RL setting. We
get rid of this problematic eigenvalue dependence through iterate averaging, while obtain-
ing a nearly optimal rate of the order O

(
n�∕2

)
 , where 1

2
< 𝛼 < 1.

The bounds by Dalal et al. (2018) are for TD(0) with linear function approximation
under the i.i.d. sampling case, allowing a comparison of bounds for batchTD with their
results. The bound in expectation on the error ‖‖�n − �∗‖‖2 in Theorem 3.1 of Dalal et al.
(2018) is O(1

n�
) , where 0 < 𝜎 <

1

2
 . Here �n is the TD(0) iterate, and �∗ is the TD fixed point.

In contrast, the bound we obtain in Theorem 4.3 is O(1√
n
) . Both results are for the projec-

tion-free variant. However, our bound involves a stepsize that requires the knowledge of �
(see (A1)), while their stepsize is �(

1

n2�
) . Our results for the iterate-averaged variant in

Theorem 5.1 get rid of this stepsize dependence, and the rate we obtain for this variant are
comparable to that in Theorem 3.1 of Dalal et al. (2018).

Continuing the comparison with Dalal et al. (2018), we first note that the high-probabil-
ity bound in 4.2 in our work, which is for the case when � is known, has a rate of order
O
�

1√
n

�
 , while the iterate averaged variant in Theorem 5.1 exhibits a rate O

(
1

n�∕2

)
 , where

0 < 𝛼 <
1

2
 . On the other hand, the rate from the bounds in Theorem 3.6 of Dalal et al.

(2018), is limited by a problem-dependent parameter � that is below the minimum eigen-
value (which is � in our notation). Further, our high probability bound in Theorem 4.2
applies for all n, while that in Theorem 5.1 is for all n ≥ n0 , with n0 explicitly specified (as
a function of the underlying parameters). In contrast, the bound in Theorem 3.6 of Dalal
et al. (2018) applies to sufficiently large n, where the threshold beyond which the bound
applies is not explicitly specified. Finally, we project the iterates to keep it bounded, while
the bounds by Dalal et al. (2018) do not involve a projection operator. Note that we require
projection for the high-probability bounds, while we derive a bound in expectation for the
projection-free variant (see Theorem 4.4).

In Lakshminarayanan and Szepesvari (2018), the authors derive non-asymptotic bounds
in expectation, which could be applied for TD(0) with linear function approximation, or
even to our batchTD algorithm. Lakshminarayanan and Szepesvari (2018) derive lower
bounds, while we focus on Theorem 1, which contains the upper bound. Our bound in
expectation in Theorem 4.2 is comparable to that in Theorem 1 there, since the overall rate
is O(1√

n
) in either case, and both results assume knowledge about underlying dynamics

(through the minimum eigenvalue � in our case, while through a certain distribution con-
stant for setting the stepsize there). Further, unlike Lakshminarayanan and Szepesvari
(2018), we derive bounds for the iterate-averaged variant, which gets rid of the problematic
stepsize dependence, at a compromise in the rate, which turns out to be O(1

n�
) , with 𝛼 <

1

2
.

7 � Fast LSPI using batchTD (fLSPI)

LSPI (Lagoudakis and Parr 2003) is a well-known algorithm for control based on the pol-
icy iteration procedure for MDPs. We propose a computationally efficient variant of LSPI,
which we shall henceforth refer to as fLSPI. The latter algorithm works by substituting the
regular LSTDQ with batchTDQ—an algorithm that is quite similar to batchTD described

578	 Machine Learning (2021) 110:559–618

1 3

earlier. We first briefly describe the LSPI algorithm and later provide a detailed description
of fLSPI.

7.1 � Background for LSPI

We are given a set of samples D ≜ {(si, ai, ri, s
�
i
), i = 1,… , T)} , where each sample i

denotes a one-step transition of the MDP from state si to s′
i
 under action ai , while resulting

in a reward ri . The objective is to find an approximately optimal policy using this set. This
is in contrast with the goal of LSTD, which aims to approximate the state-value function of
a particular policy (see Sect. 3.1).

For a given stationary policy � , the Q-value function Q�(s, a) for any state s ∈ S and
action a ∈ A(S) is defined as follows:

 In the above, the initial state s and the action a in s are fixed, and thereafter the actions
taken are governed by the policy � . This function can be thought of as the value func-
tion for a policy � in state s, given that the first action taken is the action a. As before, we
parameterize the Q-value function using a linear function approximation architecture,

where �(s, a) is a d-dimensional feature vector corresponding to the tuple (s, a) and � is a
tunable policy parameter.

LSPI is built in the spirit of policy iteration algorithms. These perform policy evalua-
tion and policy improvement in tandem. For the purpose of policy evaluation, LSPI uses a
LSTD-like algorithm called LSTDQ, which learns an approximation to the Q- (state-action
value) function. It does this for any policy � , by solving the linear system

As in the case of LSTD, the above can be seen as approximately solving a system of equa-
tions similar to (6), but in this case for the Q-value function. The pathwise LSTDQ variant
is obtained by forming the dataset D from a sample path of the underlying MDP for a given
policy � , and also zeroing out the feature vector of the next state-action tuple in the last
sample of the dataset.

The policy improvement step uses the approximate Q-value function to derive a greed-
ily updated policy as follows:

Since this policy is provably better than � , iterating this procedure allows LSPI to find an
approximately optimal policy.

(24)Q�(s, a) ≜ �

[
∞∑
t=0

� tr(st,�(st)) ∣ s0 = s, a0 = a

]
.

(25)Q�(s, a) ≈ ���(s, a),

(26)

𝜃̂T = Ā−1
T
b̄T , where

ĀT =
1

T

T∑
i=1

𝜙(si, ai)(𝜙(si, ai) − 𝛽𝜙(s�
i
,𝜋(s�

i
)))�, and b̄T =

1

T

T∑
i=1

ri𝜙(si, ai).

��(s) = arg max
a∈A

���(s, a).

579Machine Learning (2021) 110:559–618	

1 3

7.2 � fLSPI algorithm

The fLSPI algorithm works by substituting the regular LSTDQ with its computationally
efficient variant batchTDQ. The overall structure of fLSPI is given in Algorithm 2.

For a given policy � , batchTDQ approximates LSTDQ solution (26) by an iterative
update scheme as follows (starting with an arbitrary �0):

From Sect. 2.2, it is evident that the claims in Proposition 8.1 and Theorem 4.2 hold for the
above scheme as well.

Remark 14  Error bounds for fLSPI can be derived along the lines of those for regular on-
policy LSPI by Lazaric et al. (2012), and we omit the details.

8 � Convergence proofs

Let Fn denotes the �-field generated by �0,… , �n , n ≥ 0 . Let

Recall that we denote the current state feature (T × d)-matrix by � ≜ (�(s1)
�,… ,�(sT)) ,

the next state feature (T × d)-matrix by �� ≜ (�(s�
1
)�,… ,�(s�

T
)) , and the reward (T × 1)

-vector by R = (r1,… , rT)
� . Recall also that the LSTD solution is given by

Finally we note also that the pathwise LSTD solution has the same form as above, except
that 𝛷� ≜ P̂𝛷 = (𝜙(s�

1
)�,… ,𝜙(s�

T−1
)�, ��) , where � is the d × 1-zero-vector.

(27)�k = �k−1 + �k

(
rik + ���

k−1
�(s�

ik
,�(s�

ik
)) − ��

k−1
�(sik , aik)

)
�(sik , aik)

(28)fn(�) ≜
(
rin + ����(s�

in
) − ���(sin)

)
�(sin).

𝜃̂T = Ā−1
T
b̄T , where ĀT =

1

T
(𝛷�𝛷 − 𝛽𝛷�𝛷�) and b̄T =

1

T
𝛷�R.

580	 Machine Learning (2021) 110:559–618

1 3

8.1 � Proof of asymptotic convergence

Proof of Theorem 4.3 (batchTD without projection):

Proof  We first rewrite (10) as follows:

where �Mn = fn(�n−1) − �(fn(�n−1) ∣ Fn−1) is a martingale difference sequence, with fn(⋅)
as defined in (28).

The ODE associated with (29) is

In the above, q(𝜃(t)) ≜ −ĀT𝜃(t) + b̄T.
To show that �n converges a.s. to 𝜃̂T , one requires that the iterate �n remains bounded a.s.

Both boundedness and convergence can be inferred from Theorems 2.1–2.2(i) of Borkar
and Meyn (2000), provided we verify assumptions (A1)–(A2) there. These assumptions are
as follows:

(a1) The function q is Lipschitz. For any � ∈ ℝ , define q�(�) = q(��)∕� . Then, there
exists a continuous function q∞ such that q� → q∞ as � → ∞ uniformly on compact sets.
Furthermore, the origin is a globally asymptotically stable equilibrium for the ODE

(a2) The martingale difference {�Mn, n ≥ 1} is square-integrable with

for some C0 < ∞.
We now verify (a1) and (a2) in our context. Notice that q𝜂(𝜃) ≜ −ĀT𝜃 + b̄T∕𝜂 converges

to q∞(𝜃(t)) = −ĀT𝜃(t) as � → ∞ . Since the matrix ĀT is positive definite by (A1), the
aforementioned ODE has the origin as its globally asymptotically stable equilibrium. This
verifies (a1).

For verifying (a2), notice that

 The first inequality follows from the fact that for any scalar random variable Y,
�
(
Y − E

[
Y ∣ Fn

])2 ≤ �Y2 , while the second inequality follows from (A2) and (A3). The
claim follows. 	� ◻

Proof of Theorem 4.1 (batchTD with projection):

Proof  We first rewrite (10) as follows:

where �Mn , Fn and fn(�) are as defined in (28).

(29)𝜃n = 𝜃n−1 + 𝛾n
(
−ĀT𝜃n−1 + b̄T + 𝛥Mn

)
,

(30)𝜃̇(t) = q(𝜃(t)), t ≥ 0.

(31)𝜃̇(t) = −q∞(𝜃(t)).

�[‖‖�Mn+1
‖‖22 ∣ Fn] ≤ C0(1 +

‖‖�n‖‖22), n ≥ 0,

�[‖‖�Mn+1
‖‖22 ∣ Fn] ≤�[‖‖fn+1(�2)‖‖22 ∣ Fn]

≤(Rmax�max + (1 + �)�2
max

‖‖�n‖‖2)2

(32)𝜃n = 𝛶
(
𝜃n−1 + 𝛾n

(
−ĀT𝜃n−1 + b̄T + 𝛥Mn

))
,

581Machine Learning (2021) 110:559–618	

1 3

From (A3) and the fact that the iterate �n is projected onto a compact and convex set
C , it is easy to see that the norm of the martingale difference �Mn is upper bounded by
2
(
Rmax�max + (1 + �)H�2

max

)
 . Thus, (32) can be seen as a discretization of the ODE

where 𝛶̌ (𝜃) = lim𝜏→0

[
(𝛶 (𝜃 + 𝜏f (𝜃)) − 𝜃)∕𝜏

]
 , for any bounded continuous f. The operator

𝛶̌ ensures that � governed by (33) evolves within the set C that contains 𝜃̂T . As in the proof
of Lemma 4.1 by Yu (2015), we have

where the inequality follows from (A1). From the foregoing, we have that ���𝜃̂T
���2 ≤

‖b̄T‖2

𝜇
< H ⇒ 𝜃̂T ∈ C . Following similar arguments as before, it can be inferred

that at any boundary point � of C , ⟨𝜃,−Āt𝜃 + b̄T⟩ < 0 , and hence the ODE (33) has the ori-
gin as its globally asymptotically stable equilibrium. The claim now follows from Theo-
rem 2 in Chapter 2 of Borkar (2008) (or even Theorem 5.3.1 on pp. 191–196 of Kushner
and Clark (1978)). 	� ◻

8.2 � Proofs of finite‑time error bounds for batchTD

To obtain high probability bounds on the computational error ‖𝜃n − 𝜃̂T‖2 , we consider sep-
arately the deviation of this error from its mean (see (34) below), and the size of its mean
itself (see (35) below). In this way the first quantity can be directly decomposed as a sum
of martingale differences, and then a standard martingale concentration argument applied,
while the second quantity can be analyzed by unrolling iteration (10).

Proposition 8.1 below gives these results for general step sequences. The proof involves
two martingale analyses, which also form the template for the proofs for the least squares
regression extension (see Sect. 10), and the iterate averaged variant of batchTD (see
Theorem 5.1).

After proving the results for general step sequences, we give the proof of Theorem 4.2,
which gives explicit rates of convergence of the computational error in high probability for
a specific choice of step sizes.

Proposition 8.1  Let zn = 𝜃n − 𝜃̂T, where �n is given by (10). Under (A1)–(A4), we have
∀𝜖 > 0 ,

(1)	 a bound in high probability for the centered error:

 where Lk ≜ �k
∏n

j=k+1
(1 − �j(2� − �j(1 + �)2�4

max
))1∕2,

(2)	 and a bound in expectation for the non-centered error:

(33)𝜃̇(t) = 𝛶̌ (−ĀT𝜃(t) + b̄T), t ≥ 0,

0 = ⟨𝜃̂T ,−ĀT 𝜃̂T + b̄T⟩ ≤ −𝜇
���𝜃̂T

���
2

2
+ ��b̄T��2���𝜃̂T

���2,

(34)ℙ
���zn��2 − 𝔼��zn��2 ≥ �

� ≤ exp

⎛
⎜⎜⎜⎜⎝
−

�2

4
�
Rmax + (1 + �)H�2

max

�2 n∑
k=1

L2
k

⎞
⎟⎟⎟⎟⎠
,

582	 Machine Learning (2021) 110:559–618

1 3

As mentioned earlier, the initial error relates to the starting point �0 of the algorithm,
while the sampling error arises out of a martingale difference sequence (see Step 1 in
Sect. 8.2.2 below for a precise definition).

We establish later, in Sect. 8.2.3, that under a suitable choice of step sizes, the initial
error is forgotten faster than the sampling error.

We claim that the terms of the form 1 − �j(2� − �j�
4
max

(1 + �)2) , which go into a prod-
uct in the Lipschitz constant Li as well as in the initial/sampling error terms of the expecta-
tion bound, are positive. This claim can be seen as follows:

where the inequality above follows from the fact that � ≤ (1 + �)�2
max

.
In Sect. 8.2.3, to establish the rates of Theorem 4.2, we first prove that

∑n

i=1
Li is an

order 1/n term, and the claim of positivity of Li is necessary for the aforementioned proof.

8.2.1 � Proof of Proposition 8.1 part (1)

Proof  The proof gives a martingale analysis of the centered computational error. It pro-
ceeds in three steps:

Step 1 (Decomposition of error into a sum of martingale differences)
Recall that zn ≜ 𝜃n − 𝜃̂T . We rewrite ‖‖zn‖‖2 − �‖‖zn‖‖2 as follows:

where gk ≜ �[‖‖zn‖‖2||Fk] , Dk ≜ gk − �[gk
||Fk−1] , and Fk denotes the �-field generated by

the random variables {�i, i ≤ k} for k ≥ 0.
Recall that fk(�) ≜ (���(sik) − (rik + ����(s�

ik
)))�(sik) denotes the random innovation at

time k, given that �k−1 = �.
Step 2 (Showing that gk is a Lipschitz function of the random innovation fk)4

The next step is to show that the functions gk are Lipschitz continuous in the random
innovation at time k, with Lipschitz constants Lk . It then follows immediately that the

(35)

�
(‖‖zn‖‖2

)2 ≤
[

n∏
k=1

(
1 − �k(2� − �k(1 + �)2�4

max
)
)‖‖z0‖‖2

]2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
������� �����

+ 4

n∑
k=1

�2
k

[
n−1∏
j=k

(1 − �j(2� − �j(1 + �)2�4
max

)

]2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�������� �����

(
Rmax + (1 + �)H�2

max

)2
.

(36)
1 − �j

(
2� − �j�

4
max

(1 + �)2
) ≥ 1 − 2�j(1 + �)�2

max
+ �2

j
�4

max
(1 + �)2

=
(
1 − �j(1 + �)�2

max

)2 ≥ 0,

(37)‖‖zn‖‖2 − �‖‖zn‖‖2 =
n∑

k=1

(
gk − gk−1

)
=

n∑
k=1

Dk,

4  For notational convenience, we have not chosen to make the dependence of gk on the random innovation
fk explicit. The Lipschitzness of gk as a function of fk is clear from equation (43) presented below.

583Machine Learning (2021) 110:559–618	

1 3

martingale difference Dk is a Lipschitz function of the kth random innovation with the same
Lipschitz constant, which is the property leveraged in Step 3 below. In order to obtain Lip-
schitz constants with no exponential dependence on the inverse of (1 − �)� we depart from
the general scheme of Frikha and Menozzi (2012), and use our knowledge of the form of the
random innovation fk to eliminate the noise due to the rewards between time k and time n:

Let �k
j
(�) denote the value of the random iterate at instant j evolving according to (10)

and beginning from the value � at time k.
First we note that as the projection, �  , is non-expansive,

Expanding the random innovation terms, we have

where aj ≜ [�(sij)�(sij)
� − ��(sij)�(s

�
ij
)�] . Note that

Recall that �� ≜ (�(s1),… ,�(sT)) , and ��� ≜ (�(s1)
�,… ,�(sT)

�) . Let
� ≜ diag(‖‖�(s1)‖‖22,… , ‖‖�(sT)‖‖22) . Then, for any vector � , we have

For the equality in (39), we have used that
∑T

k=1
�(sk)�(sk)

� = ��� , and similar identities.
Further, the inequality in (40) can be inferred using the following fact:

�

(‖‖‖�
k
j
(�) − �k

j
(��)

‖‖‖2 ∣ Fj−1

)

≤ �

(‖‖‖�
k
j−1

(�) − �k
j−1

(��) − �j[fj(�
k
j−1

(�)) − fj(�
k
j−1

(��))]
‖‖‖2 ∣ Fj−1

)
.

(38)

�k
j−1

(�) − �k
j−1

(��) − �j[fj(�
k
j−1

(�)) − fj(�
k
j−1

(��))]

= �k
j−1

(�) − �k
j−1

(��) − �j[�(sij)�(sij)
� − ��(sij)�(s

�
ij
)�](�k

j−1
(�) − �k

j−1
(��))

= [I − �jaj](�
k
j−1

(�) − �k
j−1

(��)),

a�
j
aj = �(sij)�(sij)

��(sij)�(sij)
�

− �
(
�(sij)�(sij)

��(sij)�(s
�
ij
)� + �(s�

ij
)�(sij)

��(sij)�(sij)
�

)

+ �2�(s�
ij
)�(sij)

��(sij)�(s
�
ij
)�

=
‖‖‖�(sij)

‖‖‖
2

2

[
�(sij)�(sij)

�

− �(�(sij)�(s
�
ij
)� + �(s�

ij
)�(sij)

�) + �2�(s�
ij
)�(s�

ij
)�
]
.

(39)

�

�
��

�
I − �jaj

���
I − �jaj

�
� ∣ Fj−1

�

= ���(I − �j[a
�

j
+ aj − �ja

�

j
aj])� ∣ Fj−1)

= ‖�‖2
2
− �j�

� 1

T

�
2��� − �

�
���� +����

�

− �j

�
���� − �

�
����� +�����

�
+ �2������

��
�

(40)≤ ‖�‖2
2
− �j2�‖�‖22 + �2

j
��

1

T

�
���� − �

�
����� +�����

��
� + �2‖�‖2

2
�4

max

(41)≤ (1 − �j(2� − �j�
4
max

(1 + �)2))‖�‖2
2
.

584	 Machine Learning (2021) 110:559–618

1 3

where we have used assumption (A1) for the last inequality above. The last term in (40)
follows from ����′���′�� ≤ ‖�‖2

2
�4

max
 , where we have used assumption (A2) that ensures

features are bounded. The inequality in (41) can be inferred as follows:

 In the above, we have used the boundedness of features to infer ��������� ≤ ‖�‖2
2
�4

max
 ,

and ����′���′�� ≤ ‖�‖2
2
�4

max
.

Hence, from the tower property of conditional expectations, it follows that:

Finally, writing f and f ′ for two possible values of the random innovation at time k, and
writing � = �k−1 + �kf and �� = �k−1 + �kf

� and using Jensen’s inequality, we have that

which proves that the functions gk are Lk-Lipschitz in the random innovations at time k.
Recall that Dk = gk − gk−1 , and hence, the Lipschitz constant of Dk is max

(
Lk, Lk−1

)
 . How-

ever, from (36), we have Lk > Lk−1 , leading to a Lipschitz constant of Lk for Dk.
Step 3 (Applying a sub-Gaussian concentration inequality)
Now we derive a standard martingale concentration bound in the lemma below. Note

that, for any 𝜆 > 0,

𝜆min

(
2𝛷�𝛷 − 𝛽

(
𝛷��𝛷 +𝛷�𝛷�

))
= 𝜆min

(
(𝛷�𝛷 − 𝛽𝛷��𝛷) + (𝛷�𝛷 − 𝛽𝛷��𝛷)�

)

= 𝜆min

(
T
(
ĀT + Ā�

T

)) ≥ 2T𝜇,

��
�
��𝖳�� +�𝖳���

�
�� ≤ 2‖�‖2

2
�4

max

⇒ −2‖�‖2
2
�4

max
≤ �𝖳

�
��𝖳�� +�𝖳���

�
�

⇒ �𝖳(�𝖳�� − �
�
��𝖳�� +�𝖳���

�
+ �2��𝖳���)�

≤ ‖�‖2
2
(1 + 2� + �2)�4

max
= (1 + �)2�4

max
‖�‖2

2
.

(42)

�

[‖‖‖�
k
n
(�) − �k

n
(��)

‖‖‖
2

2

]
= �

[
�

(‖‖‖�
k
n
(�) − �k

n
(��)

‖‖‖
2

2
∣ Fn−1

)]

≤ (
1 − �n

(
2� − �n�

4
max

(1 + �)2
))
�

[‖‖‖�
k
n−1

(�) − �k
n−1

(��)
‖‖‖
2

2

]

≤
[

n∏
j=k+1

(
1 − �j

(
2� − �j�

4
max

(1 + �)2
))]‖‖� − ��‖‖22

(43)

||||�
[‖‖‖𝜃n − 𝜃̂T

‖‖‖2||𝜃k = 𝜃
]
−�

[‖‖‖𝜃n − 𝜃̂T
‖‖‖2||𝜃k = 𝜃�

]||||
≤ �

[‖‖‖𝛩
k
n
(𝜃) − 𝛩k

n

(
𝜃�
)‖‖‖2

] ≤ Lk
‖‖f − f �‖‖2,

ℙ(‖‖zn‖‖2 − 𝔼‖‖zn‖‖2 ≥ �) = ℙ

(
n∑

k=1

Dk ≥ �

)
≤ exp(−��)𝔼

(
exp

(
�

n∑
k=1

Dk

))

= exp(−��)𝔼

(
exp

(
�

n−1∑
k=1

Dk

)
𝔼

(
exp(�Dn)

||Fn−1

))
.

585Machine Learning (2021) 110:559–618	

1 3

The last equality above follows from (37), while the first inequality follows from Markov’s
inequality.

Let Z be a zero-mean random variable (r.v) satisfying |Z| ≤ B w.p. 1, and g be a L-Lip-
schitz function g. Letting Z′ denote an independent copy of Z and � a Rademacher r.v., we
have

In the above, we have used Jensen’s inequality in (44), the fact that distribution of
g(Z) − g(Z�) is the same as �(g(Z) − g(Z�)) in (45), a result from Example 2.2 in Wain-
wright (2019) in (46), the fact that g is L-Lipschitz in (47), and the boundedness of Z in
(48).

Note that by (A3), and the projection step of the algorithm, we have that
|fk(𝜃k−1)| < (Rmax + (1 + 𝛽)H𝛷2

max
) is a bounded random variable, and, conditioned on

Fk−1 , Dk is Lipschitz in fk(�k−1) with constant Lk . Hence, we obtain

leading to

The proof of Proposition 8.1 part (1) follows by optimizing over � in (49). 	� ◻

8.2.2 � Proof of Proposition 8.1 part (2)

Proof  The proof of this result also follows a martingale analysis. In contrast to the high
probability bound, here we work directly with the error, rather than the centered error, and
split it into predictable and martingale parts. Bounding the predictable part then bounds
the influence of the initial error, and bounding the martingale part bounds the error due to
sampling.

(44)
�(exp (�g(Z))) = �

(
exp

(
�
(
g(Z) − �(g(Z�)

)))

≤ �
(
exp

(
�
(
g(Z) − g(Z�)

)))

(45)= �
(
exp

(
��

(
g(Z) − g(Z�)

)))

(46)≤ �

(
exp

(
�2
(
g(Z) − g(Z�)

)2
∕2

))

(47)≤ �

(
exp

(
�2L2

(
Z − Z�

)2
∕2

))

(48)≤ exp
(
�2B2L2∕2

)
.

�
(
exp(�Dn)

||Fn−1

) ≤ exp

(
�2
(
Rmax + (1 + �)H�2

max

)2
L2
n

2

)
,

(49)ℙ(‖‖zn‖‖2 − 𝔼‖‖zn‖‖2 ≥ �) ≤ exp(−��) exp

(
�2
(
Rmax + (1 + �)H�2

max

)2
2

n∑
k=1

L2
k

)
.

586	 Machine Learning (2021) 110:559–618

1 3

Step 1 (Extract a martingale difference from the update)
First, by using that ĀT = �((𝜙(sin) − 𝛽𝜙(s�

in
))𝜙(sin)

� ∣ Fn−1) and that
�(fn(𝜃̂T) ∣ Fn−1) = 0 , we can rearrange the update rule (10) to get

where �Mn ∶= fn(�n−1) − �(fn(�n−1) ∣ Fn−1) is a martingale difference.
Step 2 (Apply Jensen’s inequality to the square of the norm)
From Jensen’s inequality, and the fact that the projection in the update rule (10) is non-

expansive, we obtain

Note that the cross-terms have vanished in (50) since �Mn is martingale difference, inde-
pendent of the other terms, given Fn−1.

Step 3 (Unroll the iteration)
Using assumptions (A1) and (A2)

Furthermore, by assumption (A3), and the projection step, the martingale differences �Mn
are bounded in norm by 2(Rmax + (1 + �)H�2

max
) . By applying the tower property of condi-

tional expectations repeatedly together with (51) we arrive at the following bound:

	� ◻

8.2.3 � Derivation of rates given in Theorem 4.2
Proof  To obtain the rates specified in the bound in expectation in Theorem 4.2, we sim-
plify the bound in expectation in Proposition 8.1 using the choice �n =

c0c

(c+n)
 , with

c0 ∈ (0,�((1 + �)2�4
max

)−1] and 2c0c� ∈ (1,∞) . Consider the sampling error term in (35)
under the aforementioned choice for the step size.

𝜃n−1 − 𝜃̂T − 𝛾nfn(𝜃n−1) = 𝜃n−1 − 𝜃̂T − 𝛾n(�(fn(𝜃n−1) + 𝛥Mn)

=
(
I − 𝛾nĀT

)
zn−1 − 𝛾n𝛥Mn,

(50)

�
���zn��2 ∣ Fn−1

�2 ≤ �(⟨zn, zn⟩ ∣ Fn−1)

≤ �(⟨𝜃n−1 − 𝜃̂T − 𝛾nfn(𝜃n−1), 𝜃n−1 − 𝜃̂T − 𝛾nfn(𝜃n−1)⟩ ∣ Fn−1)

= �(⟨�I − 𝛾nĀT

�
zn−1 − 𝛾n𝛥Mn,

�
I − 𝛾nĀT

�
zn−1 − 𝛾n𝛥Mn⟩ ∣ Fn−1)

= z�
n−1

�
I − 𝛾nĀT

���
I − 𝛾nĀT

�
zn−1 + 𝛾2

n
�
�⟨𝛥Mn,𝛥Mn⟩ ∣ Fn−1

�

≤ ��zn−1��22���
�
I − 𝛾nĀT

���
I − 𝛾nĀT

����2 + 𝛾2
n
�

���𝛥Mn
��22 ∣ Fn−1

�
.

(51)
‖‖(I − 𝛾nĀT)

�(I − 𝛾nĀT)
‖‖2 = ‖‖(I − 𝛾n((Ā

�

T
+ ĀT) − 𝛾nĀ

�

T
ĀT)

‖‖2 ≤ 1 − 𝛾n(2𝜇 − 𝛾n(1 + 𝛽)2𝛷4
max

)

�
(‖‖zn‖‖2

)2 ≤
[

n∏
k=1

(
1 − �k(2� − �k(1 + �)2�4

max
)
)‖‖z0‖‖2

]2

+ 4

n∑
k=1

�2
k

[
n−1∏
j=k

(1 − �j(2� − �j(1 + �)2�4
max

)

]2(
Rmax + (1 + �)H�2

max

)2

587Machine Learning (2021) 110:559–618	

1 3

In the above, the inequality in (52) uses the fact that 1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4
max

> 0 , a claim
that was established earlier in (36). The inequality in (53) uses c0 ∈ (0,�((1 + �)2�4

max
)−1] .

The inequality in (54) follows by using ln(1 + u) ≤ u . To infer the inequality in (55), we
use

∑n

j=k+1
(c + j)−1 ≥ ∫ n+c+1

x=c+k+1
x−1dx , which holds because the LHS is the upper Riemann

sum of RHS. Now, evaluating the integral of x−1 , the exponential term inside the summand
of (54) becomes:

and the inequality in (55) follows by substituting the bound on the RHS above. We obtain
the final inequality, (56), by upper bounding the term

∑n

k=1
(k + c + 1)2c0c�(k + c)−2 on the

RHS of (55) as follows:

(52)

n∑
k=1

�2
k

[
n∏

j=k+1

(1 − �j(2� − �j(1 + �)2�4
max

)

]2

=

n∑
k=1

�2
k
exp

(
2

n∑
j=k+1

ln
(
1 − �j(2� − �j(1 + �)2�4

max
)
))

(53)

=

n∑
k=1

c2
0
c2

(c + k)2
exp

(
2

n∑
j=k+1

ln

(
1 −

c0c

c + j

(
2� −

c0c

c + j
(1 + �)2�4

max

)))

≤
n∑

k=1

c2
0
c2

(c + k)2
exp

(
2

n∑
j=k+1

ln

(
1 −

c0c�

c + j

))

(54)≤
n∑

k=1

c2
0
c2

(c + k)2
exp

(
−2c0c�

(
n∑

j=k+1

1

c + j

))

(55)≤ c2
0
c2(c + n + 1)−2c0c�

n∑
k=1

(c + k + 1)2c0c�(c + k)−2

(56)≤ c2
0
c2e2

(2c0c� − 1)(n + c + 1)

exp

(
−2c0c�

n∑
j=k+1

(c + j)−1

)
≤ exp

(
−2c0c�[ln(c + n + 1) − ln(c + k + 1)]

)

= (c + n + 1)−2c0c�(c + k + 1)2c0c�,

(57)

n∑
k=1

(k + c + 1)2c0c�(k + c)−2 =

n∑
k=1

(((k + c)(1 + 1∕(k + c)))2c0c�(k + c)−2

≤
n∑

k=1

(1 + 1∕c)2c(k + c)2c0c�(k + c)−2

588	 Machine Learning (2021) 110:559–618

1 3

where the inequality in (58) holds because

Further, the inequality in (58) follows from the fact that (1 + 1∕c)2c ≤ e2 for all c > 0 , and
the inequality in (59) follows by comparison of a sum with an integral together with the
assumption that c0c𝜇 > 1.

Similarly, the initial error term in (35) can be simplified from the hypothesis that
c0c� ∈ (1,∞) and c0 ∈ (0,�((1 + �)2�4

max
)−1] as follows:

The last inequality above follows again from a comparison with an integral: ∑n

j=1

1

c+j
≥ ∫ c+n

c+1
x−1dx = ln

n+c

c+1
 . Hence, we obtain

and the result concerning the bound in expectation in Theorem 4.2 now follows.
We now derive the rates for the high-probability bound in Theorem 4.2. With �n =

c0c

(c+n)
 ,

and c0 ∈ (0,�((1 + �)2�4
max

)−1] , we have

(58)≤ e2
n∑

k=1

(k + c)2(c0c�−1)

(59)
≤ e2 �

n+1

x=0

(x + c)2(c0c�−1)dx

=
e2(n + c + 1)−(1−2c0c�)

(2c0c� − 1)
,

c0� ≤ �2

�4
max

(1 + �)2
≤
(

�

�2
max

)2

≤ 1.

(60)

n∏
k=1

(1 − �k(2� − �k(1 + �)2�4
max

)

≤ exp

(
−c0c�

n∑
j=1

1

c + j

)
≤ (

c + 1

n + c

)c0c�

(61)
�
���𝜃n − 𝜃̂T

���2 ≤
⎛
⎜⎜⎝

���𝜃0 − 𝜃̂T
���2
√
(c + 1)c0c𝜇

√
(n + c)c0c𝜇−1

+
2ec0c(Rmax + (1 + 𝛽)H𝛷2

max
)√

2c0c𝜇 − 1

⎞⎟⎟⎠
×

�
1

n + c
,

(62)

n∑
i=1

L2
i
=

n∑
i=1

c2
0
c2

(c + i)2

n∏
j=i+1

(
1 −

c0c

(c + j)

(
2� − (1 + �)2�4

max

c0c

(c + j)

))

≤
n∑

i=1+1

c2
0
c2

(c + i)2

n∏
j=i+1

(
1 −

c0c�

(c + j)

)

589Machine Learning (2021) 110:559–618	

1 3

Inequality (62) follows from the assumption on c0 . To obtain the inequality (63), as in the
rates for the bound in expectation, we have taken the exponential of the logarithm of the
product, brought the product outside the logarithm as a sum, and applied the inequality
ln(1 − x) ≤ x which holds for x ∈ [0, 1) . The inequality in (64) can be inferred in a manner
analogous to that in (55), while that in (65) follows in a similar manner as (58).

We now find three regimes for the rate of convergence, based on the choice of c. Each
case is again derived from a comparison of the sum in (65) with an appropriate integral:

(i)	�
∑n

i=1
L2
i
= O((n + c)c0c�) when c0c� ∈ (0, 1),

(ii)	�
∑n

i=1
L2
i
= O

�
n−1 ln n

�
 when c0c� = 1 , and

(iii)	�
∑n

i=1
L2
i
≤ c2

0
c2e

(c0c�−1)
(n + c)−1 when c0c� ∈ (1,∞).

 Thus, setting c ∈ (1∕(c0�),∞) , the high probability bound from Proposition 8.1 gives

where K�,c,c0,�
≜ c2

0
c2e

(
Rmax + (1 + �)H�2

max

)2
(c0c� − 1)

 . The high probability bound in Theo-

rem 4.2 now follows. 	� ◻

8.3 � Proof of expectation bound for batchTD without projection

The proof of the theorem follows just as the proof of Theorem 4.2 but using the following
proposition in place of Proposition 8.1 part 2. The proof of the following proposition dif-
fers from that of Proposition 8.1 part 2 in that the decomposition of the computational error
extracts a noise term dependent only on 𝜃̂T rather than on �n , and so projection is not needed.

Proposition 8.2  Let zn = 𝜃n − 𝜃̂T, where �n is given by (10) with � (�) = �, ∀� ∈ ℝ
d.

Under (A1)–(A4), we have ∀𝜖 > 0,

(63)≤
n∑
i=1

c2
0
c2

(c + i)2
exp

(
−c0c�

n∑
j=i+1

1

(c + j)

)

(64)≤ c2
0
c2

(n + c)c0c�

n∑
i=1

(i + c + 1)c0c�(i + c)−2.

(65)≤ c2
0
c2e

(n + c)c0c�

n∑
i=1

(i + c)−(2−c0c�).

(66)ℙ

(‖‖‖𝜃n − 𝜃̂T
‖‖‖2 − 𝔼

‖‖‖𝜃n − 𝜃̂T
‖‖‖2 ≥ 𝜖

) ≤ exp

(
−
𝜖2(n + c)

4K𝜇,c,c0,𝛽

)
,

590	 Machine Learning (2021) 110:559–618

1 3

Proof  The proof involves two steps.
Step 1 (Unrolling the error recursion)
First, by rearranging the update rule (10) we obtain an iteration for the computational

error zn = 𝜃n − 𝜃̂T , and subsequently unroll this iteration:

where �n
k
≜ ∏n

j=k

�
I − �j(�(sij) − ��(s�

ij
))�(sij)

�

�
 for 1 ≤ k ≤ n , and �n

k
= I for k > n.5 In

the above, we have used that the random increment at time n has the form
fn(�) = (���(sin) − (rin + ����(s�

in
)))�(sin) . Notice that by the definition of the LSTD solu-

tion, we have that �(fn(𝜃̂T) ∣ Fn−1) = 0 , and so fn(𝜃̂T) is a zero mean random variable.
Step 2 (Taking the expectation of the norm)
From Jensen’s inequality, we obtain

where we have used the identity ‖x − y‖2
2
≤ 3‖x‖2

2
+ 3‖y‖2

2
 for any two vectors x, y.

Using assumptions (A1) and (A2), we have

(67)

�
(‖‖zn‖‖2

)2 ≤ 3

[
n∏

k=1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)‖‖z0‖‖2

]2

���
������� �����

+ 3

n∑
k=1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4
max

)

]2(
Rmax + (1 + 𝛽)

‖‖‖𝜃̂T
‖‖‖2𝛷

2
max

)2

���
�������� �����

zn = 𝜃n − 𝜃̂T = 𝜃n−1 − 𝜃̂T − 𝛾nfn(𝜃n−1)

=
(
I − 𝛾n(𝜙(sin) − 𝛽𝜙(s�

in
))𝜙(sin)

�

)
zn−1 − 𝛾nfn(𝜃̂T)

= 𝛱n
1
z0 −

n∑
k=1

𝛾k𝛱
n
k+1

fk(𝜃̂T).

(68)�
(‖‖zn‖‖2

)2 ≤ 3z�
0
�
(
𝛱n

1
�𝛱n

1

)
z0 + 3

n∑
k=1

𝛾2
k
�
(
fk(𝜃̂T)

�𝛱n
k+1

�𝛱n
k+1

fk(𝜃̂T)
)
,

(69)

�����(
�
I − �n(�(sin) − ��(s�

in
))�(sin)

�

���
I − �n(�(sin) − ��(s�

in
))�(sin))

�

�����2
=
�����

�
I − �n((�(sin) − ��(s�

in
))�(sin)

� − �n�(sin)(�(sin) − ��(s�
in
))�

+ �2
n

�����(sin)
���
2

2
− 2�⟨�(s�

in
),�(sin)⟩ + �2

����(s
�
in
)
���
2

2

�
�(sin))�(sin))

�

������2
≤ 1 − �n(2� − �n(1 + �)2�4

max
).

5  One usually sees terms of the form �(sij)(�(sij) − ��(s�
ij
)) , whereas we use a transposed form to simplify

handling the products that get written through the �n
j
 matrices.

591Machine Learning (2021) 110:559–618	

1 3

Furthermore, by assumption (A3), the random variables fn(𝜃̂T) are bounded in norm by
( Rmax + (1 + 𝛽)

‖‖‖𝜃̂T
‖‖‖2𝛷

2
max

 ). So, by applying the tower property of conditional expectations
repeatedly together with (69) we arrive at the following bound:

	� ◻

Proof of Theorem 4.4  We need to prove that ����𝜃n − 𝜃̂T
���2 ≤

K1(n)√
n + c

, where �n is the

batchTD iterate that is not projected, and K1(n) is as defined in Theorem 4.4. Once we have
Proposition 8.2 in place, the bound mentioned before follows using a completely parallel
argument to that used in Sect. 8.2.3 to prove the bound in expectation in Theorem 4.2 for
projected batchTD. 	� ◻

8.4 � Proofs of finite time bounds for iterate averaged batchTD

For establishing the bounds in expectation and high probability, we follow the technique
from Fathi and Frikha (2013), where the authors provide concentration bounds for gen-
eral stochastic approximation schemes. However, unlike them, we make all the constants
explicit and more importantly, we provide an explicit iteration index n0 after which the
distance between averaged iterate 𝜃̄n and LSTD solution 𝜃̂T is nearly of the order O(1/n).
For providing such a n0 , we have to deviate from Fathi and Frikha (2013) in several steps
of the proof.

Proof of the bound in expectation in Theorem 5.1  We bound the expected error by directly
averaging the errors of the non-averaged iterates, i.e.,

For simplifying the RHS above, we apply the bounds in expectation given in Proposition
8.1. Recall that the rates in Theorem 4.2 are for step sizes of the form �n =

c0c

c+n
 , while iter-

ate averaged batchTD uses a different step size sequence. In the following, we specialize
the bound in expectation in Proposition 8.1 for the new choice of step-size sequence and
subsequently, average the resulting bound using (70) to obtain the final rate in expectation
in Theorem 5.1. Let �n ≜ c0(c∕(c + n))� . We assume n > n0 , i.e.,

Using Proposition 8.1 followed by a split of the individual terms into those before and after
n0 , we have

�
���zn��2

� ≤
⎛
⎜⎜⎝
3

�
n�

k=1

(1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4
max

)��z0��2
�2

+ 3

n�
k=1

𝛾2
k

�
n−1�
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4
max

)

�2�
Rmax + (1 + 𝛽)

���𝜃̂T
���2𝛷

2
max

�2⎞⎟⎟⎠

1

2

.

(70)�
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
1

n + 1

n∑
k=0

�
‖‖‖𝜃k − 𝜃̂T

‖‖‖2.

(71)
c0c

𝛼

(c + n)𝛼
(1 + 𝛽)2𝛷4

max
< 𝜇.

592	 Machine Learning (2021) 110:559–618

1 3

(72)

�

(‖‖‖𝜃n − 𝜃̂T
‖‖‖2
)2 ≤

[
n∏

k=1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)‖‖z0‖‖2

]2

+ 4

n∑
k=1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

=

[
n0∏
k=1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)
×

n∏
k=n0+1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)‖‖z0‖‖2

]2

+ 4

n0∑
k=1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

+ 4

n∑
k=n0+1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

≤
[

n0∏
k=1

(
1 + (1 + 𝛽)𝛷2

max
c
0

)2 n∏
k=n0+1

(
1 − 𝛾k(2𝜇 − 𝛾k(1 + 𝛽)2𝛷4

max
)
)‖‖z0‖‖2

]2

+ 4

n0∑
k=1

c2
0

[
n0∏
j=k

(
1 + (1 + 𝛽)𝛷2

max
c
0

)2
]2[n−1∏

j=n0+1

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2

×
(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

+ 4

n∑
k=n0+1

𝛾2
k

[
n−1∏
j=k

(1 − 𝛾j(2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max
)

]2(
R
max

+ (1 + 𝛽)H𝛷2

max

)2

(73)

≤
[(

1 + c0(1 + �)�2
max

)2n0 n∏
k=n0+1

(
1 −

�c0c
�

(c + k)�

)
‖‖z0‖‖2

]2

+ 4n0c
2
0

(
1 + c0(1 + �)�2

max

)4n0
[

n−1∏
j=n0+1

(
1 −

�c0c
�

(c + j)�

)](
Rmax + (1 + �)H�2

max

)2

+ 4

n∑
k=n0+1

c2
0
c2�

(c + k)2�

[
n−1∏
j=k

(
1 −

�c0c
�

(c + j)�

)]2(
Rmax + (1 + �)H�2

max

)2

≤
[
exp

(
2c0(1 + �)�2

max
n0
)
exp

(
−�c0

n∑
k=n0+1

c�

(c + k)�

)
‖‖z0‖‖2

]2

+ 4n0c
2
0
exp

(
4c0(1 + �)�2

max
n0
)
exp

(
−2�c0

n−1∑
j=n0+1

c�

(c + j)�

)

×
(
Rmax + (1 + �)H�2

max

)2

+ 4

n∑
k=n0+1

c2
0
c2�

(c + k)2�
exp

(
−2�c0

n−1∑
j=k

c�

(c + j)�

)(
Rmax + (1 + �)H�2

max

)2
.

593Machine Learning (2021) 110:559–618	

1 3

In the above, the inequality in (72) can be inferred from the following:

where we have used the fact that 𝜇 > 0 and 𝛾k < c0 . To obtain the inequality in (73), we
have split the product at n0 , and, when k ≤ n0 , we have used (1 + x)n0 = en0 ln(1+x) ≤ exn0 and
when k > n0 , we have applied (71). For the final inequality above, we have exponentiated
the logarithm of the products, and used the inequality ln(1 + x) < x in several places.

With C1 and C2 as defined in the statement of Theorem 5.1, we have that

In the above, the inequality in (75) follows by an application of Jensen’s Inequality together
with the fact that

∑n−1

j=k
(c + j)−� ≥ ∫ n

j=k
(c + j)−�dj = (c + n)1−� − (c + k)1−� . To obtain the

inequality in (76), we have upper bounded the sum with an integral, the validity of which
follows from the observation that x ↦ x−2�ex

1−� is convex for x ≥ 1 . Finally, for arriving at
the inequality in (77), we have applied the change of variables y = (2c0�c

�)1∕(1−�)x.

(74)

(
1 − �k(2� − �k(1 + �)2�4

max
)
) ≤ (

1 + 2(1 + �)�2
max

�k + (1 + �)2�4
max

�2
k

)

≤ (
1 + (1 + �)�2

max
c0
)2
,

(75)

�
‖‖‖𝜃n − 𝜃̂T

‖‖‖2 ≤ C1 exp
(
−c0𝜇c

𝛼
(
(n + c)1−𝛼 − (n0 + c + 1)1−𝛼

))‖‖‖𝜃0 − 𝜃̂T
‖‖‖2

+
(
Rmax + (1 + 𝛽)H𝛷2

max

)
.

(
4n0c

2
0
C2
1
exp

(
−2c0𝜇c

𝛼((n + c)1−𝛼 − (n0 + c + 1)1−𝛼
)

+

n∑
k=n0+1

c2
0

(
c

k + c

)2𝛼

exp
(
−2c0𝜇c

𝛼((n + c)1−𝛼 − (k + c)1−𝛼
)) 1

2

(76)

= exp
(
−c0𝜇c

𝛼(n + c)1−𝛼
)

×

[
C1C2

‖‖‖𝜃0 − 𝜃̂T
‖‖‖2 +

(
Rmax + (1 + 𝛽)H𝛷2

max

)

×

{
4n0c

2
0
C2
1
C2
2
+

n∑
k=n0+1

c2
0

(
c

k + c

)2𝛼

exp
(
2c0𝜇c

𝛼((k + c)1−𝛼
)}

1

2]

≤ exp
(
−c0𝜇c

𝛼(n + c)1−𝛼
)

×

[
C1C2

‖‖‖𝜃0 − 𝜃̂T
‖‖‖2 +

(
Rmax + (1 + 𝛽)H𝛷2

max

)

×

{
4n0c

2
0
C2
1
C2
2
+ c2𝛼c2

0 �
n+c

1

x−2𝛼 exp
(
2c0𝜇c

𝛼x1−𝛼
)
dx

} 1

2
]

(77)

≤ exp
(
−c0𝜇c

𝛼(n + c)1−𝛼
)

×

[
C1C2

‖‖‖𝜃0 − 𝜃̂T
‖‖‖2 +

(
Rmax + (1 + 𝛽)H𝛷2

max

)

×

{
4n0c

2
0
C2
1
C2
2
+ c2𝛼c2

0

(
2c0𝜇c

𝛼
) 2𝛼

1−𝛼

× �
(n+c)(2c0𝜇c𝛼)

1∕(1−𝛼)

(2c0𝜇c𝛼)
1∕(1−𝛼)

y−2𝛼 exp(y1−𝛼)dy

} 1

2
]
.

594	 Machine Learning (2021) 110:559–618

1 3

Now, since y−2� ≤ 2

1−�
((1 − �)y−2� − �y−(1+�)) when y ≥ (

2�

1−�

) 1

1−� , we have

and furthermore, since y ↦ y−2� exp(y1−�) is non-decreasing for y ≤ (
2�

1−�

) 1

1−� , we have

Plugging these into (77), we obtain

The bound in expectation in the theorem statement can be inferred by using the inequality
above in

followed by a straightforward bound on the sum of the first exponential term on the RHS of
(78), using the constant C0 . 	� ◻

Proof of the high probability bound in Theorem 5.1  The proof of the high probability
bound is considerably more involved than the proof of the bound in expectation in Theo-
rem 5.1. We first state and prove a bound on the error in high probability for the averaged
iterates in Proposition 8.3 below. This result is for general step-size sequences, and can be
seen as the iterate average counterpart to Proposition 8.1. 	� ◻

Proposition 8.3  Let zn = 𝜃̄n − 𝜃̂T. Under (A1)–(A3) we have, for all � ≥ 0 and ∀n ≥ 1,

�
(n+c)(2c0�c�)

1∕(1−�)

(
2�

1−�

) 1
1−�

y−2� exp(y1−�)dy

≤ 2

1 − � �
(n+c)(2c0�c�)

1∕(1−�)

(
2�

1−�

) 1
1−�

((1 − �)y−2� − �y−(1+�)) exp(y1−�)dy

≤ 2

1 − �
exp

(
2c0�c

�(n + c)1−�
)
(n + c)−�

(
2c0�c

�
)−�∕(1−�)

.

�
(

2�

1−�

) 1
1−�

1

y−2� exp(y1−�)dy ≤ e
(

2�

1 − �

) 1

1−�

.

(78)

�
���𝜃n − 𝜃̂

T

���2 ≤ exp
�
−c

0
𝜇c𝛼(n + c)1−𝛼

�

×

�
C
1
C
2

���𝜃0 − 𝜃̂
T

���2 +
√
e

�
2𝛼

1 − 𝛼

� 1

2(1−𝛼)

c
𝛼
c
0

�
2c

0
𝜇c𝛼

� 𝛼

(1−𝛼)

+ 2c
0
C
1
C
2

�
R
max

+ (1 + 𝛽)H𝛷2

max

�√
n
0

�

+

�
2

1 − 𝛼

�
R
max

+ (1 + 𝛽)H𝛷2

max

�
c
𝛼
c
0

�
2c

0
𝜇c𝛼

� 𝛼

2(1−𝛼) .(n + c)−
𝛼

2

�
‖‖‖𝜃̄n+1 − 𝜃̂T

‖‖‖2 ≤
1

n + 1

n∑
k=0

�
‖‖‖𝜃k − 𝜃̂T

‖‖‖2,

ℙ(��zn��2 − 𝔼��zn��2 ≥ �) ≤ exp

⎛
⎜⎜⎜⎜⎝
−

�2

2(Rmax + (1 + �)H�2
max

)2
n∑

m=1

L2
m

⎞
⎟⎟⎟⎟⎠
,

595Machine Learning (2021) 110:559–618	

1 3

where Li ≜ �i

n+1

�
∑n−1

l=i+1

l∏
j=i

�
1 − �j+1(2� − (1 + �)2�4

max
�j+1))

�1∕2
�

.

Proof  Recall that zn denotes the error of the algorithm at time n, which in this case is
zn = 𝜃̄n − 𝜃̂T . The proof follows the scheme of the proof of Proposition 8.1, part (1), given
in Sect. 8.2:

Step 1 As before, we decompose the centered error ‖‖zn‖‖2 − �‖‖zn‖‖2 as follows:

where Dk ≜ gk − �[gk
||Fk−1] and gk ≜ �[‖‖zn‖‖2||Fk].

Step 2 We need to prove that the functions gk are Lipschitz continuous in the random
innovation at time k with the new constants Lk . Recall from Step 2 of the proof of the high
probability bound in Theorem 8.1 in Sect. 8.2 that the random variable �k

n
(�) is defined to

be the value of the iterate at time n that evolves according to (10), and beginning from � at
time k. Now we define

Then, letting f and f ′ denote two possible values for the random innovation at time k, and
setting � = �k−1 + �kf and �� = �k−1 + �kf

� , we have

where we have used (42) derived in Step 2 of the proof the high probability bound in Prop-
osition 8.1. Hence, as in Step 2 of the proof of Proposition 8.1, part (1), we find that gk is Lk
-Lipschitz in the random innovation at time k, and this implies Dk is Lk-Lipschitz.

Step 3 follows in a similar manner to the proof of Proposition 8.1, part (1). 	� ◻

We now bound the sum of squares of the Lipschitz constants Lm when the iterates are
averaged, and the step-sizes are chosen to be �n = c0

(
c

c+n

)�

 for some � ∈ (1∕2, 1) . This
is a crucial step that helps in establishing the order O(n−�∕2) rate for the high-probability
bound in Theorem 4.2, independent of the choice of c. Recall that in order to obtain this
rate for the algorithm without averaging, one had to choose c0�c ∈ (1,∞).

Lemma 8.1  Under conditions of Theorem 5.1, we have

(79)‖‖zn‖‖2 − �‖‖zn‖‖2 =
n∑

k=1

Dk,

𝛩̄k
n
(𝜃̄, 𝜃) =

k𝜃̄

n + 1
+

1

n + 1

n∑
j=k

𝛩k
j
(𝜃).

(80)

�
‖‖‖𝛩̄

k
n

(
𝜃̄k−1, 𝜃

)
− 𝛩̄k

n

(
𝜃̄k−1, 𝜃

�
)‖‖‖2 = �

‖‖‖‖‖
1

n + 1

n∑
l=k

(
𝛩k

l
(𝜃) − 𝛩k

l

(
𝜃�
))‖‖‖‖‖2

≤ 1

n + 1

n∑
l=k

l∏
j=k+1

(
1 − 𝛾j

(
2𝜇 − 𝛾j(1 + 𝛽)2𝛷4

max

))1∕2‖‖f − f �‖‖2

(81)
n∑
i=1

L2
i
≤ n0

(n + 1)2

[
e(1+�)�

2
max

c0(2n0+1)

(1 + �)�2
max

]2

596	 Machine Learning (2021) 110:559–618

1 3

Proof  Recall from the statement of Theorem 5.1 that n satisfies,

Recall also from the formula in Proposition 8.3, that:

We split the bound on the sum into two terms as follows:

The first term in (84) is simplified as follows:

In the above, the inequality in (85) follows from (74). , while the inequality in (85) applies
the form of the step sizes. In obtaining the inequality in (86), we have replaced i with 1. For
the inequality in (87), we have used the formula for the sum of a geometric series, and for
the final inequality we have used that (1 + x)n0 = en0 ln(1+x) ≤ exn0.

We now analyze the second term in (84). Notice that

(82)+
1

�2

{
2� +

[[
2�

c0�c
�

] 1

1−�

+
2(1 − �)(c0�)

�

�

]}2

1

n + 1
.

(83)
c0c

𝛼

(c + n)𝛼
(1 + 𝛽)2𝛷4

max
< 𝜇.

Li =
�i

n + 1

(
n−1∑
l=i+1

l∏
j=i

(
1 − �j+1(2� − (1 + �)2�4

max
�j+1))

)1∕2
)
.

(84)
n∑
i=1

L2
i
=

n0−1∑
i=1

L2
i
+

n∑
i=n0

L2
i
.

(85)

n0−1∑
i=1

L2
i
=

n0−1∑
i=1

[
�i

n + 1

(
n0∑

l=i+1

l∏
j=i

(
1 − �j+1(2� − (1 + �)2�4

max
�j+1))

)1∕2
)]2

≤ 1

(n + 1)2

n0−1∑
i=1

[
c0

(
n0∑

l=i+1

l∏
j=i

(
1 + (1 + �)�2

max
c0)

))]2

(86)≤ 1

(n + 1)2

n0−1∑
i=1

[
c0(1 + (1 + �)�2

max
c0)

2n0

n0∑
l=1

(
1 + (1 + �)�2

max
c0
)−l

]2

(87)≤ 1

(n + 1)2
c2
0
n0

[
(1 + (1 + �)�2

max
c0)

2n0+1

(1 + �)�2
max

c0

]2

(88)≤ n0

(n + 1)2

[
e(1+�)�

2
max

c0(2n0+1)

(1 + �)�2
max

]2
.

597Machine Learning (2021) 110:559–618	

1 3

To produce the final bound, we bound the summand (A) highlighted in line (89) by a con-
stant, uniformly over all values of i and n, as follows:

where the inequality in (90) follows from the convexity of e−
c0�

2
x , while that in (91) follows

by applying an Abel transform.
From the foregoing, the summand term (A) highlighted in (89) can be bounded by

(89)

n∑
i=n

0

L2
i
=

n∑
i=n

0

[
𝛾i

n + 1

(
n−1∑
l=i+1

l∏
j=i

(
1 − 𝛾j+1(2𝜇 − (1 + 𝛽)2𝛷4

max
𝛾j+1))

)1∕2
)]2

≤ 1

(n + 1)2

n∑
i=n

0

[
𝛾i

(
n−1∑
l=i+1

exp

(
−

l∑
j=i

𝛾j+1(2𝜇 − (1 + 𝛽)2𝛷4

max
𝛾j+1))

))]2

<
1

(n + 1)2

n∑
i=n

0

[
c
0

(
c

c + i

)𝛼
(

n−1∑
l=i+1

exp

(
−c

0
𝜇

l∑
j=i

(
c

c + j

)𝛼
))]

���
≜(A)

2

.

(90)

n−1∑
l=i+1

exp

(
−c

0
�

l∑
j=1

(
c

c + i

)�
)

=

n−1∑
l=i+1

[(
c

c + l

)�

exp

(
−c

0
�

l∑
j=1

(
c

c + i

)�
)](

c + l

c

)�

≤
n−1∑
l=i+1

[
1

c
0
�

(
exp

(
−c

0
�

l−1∑
j=1

(
c

c + i

)�
)

− exp

(
−c

0
�

l∑
j=1

(
c

c + i

)�
))](

c + l

c

)�

(91)

=
1

c0�

{
−
(

c

c + n

)−�

exp

(
−c0�

n∑
j=1

(
c

c + i

)�
)

+
(

c

c + i + 1

)−�

exp

(
−c0�

i+1∑
j=1

(
c

c + i

)�
)

+

n−1∑
l=i+1

exp

(
−c0�

l∑
j=1

(
c

c + i

)�
)[(

c

c + l + 1

)−�

−
(

c

c + l

)−�]}
,

(A) ≤ 1

�

((
c + i + 1

c + i

)�

+
1

(c + i)�

n−1∑
l=i+1

exp

(
−c0�c

� ((c + l)1−� − (c + i)1−�)

1 − �

)
((c + l + 1)� − (c + l)�)

)

598	 Machine Learning (2021) 110:559–618

1 3

Now, using convexity of x� followed by comparison with an integral, and then a change of
variable, we have

For the second inequality, we have used that the mapping x → e−d(c+x)
1−�

(c + x)−(1−�) is
decreasing in x for all x > 1.

By taking the derivative and setting it to zero, we find that l ↦ exp
(
−

c� l

(1−�)

)
l

2�

1−� is
decreasing on [2�∕c� ,∞) , and so we deduce that when c0�(c + i + 1)1−� ≥ 2�∕c�,

When c0𝜇(c + i + 1)1−𝛼 < 2𝛼∕c𝛼 we can bound the summand of (92) by 1, and

Hence, we conclude that

	� ◻

Proof  (High probability bound in Theorem 5.1) Once we have established the bound in
expectation for batchTD with iterate averaging, and the bound on sum of squares of Lip-
schitz constants in the lemma above, the proof of the high probability bound is straight-
forward, and follows by arguments similar to that used in establishing the corresponding
claim for non-averaged batchTD (see Sect. 8.2.3). 	� ◻

(92)
n−1∑
l=i+1

exp

(
−c0�

c�((c + l)1−� − (c + i)1−�)

(1 − �)

)
((c + l + 1)� − (c + l)�)

(93)

≤
n−1∑
l=i+1

exp

(
−c0�

c�((c + l)1−� − (c + i)1−�)

(1 − �)

)
�(c + l)−(1−�)

≤ � exp

(
c0�

c�(c + i)1−�

(1 − �)

)[
�

n−1

i

exp

(
−c0�

c�(c + l)1−�

(1 − �)

)
(c + l)−(1−�)dl

]

= � exp

(
c0�

c�(c + i)1−�

(1 − �)

)[
�

c0�(c+n−1)
1−�

c0�(c+i)
1−�

exp

(
−

c�l

(1 − �)

)
l
2�−1

1−� dl

]
.

exp

(
c�(c + i)1−�

(1 − �)

)
�

c0�(c+n)
1−�

c0�(c+i+1)
1−�

exp

(
−

c�l

(1 − �)

)
l
2�−1

1−� dl

≤ (c0�)
2�

1−� (c + i + 1)2� �
c0�(c+n)

1−�

c0�(c+i+1)
1−�

l
−1

1−� dl ≤ 1 − �

�
((c0�(c + i + 1))� .

c0𝜇(c + i + 1)1−𝛼 <
2𝛼

c𝛼
⟹ (c + i + 1)1−𝛼 <

2𝛼

c0𝜇c
𝛼

⟹ i <

[
2𝛼

c0𝜇c
𝛼

] 1

1−𝛼

− c − 1.

n∑
i=n0

L2
i
≤ 1

�2

{
2� +

[[
2�

c0�c
�

] 1

1−�

+
2(1 − �)(c0�)

�

�

]}2

1

n + 1
.

599Machine Learning (2021) 110:559–618	

1 3

9 � Traffic control application

9.1 � Simulation setup

The idea behind the experimental setup is to study both LSPI and the variant of LSPI,
fLSPI, where we use batchTDQ as a subroutine to approximate the LSTDQ solution. Algo-
rithm 2 provides the pseudo-code for the latter algorithm.

We consider a traffic signal control application for conducting the experiments. The
problem here is to adaptively choose the sign configurations for the signalized intersections
in the road network considered, in order to maximize the traffic flow in the long run. Let L
be the total number of lanes in the road network considered. Further, let qi(t), i = 1,… , L
denote the queue lengths and ti(t), i = 1,… , L the elapsed time (since signal turned to red)
on the individual lanes of the road network. Following Prashanth and Bhatnagar (2011),
the traffic signal control MDP is formulated as follows:

State	� st =
(
q1(t),… , qL(t), t1(t),… , tL(t)

)
,

Action	� at belongs to the set of feasible sign configurations,

Single-stage cost	�

 where ui,wi ≥ 0 such that ui + wi = 1 for i = 1, 2 , and u2 > w2 . Here, the set Ip is the set of
prioritized lanes.
 Function approximation is a standard technique employed to handle high-dimensional
state spaces (as is the case with the traffic signal control MDP on large road networks).
We employ the feature selection scheme from Prashanth and Bhatnagar (2012), which is
briefly described in the following: the features �(s, a) corresponding to any state-action
tuple (s, a) is an L-dimensional vector, with one bit for each line in the road network. The
feature value �i(s, a), i = 1,… , L corresponding to lane i is chosen as described in Table 1,

h(st) = u1

[∑
i∈Ip

u2 ⋅ qi(t) +
∑
i∉Ip

w2 ⋅ qi(t)
]

+ w1

[∑
i∈Ip

u2 ⋅ ti(t) +
∑
i∉Ip

w2 ⋅ ti(t)
]
,

Table 1   Features for the traffic
control application

State Action Feature �
i
(s, a)

qi < L
1
 and ti < T

1
Red 0.01
Green 0.06

qi < L
1
 and ti ≥ T

1
Red 0.02
Green 0.05

L
1
≤ qi < L

2
 and ti < T

1
Red 0.03
Green 0.04

L
1
≤ qi < L

2
 and ti ≥ T

1
Red 0.04
Green 0.03

qi ≥ L
2
 and ti < T

1
Red 0.05
Green 0.02

qi ≥ L
2
 and ti ≥ T

1
Red 0.06
Green 0.01

600	 Machine Learning (2021) 110:559–618

1 3

with qi and ti denoting the queue length and elapsed times for lane i. Thus, as the size of the
network increases, the feature dimension scales in a linear fashion.

Note that the feature selection scheme depends on certain thresholds L1 and L2 on the
queue length and T1 on the elapsed times. The motivation for using such graded thresh-
olds is owing to the fact that queue lengths are difficult to measure precisely in practice.
We set (L1,L2, T1) = (6, 14, 130) in all our experiments, and this choice has been used, for
instance, by Prashanth and Bhatnagar (2012).

We implement both LSPI as well as fLSPI for the above problem. The experiments
involve two stages—an initial training stage where LSPI/fLSPI is run to find an approxi-
mately optimal policy, and a test stage where ten independent simulations are run using
the policy that LSPI/fLSPI converged to in the training stage. In the training stage, for
both LSPI and fLSPI, we collect T = 10000 samples from an exploratory policy that picks
the actions in a uniformly random manner. For both LSPI and fLSPI, we set � = 0.9 and
� = 0.1 . We set � , the number of batchTDQ iterations in fLSPI, to 500. This choice is
motivated by an experiment where we observed that at 500 steps, batchTD is already very
close to LSTDQ, and taking more steps did not result in any significant improvements for
fLSPI. We implement the regularized variant of LSTDQ, with regularization constant � set
to 1. The step-size �k used in the update iteration of batchTDQ is set as recommended by
Theorem 4.2.

9.2 � Results

We use total arrived road users (TAR), and runtimes as performance metrics for comparing
the algorithms implemented. TAR is a throughput metric that denotes the total number of
road users who have reached their destination, while runtimes are measured for the policy
evaluation step in LSPI/fLSPI. For batchTDQ, which is the policy evaluation algorithm in
fLSPI, we also report the tracking error, which measures the distance in �2 norm between
the batchTD iterate �k , k = 1,… , � and LSTDQ solution 𝜃̂T.

We report the tracking error and total arrived road users (TAR) in Figs. 2 and 3, respec-
tively. The run-times obtained from our experimental runs for LSPI and fLSPI is presented
in Fig. 4. Iteration 1 for fLSPI is used for reporting the tracking error and we observed
similar behavior across iterations, i.e., we observed that batchTD iterate �� is close to the

(a) (b)

Fig. 2   Tracking error of batchTDQ in iteration 1 of fLSPI on two grid networks

601Machine Learning (2021) 110:559–618	

1 3

corresponding LSTDQ solution in each iteration of fLSPI. The experiments are performed
for four different grid networks of increasing size and hence, increasing feature dimension.

From Fig. 2a, b, we observe that batchTD algorithm converges rapidly to the corre-
sponding LSTDQ solution. Further, from the runtime plots (see Fig. 4), we notice that
fLSPI is several orders of magnitude faster than regular LSPI. From a traffic application
standpoint, we observe in Fig. 3a, b that fLSPI results in a throughput (TAR) performance
that is on par with LSPI. Moreover, the throughput observed for LSPI/fLSPI is higher than
that for a traffic light control (TLC) algorithm that cycles through the sign configurations
in a round-robin fashion, with a fixed green time period for each sign configuration. We
report the TAR results in Fig. 3a, b for two such fixed timing TLCs with periods 10 and
20, respectively denoted Fixed10 and Fixed20. The rationale behind this comparison is
that fixed timing TLCs are the de facto standard. Moreover, the results establish that LSPI

(a) (b)

Fig. 3   Performance comparison of LSPI and fLSPI using throughput (TAR) on two grid networks

Fig. 4   Run-times of LSPI and
fLSPI on four road networks

602	 Machine Learning (2021) 110:559–618

1 3

outperforms fixed timing TLCs that we implemented and fLSPI gives performance compa-
rable to that of LSPI, but at a lower computational cost.

10 � Extension to least squares regression

In this section, we describe the classic parameter estimation problem using the method of
least squares, the standard approach to solve this problem, and the low-complexity SGD
alternative. Subsequently, we outline the fast LinUCB algorithm that uses a SGD iterate in
place of least squares solutions, and present the numerical experiments for this algorithm
on a news recommendation application.

10.1 � Least squares regression and SGD

In this setting, we are given a set of samples D ≜ {(xi, yi), i = 1,… , T} with the underlying
observation model yi = x�

i
�∗ + �i ( �i is a bounded, zero-mean random variable, and �∗ is an

unknown parameter). The least squares estimate 𝜃̂T minimizes
∑T

i=1
(yi − ��xi)

2 . It can be
shown that 𝜃̂T = Ā−1

T
bT , where ĀT = T−1

∑T

i=1
xix

�

i
 and b̄T = T−1

∑T

i=1
xiyi.

Notice that, unlike the RL setting, 𝜃̂T here is the minimizer of an empirical loss function.
However, as in the case of LSTD, the computational cost of a Sherman–Morrison lemma
based approach for solving the above would be of the order O(d2T) . As in the case of the
batchTD algorithm, we update the SGD iterate �n using a SA scheme as follows (starting
with an arbitrary �0),

where, each in is chosen uniformly randomly from {1,… , T} , and �n are step-sizes chosen
in advance.

Unlike batchTD which is a fixed point iteration, the above is a stochastic gradient
descent procedure. Nevertheless, using the same proof template as for batchTD earlier, we
can derive bounds on the computational error, i.e., the distance between �n and the least
squares solution 𝜃̂T , both in high probability as well as expectation.

10.2 � Main results

10.2.1 � Assumptions

As in the case of batchTD, we make some assumptions on the step sizes, features, noise
and the matrix ĀT :

(A1)	� The step sizes �n satisfy
∑

n �n = ∞ , and
∑

n 𝛾
2
n
< ∞.

(A2)	� Boundedness of xi , i.e., ‖‖xi‖‖2 ≤ �max , for i = 1,… , T .
(A3)	� The noise {�i} is i.i.d., zero mean and |�i| ≤ � , for i = 1,… , T .
(A4)	� The matrix ĀT is positive definite, and its smallest eigenvalue is at least 𝜇 > 0.

 Assumptions (A2) and (A3) are standard in the context of least squares minimization. As
for batchTD, in cases when the fourth assumption is not satisfied we can employ either
explicit regularization or iterate averaging to produce similar results.

(94)�n = �n−1 + �n(yin − ��
n−1

xin)xin ,

603Machine Learning (2021) 110:559–618	

1 3

10.2.2 � Asymptotic convergence

An analogue of Theorem 4.1 holds as follows:

Theorem 10.1  Under (A1)–(A4), the iterate 𝜃n → 𝜃̂T a.s. as n → ∞, where �n is given by
(96) and 𝜃̂T = Ā−1

T
b̄T.

Proof  Follows in a similar manner as the proof of Theorem 4.1. 	� ◻

10.2.3 � Finite time bounds

An analogue of Theorem 4.2 for this setting holds as follows:

Theorem 10.2  (Error Bound for iterates of SGD) Assume (A1)–(A4). Choosing
�n =

c0c

(c+n)
 , and c such that c0�2

max
∈ (0, 1) and �c0c ∈ (1,∞), for any 𝛿 > 0,

where

In the above, h(n) ≜ �‖�∗‖2 + ���0��2 + ��maxΓn

�
�2

max
+ ��max.

Proof  See Sect. 10.4. 	� ◻

With step-sizes specified in Theorem 10.2, we see that the initial error is forgotten faster
than the sampling error, which vanishes at the rate Õ

(
n−1∕2

)
 , where Õ(⋅) is like O(⋅) with

the log factors discarded. Thus, the rate derived in Theorem 10.2 matches the asymptoti-
cally optimal convergence rate for SGD type schemes (cf. Nemirovsky and Yudin 1983).

10.3 � Iterate averaging

The expectation and high-probability bounds in Theorem 10.2 as well as earlier works on
SGD (cf. Hazan and Kale 2011) require the knowledge of the strong convexity constant � .
Iterate averaged SGD gets rid of this dependence while exhibiting the optimal convergence
rates both in high probability and expectation and this claim is made precise in the follow-
ing theorem.

Theorem 10.3  (Error Bound for iterate averaged SGD) Under (A2)–(A3), choosing
�n = c0

(
c

(c+n)

)�

, with � ∈ (1∕2, 1), and c0�2
max

∈ (0, 1), we have, for any 𝛿 > 0,

𝔼
���𝜃n − 𝜃̂T

���2 ≤
KLS
1√
n + c

, and ℙ

�
���𝜃n − 𝜃̂T

���2 ≤
KLS
2√
n + c

�
≥ 1 − 𝛿,

KLS
1
(n) ≜

√
cc0c𝜇

���𝜃0 − 𝜃̂T
���2

(n + c)𝜇c0c−
1

2

+
2ec0ch(n)

2c0c𝜇 − 1
,

KLS
2
(n) ≜ 2

√
ec0ch(n)

�
log 𝛿−1

𝜇c0c − 1
+ K1(n).

604	 Machine Learning (2021) 110:559–618

1 3

where, writing C0 ≜ ∑∞

n=1
exp(−�c0c

�n1−� and C1 ≜ (exp
(
c0�c

�(1 + c)1−�
)
,

and

Proof  The proof is similar to that of Theorem 5.1 and is provided in "Appendix 1". 	� ◻

Remark 15  Note that, unlike in the case of Theorem 5.1, there is no dependence on a quantity
n0 which defines a time when the step sizes have become sufficiently small. This is because
for the regression setting here, the assumption that c0�2

max
∈ (0, 1) already ensures that the

step sizes are sufficiently small. If it was not possible to set c0 in this way, then a similar
bound including a dependence on the smallest n such that 𝛾n𝛷2

max
< 1 would be derivable.

10.4 � Proofs for least squares regression extension

The overall schema of the proof here is the same as that used to prove Theorem 4.2.
Proposition 10.1 below is an analogue of Proposition 8.1 for the least squares setting.
From this proposition the derivation of the rates in Theorem 10.2 is essentially the same
as for Theorem 4.2 and 𝜃̂T = Ā−1

T
bT.

Proposition 10.1  Let zn = 𝜃n − 𝜃̂T, where �n is given by (94), Under (A1)–(A4), and
assuming that �n�2

max
≤ 1 for all n, we have ∀𝜖 > 0 ,

(1)	 a bound in high probability for the centered error:

 where

 and Γn ≜ ∑n

i=1
�i.

(95)𝔼
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
KIA
1
(n)

(n + c)𝛼∕2
and ℙ

(
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
KIA
2
(n)

(n + c)𝛼∕2

)
≥ 1 − 𝛿,

KIALS
1

(n) ≜ C0

�
C1

���0 − �T
��2 + 2h(n)c�c0

�
2c0�c

�
� �

(1−�)

√
e
�

2�

1 − �

� 1

2(1−�)

�

+ 2h(n)c�c0
�
2c0�c

�
� �

2(1−�) (n + c)1−
�

2 ,

KIALS
2

(n) ≜ 4
√
log �−1

�2c2
0

1

�

�
2� +

��
2�

c0�c
�

� 1

1−�
+

2(1−�)(c0�)
�

�

��

(n + c)(1−�)∕2
+ KIALS

1
(n).

(96)ℙ
���zn��2 − 𝔼��zn��2 ≥ �

� ≤ exp

�
−

�2

4h(n)2
∑n

i=1
L2
i

�
,

Li ≜ �i

n−1�
j=i

(1 − �j+1�(2 −�2
max

�j+1))
1∕2,

h(n) ≜ �‖�∗‖2 + ���0��2 + ��maxΓn

�
�2

max
+ ��max,

605Machine Learning (2021) 110:559–618	

1 3

(2)	 and a bound in expectation for the non-centered error:

The proof of the Proposition 10.1 has the same scheme as the proof of Proposition
8.1. The major difference is that the update rule is no longer the update rule of a fixed
point iteration, but of a gradient descent scheme. In the following proofs, we give only
the major differences with the proof of Proposition 8.1:

High-probability bound	� There are two alterations to the proof of the high probability
bound in Proposition 8.1: slightly different Lipschitz constants
are derived according to the different form of the random inno-
vation (Step 2 of the proof of Proposition 8.1); the constant by
which the the size of the random innovations is bounded is dif-
ferent, and projection is not necessary to achieve this bound
(Step 3 of the proof of Proposition 8.1).

Bound in expectation	� The overall scheme of this proof is similar to that used in prov-
ing the expectation bound in Proposition 8.2. However, we see
differences in the proof wherever the update rule is unrolled, and
bounds on the various quantities in the resulting expansion need
to be obtained.

Proof of Proposition 10.1 part (1)  First we derive the Lipschitz dependency of the ith iterate
on the random innovation at time j < i , as in Step 2 of Proposition 8.1.

Let �i
j
(�) denote the mapping that returns the value of the iterate updated according to

(94) at instant j, given that �i = � . Now we note that

and

Using Jensen’s inequality, the tower property of conditional expectations, and Cauchy-
Schwarz inequality, we can deduce that

 Notice that since �n�2
max

∈ (0, 1) , the largest eigenvalue of 𝛾nĀT must be less than 1.
Hence, a repeated application of (98), together with (A1) yields the following

(97)
�
���zn��2

�2 ≤
n�
j=1

�
1 − 𝜇𝛾j

����𝜃0 − 𝜃̂T
���2

���������������������������������
������� �����

+

⎛
⎜⎜⎝

n−1�
k=1

4h(k)2𝛾2
k+1

�
n�

j=k+1

�
1 − 𝜇𝛾j

��2⎞
⎟⎟⎠

1

2

���
�������� �����

.

�i
n
(�) − �i

n
(��) =

(
I − �nxinx

T
in

)[
�i

n−1
(�) − �i

n−1
(��)

]
,

�
I − �nxinx

T
in

�T�
I − �nxinx

T
in

�
=
�
I − �n(2 − ‖xin‖22�n)xinxTin

�
.

(98)
�
�‖𝛩i

n
(𝜃) − 𝛩i

n
(𝜃�)‖2 ∣ 𝛩i

n−1
(𝜃),𝛩i

n−1
(𝜃�)

�

≤ �‖I − 𝛾n(2 −𝛷2
max

𝛾n)ĀT‖22‖𝛩i
n−1

(𝜃) − 𝛩i
n−1

(𝜃�)‖2
2

�1∕2
.

606	 Machine Learning (2021) 110:559–618

1 3

Finally putting all this together, if f and f ′ denote two possible values for the random inno-
vation at time i, and letting � = �i−1 + �if and �� = �i−1 + �if

� , then we have

Finally we need to bound the size of the random innovations. Recall that in Proposition 8.1,
the bound on the size of the iterates followed from the projection step in the algorithm. In
this case, we can derive a bound for the iterates directly:

where we have used that �jxij x
�

j
 is a positive semi-definite matrix. Now, we can bound the

random innovation by

The proof now follows just as in Proposition 8.1. 	� ◻

Proof of Proposition 10.1 part (2)  First we extract a martingale difference from the update
rule (94). Let fn(𝜃) ≜ (xin − (𝜃 − 𝜃̂T)

�xin)xin , and let F(�) ≜ �(fn(�) ∣ Fn−1) , where Fn−1 is
the �-field generated by the random variables {i1,… , in−1} as before. Then

the �Mn = F(�n−1) − fn(�n−1) is a martingale difference.
Now since 𝜃̂T is the least squares solution, F(𝜃̂T) = 0 . Moreover F(⋅) is linear, and so we

obtain the following recursion:

where 𝛱n
k
≜ ∏n

j=k

�
I − 𝛾jĀT

�
.

By Jensen’s inequality, we have

�

[‖‖‖�
i
n
(�) − �i

n
(��)

‖‖‖
2

2

]
≤ ‖‖� − ��‖‖22

n−1∏
j=i

(1 − ��j+1(2 −�2
max

�j+1)).

‖‖‖‖�
[‖‖‖𝜃n − 𝜃̂T

‖‖‖2||𝜃i = 𝜃
]
− �

[‖‖‖𝜃n − 𝜃̂T
‖‖‖2||𝜃i = 𝜃�

]‖‖‖‖2

≤ �

[‖‖‖𝛩
m
n
(𝜃) − 𝛩m

n

(
𝜃�
)‖‖‖2

] ≤
(

n−1∏
j=i

(1 − 𝜇𝛾j+1(2 −𝛷2
max

𝛾j+1))

) 1

2

𝛾i
‖‖f − f �‖‖2

= Li
‖‖f − f �‖‖2.

(99)

‖‖�n‖‖2 =
‖‖‖‖‖‖

[
n∏

k=1

(I − �kxik x
�

ik
)

]
�0 +

n∑
k=1

�k

[
n∏
j=k

(I − �jxij x
�

ij
)

]
�kxk

‖‖‖‖‖‖2
≤‖‖�0‖‖2 + ��max

n∑
j=1

�j,

���(yin − ��
n−1

xin)xin
���2 =

���(x
�

in
�∗ + �in − ��

n−1
xin)xin

���2
≤ �‖�∗‖2 + ���0��2 + ��maxΓn

�
�2

max
+ ��max = h(n).

zn = 𝜃n − 𝜃̂T = 𝜃n−1 − 𝜃̂T − 𝛾n
(
F(𝜃n−1) − 𝛥Mn

)
,

zn = zn−1 − 𝛾n
(
zn−1ĀT − 𝛥Mn

)
= 𝛱n

1
z0 −

n∑
k=1

𝛾k𝛱
n
k+1

𝛥Mk,

607Machine Learning (2021) 110:559–618	

1 3

Notice that the largest eigenvalue of 𝛾nĀT is smaller than 1, since �n�2
max

∈ (0, 1) . So,
I − 𝛾nĀT is positive definite, and, by (A1), has largest eigenvalue 1 − �n� . Hence

Finally we need to bound the variance of the martingale difference. Using (A2) and (A3), a
calculation shows that

where we have used the bound in (99). Hence �[‖‖�Mn
‖‖22] ≤ 4h(n)2.

The result now follows from (100) and (101). 	� ◻

11 � Fast LinUCB using SA and application to news‑recommendation

11.1 � Background for LinUCB

As illustrated in Fig. 5, at each iteration n, the objective is to choose an article from a pool
of K articles with respective features x1(n),… , xK(n) . Let xn denote the chosen article at

(100)�(��zn��2) ≤ �
�(⟨zn, zn⟩)

� 1

2 =

�
����n

1
z0
��22 +

n�
k=1

�2
k
�
����

n
k+1

�Mk
���
2

2

� 1

2

(101)
‖‖‖𝛱

n
k+1

‖‖‖2 =
‖‖‖‖‖‖

n∏
j=k+1

(
I − 𝛾jĀT

)‖‖‖‖‖‖2
≤

n∏
j=k+1

(1 − 𝛾j𝜇).

��,it
⟨fit (�t−1), fit (�t−1)⟩,��⟨F(�t−1),F(�t−1)⟩ ≤ h(n),

Fig. 5   Operational model of LinUCB

608	 Machine Learning (2021) 110:559–618

1 3

time n. LinUCB computes a regularized least squares (RLS) solution 𝜃̂n based on the cho-
sen arms xi and rewards yi seen so far, i = 1,… , n − 1 as follows:

Note that {xi, yi} do not come from a distribution. Instead, at every iteration n, the arm xn
chosen by LinUCB is based on the RLS solution 𝜃̂n . The latter is used to estimate the UCB
values for each of the K articles as follows:

 The algorithm then chooses the article with the largest UCB value, and the cycle is
repeated.

11.2 � Fast LinUCB using SA (fLinUCB‑SA)

We implement a fast variant of LinUCB, where SGD is used for two purposes (See Algo-
rithm 3 for the pseudocode):

Least squares approximation	� Here we use fLS-SA as a subroutine to approxi-
mate 𝜃̂n . In particular, at any instant n of the
LinUCB algorithm, we run the update (94) for �
steps, and use the resulting �� to derive the UCB
values for each arm.

UCB confidence term approximation	� Here we use an SGD scheme for approximating the
confidence term of the UCB values (103). For a
given arm k = 1,… ,K , let 𝜙̂k(n) = A−1

n
xk(n)

(102)𝜃̂n = argmin
𝜃

n�
i=1

(yi − 𝜃�xi)
2 + 𝜆‖𝜃‖2

2
.

(103)UCB(xk(n)) ≜ xk(n)
�𝜃̂n + 𝜅

√
xk(n)

�A−1
n
xk(n), k = 1,… ,K.

609Machine Learning (2021) 110:559–618	

1 3

denote the confidence estimate in the UCB value
(103). Recall that An =

n∑
i=1

xix
�

i
 . It is easy to see

that 𝜙̂k(n) is the solution to the following problem:

 Solving the above problem incurs a complexity of O(d2) . An SGD alternative with a per-
iteration complexity of O(d) approximates the solution to (104) by using the following iter-
ative scheme:

 where il is chosen uniformly at random in the set {1,… , n}.
For fLinUCB-SA in both the simulation setups presented subsequently, we set � to 1, �

to 1, �, �′ to 100 and �0 to the d = 136-dimensional zero vector. Further, the step-sizes �k
are chosen as c∕(2(c + k)) , with c = 1.33n , and this choice is motivated by Theorem 10.2.

Remark 16  The choice of the number of steps �, �′ for SGD schemes in fLinUCB-SA is
an arbitrary one. Our aim is simply to show that using an SGO iterates in place of an exact
solution to the least squares, and confidence estimates does not significantly decrease per-
formance of LinUCB, while it does drastically decrease the complexity.

11.3 � Experiments on Yahoo! dataset

The motivation in this experimental setup is to establish the usefulness of fLS-SA in a
higher level machine learning algorithm such as LinUCB. In other words, the objective is
to test the performance of LinUCB with SGD approximating least squares, and show that
the resulting algorithm gains in runtime, while exhibiting slightly weaker performance as
compared to regular LinUCB.

For conducting the experiments, we use the framework provided by the ICML explo-
ration and exploitation challenge (Mary et al. 2012), based on the user click log dataset
(Webscope 2011) for the Yahoo! front page today module (see Fig. 6). We run each algo-
rithm on several data files corresponding to different days in October, 2011.

Each data file has an average of nearly two million records of user click information.
Each record in the data file contains various information obtained from a user visit. These
include the displayed article, whether the user clicked on it or not, user features and a list
of available articles that could be recommended. The precise format is described in Mary
et al. (2012). The evaluation of the algorithms in this framework is done in an off-line man-
ner using a procedure described in Li et al. (2011).

We report the tracking error and runtimes from our experimental runs in Figs. 7 and
8, respectively. As in the case of batchTDQ, the tracking error is the distance in �2 norm
between the fLS-SA iterate �n and the RLS solution 𝜃̂n at each instant n of the LinUCB
algorithm. The runtimes in Fig. 8 are for five different data files corresponding to five days
in October, 2009 of the dataset (Webscope 2011), and we compare the classic RLS solver
time against fLS-SA time for each day of the dataset considered.

From Fig. 7, we observe that, in iteration n = 165 of the LinUCB algorithm, fLS-
SA algorithm iterate �� (n) converges rapidly to the corresponding RLS solution 𝜃̂n . The

(104)min
�

n∑
i=1

(x�
i
�)2

2
−

xk(n)
��

n
.

(105)�k(l) = �k(l − 1) + �l(n
−1xk(n) − (�k(l − 1)�xil)xil),

610	 Machine Learning (2021) 110:559–618

1 3

choice 165 for the iteration is arbitrary, as we observed similar behavior across itera-
tions of LinUCB.

The CTR score value is the ratio of the number of clicks that an algorithm gets to the
total number of iterations it completes, multiplied by 10000 for ease of visualization.
We observed that the CTR score for the regular LinUCB algorithm with day 2’s data
file as input was 470, while that of fLinUCB-SA was 390, resulting in about 20% loss
in performance. Considering that the dataset contains very sparse features and also the
fact that the rewards are binary, with a reward of 1 occurring rarely, we believe LinUCB
has not seen enough data to have converged UCB values, and hence the observed loss in
CTR may not be conclusive.

Fig. 6   The Featured tab in
Yahoo! Today module (src: Li
et al. 2010)

Fig. 7   Distance between fLS-SA iterate �
k
(n) and 𝜃̂

n
 in iteration n = 165 of fLinUCB-SA, with day 2’s data

file as input

611Machine Learning (2021) 110:559–618	

1 3

12 � Conclusions and future work

We analyzed the TD algorithm with linear function approximation, under uniform sampling
from a dataset. We provided convergence rate results for this algorithm, both in high prob-
ability and in expectation. Furthermore, we also established that using our batchTD scheme
in place of LSTD does not impact the rate of convergence of the approximate value function
to the true value function. These results coupled with the fact that the batchTD algorithm
possesses lower computational complexity in comparison to traditional techniques makes
it attractive for implementation in big data settings, where the feature dimension is large,
regardless of the density of the feature vectors. On a traffic signal control application, we
demonstrated the practicality of a low-complexity alternative to LSPI that uses batchTDQ in
place of LSTDQ for policy evaluation. We also extended our analysis to bound the error of an
SGD scheme for least squares regression, and conducted a set of experiments that combines
the SGD scheme with the LinUCB algorithm on a news-recommendation platform.

Unlike LSTD, TD is an online algorithm and a finite-time analysis there would require
notions of mixing time for Markov chains in addition to the solution scheme that we
employed in this work. This is because the asymptotic limit for TD(0) is the fixed point of
the Bellman operator, which assumes that the underlying MDP is begun from the stationary
distribution, say � . However, the samples provided to TD(0) come from simulations of the
MDP that are not begun from � , making the finite time analysis challenging. It would be an
interesting future research direction to use the proof technique employed to analyze batchTD,
and incorporate the necessary deviations to handle the more general Markov noise.

We outline a few future research directions for improving batchTD algorithm devel-
oped here: (i) develop extensions of batchTD to approximate LSTD(� ); (ii) choose a cyclic
sampling scheme instead of the uniform random sampling. Cycling through the samples is
advantageous because the samples need not be stored, and one can then think of batchTD
with cyclic sampling as an incremental algorithm in the spirit of TD; and (iii) leverage
recent enhancements to SGD in the context of least squares regression, cf. Dieuleveut
et al. (2016). An orthogonal direction of future research is to develop online algorithms

Fig. 8   Performance comparison of the algorithms using runtimes on various days of the dataset

612	 Machine Learning (2021) 110:559–618

1 3

that track the corresponding batch solutions, efficiently and this has been partially accom-
plished by Korda et al. (2015), and Tarrès and Yao (2011).

Appendix 1: Proof of Theorem 10.3

The proof of Theorem 10.3 relies on a general rate result built from Proposition 10.1

Proposition 13.1  Under (A1)–(A3) we have, for all � ≥ 0 and ∀n ≥ 1,

 where Li ≜ �i

n

�
∑n−1

l=i+1

l∏
j=i

�
1 − ��j+1(2 −�2

max
�j+1))

�1∕2
�

, and h(n) is as in Proposition

10.1.

Proof  This proof follows exactly the proof of Proposition 8.3, except that it uses the form
of Li for non-averaged iterates as derived in Proposition 10.1 part (1), rather than as derived
in Proposition 8.1 part (1). 	� ◻

We specialise this result with the choice of step size �n ≜ (c0c
�)∕(n + c)� . First, we

prove the form of the Li constants for this choice of step size in the lemma below.

Lemma 13.1  Under conditions of Theorem 10.3, we have

Second, we bound the expected error by directly averaging the errors of the non-aver-
aged iterates:

and directly applying the bounds in expectation given in Proposition 8.1.

Lemma 13.2  Under conditions of Theorem 10.3, we have

where C0 and C1 are as defined in Theorem 10.3.

ℙ(��zn��2 − 𝔼��zn��2 ≥ �) ≤ exp

⎛
⎜⎜⎜⎜⎝
−

�2

4h(n)2
n∑

m=1

L2
m

⎞
⎟⎟⎟⎟⎠
,

n∑
i=1

L2
i
≤ 1

�2

{
2� +

[[
2�

c0�c
�

] 1

1−�

+
2(1 − �)(c0�)

�

�

]}2

1

n
.

(106)�
‖‖‖𝜃̄n − 𝜃̂T

‖‖‖2 ≤
1

n

n∑
k=1

�
‖‖‖𝜃k − 𝜃̂T

‖‖‖2,

�
���𝜃̄n − 𝜃̂T

���2 ≤C0

�
C1

��𝜃0 − 𝜃T
��2 + 2h(n)c𝛼c0

�
2c0𝜇c

𝛼
� 𝛼

(1−𝛼)

√
e
�

2𝛼

1 − 𝛼

� 1

2(1−𝛼)

�
1

n

+ h(n)c𝛼c0
�
2c0𝜇c

𝛼
� 𝛼

2(1−𝛼) (n + c)−
𝛼

2 ,

613Machine Learning (2021) 110:559–618	

1 3

Proof of Lemma 13.1

Recall from the statement of Theorem 10.3 that

Recall also from the formula in Proposition 13.1, that

Notice that

To produce the final bound, we bound the summand (A) highlighted in line (91) by a con-
stant, uniformly over all values of i and n, exactly as in the proof of Lemma 8.1. Thus, we
have

The rest of the proof follows that of Theorem 4.2. 	� ◻

Proof of Lemma 13.2

Recall that �n ≜ c0

(
c

(c+n)

)�

 . Recall that in Theorem 10.3 we have assumed that

 Using (99), we have

(107)0 < c0𝛷
2
max

< 1.

Li =
�i

n

(
n−1∑
l=i+1

l∏
j=i

(
1 − ��j+1(2 −�2

max
�j+1))

)1∕2
)
.

n∑
i=1

L2
i
=

n∑
i=1

[
𝛾i

n

(
n−1∑
l=i+1

l∏
j=i

(
1 − 𝜇𝛾j+1(2 −𝛷2

max
𝛾j+1))

)1∕2
)]2

≤ 1

n2

n∑
i=1

[
𝛾i

(
n−1∑
l=i+1

exp

(
−

l∑
j=i

𝜇𝛾j+1(2 −𝛷2
max

𝛾j+1))

))]2

<
1

n2

n∑
i=1

[
c0

(
c

c + i

)𝛼
(

n−1∑
l=i+1

exp

(
−c0𝜇

l∑
j=i

(
c

c + j

)𝛼
))]

���
≜(A)

2

.

n∑
i=1

L2
i
≤ 1

�2

{
2� +

[[
2�

c0�c
�

] 1

1−�

+
2(1 − �)(c0�)

�

�

]}2

1

n
.

(108)0 < c0𝛷
2
max

< 1.

614	 Machine Learning (2021) 110:559–618

1 3

To obtain (109), we have applied (108). For the final inequality, we have exponentiated the
logarithm of the products, and used the inequality ln(1 + x) < x in several places.

Continuing the derivation, we have

(109)

�

(‖‖‖𝜃n − 𝜃̂T
‖‖‖2
)2

≤
[

n∏
k=1

(
1 − 𝜇𝛾k(2 − 𝛾k𝛷

2
max

)‖‖z0‖‖2
]2

+ 4

n∑
k=1

𝛾2
k

[
n−1∏
j=k

(1 − 𝜇𝛾j(2 − 𝛾j𝛷
2
max

)

]2

h(k)2

≤
[

n∏
k=1

(
1 −

𝜇c0c
𝛼

(c + k)𝛼

)
‖‖z0‖‖2

]2

+ 4

n∑
k=1

c2
0
c2𝛼

(c + k)2𝛼

[
n−1∏
j=k

(
1 −

𝜇c0c
𝛼

(c + j)𝛼

)]2

h(k)2

≤
[
exp

(
−𝜇c0

n∑
k=1

c𝛼

(c + k)𝛼

)
‖‖z0‖‖2

]2

+ 4h(n)2
n∑

k=1

c2
0
c2𝛼

(c + k)2𝛼
exp

(
−2𝜇c0

n−1∑
j=k

c𝛼

(c + j)𝛼

)
.

(110)�
‖‖‖𝜃n − 𝜃̂T

‖‖‖2

(111)

≤ exp
(
−c0𝜇c

𝛼(n + c)1−𝛼 − c0𝜇c
𝛼(1 + c)1−𝛼

)‖‖‖𝜃0 − 𝜃̂T
‖‖‖2

+ 2h(n)

(
n∑

k=1

c2
0

(
c

k + c

)2𝛼

exp
(
−2c0𝜇c

𝛼((n + c)1−𝛼 − (k + c)1−𝛼
))

1

2

(112)

= exp
(
−c0𝜇c

𝛼(n + c)1−𝛼
)

×

[
exp

(
c0𝜇c

𝛼(1 + c)1−𝛼
)‖‖‖𝜃0 − 𝜃̂T

‖‖‖2

+ 2h(n)

{
n∑

k=1

c2
0

(
c

k + c

)2𝛼

exp
(
2c0𝜇c

𝛼((k + c)1−𝛼
)}

1

2]

≤ exp
(
−c0𝜇c

𝛼(n + c)1−𝛼
)

×

[
exp

(
c0𝜇c

𝛼(1 + c)1−𝛼
)‖‖‖𝜃0 − 𝜃̂T

‖‖‖2

+ 2h(n)

{
c2𝛼c2

0 �
n+c

1

x−2𝛼 exp
(
2c0𝜇c

𝛼x1−𝛼
)
dx

} 1

2
]

(113)

≤ exp
(
−c0𝜇c

𝛼(n + c)1−𝛼
)

×

[
exp

(
c0𝜇c

𝛼(1 + c)1−𝛼
)‖‖‖𝜃0 − 𝜃̂T

‖‖‖2

+ 2h(n)

{
c2𝛼c2

0

(
2c0𝜇c

𝛼
) 2𝛼

1−𝛼 × �
(n+c)(2c0𝜇c𝛼)

1∕(1−𝛼)

(2c0𝜇c𝛼)
1∕(1−𝛼)

y−2𝛼 exp(y1−𝛼)dy

} 1

2]

615Machine Learning (2021) 110:559–618	

1 3

As in the proof of Theorem 5.1, for arriving at (111), we have used Jensen’s inequality, and
that

∑n−1

j=k
(c + j)−� ≥ ∫ n

j=k
(c + j)1−�dj = (c + n)1−� − (c + k)1−� . To obtain (112), we have

upper bounded the sum with an integral, the validity of which follows from the observa-
tion that x ↦ x−2�ex

1−� is convex for x ≥ 1 . Finally, for (113), we have applied the change of
variables y = (2c0�c

�)1∕(1−�)x.

Now, since y−2� ≤ 2

1−�
((1 − �)y−2� − �y−(1+�)) when y ≥ (

2�

1−�

) 1

1−� , we have

and furthermore, since y ↦ y−2� exp(y1−�) is decreasing for y ≤ (
2�

1−�

) 1

1−� , we have

Plugging these into (113), we obtain

Hence, we obtain

	� ◻

References

Antos, A., Szepesvári, C., & Munos, R. (2008). Learning near-optimal policies with bellman-residual mini-
mization based fitted policy iteration and a single sample path. Machine Learning, 71(1), 89–129.

Bach, F., & Moulines, E. (2011). Non-asymptotic analysis of stochastic approximation algorithms for
machine learning. In Advances in neural information processing systems (pp. 451–459).

�
(n+c)(2c0�c�)

1∕(1−�)

(
2�

1−�

) 1
1−�

y−2� exp(y1−�)dy

≤ 2

1 − � �
(n+c)(2c0�c�)

1∕(1−�)

(
2�

1−�

) 1
1−�

((1 − �)y−2� − �y−(1+�)) exp(y1−�)dy

≤ 2

1 − �
exp

(
2c0�c

�(n + c)1−�
)
(n + c)−�

(
2c0�c

�
)−�∕(1−�)

�
(

2�

1−�

) 1
1−�

1

y−2� exp(y1−�)dy ≤ e
(

2�

1 − �

) 1

1−�

.

�
���𝜃n − 𝜃̂T

���2 ≤ exp
�
−c0𝜇c

𝛼(n + c)1−𝛼
�

×

�
exp

�
c0𝜇c

𝛼(1 + c)1−𝛼
���𝜃0 − 𝜃T

��2 + 2h(n)c𝛼c0
�
2c0𝜇c

𝛼
� 𝛼

(1−𝛼)

√
e
�

2𝛼

1 − 𝛼

� 1

2(1−𝛼)

�

+ 2h(n)c𝛼c0
�
2c0𝜇c

𝛼
� 𝛼

2(1−𝛼) (n + c)−
𝛼

2 .

�
���𝜃̄n − 𝜃̂T

���2 ≤
�

∞�
n=1

exp
�
−c0𝜇c

𝛼(n + c)1−𝛼
��

×

�
exp

�
c0𝜇c

𝛼(1 + c)1−𝛼
���𝜃0 − 𝜃T

��2 + 2h(n)c𝛼c0
�
2c0𝜇c

𝛼
� 𝛼

(1−𝛼)

√
e
�

2𝛼

1 − 𝛼

� 1

2(1−𝛼)

�
1

n

+ 2h(n)c𝛼c0
�
2c0𝜇c

𝛼
� 𝛼

2(1−𝛼) (n + c)−
𝛼

2 .

616	 Machine Learning (2021) 110:559–618

1 3

Bach, F., & Moulines, E. (2013). Non-strongly-convex smooth stochastic approximation with conver-
gence rate o (1/n). In Advances in neural information processing systems (pp. 773–781).

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, Approximate Dynamic Program-
ming, (4th ed., Vol. II). Belmont: Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming (Optimization and Neural
Computation Series, 3), (Vol. 7). Belmont: Athena Scientific.

Bhandari, J., Russo, D., & Singal, R. (2018). A finite time analysis of temporal difference learning with
linear function approximation. In Conference on learning theory pp. 1691–1692.

Borkar, V. (2008). Stochastic approximation: A dynamical systems viewpoint. Cambridge: Cambridge
University Press.

Borkar, V. S., & Meyn, S. P. (2000). The ode method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2), 447–469.

Bradtke, S., & Barto, A. (1996). Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22, 33–57.

Dalal, G., Szörényi, B., Thoppe, G., & Mannor, S. (2018). Finite sample analyses for td (0) with function
approximation. In Thirty-second AAAI conference on artificial intelligence.

Dani, V., Hayes, T. P., & Kakade, S. M. (2008). Stochastic linear optimization under bandit feedback. In
Proceedings of the 21st annual conference on learning theory (COLT) (pp. 355–366).

Dieuleveut, A., Flammarion, N., & Bach, F. (2016). Harder, better, faster, stronger convergence rates for
least-squares regression. arXiv preprint arXiv​:16020​5419.

Fathi, M., & Frikha, N. (2013). Transport-entropy inequalities and deviation estimates for stochastic
approximation schemes. arXiv preprint arXiv​:13017​740.

Frikha, N., & Menozzi, S. (2012). Concentration bounds for stochastic approximations. Electronic Com-
munications in Probability, 17(47), 1–15.

Geramifard, A., Bowling, M., Zinkevich, M., & Sutton, R. S. (2007). iLSTD: Eligibility traces and con-
vergence analysis. In NIPS (Vol. 19, p. 441).

Hazan, E., & Kale, S. (2011). Beyond the regret minimization barrier: an optimal algorithm for stochas-
tic strongly-convex optimization. In COLT (pp. 421–436).

Konda, V. R. (2002). Actor-critic algorithms. PhD thesis, Department of Electrical Engineering and
Computer Science, MIT.

Korda, N., Prashanth, L. A., & Munos, R. (2015). Fast Gradient Descent for Drifting Least Squares
Regression, with Application to Bandits. In Proceedings of the twenty-ninth AAAI conference on
artificial intelligence (pp. 2708–2714).

Kushner, H., & Clark, D. (1978). Stochastic approximation methods for constrained and unconstrained
systems. Berlin: Springer-Verlag.

Kushner, H. J., & Yin, G. (2003). Stochastic approximation and recursive algorithms and applications,
(Vol. 35). Berlin: Springer Verlag.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. The Journal of Machine Learning
Research, 4, 1107–1149.

Lakshminarayanan, C., & Szepesvari, C. (2018). Linear stochastic approximation: How far does constant
step-size and iterate averaging go? Proceedings of the Twenty-First International Conference on
Artificial Intelligence and Statistics, 84, 1347–1355.

Lazaric, A., Ghavamzadeh, M., & Munos, R. (2012). Finite-sample analysis of least-squares policy itera-
tion. Journal of Machine Learning Research, 13, 3041–3074.

Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on world wide
web, ACM (pp. 661–670).

Li, L., Chu, W., Langford, J., & Wang, X. (2011). Unbiased offline evaluation of contextual-bandit-based
news article recommendation algorithms. In Proceedings of the fourth ACM international confer-
ence on web search and data mining, ACM (pp. 297–306).

Liu, B., Liu, J., Ghavamzadeh, M., Mahadevan, S., & Petrik, M. (2015). Finite-sample analysis of proxi-
mal gradient TD algorithms. In: Proceedings of the 31st conference on uncertainty in artificial
intelligence, Amsterdam, Netherlands

Mary, J., Garivier, A., Li, L., Munos, R., Nicol, O., Ortner, R., & Preux, P. (2012). ICML exploration
and exploitation 3—new challenges. http://explo​chall​enge.inria​.fr.

Narayanan, C., & Szepesvári, C. (2017). Finite time bounds for temporal difference learning with func-
tion approximation: Problems with some “state-of-the-art” results. Technical report, https​://sites​
.ualbe​rta.ca/~szepe​sva/paper​s/TD-issue​s17.pdf.

Nemirovsky, A., & Yudin, D. (1983). Problem complexity and method efficiency in optimization. NY:
Wiley-Interscience.

http://arxiv.org/abs/160205419
http://arxiv.org/abs/13017740
http://explochallenge.inria.fr.
https://sites.ualberta.ca/%7eszepesva/papers/TD-issues17.pdf
https://sites.ualberta.ca/%7eszepesva/papers/TD-issues17.pdf

617Machine Learning (2021) 110:559–618	

1 3

Pires, BA., & Szepesvári, C. (2012). Statistical linear estimation with penalized estimators: An application
to reinforcement learning. arXiv preprint arXiv​:12066​444.

Polyak, B. T., & Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM Jour-
nal on Control and Optimization, 30(4), 838–855.

Prashanth, L. A., & Bhatnagar, S. (2011). Reinforcement learning with function approximation for traffic
signal control. IEEE Transactions on Intelligent Transportation Systems, 12(2), 412–421.

Prashanth, L. A., & Bhatnagar, S. (2012). Threshold tuning using stochastic optimization for graded signal
control. IEEE Transactions on Vehicular Technology, 61(9), 3865–3880.

Prashanth, L. A., Korda, N., & Munos, R. (2014). Fast LSTD using stochastic approximation: Finite time
analysis and application to traffic control. In Joint European conference on machine learning and
knowledge discovery in databases (pp. 66–81).

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statis-
tics, 22, 400–407

Roux, N. L., Schmidt, M., & Bach, F. R. (2012). A stochastic gradient method with an exponential con-
vergence rate for finite training sets. In Advances in neural information processing systems (pp.
2663–2671).

Ruppert, D. (1991). Stochastic approximation. In B. K. Ghosh & P. K. Sen (Eds.), Handbook of sequential
analysis (pp. 503–529).

Silver, D., Sutton, R. S., & Müller, M. (2007). Reinforcement learning of local shape in the game of go.
IJCAI, 7, 1053–1058.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: Cambridge Uni-
versity Press.

Sutton, R. S., Szepesvári, C., & Maei, H. R. (2009a). A convergent O(n) algorithm for off-policy temporal-
difference learning with linear function approximation. In NIPS (pp. 1609–1616).

Sutton, R. S., et al.(2009b). Fast gradient-descent methods for temporal-difference learning with linear func-
tion approximation. In ICML ACM (pp. 993–1000).

Tagorti, M., & Scherrer, B. (2015). On the Rate of Convergence and Error Bounds for LSTD(� ). In ICML.
Tarrès, P., & Yao, Y. (2011). Online learning as stochastic approximation of regularization paths. arXiv

preprint arXiv​:11035​538.
Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of temporal-difference learning with function approxi-

mation. IEEE Transactions on Automatic Control, 42(5), 674–690.
Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (Vol. 48). Cambridge:

Cambridge University Press.
Webscope, Y. (2011). Yahoo! Webscope dataset ydata-frontpage-todaymodule-clicks-v2

0
 . http://resea​rch.

yahoo​.com/Acade​mic_Relat​ions.
Yu, H. (2015). On convergence of emphatic temporal-difference learning. In COLT (pp. 1724–1751).
Yu, H., & Bertsekas, D. P. (2009). Convergence results for some temporal difference methods based on least

squares. IEEE Transactions on Automatic Control, 54(7), 1515–1531.
Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In ICML

(pp. 928–925).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/12066444
http://arxiv.org/abs/11035538
http://research.yahoo.com/Academic_Relations
http://research.yahoo.com/Academic_Relations

618	 Machine Learning (2021) 110:559–618

1 3

Affiliations

L. A. Prashanth1  · Nathaniel Korda2 · Rémi Munos3

	 Nathaniel Korda
	 nathaniel.korda@eng.ox.ac.uk

	 Rémi Munos
	 remi.munos@gmail.com

1	 Indian Institute of Technology Madras, Chennai, India
2	 Oxford University, Oxford, UK
3	 Google Deepmind, Paris, France

http://orcid.org/0000-0003-0362-6730

	Concentration bounds for temporal difference learning with linear function approximation: the case of batch data and uniform sampling
	Abstract
	1 Introduction
	2 Literature review
	2.1 Previous work related to LSTD
	2.2 Previous work related to SGD

	3 TD with uniform sampling on batch data (batchTD)
	3.1 Background
	3.2 Update rule and pseudocode for the batchTD algorithm

	4 Main results for the batchTD algorithm
	4.1 Assumptions
	4.2 Asymptotic convergence
	4.3 Non-asymptotic bounds
	4.4 Projection-free variant of the batchTD algorithm
	4.5 Performance bound

	5 Iterate averaging
	6 Recent works: a comparison
	7 Fast LSPI using batchTD (fLSPI)
	7.1 Background for LSPI
	7.2 fLSPI algorithm

	8 Convergence proofs
	8.1 Proof of asymptotic convergence
	8.2 Proofs of finite-time error bounds for batchTD
	8.2.1 Proof of Proposition 8.1 part (1)
	8.2.2 Proof of Proposition 8.1 part (2)
	8.2.3 Derivation of rates given in Theorem 4.2

	8.3 Proof of expectation bound for batchTD without projection
	8.4 Proofs of finite time bounds for iterate averaged batchTD

	9 Traffic control application
	9.1 Simulation setup
	9.2 Results

	10 Extension to least squares regression
	10.1 Least squares regression and SGD
	10.2 Main results
	10.2.1 Assumptions
	10.2.2 Asymptotic convergence
	10.2.3 Finite time bounds

	10.3 Iterate averaging
	10.4 Proofs for least squares regression extension

	11 Fast LinUCB using SA and application to news-recommendation
	11.1 Background for LinUCB
	11.2 Fast LinUCB using SA (fLinUCB-SA)
	11.3 Experiments on Yahoo! dataset

	12 Conclusions and future work
	References

