
Vol.:(0123456789)

Machine Learning (2020) 109:2349–2368
https://doi.org/10.1007/s10994-020-05916-1

1 3

Spanning attack: reinforce black‑box attacks with unlabeled 
data

Lu Wang1,2   · Huan Zhang3 · Jinfeng Yi2 · Cho‑Jui Hsieh3 · Yuan Jiang1

Received: 16 April 2020 / Revised: 1 August 2020 / Accepted: 19 September 2020 / 
Published online: 29 October 2020 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
Adversarial black-box attacks aim to craft adversarial perturbations by querying input–out-
put pairs of machine learning models. They are widely used to evaluate the robustness of 
pre-trained models. However, black-box attacks often suffer from the issue of query inef-
ficiency due to the high dimensionality of the input space, and therefore incur a false sense 
of model robustness. In this paper, we relax the conditions of the black-box threat model, 
and propose a novel technique called the spanning attack. By constraining adversarial per-
turbations in a low-dimensional subspace via spanning an auxiliary unlabeled dataset, the 
spanning attack significantly improves the query efficiency of a wide variety of existing 
black-box attacks. Extensive experiments show that the proposed method works favorably 
in both soft-label and hard-label black-box attacks.
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1  Introduction

It has been shown that machine learning models, especially deep neural networks, are vul-
nerable to small adversarial perturbations, i.e., a small carefully crafted perturbation added 
to the input may significantly change the prediction results (Szegedy et al. 2014; Goodfel-
low et al. 2015; Biggio and Roli 2018; Fawzi et al. 2018). Consequently, the problem of 
finding those perturbations, also known as adversarial attacks, has become an important 
way to evaluate model robustness: the more difficult to attack a model, the more robust the 
model is.

Depending on the type of information available to the adversary, adversarial attacks can 
be categorized into white-box attacks and black-box attacks. In the white-box setting, the 
target model (the model to attack) is completely exposed to the attacker, and adversarial 
perturbations could be crafted by exploiting the first-order information (or any higher order 
information), i.e., gradients with respect to the input  (Carlini and Wagner 2017; Madry 
et al. 2018). Despite its efficiency and effectiveness, the white-box setting often stands for 
an overly strong and pessimistic threat model, and white-box attacks are usually not practi-
cal when attacking real-world machine learning systems due to the fact that their gradient 
information is often invisible to the attacker.

In this paper, we focus on the problem of black-box attacks: the case where the model 
structure and parameters (weights) are not available to the attacker (Chen et al. 2017). The 
attacker can only gather necessary information by means of (iteratively) making input que-
ries to the model and obtaining the corresponding outputs. The black-box setting is a more 
realistic threat model, and furthermore, crucial in the sense that they could serve as a gen-
eral way to evaluate the robustness of machine learning models beyond neural networks, 
even when the model is not differentiable (e.g., evaluating the robustness of tree-based 
models (Chen et al. 2019) and nearest neighbor models (Wang et al. 2019, 2020)).

Black-box attacks have been extensively studied in the past few years. Depending on 
what kind of outputs the attacker could derive, black-box attacks could be broadly grouped 
into two categories: soft-label attacks (Chen et al. 2017) and hard-label attacks (Brendel 
et  al. 2018). Soft-label attacks assume that the attacker has access to real-valued scores 
(logits or probabilities) for all labels, while hard-label attacks assume that the attacker only 
has access to the final discrete decision (the predicted label). However, black-box attacks, 
especially hard-label attacks, usually require a large number of (typically > 10K ) queries 
for each adversarial perturbation. High query complexity limits the scope of application of 
black-box attacks, and also incurs a false sense of model robustness.

We notice that the convergence rates of the zeroth-order optimization methods used 
for black-box attacks are shown to be proportional to the dimensionality of the input 
space (Nesterov and Spokoiny 2017; Wang et al. 2017; Tu et al. 2019). As a consequence, 
we have a natural conjecture: the query complexity of black-box attacks is also dependent 
on the dimensionality of the input space, and thus reducing its dimensionality in a certain 
delicate way can enhance the query efficiency of black-box attacks.

Based on the idea above, in this paper we propose a method—the spanning attack—to 
constrain the search space of black-box attacks for the purpose of tackling the inefficiency 
issue. The spanning attack is motivated by our theoretical analysis that minimum adver-
sarial perturbations for a variety of machine learning models prove to be in the subspace 
of the training data. Specifically, we relax the conditions of the black-box threat model by 
additionally assuming that a small auxiliary unlabeled dataset is available to the attacker. 
The assumption is reasonable: imagine that before attacking an image classification model, 
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the attacker just needs to “collect” some unlabeled images, from the Internet for instance. 
This auxiliary unlabeled dataset plays as a substitute for the original training data: this 
dataset spans a subspace of the input space. Then, we constrain the search of adversarial 
perturbations only in this subspace, of which the dimensionality is much smaller than the 
one of the original input space. The overall workflow of the spanning attack is illustrated 
in Fig. 1.

We also show that the spanning attack method is general enough to apply to a wide 
range of existing black-box attack methods, including both soft-label attacks and hard-label 
attacks. Our experiments verify that the spanning attack could significantly improve query 
efficiency of black-box attacks. Furthermore, we show that even a very small and biased 
unlabeled dataset sampled from a distribution different from the training data suffices to 
perform favorably in practice. This finding suggests that the assumption of the spanning 
attack (about the auxiliary unlabeled dataset) is not too strict to be satisfied.

In summary, this paper makes the following contributions: 

1.	 We present the random attack framework which captures most existing black-box attacks 
in various settings including both soft-label attacks and hard-label attacks. It is a novel 
and intuitive interpretation on the mechanism of black-box attacks from the perspective 
of random vectors.

2.	 We propose a method to regulate the resulting adversarial perturbation of any random 
attack to be constrained in a predefined subspace. This is a general method to reduce 
the dimensionality of the search space of black-box attacks.

3.	 We make preliminary theoretical analysis about the subspace in which the minimum 
adversarial perturbation is guaranteed to be placed. Motivated by our analysis, we 
propose to reinforce black-box attacks (random attacks) by means of constraining a 
subspace spanned by an auxiliary unlabeled dataset. In our experiments across various 
black-box attacks and target models, the reinforced attack typically requires less than 
50% queries while improves success rates in the meantime.

Fig. 1   Workflow of the spanning attack



2352	 Machine Learning (2020) 109:2349–2368

1 3

The remainder of the paper is organized as follows: Sect.  2 discusses related work 
about black-box attacks; Sect. 3 introduces the basic preliminaries and our motivation; 
Sect. 4 presents our framework for black-box attacks and proposes our general method 
to improve query efficiency; Sect.  5 reports empirical evaluation results; Sect.  6 con-
cludes this paper.

2 � Related work

Transfer-based black-box attacks The first practical black-box attack is the trans-
fer-based attack  (Papernot et  al. 2017). A substitute model is trained with synthetic 
instances labeled by the target model (solf labels or hard labels). Then, the adversarial 
perturbation is crafted to fool the target model by attacking the substitute model. The 
effectiveness highly depends on transferability of adversarial perturbations  (Papernot 
et al. 2016; Liu et al. 2017). Accordingly, the attack performance is severely degraded 
with poor transferability  (Su et  al. 2018). Therefore, we mainly talk about black-box 
attacks based on zeroth-order optimization as below.

Soft-label black-box attacks Chen et  al. (2017) showed that soft-label black-box 
attacks can be formulated as solving an optimization problem in the zeroth-order sce-
nario, in which one can query the function itself but not its gradients. Since then, many 
black-box attack methods based on zeroth-order optimization have been proposed such 
as ZO-Adam (Chen et al. 2017), NES (Ilyas et al. 2018), ZO-SignSGD (Liu et al. 2019), 
AutoZOOM (Tu et al. 2019), and Bandit-attack (Ilyas et al. 2019).

Hard-label black-box attacks Hard-label black-box attacks are more challenging 
since it is non-trivial to define a smooth objective function for attacks based only on the 
hard-label decisions. Brendel et al. (2018) proposed a method based on reject sampling 
and random walks. Cheng et al. (2019) reformulated the attack as a real-valued optimi-
zation problem and the objective function is estimated via coarse-grained search and 
then binary search. Chen et al. (2019) proposed an unbiased estimator of the gradient 
direction at the decision boundary, and presented an attack method with a convergence 
analysis. Cheng et al. (2020) proposed a query-efficient sign estimator of the gradient.

Improve query efficiency of black-box attacks Recently, the idea of relaxing the threat 
model to improve query efficiency of black-box attacks has attracted increasing atten-
tion. Some work captured the idea of transfer-based attacks (Papernot et al. 2016; Liu 
et al. 2017): adversarial examples of a surrogate model also tend to fool other models. 
Brunner et al. (2018) and Cheng et al. (2019) both assumed that a surrogate model is 
available to the attacker. Therefore, the attacker could employ the gradients of the surro-
gate model as a prior for the true gradient of the target model. Another work (Yan et al. 
2019) proposed a soft-label black-box attack method which employs an auxiliary labeled 
datasets. Multiple reference models are trained with the labeled datasets, and a subspace 
is spanned by perturbed gradients of these reference models. Then the true gradients of 
the target model are estimated in the subspace. The major difference from our work is 
that their auxiliary dataset has to be labeled, whereas ours is unlabeled. Moreover, their 
auxiliary dataset is much larger than ours owing to the need for training reference mod-
els: in the ImageNet case, we only need less than 1000 unlabeled instances, whereas 
Yan et al. (2019) require 75,000 labeled instances. Finally, our method is more general, 
and can be applied to both soft-label and hard-label black-box attacks.
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3 � Background and motivation

We introduce the notations regarding black-box adversarial attacks. Let 𝕏 = ℝ
D denote 

the input space where D ∈ ℕ
+ is the number of dimensions, and let � = [C] denote the 

output space where C ∈ ℕ
+ is the number of labels. The function c ∶ � → �  is a classi-

fier (the target model) and makes decisions by

where f ∶ 𝕏 → ℝ
C is the score function of the classifier, which outputs scores of all labels 

for any given input.
Given a radius 𝜖 > 0 and a correctly-classified labeled instance (x, y) ∈ � × �  , 

the untargeted attack aims to find an adversarial perturbation � ∈ � with the norm 
‖�‖ ≤ � such that the classifier predicts a label for the perturbed instance x + � differ-
ent from the original instance x , i.e., c(x + �) ≠ y . In comparison, the targeted attack 
aims to make the classifier predict a pre-specified label. Our paper will focus on untar-
geted attacks, while it is easy to extend to targeted attacks. Besides, we focus on the 
�2 norm (the Euclidean norm) perturbation: the magnitude of adversarial perturbations 
are measured by the �2 norm, and further research on general norms are deferred for 
future work.

In the soft-label setting, the attacker has access to the score (logit or probability) 
output for any input x in � , i.e., f (x) . Therefore, any loss function defined on the the 
pair of the score and the ground-truth label is also available to the attacker. We denote 
the loss function as �f (x, y) . In contrast, in the hard-label setting, the attacker only has 
access to the final decision (the predicted label) for any input x in � , i.e., c(x) . It is 
more challenging than soft-label attacks due to less information available. The number 
of queries, to f (⋅) or c(⋅) , is the cost of black-box attacks. It is crucial to reduce the 
number of queries required when applying attack methods in real applications.

In practice, the input space � is usually high-dimensional: for instance, the typi-
cal input image for an ImageNet model has 224 × 224 × 3 = 150, 528 pixels. It is sus-
pected that requiring such a large amount of queries, often > 10K  , when searching for 
an adversarial perturbation � in � is probably owing to the high dimensionality of � . 
To verify our conjecture, a natural question for black-box attacks is as below:

“Is it possible to reduce the number of queries for general black-box attacks by 
reducing the dimensionality of the search space?”

In this paper, we provide a positive answer to this question by proposing a method 
reinforcing black-box attacks with a small set of unlabeled data.

4 � Proposed method

We first introduce the technique on constraining (transforming) adversarial pertur-
bations into a predefined subspace for general black-box attacks, and then propose a 
method which utilizes an auxiliary unlabeled dataset to select an appropriate subspace.

c(x) = argmax
i∈[C]

f (x)i,
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4.1 � Subspace transformation

Definition 1  (subspace attack) A subspace attack is an adversarial attack which returns 
adversarial perturbations in a predefined subspace � ⊆ �.

Intuitively, the predefined subspace �  can be seen as a prior for perturbations of adver-
sarial examples. If the subspace is small enough while still being able to capture most of 
small adversarial perturbations, then due to the reduced dimensionality, it can significantly 
reduce the number of queries required for black-box attacks.

We will focus on “one type” of black-box attacks, the random attack, which captures 
a wide range of (nearly all existing) black-box attacks, and is convenient to incorporate 
the prior knowledge about the subspace, and thus easy to be transformed into a subspace 
attack. Examples of random attacks will be shown in Sects. 4.1.1 and 4.1.2

Definition 2  (Random attack) The resulting adversarial perturbation of a random attack 
is a linear combination of random vectors.

The following lemma highlights an intuition on how to transform a random attack into a 
subspace attack:

Lemma 1  If all random vectors sampled by a random attack is constrained to be in a pre-
defined subspace � , then the random attack is a subspace attack with respect to � .

The proof is straightforward: a linear combination of vectors in a subspace is also in the 
subspace.

Random vectors of random attacks are typically sampled from isometric distributions: 
all elements of the random vector are independent and identically distributed. Typical 
examples of these distributions include the isometric Gaussian distribution and the 
Rademacher distribution (uniform over {±1} ). Let ������(d) denote the sampling routine 
for such a random vector with the dimension d ∈ ℕ

+ . (Thus ������(D) will sample a ran-
dom vector in the original input space � .) It follows that if we could constrain the sampling 
routine in a subspace, by Lemma 1 the resulting attack would be a subspace attack. Specifi-
cally, Algorithm 1 displays how to sample a random vector in a subspace. The subspace �  
is characterized by an orthonormal basis (see Sect.  4.2 for details on how to derive the 
orthonormal basis), and the term 

√
D

M
 guarantees that the returned random vector has the 

same expected length as the original random vector ������(�).
Note that the returned random vector of Algorithm  1 is a linear combination of the 

orthonormal vectors. Therefore we have the following lemma:
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Lemma 2  The returned random vector of Algorithm  1 is constrained in the subspace 
� = span(e1, e2,… , eM), where span(e1, e2,… , eM) returns the smallest space �  that con-
tains all the input vectors e1 , e2 , … , eM.

Therefore, by applying Algorithm 1 to any random attack, we have a subspace attack 
as the following corollary implies:

Corollary 1  Given a set of orthonormal vectors e1 , e2 , … , eM ∈ �, any random attack 
using isometric random vectors can be transformed into a subspace attack with the cor-
responding subspace � = span(e1, e2,… , eM) by means of replacing the sampling routine 
sample(D) via Algorithm 1.

Corollary 1 introduces a particular method to transform a random attack (black-box 
attack) into a subspace attack. It is noteworthy that the transformation is performed only 
by means of replacing sampling routines. It does not require to project adversarial per-
turbations from the input space � to the subspace �  explicitly, and therefore causes as 
little negative impact as possible on the original random attack.

4.1.1 � Case study: soft‑label black‑box attacks

We investigate a soft-label black-box attack framework within which the attack is com-
posed of a gradient-based optimization method and a backend zeroth-order gradient 
estimation method. This framework is summarized in Algorithm 2, and captures a wide 
range of soft-label black-box methods (Ilyas et al. 2018; Liu et al. 2019; Uesato et al. 
2018; Tu et al. 2019; Cheng et al. 2019).

In this framework, random vectors could be introduced when initializing the pertur-
bation (the all-zero vector or a random vector) and estimating gradients by the zeroth-
order method. A typical example of estimating gradients is the random gradient-free 
(RGF) method (Nesterov and Spokoiny 2017), which returns the estimated gradient in 
the form below:
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where ui s are unit Gaussian random vectors (Gaussian random vectors of length 1). There-
fore, ĝ is a linear combination of random vectors.

Then, the resulting adversarial perturbation is calculated by gradient-based optimization 
methods such as projected gradient descent (Madry et al. 2018), all of which return linear 
combinations of the estimated gradients. It follows that these attacks are random attacks 
and could be easily transformed into a subspace attack via Algorithm 1.

4.1.2 � Case study: hard‑label black‑box attacks

Hard-label black-box attacks could be separated into two categories: methods based on ran-
dom walks (Brendel et al. 2018; Chen et al. 2019) and methods based on direction estima-
tion  (Cheng et al. 2019, 2020). In the first case, a random walk consists of a succession 
of random vectors, i.e., the sum of random vectors; in the second case, the gradient with 
respect to the direction towards the boundary is estimated by RGF or its variant based on 
the sign of the finite difference. As we discuss before, these gradient estimation methods 
typically return linear combinations of random vectors. In both cases, the resulting adver-
sarial perturbation is also a linear combination of random vectors, and as a consequence 
they could also be transformed into subspace attacks obviously.

4.2 � Spanning attack

The subspace �  is a prior for the subspace attack. To make a subspace attack perform well, 
it has to be easier to find an adversarial perturbation in the subspace �  than in the original 
input space � . The crux of the subspace attack is how to locate an appropriate subspace �  . 
We propose to utilize an auxiliary unlabeled dataset to span the subspace, which is moti-
vated by the theoretical analysis regarding the minimum adversarial perturbation as below.

The minimum adversarial perturbation is the adversarial perturbation with the minimum 
norm. Formally, given a classifier c ∶ � → �  and a labeled instance (x, y) ∈ � × �  , the 
minimum adversarial perturbation is defined as

Let � = {(xi, yi)}
N
i=1

 be the training dataset, and �
�
= {xi}

N
i=1

 be the training instances 
without labels. We have the following theorem on the minimum adversarial perturbation of 
the K-nearest neighbor classifier (K-NN):

Theorem 1  For every (x, y) ∈ � × � , there exists w ∈ ℝ
N such that the minimum adver-

sarial perturbation of K-NN satisfies

In other words, the minimum adversarial perturbation of K-NN is in the subspace span(�
�
)

.

ĝ =
∑

i

�f (x + 𝜎ui, y) − �f (x, y)

𝜎
ui,

�
∗ = argmin

�

‖�‖ s.t. c(x + �) ≠ y.

�
∗ =

N∑

i=1

wixi.
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Proof  Given (x, y) ∈ � × �  and � ⊆ �
�

 with |� | = K , consider to add a small perturba-
tion � ∈ � such that �  is the K nearest neighbors of x + � . This problems could be formal-
ized as the following optimization problem:

It is equivalent to the following problem:

The constraints could be rewritten in the matrix form:

Obviously, it is a convex quadratic programming problem. Let �∗
�
 and �∗

�
 be the optimal 

points of the primal problem and the dual problem respectively. By the primal-dual rela-
tionship, we have

Considering the form of A , it is obvious that �∗
�
 is a linear combination of instances in �

�
.

Note that the minimum adversarial perturbation �∗ of K-NN has to be �∗
�
 for a certain �  . 

Therefore, �∗ has to be in the subspace span(�
�
) . 	�  ◻

Similar results on the minimum adversarial perturbation also hold for support vector 
machine (SVM) classifiers (Cortes and Vapnik 1995) as follows:

Theorem 2  For every (x, y) ∈ � × � , there exists w ∈ ℝ
N such that the minimum adver-

sarial perturbation of SVM satisfies

In other words, the minimum adversarial perturbation of SVM is also in the subspace 
span(�

�
).

Proof  For simplicity, we only consider the binary case, which can be easily extended to 
the multi-class case by strategies such as one-vs-one and one-vs-rest. Let w∗ be the optimal 
solution of SVM. Based on the primal-dual relationship, we have

min
�

‖�‖

s.t.‖x + � − x+‖ ≤ ‖x + � − x−‖
∀x+ ∈ � , ∀x− ∈ �

�
− � .

min
�

1

2
�
⊤
�

s.t.(x− − x+)⊤� ≤
1

2
(‖x − x−‖2 − ‖x − x+‖2)

∀x+ ∈ � , ∀x− ∈ �
�
− � .

min
�

1

2
�
⊤
�

s.t.A� ≤ b.

�
∗
�
= −A⊤

�
∗
�
.

�
∗ =

N∑

i=1

wixi.
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for some � ∈ ℝ
N . When predicting a perturbed instance, SVM calculates

where � is the angle between w and � . Therefore, the minimum adversarial perturbation 
that flips the sign of ⟨w, x⟩ has to be in the direction of w with cos(�) = 1 or in the opposite 
direction of w with cos(�) = −1 . 	�  ◻

It is inspiring that K-NN and SVM are very different whereas share the same property:

“Minimum adversarial perturbations prove to be in the subspace spanned by the 
training data.”

Consequently, Theorems 1 and 2 motivate us to search for adversarial perturbations in the 
space span(�

�
) , which is the theoretical foundation of our spanning attack. Nevertheless, 

before diving into details of the spanning attack, it is worth mentioning that computing 
minimum adversarial perturbations for neural networks and tree-based ensemble models 
has shown to be NP-hard (Katz et al. 2017; Kantchelian et al. 2016), and it is an open prob-
lem in what conditions minimum adversarial perturbations for neural networks and tree-
based ensemble models are also in the space span(�

�
).

In practice, it is not reasonable to assume the training data are available to attackers. 
To make a relaxation, we assume that the attacker only has access to an auxiliary unla-
beled dataset � . By this means, subspace attackers search for adversarial perturbations in 
span(�) , namely the spanning attack, i.e., the subspace attack by spanning an auxiliary 
unlabeled dataset. For convenience, we simply term the auxiliary unlabeled dataset as the 
subspace dataset.

By Corollary 1, given a subspace dataset � , the spanning attack requires a set of ortho-
normal vectors which is a basis for span(�) so as to transform a random attack into a sub-
space attack. We could make it by the standard process of orthonormalization, which can 
be performed by the Gram-Schmidt process, the Householder transformation etc (Cheney 
and Kincaid 2010). Therefore, the overall procedures of our spanning attack is as below 
(also shown in Fig. 1): 

1.	 Compute a basis of � by orthonormalization;
2.	 Transform the random attack into a subspace attack by Algorithm 1;
3.	 Attack the target model with the resulting subspace attack.

4.3 � Selective spanning attack

In this section, we talk about an extension of the spanning attack. The spanning attack 
searches for adversarial perturbations in the space span(�) , which is a subspace of the input 
space � . A natural question is whether it is possible to benefit more by means of explic-
itly selecting a subspace of span(�) instead of using span(�) directly. We term the method 
which searches for adversarial perturbations in a non-trivial subspace of span(�) as the 
selective spanning attack, as it selects a subspace from span(�).

w∗ =

N∑

i=1

�ixi

⟨w, x + �⟩ = ⟨w, x⟩ + ⟨w, �⟩
= ⟨w, x⟩ + ‖w‖‖�‖ cos(�),
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In the case of the selective spanning attack, the Gram-Schmidt process or Householder 
transformation is not instructive to select a subspace of span(�) , since there is no signifi-
cant difference among the derived orthonormal vectors.

Instead, we employ the singular value decomposition (SVD) to derive a set of ortho-
normal vectors which is a basis of span(�) . In particular, assume the subspace dataset has 
M′ different instances � = {x1, x2,… , xM� } and S ∈ ℝ

M�×D is the matrix of which the j-th 
row is x⊺

j
 . (We use M′ here because M denotes the number of orthonormal vectors as Algo-

rithm 1.) By SVD, S can be decomposed into the form

where U ∈ ℝ
M�×M� and V ∈ ℝ

D×D are orthogonal matrices and � ∈ ℝ
M�×D is a diagonal 

matrix, of which diagonal entries are singular values.
It could be proved that the right singular vectors (columns of V ) satisfy the following 

property:

Lemma 3  Right singular vectors of which the corresponding singular values are larger 
than zero are an orthonormal basis for span(�).

Proof  Let M denote the number of non-zero singular values. Then, we have the compact 
SVD as

Let ei denote the i-th column of VM . The objective is to prove

which is equivalent to 

	 (i)	 span(�) ⊆ span(e1, e2,… , eM) and
	 (ii)	 span(e1, e2,… , eM) ⊆ span(�).

For any a ∈ span(�) , by definition there exists b ∈ ℝ
M� such that

Therefore, we have (i) span(�) ⊆ span(e1, e2,… , eM).
By the compact SVD, we also have

Thus, for any a ∈ span(e1, e2,… , eM) , there exists b ∈ ℝ
M such that

Therefor, we have (ii) span(e1, e2,… , eM) ⊆ span(�) . 	�  ◻

We denote these right singular vectors as e1 , e2 , … , eM with corresponding singular val-
ues larger than zero, and they are sorted according to the corresponding singular values 
such that the singular values have �1 ≥ �2 ≥ … ≥ �M . Then, we have roughly two options 

S = U�V⊺,

S = UM�MV
⊺

M
.

span(�) = span(e1, e2,… , eM),

a = b⊺S = (b⊺UM�M)V
⊺

M
.

�
−1
M
U

⊺

M
S = V

⊺

M
.

a = b⊺V
⊺

M
= (b⊺�−1

M
U

⊺

M
)S.
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for the selective spanning attack: selecting the top singular vectors, and selecting the bot-
tom singular vectors. We term these two options as the top spanning attack and the bottom 
spanning attack respectively.

The top spanning attack and the bottom spanning attack have their own advantageous 
situations depending on the labels of the underlying data distribution. We illustrate two 
toy cases in Fig. 2. In the first case, the top spanning attack is favorable since we can find 
adversarial perturbations along e1 , and the second case is the exact opposite. Roughly 
speaking, top singular vectors represent directions along the manifold of the dataset, and 
bottom singular vectors represent directions out of the manifold. It is believed that for high-
dimensional datasets adversarial examples widely exist in directions out of the manifold 
(Stutz et al. 2019). Therefore, the bottom spanning attack would be a better choice in prac-
tice, which is validated in our experiments.

5 � Experiments

In this section, we empirically validate the performance of the proposed spanning attack.1 
Specifically, we select three representative black-box (random) attacks as baselines and 
employ the spanning attack method to reinforce them:

•	 The RGF attack (Cheng et al. 2019): a soft-label attack with Gaussian random vectors 
within the framework considered in the case study for soft-label attacks;

•	 The SPSA attack (Uesato et al. 2018): a soft-label attack similar to the RGF attack but 
with Rademacher random vectors instead of Gaussian random vectors; (In our imple-
mentation, SPSA has all hyper-parameters the same as RGF except the distribution for 
random vectors.)

•	 The boundary attack (Brendel et al. 2018): a pioneering widely-used hard-label attack 
based on random walks;

•	 The Sign-OPT attack (Cheng et al. 2020): a state-of-the-art hard-label attack based on 
direction estimation.

We perform untargeted black-box attacks on the ImageNet dataset (Deng et  al. 
2009). Attacks are performed against the pre-trained ResNet-50  (He et  al. 2016), 

Fig. 2   Illustration of top and 
bottom spanning attacks. The 
only difference between (a) and 
(b) is the ground-truth labels. e1 
and e2 are right singular vectors, 
and their lengths represent the 
corresponding singular values. 
The top spanning attack, i.e., 
selecting span(e1) , is better than 
the bottom spanning attack, 
i.e., selecting span(e2) , in (a); 
whereas (b) is the opposite case (a) (b)

1  Our code is available at https​://githu​b.com/wangw​llu/spann​ing_attac​k.

https://github.com/wangwllu/spanning_attack
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VGG-16 (Simonyan and Zisserman 2015) and DenseNet-121 (Huang et al. 2017) from the 
PyTorch model zoo (Steiner et al. 2019), since these architectures are diverse and repre-
sentative, and many real-world deployed models are based on them. Correctly-classified 
images are randomly sampled from the validation set as the evaluation dataset, of which 
every labeled image is the instance to attack. The size of the evaluation dataset for soft-
label attacks is 1000, and the one for hard-label attacks is 100 for computational efficiency. 
Another 1000 unlabeled images are sampled from the validation set as the subspace data-
set. The evaluation dataset and the subspace dataset are mutually exclusive. We set the 
perturbation radius � =

√
0.001D and the budget B = 10, 000 by convention (Cheng et al. 

2019). (We also study whether the radius parameter � impacts performance in Sect. 5.3.) 
If an attack method finds an adversarial perturbation � within B queries such that ‖�‖ ≤ � 
holds, then this attack is successful; otherwise it is failed. Therefore, we have two criteria 
for a black-box attack: (i) whether it is successful and (ii) the number of queries it executes 
when successful.

All hyper-parameters of the spanning attacks are the same as the corresponding base-
lines. The only difference is introducing an appropriate subspace via our methods. We refer 
to Cheng et al. (2019), Uesato et al. (2018), Brendel et al. (2018) and Cheng et al. (2020) 
for details of the baseline black-box methods.

5.1 � Main results

Success rates, query means and query medians on the evaluation dataset are reported in 
Table  1. By convention only successful adversarial perturbations are counted for query 
means and query medians. On the one hand, this criterion is favorable for the method with 
a lower success rate and a lower query number on successful adversarial perturbations. 
On the other hand and more importantly, if a method has a higher success rate and a lower 
query number on successful perturbations than the other, we would have sufficient confi-
dence to conclude that the first method performs better.

Our results show that the spanning attack method reinforces the baselines significantly 
in terms of both success rates and query numbers, consistently across all of the baseline 
methods and all of the pre-trained target models.

In particular, in the case of the RGF attack and the Sign-OPT attack, the spanning 
attack only needs approximately half the queries of the baseline for a successful attack, 
and increases success rates in the meantime. For example, in the Sign-OPT case against 
ResNet-50, the spanning attack improves the success rate to 100% , and more crucially, it 
only requires 44% queries in terms of the query mean and 30% queries in terms of the 
query median!

In the case of the boundary attack, while success rates of the baseline attack within the 
given budget is not satisfying, our spanning attack improves the success rates by a wide 
margin. For example, in the Boundary case against VGG-16, the spanning attack improves 
the success rate from 81% to 94%.

Visualization of the subspace basis A sample of vectors of the resulting orthonormal 
basis are visualized in Fig. 3. Note that these vectors reflect low-dimensional structures of 
the subspace rather than white Gaussian noise in the input space.

Examples of adversarial images Several adversarial images, crafted by the baseline 
method and the spanning attack, are displayed in Fig. 4. All these adversarial images does 
not show any significant difference from the original images due to the fact that they have 
the same constraint on the perturbation norm.
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Comments on improvement of success rates The black-box attack is a non-convex 
zeroth-order optimization problem; there is always a chance that the baseline method 
is trapped in some local areas, and as a consequence fails to attack. For instance, when 
RGF estimates gradients, informative random vectors could be too sparse to find an 
accurate gradient, as these random vectors are sampled from a large space. In contrast, 
the spanning attack employs prior knowledge (encoded in the subspace) about adver-
sarial perturbations, and hence reduces the possibility of being trapped. That’s why the 
spanning attack could improve success rates and query efficiency simultaneously. It is 

Table 1   Comparison between the baseline black-box attacks and the resulting spanning attacks

Success rate Query mean Query median

ResNet-50 RGF (soft-label) Baseline 0.971 589.575 358.0
Spanning attack 0.991 329.541 205.0

SPSA (soft-label) Baseline 0.972 584.772 358.0
Spanning attack 0.991 330.725 205.0

Boundary (hard-label) Baseline 0.720 4133.903 3291.0
Spanning attack 0.880 3197.557 2569.5

Sign-OPT (hard-label) Baseline 0.970 2392.175 2143.0
Spanning attack 1.000 1053.220 647.0

VGG-16 RGF (soft-label) Baseline 0.966 389.519 256.0
Spanning attack 0.975 261.335 154.0

SPSA (soft-label) Baseline 0.968 386.187 256.0
Spanning attack 0.975 262.905 154.0

Boundary (hard-label) Baseline 0.810 3467.086 2787.0
Spanning attack 0.940 2972.755 2263.0

Sign-OPT (hard-label) Baseline 1.000 1665.080 1450.0
Spanning attack 1.000 840.900 572.5

DenseNet-121 RGF (soft-label) Baseline 0.981 528.312 358.0
Spanning attack 0.995 272.043 154.0

SPSA (soft-label) Baseline 0.984 552.982 358.0
Spanning attack 0.997 299.941 154.0

Boundary (hard-label) Baseline 0.670 3806.687 3389.0
Spanning attack 0.890 3063.449 2261.0

Sign-OPT (hard-label) Baseline 0.980 2407.398 1863.5
Spanning attack 1.000 1014.280 688.5

Fig. 3   Visualization for vectors of the orthonormal basis
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noteworthy that the capability of the spanning attack depends on the subspace dataset 
(the prior knowledge encoded); we will carefully investigate it in the next section.

Since the results are consistent across all baseline methods and target models, in the 
following we take the RGF attack against ResNet-50 as illustration by default to avoid 
unnecessary repetition.

5.2 � Investigation on the subspace

In this section, we study to what extent the subspace impacts on the performance of 
the spanning attack, and furthermore how we could establish the subspace dataset in 
practice.

Fig. 4   Examples of the adversarial images. The first row is the original images; the second row is the adver-
sarial images crafted by the baseline attack (Sign-OPT against ResNet-50); the third row is the adversarial 
images crafted by the corresponding spanning attack

(a) (b) (c)

Fig. 5   Attack performance with different sizes of the subspace. TRS stands for Totally Random Subspace
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5.2.1 � Size of the subspace dataset

We show attack performance with different sizes of the subspace dataset in Fig. 5. (We 
will talk about TRS in Sect. 5.2.2.) In our experiments, the minimum size is 100 and 
the maximum size is 1000. In this scope, the larger the subspace size, the better the 
performance of the spanning attack. In contrast, the baseline method is the extreme case 
where the subspace size is D = 224 × 224 × 3 = 150, 528 . Therefore, it is expected that 
the performance of the spanning attack will reach the peak and then slide down as the 
subspace size increases. It is noteworthy that even a small subspace dataset, ≈ 400 as 
shown in Fig. 5, would help the spanning attack defeat the baseline methods.

5.2.2 � Distribution of the subspace dataset

We investigate whether it is necessary to sample the subspace dataset from the same 
distribution as the training data. Specifically, we further try three settings for the sub-
space dataset: 

(1)	 instances of top 50 classes from the ImageNet validation set. Note that there are 1000 
classes in total, and hence it is a label-biased setting.

(2)	 instances from the Flickr8k dataset (Hodosh et al. 2015), which is much different from 
the ImageNet dataset.

(3)	 instances sampled from a uniform distribution. In other words, the spanned subspace 
could be seen as a totally random subspace (TRS) without any prior knowledge.

The results are displayed in the middle area of Table 2. On the one hand, the results 
of the label-biased and the Flickr8k spanning attack are still better than the baseline, 
and competitive with the spanning attack in Sect. 5.1 (see the upper area of Table 2 for 
convenience), where the subspace dataset is sampled i.i.d. (without any bias) from the 
ImageNet validation set. It suggests that even a biased subspace dataset suffices to work, 
which extends the application range of the spanning attack. In a word, the subspace 
dataset does not necessarily has to be sampled from the same distribution with the train-
ing data.

Table 2   Results of the spanning attack with label-biased subspace datasets, spanning attack with Flickr8k 
subspace datasets, spanning attack with totally random subspace (a subspace without any prior), bottom 
spanning attack and top spanning attack. TRS stands for Totally Random Subspace

Success rate Query mean Query median

Baseline 0.971 589.575 358.0
Spanning attack 0.991 329.541 205.0
Spanning attack (label biased) 0.991 316.572 205.0
Spanning attack (Flickr8k) 0.990 318.333 205.0
Spanning attack (TRS) 0.960 654.491 358.0
Bottom spanning attack 0.991 298.817 154.0
Top spanning attack 0.991 354.346 205.0
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On the other hand, the spanning attack with a totally random subspace performs even 
worse than the baseline. (To better illustrate this issue, we also show attack performance 
for different subspace sizes with totally random subspaces in Fig. 5.) In other words, the 
totally random subspace plays a negative role on performance. The result validates that 
prior knowledge given by the subspace dataset is necessary, rather than an arbitrary 
low-dimensional subspace.

Discussion on establishing the subspace dataset in practice The experimental results 
of Sects. 5.2.1 and 5.2.2 jointly suggest that the conditions which the subspace dataset 
has to obtain is not too strict in practice: the size of the subspace dataset could be very 
small, and the distribution of the subspace could be different from the one of the train-
ing data. Therefore, when applying the subspace attack method in real-world applica-
tions, we only need to collect a small set of unlabeled data related to the target model. 
For instance, if the task is attacking a face recognition system, one possibility is to crawl 
the web and find some face pictures in advance.

5.2.3 � Bottom and top spanning attack

We investigate whether the selective spanning attack could further improve perfor-
mance. In our experiments, the bottom 800 singular vectors (remember the total num-
ber of the singular vectors is 1000) are used for the bottom spanning attack, and the 
top 800 singular vectors are used for the top spanning attack. The comparison among 
the original spanning attack, bottom spanning attack and top spanning attack are shown 
in the lower area of Table  2. The results show that the bottom spanning attack could 
further improve performance, whereas the top spanning attack has a negative impact. 
This is an empirical validation that adversarial perturbations are more likely to appear 
in directions out of the data manifold, rather than along the data manifold, as discussed 
in Sect. 4.3.

5.3 � Sensitivity to radii

We investigate whether the given radius affects the capability of the spanning attack over 
the baseline method. We report success rates, query means and query medians with vary-
ing radii. The results are illustrated in Fig. 6, and show that the spanning attack improves 
the baseline method consistently across different radii. Note that in all the other experi-
ments the radius is set � =

√
0.001D ≈ 12.27.

(a) (b) (c)

Fig. 6   Attack performance with different radii
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5.4 � More discussion with related work

Although the work of Yan et al. (2019) has a setting different from ours as discussed in 
Sect. 2, for completeness we try to adapt their methods for comparison. They require an 
auxiliary labeled dataset, focus on �∞ norm and only considers the soft-label black-box 
attack. In order to have a comparison, we let the subspace dataset be labeled with size 1000. 
We notice that with such a small subspace dataset in our setting, Yan et al. (2019)’s method 
does not perform well. For instance, when attacking ResNet-50, it has the success rate 
58.7% and the query mean 641.283. The results for attacking VGG-16 and DenseNet-121 
are similar (VGG-16: success rate 68.6%, query mean 558.044; DenseNet-121: success rate 
59%, query mean 623.603). It is primarily due to the fact that their method trains substitute 
models with labeled data. As a consequence, when the dataset is too small, it is difficult to 
train reliable substitute models.

6 � Conclusion

We propose a general technique named the spanning attack to improve efficiency of black-
box attacks. The spanning attack is motivated by the theoretical analysis that minimum 
adversarial perturbations of machine learning models incline to be in the subspace of the 
training data. In practice, the spanning attack only requires a small auxiliary unlabeled 
dataset, and is applicable to a wide range of black-box attacks including both the soft-label 
black-box attacks and hard-label black-box attacks. Our experiments show that the span-
ning attack can significantly improve the query efficiency and success rates of black-box 
attacks simultaneously.
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