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Abstract
We investigate optimal conditions for inducing low-rankness of higher order tensors by 
using convex tensor norms with reshaped tensors. We propose the reshaped tensor nuclear 
norm as a generalized approach to reshape tensors to be regularized by using the tensor 
nuclear norm. Furthermore, we propose the reshaped latent tensor nuclear norm to com-
bine multiple reshaped tensors using the tensor nuclear norm. We analyze the generaliza-
tion bounds for tensor completion models regularized by the proposed norms and show 
that the novel reshaping norms lead to lower Rademacher complexities. Through simula-
tion and real-data experiments, we show that our proposed methods are favorably com-
pared to existing tensor norms consolidating our theoretical claims.

Keywords Tensor nuclear norm · Reshaping · CP rank · Generalization bounds

1 Introduction

Tensor formatted data is becoming abundant in machine learning applications. Among the 
many tensor related machine learning problems, tensor completion has gained an increased 
popularity in recent years. Tensor completion performs imputation of unknown elements of a 
partially observed tensor by exploiting its low-rank structure. Some of the popular real-world 
applications of tensor completion are found in recommendation systems (Karatzoglou et al. 
2010; Zheng et al. 2010), computer vision (Liu et al. 2009), and multi-relational link predic-
tion (Rai et al. 2015). Though there exist many methods to perform tensor completion (Song 
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et al. 2017), global optimal solutions are obtained mainly by convex low-rank tensor norms, 
making them an active area of research.

Over the years, many researchers have proposed different low-rank inducing norms to min-
imize the rank of tensors, however, none of these norms are universally better compared to 
others. The main challenge in designing norms for tensors is that they have multiple dimen-
sions and different definitions of ranks (Tucker rank, CP rank, TT-rank), making it difficult for 
a single norm to induce low-rankness with respect to all the properties of tensors. Most tensor 
norms have been designed with a focus to a specific rank; overlapped trace norm (Tomioka 
and Suzuki 2013) and latent trace norms (Wimalawarne et al. 2014) to constrain the multi-
linear ranks, tensor nuclear norm (Yuan and Zhang 2016; Yang et al. 2015; Lim and Comon 
2014) to constrain the CP rank, and the Schatten TT rank (Imaizumi et al. 2017) to constrain 
the TT-rank. However, targeting a specific rank to constrain may not always be practical, since 
we may not know the most suitable rank for a tensor in advance.

Most tensor norms reshape tensors by rearranging its elements as matrices to induce low-
rankness with respect to a mode or a set of modes. However, this reshaping method is specific 
to obtaining relevant ranks that a norm constrains. An alternative view was presented by Mu 
et al. (2014) with the square norm, where the tensor is reshaped as a balanced matrix without 
considering the structure of its ranks. The square norm has shown to have better sample com-
plexities for higher order tensors (tensor with more than three modes) than some of the exist-
ing norms such as the overlapped trace norm (Yuan and Zhang 2016). However, this norm 
only considers the special case of reshaping a tensor as a matrix such that its dimensions are 
close to each other. Other possibilities of how reshaping tensors beyond matrices affect the 
inducement of low-rankness have not been investigated.

In this paper, we propose generalized reshaping strategies to reshape tensors and develop 
low-rank inducing tensor norms. We demonstrate that reshaping  a higher order tensor as 
another tensor and applying the tensor nuclear norm leads to better inducement of low-rank-
ness compared to applying existing low-rank norms on the original tensor or its matrix unfold-
ings. Furthermore, we propose the latent reshaped tensor nuclear norm that combines multiple 
reshaped tensors to obtain a better performance among a set of reshaped tensors. Using the 
generalization bounds, we show that the proposed norms are able to give lower Rademacher 
complexities compared to existing norms. Using simulations and real-world data experiments 
we justify our theoretical analysis and show that our proposed methods are able to give better 
performances for tensor completion compared other convex norms.

Throughout this paper we use the following notations. We represent a K-mode (K-way) 
tensor as T ∈ ℝ

n1×⋯×nK . The mode-k unfolding (Kolda and Bader 2009) of a tensor T  is given 
by T(k) ∈ ℝ

nk×
∏

j≠k nj , which is obtained by concatenating all slices along the mode-k. We indi-
cate the tensor product (Hackbusch 2012) between vectors ui ∈ ℝ

ni , i = 1,… ,K using the 
notation ⊗ as (u1 ⊗⋯⊗ uK)i1,…,iK

=
∏K

l=1
ul,il . The k-mode product of a tensor 

T ∈ ℝ
n1×⋯×nk⋯×nK and a vector v ∈ ℝ

nk is defined as T ×k v =
∑nk

ik=1
Ti1,i2,…,ik ,…,iK

vik . The larg-
est singular value of T  is given by �1(T) . The rank of a matrix A ∈ ℝ

n×m is given by Rank(A).

2  Review of low‑rank tensor norms

Designing of convex low-rank inducing norms for tensors is a challenging task. Over 
the years, several tensor norms have been proposed with each norm having certain 
advantages over the others. The main challenge with defining tensor norms is the multi-
dimensionality of tensors and the existence of different ranks (e.g. CP rank, multilinear 
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(Tucker) rank). A common criterion for designing low-rank tensor norms is to induce 
low-rankness by minimizing a particular rank. A commonly used rank is the multilinear 
rank, which represents the rank with respect to each mode of a tensor. Given a tensor 
W ∈ ℝ

n1×⋯×nK , we obtain the rank of each unfolding rk = Rank(W(k)), k = 1,… ,K , and 
define the multilinear rank as (r1,… , rK) . To minimize the multilinear rank the over-
lapped trace norm has been defined (Liu et al. 2009; Tomioka and Suzuki 2013), which 
for a tensor T ∈ ℝ

n1×⋯×nK, is

where ‖ ⋅ ‖tr is the matrix nuclear norm (a.k.a. trace norm) (Fazel et  al. 2001), which is 
the sum of the non-zero singular values of a matrix. A limitation with this norm is that for 
tensors with high variations in the multilinear rank this norm stays at poor performances 
(Tomioka and Suzuki 2013; Wimalawarne et al. 2014).

The latent trace norm (Tomioka and Suzuki 2013) has been proposed to overcome 
limitations of the overlapped trace norm, which allows freedom to learn ranks with 
respect to each mode unfolding by considering a latent decomposition of the tensor. 
More specifically, the latent tensor norm learns latent tensors T(k), k = 1,… ,K as

This norm was shown to be more robust for tensors with high variations in the multilin-
ear rank compared to the overlapped trace norm (Tomioka and Suzuki 2013). The latent 
trace norm has been further extended to develop the scaled latent trace norm (Wimala-
warne et al. 2014) by considering the relative rank of each latent tensor by scaling using 
the inverse squared mode dimension.

Another popular rank for tensors is the CANDECOMP/PARAFAC (CP) rank (Car-
roll and Chang 1970; Harshman 1970; Hitchcock 1927; Kolda and Bader 2009), which 
can be considered as the higher order extension of the matrix rank. Recently, minimi-
zation of the CP rank has gained attention of many researchers, who have shown that 
it leads to a better sample complexity than multilinear rank based norms (Yuan and 
Zhang 2016). The tensor nuclear norm (Yuan and Zhang 2016; Yang et al. 2015; Lim 
and Comon 2014) has been defined as an approximation to minimize the CP rank of a 
tensor. For a tensor T ∈ ℝ

n1×⋯×nK with rank R, Rank(T) = R , the tensor nuclear norm is 
defined as

where ukj ∈ ℝ
nk for k = 1,… ,K and j = 1,… ,R.

The latest addition to convex low-rank tensor norms is the Schatten TT norm (Imai-
zumi et  al. 2017), which minimizes the tensor train rank (Oseledets 2011) of tensors. 
The Schatten TT norm is defined as

‖T‖overlap =
K�
k=1

‖T(k)‖tr,

‖T‖latent = inf
T
(1)+…+T(K)=T

K�
k=1

‖T (k)

(k)
‖tr.

(1)

‖T‖∗ = inf

� R�
j=1

𝛾j�T =

R�
j=1

𝛾ju1j ⊗ u2j ⋯⊗ uKj,

‖ukj‖22 = 1, 𝛾j ≥ 𝛾j+1 > 0

�
,



510 Machine Learning (2021) 110:507–531

1 3

where Qk ∶ T → ℝ
n≥k×nk< is an operator that reshapes the tensor T  to a matrix by combining 

the first k modes as rows and the rest of the K − k modes as columns. This norm has been 
shown to be suitable for high-order tensors.

It has also been shown that low-rank tensor norms can be designed without restricting to 
a specific rank. The square norm (Mu et al. 2014) reshapes a tensor as a matrix and apply 
the matrix nuclear norm as

where the function reshape() reshapes T  to a matrix with approximately equal dimensions 
for some j > 1 . This norm has shown to have a better sample complexity for tensor com-
pletion compared to the overlapped trace norm.

We point out that all the existing tensor norms except the tensor nuclear norm reshape 
tensors as matrices to induce the low-rankness with respect to two sets of mode arrange-
ments. As a result these norms are focused on constraining the multilinear rank of a tensor. 
However, tensor nuclear norm has shown to lead to a better sample complexity compared 
to multilinear rank based tensors norms for tensor completion (Yuan and Zhang 2016). 
Hence, lack of tensor nuclear norm regularization for reshaped tensors among existing 
norms may results in sub-optimal solutions.

3  Proposed method: tensor reshaping and tensor nuclear norm

In this paper, we investigate on extending the tensor nuclear norm for higher order tensors. 
We explore methods to combine tensor reshaping with the tensor nuclear norm.

3.1  Generalized tensor reshaping

First, we introduce the following notation to compute the product of tensor dimen-
sions. For a given vector (n1,… , np) , we represent its element-wise product by 
����(n1,… , np) = n1n2 ⋯ np . Next, we define generalized reshaping for tensors.

Definition 1 (Tensor Reshaping) Let us consider a tensor X ∈ ℝ
n1×n2×⋯×nK and its mode 

dimensions as D = {n1, n2,… , nK} . Given M sets Di ⊂ D, i = 1,… ,M , that are disjoint, 
Di ∩ Dj = � for i ≠ j , the reshaping operator is defined as

and the inverse operator is represented by 𝛱⊤
(D1,…,DM )

 . Further, we present the reshaping of 
X  by the set (D1,… ,DM) as X(D1,…,DM )

.

We point out that when |D1| = ⋯ = |DM| = 1 , there is no reshaping of the tensor, 
X(D1,…,DM )

= X  . Unfolding of a tensor along the mode k (Kolda and Bader 2009) is equiva-
lent to defining two sets with D1 = nk and D2 = (n1,… , nk−1, nk+1,… , nK) . Further, we can 

‖T‖s,T =
1

K − 1

K−1�
k=1

‖Qk(T)‖tr,

‖T‖
◻
=
�����
reshape

�
T(1),

j�
i=1

,

K�
i=j+1

������tr
,

�(D1,…,DM )
∶ ℝ

n1×n2×⋯×nK → ℝ
𝗉𝗋𝗈𝖽(D1)×⋯×𝗉𝗋𝗈𝖽(DM ),
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obtain reshaping of a tensor as a matrix for the square norm (Mu et al. 2014) by specifying 
two sets D1 and D2 with ����(D1) ≈ ����(D2).

3.2  Reshaped tensor nuclear norm

We propose a class of tensor norms by combining generalized tensor reshaping and the 
tensor nuclear norm. We name the proposed norms Reshaped Tensor Nuclear Norms. In 
order to define the proposed norms, we consider a K-mode tensor X ∈ ℝ

n1×n2×⋯×nK and a 
set Di, i = 1,… ,M , adhering to Definition 1. We define the reshaped tensor nuclear norm 
as

where ‖ ⋅ ‖∗ is the tensor nuclear norm as defined in (1). It is understood that this norm is a 
convex norm, since the tensor nuclear norm (1) is convex.

3.3  Reshaped latent nuclear norm

A practical limitation in applying reshaping using the proposed tensor norm is the diffi-
culty to select the most suitable reshaping set out of all possible reshaping combinations. 
This is critical since we would not know the ranks of the tensor prior to training a learning 
model. To overcome this difficulty we propose the Reshaped Latent Tensor Nuclear Norm 
by extending the latent trace norm (Tomioka and Suzuki 2013) for reshaping tensors.

Let us consider a collection of G reshaping sets DL = (D(1),… ,D(G)) where each 
D(s) = (D

(s)

1
,… ,D(s)

ms
), s = 1,… ,G consists a reshaping set for a ms-mode reshaped tensor. 

Further, we consider the W as a summation of G latent tensors W(g), g = 1,… ,G as 
W =

∑G

k=1
W

(k) . We define the reshaped latent tensor nuclear norm as

We point out that the above norm differs from the latent trace norm (Tomioka and Suzuki 
2013) since it considers reshaping sets defined by the user where the latent trace norm 
considers all the mode-wise tensor unfolding. Furthermore, the above norm uses the tensor 
nuclear norm while the latent trace norm is build using the matrix nuclear norm.

3.4  Completion models

Now, we propose tensor completion models for the proposed norms. Let us consider a par-
tially observed tensor X ∈ ℝ

n1×n2×⋯×nK . Given that X  has m observed elements, we define 
the mapping of the observed elements from X  by � ∶ ℝ

n1×n2×⋯×nK → ℝ
m . Given a reshap-

ing set (D1,… ,DM) , the completion model that is regularized by the reshaped norm is 
given as

‖X(D1,…,DM )
‖∗,

(2)‖W‖r_latent(DL)
= inf

W
(1)+⋯+W(G)=W

G�
k=1

‖W(k)

(D
(k)

1
,…,D

(k)
mk
)
‖∗.

(3)
min
W

1

2
‖�(X) −�(W)‖2

F

s.t. ‖W(D1,…,DM )
‖∗ ≤ �,
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where � is a regularization parameter. For a selected set of reshaping sets 
DL = (D(1),… ,D(G)) , a completion model regularized by the reshaped latent tensor nuclear 
norm is given as

where � is a regularization parameter.

4  Theory

We investigate theoretical properties of our proposed methods to identify the optimal 
conditions for reshaping of tensors. For our analysis, we use generalization bounds based 
on the transductive Rademacher complexity analysis (El-Yaniv and Pechyony 2007; Shamir 
and Shalev-Shwartz 2014).

We consider the learning problem in (3) and we denote the indexes of the observed 
elements of X  by S , where each index (i1,⋯ , iK) of observed elements of X  is assigned 
as an element �j ∈ S for some 1 ≤ j ≤ |S| . We consider observed elements as the train-
ing set denoted by STrain and the rest belonging to the test set denoted by STest . For the 
convenience of deriving the Rademacher complexity, we consider the special case of 
|STrain| = |STest| = |S|∕2 as in (Shamir and Shalev-Shwartz 2014).

Given a reshaping set (D1,… ,DM) , we consider the hypothesis class 
� = {W�‖W(D1,…,DM )

‖∗ ≤ t} for a given t. Given a loss function l(⋅, ⋅) and a set S , we 
define the empirical loss as

Given that maxi1,…,iK W∈� |l(Xi1,…,iK
,Wi1,…,iK

)| ≤ bl , it is straight forward to extend gen-
eralizing bounds for matrices from (Shamir and Shalev-Shwartz 2014) to tensors, which 
holds with probability 1 − � as

where RS(l◦W) is the transductive Rademacher complexity theory (El-Yaniv and Pechyony 
2007; Shamir and Shalev-Shwartz 2014) defined as

where �j ∈ {−1, 1}, j = 1,… , |S| with probability of 0.5 are Rademacher variables.
The following theorem gives the Rademacher complexity for completion models regu-

larized by a reshaped tensor nuclear norm.

(4)
min

W
(1)+⋯+W(G)=W

1

2
‖�(X) −�(W(1) +⋯ +W

(G))‖2
F

s.t. ‖W‖r_latent(DL)
≤ �,

LS(l◦W) ∶=
1

|S|
[ ∑
(i1,…,iK )∈S

l(Xi1,…,iK
,Wi1,…,iK

)

]
.

LSTest (l◦W) − LSTrain (l◦W) ≤ 4RS(l◦W)

+ bl

�11 + 4

�
log

1

�√�STrain�
�
,

(5)RS(l◦W) =
1

|S|��

[
sup
W∈W

|S|∑
j=1

�jl
(
X�j,W�j

)]
,
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Theorem 1 Consider a K-mode tensor W ∈ ℝ
n1×n2×⋯×nK . Let us consider any M reshap-

ing sets (D1,… ,DM) with a hypothesis class of � = {W�‖W(D1,…,DM )
‖∗ ≤ t} . Suppose that 

for all (i1,… , iK) , l(Xi1,…,iK
, ⋅) is �-Lipschitz continuous. Then,

(a) given that W has a multilinear rank of (r1,… , rK) , we obtain

(b) given thatW has a CP rank ofrcp , we obtain

where c is a constant.

Using the Theorem 1, we can obtain the Rademacher complexities for tensor nuclear 
norm by considering |D1| = |D2| = ⋯ = |DK| = 1 and the square norm by two reshap-
ing sets of |D1| and |D2| such that 

∏
p∈D1

np ≈
∏

q∈D2
nq . We summarize Rademacher 

complexities of convex low-rank tensor norms in Table 1 for a tensor with equal mode 
dimensions ( n1 = n2 = … = nK = n).

From Table 1 and Theorem 1, we see that norms constructed using the tensor nuclear 
norm lead to better bounds compared to the overlapped trace norm, latent trace norm, 
and the scaled latent trace norm. Further, we see that the mode based components of the 
Rademacher complexity would have the smallest value with the tensor nuclear norm 
(log(4K)

√
Kn) . It is also clear that for any reshaping set, we find that 

log(4K)
√
Kn ≤ log(4M)

∑M

j=1

√
n�Dj� . This observation might lead us to conclude that the 

tensor nuclear norm is better than all the other norms. However, considering the multi-
linear rank such that 1 < r1 ≤ r2 ≤ ⋯ ≤ rK , we can always find M < K reshaping sets 
D1,D2,… ,DM such that 

∏K

k=1
rk

maxj=1,…,K rj
≥

∏K

k=1
rk

maxj=1,…,M

∏
i∈Dj

ri
 . In other words, we can reshape the 

tensor such that the Rademacher complexity for the reshaped tensor nuclear norm is 
bounded with a smaller rank based component compared to the tensor nuclear norm.

It is not known how reshaping a tensor changes the CP rank of the original tensor 
into the rank of the reshaped tensor except that Rank(X(D1,…,DM )

) ≤ rcp ((Mu et al. 2014) 
and Lemma 4 in “Appendix”). However, Theorem 1 shows that reshaping results in a 
mode based component of log(4M)

∑M

j=1

√
n�Dj� in  the Rademacher complexity, which 

indicates that selecting a reshaping set that gives a lower mode based components can 
lead to a lower generalization bound compared the square norm or the tensor nuclear 
norm. Furthermore, it is clear that the reshaping a tensor and regularization using the 
tensor nuclear norm lead to a lower generalization bound compared to multilinear rank 
based norms such as the overlapped trace norm, latent trace norm, and scaled latent 
trace norms and tensor train rank based Schatten TT norm.

The next theorem provides the Rademacher complexity for completion models regu-
larized by the reshaped latent tensor nuclear norm.

RS(l◦W) ≤
c�

�S�
� ∏K

k=1
rk

maxj=1,…,M

∏
i∈Dj

ri

�
�1(W(D1,…,DM )

)

log(4M)

M�
j=1

��
p∈Dj

np,

RS(l◦W) ≤
c�

|S| rcp�1(W(D1,…,DM )
) log(4M)

M∑
j=1

√∏
p∈Dj

np,
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Theorem 2 Let us consider a K-mode tensorW ∈ ℝ
n1×⋯×nK . Let us consider a collection 

of G collection of reshaping sets DL = (D(1),… ,D(G)) where each 
D(s) = (D

(s)

1
,… ,D

(s)

Ms
), s = 1,… ,G consists a reshaping set for a Ms-mode reshaped ten-

sor. Consider the hypothesis class ��� = {W�W(1) +⋯ +W
(G) = W, ‖W‖r_latent(DL)

≤ t} 
for a given set of reshaping set (D1,… ,DM) . Suppose that for all Xi1,…,iK

 , l(Xi1,…,iK
, ⋅) is �

-Lipschitz continuous. Then,
(a) when W has a multilinear rank of (r1,… , rK) , we obtain

(b) when W has a CP rank of rcp , we obtain

RS(l◦W) ≤
c�

�S� min
g∈G

� ∏K

k=1
rk

maxj=1,…,M

∏
i∈D

(g)

j

ri

�
�1

�
W

(g)

(D
(g)

1
,…,D

(g)

Mg
)

�

max
g∈G

log(4Mg)

Mg�
j=1

� �
p∈D

(g)

j

np.

Table 1  Rademacher complexities for convex norm regularized completion models for a K-mode tensor 
T ∈ ℝ

n×⋯×n with a multilinear rank (r1,… , rK ) . �1(X) is the largest singular value of X  , G reshaping sets of 
D(s) = (D

(s)

1
,… ,D(s)

ms
), g = 1,… ,G , and c, � , and BT  are constants

Norm Rademacher complexity RS(l◦W)

Overlapped norm c�

�S�
∑K

j=1

√
rjBT

�√
nK−1 +

√
n
�

Latent trace norm c�

�S� minj=1,…,K

√
rjBT

�√
nK−1 +

√
n
�

Scaled latent trace norm c�

�S� minj=1,…,K

�
rj

n
BT

�√
nK + n

�

Schatten TT norm c�

�S�(K−1)
∑K−1

k=1
min

�∏k

i=1

√
ri,

∏K

j=k+1

√
rj
�

BT

√
n⌈K∕2⌉

Square norm c�

�S�
� ∏K

k=1
rk

maxj=1,2
∏

i∈Dj
ri

�
�1(W(D1,D2)

)

log(8)
�√

n�D1� +
√
n�D2�

�
Tensor nuclear norm c�

�S�
� ∏K

k=1
rk

maxj=1,…,K rj

�
�1(W) log(4K)

√
Kn

Reshaped tensor nuclear norm c�

�S�

� ∏K

k=1
rk

maxj=1,…,M

∏
i∈Dj

ri

�
�1(W(D1,…,DM )

)

log(4M)
∑M

j=1

√
n�Dj�

Reshaped latent tensor nuclear norm c�

�S� ming∈G

� ∏K

k=1
rk

maxj=1,…,M

∏
i∈D

(g)
j

ri

�

�1(W
(g)

(D
(g)

1
,…,D

(g)

Mg
)
)maxg∈G log(4Mg)

∑Mg

j=1

√
n�Mg�
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where c is a constant.

Theorem  2 shows that latent reshaped tensor nuclear norm bounds the Rademacher 
complexity by the largest mode based component that results from all the reshaping sets. 
Further, with the multilinear rank of the tensor the Rademacher complexity is bounded by 
the smallest rank based component that results from all the reshaping sets. This observa-
tion indicates that properly selecting a set of reshaping sets to use with the latent reshaped 
tensor nuclear norm can lead to a lower generalization bound.

We want to point out that the largest singular values ( �1(⋅) ) that appear in both Theo-
rems 1 and 2 can be upper bounded by taking the largest singular value with respect to all 
possible reshaping sets for a tensor. However, we do not use such a bounding to keep the 
Rademacher complexities small.

4.1  Optimal reshaping strategies

Given that we have an understanding of the ranks of the tensor, Theorem 1 can be used to 
select a reshaping set such that reshaped tensor has a smaller rank and relatively smaller 
mode dimensions. However, since we do not know the rank in advance, selecting a reshap-
ing set such that the reshaped tensor does not have large mode dimensions would lead to a 
better performance.

To avoid the difficulty in choosing a single reshaping set, we can use the reshaped latent 
tensor nuclear norm by choosing several reshaping sets that agree with our observation in 
Theorem 1. However, since the Rademacher complexity is bounded by the largest mode 
based components as shown in Theorem 2, it is important not to select reshaping sets that 
result in a tensor with large dimensions. A general strategy to create the reshaping sets 
by selecting the original tensor and other reshaping sets that do not result in large mode 
dimensions compared to the original tensor.

5  Optimization procedures

It has been shown that learning by constraining the tensor nuclear norm is the NP-Com-
plete problem (Hillar and Lim 2013), which makes solving the problems (3) and (4) com-
putationally difficult. In Yang et al. (2015) an approximation method have been proposed 
to compute the spectral norm by computing largest singular vectors on each mode that is 
combined with the Frank-Wolfe optimization method to solve (3). We adopt their approxi-
mation method to solve our proposed completion models with reshaped tensors (3) and (4). 
We found that solutions using the approximation method provide agreements with our the-
oretical results related to generalization bounds we showed in the Sect. 4. However, there is 

RS(l◦W) ≤
c�

|S| rcp min
g

�1

(
W

(g)

(D
(g)

1
,…,D

(g)

Mg
)

)
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g∈G

log(4Mg)

Mg∑
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√ ∏
p∈D

(g)

j
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no theoretical analysis available to understand how well the approximation method results 
in a solution compared to an exact solution.

The optimization method proposed in Yang et  al. (2015) uses an approximation 
method for the spectral norm using a recursive algorithm based on singular value 
decomposition with respect to each mode. However, we adopt a more simpler approach 
as given in Algorithm  1, which we believe is more easier to implement. Using the 
approximation method, we provide an optimization procedure to solve the completion 
model that is regularized by a single reshaped norm in the Algorithm 2. The optimiza-
tion procedure in Algorithm  2 is also similar to the Frank-Wolfe based optimization 
procedure proposed in Yang et al. (2015). The additions in Algorithm 2 to Yang et al. 
(2015) are the computation of the spectral norm of the reshaped tensor in step 7 and the 
conversion of the reshaped tensor to the original dimensions in step 12. Here, we want 
to recall Definition 1 to refer to the reshaping operator �(D1,…,DM )

() and its inverse oper-
ator 𝛱⊤

(D1,…,DM )
() for any given reshaping set (D1,D2,… ,DM).
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Next, we give an algorithm to solve the completion model regularized by the reshaped 
latent tensor nuclear norm. The Frank-Wolfe optimization method has also been applied to 
efficiently solve learning models regularized by the latent trace norms (Guo et al. 2017). 
We follow their approach to design Frank-Wolfe method for the reshaped latent tensor 
nuclear norm and Algorithm 3 shows the steps for optimization. From Lemma 1, we know 
that we need to find the reshaping with the largest spectral norm each t step to update the 
Frank-Wolfe procedure. This is shown in the lines 7–11 in the Algorithm 3.

6  Experiments

In this section, we give simulation and real-data experiments.

6.1  Simulation experiments

We created simulation experiments for tensor completion using tensors with some fixed 
multilinear rank and CP rank. We create a K-mode tensor with the multilinear rank of 
(r1,⋯ , rK) by generating a tensor T ∈ ℝ

n1×⋯×nK using the Tucker decomposition (Kolda 
and Bader 2009) as T = C ×1 U1 ×2 U2 ×3 ⋯ ×K UK , where C ∈ ℝ

r1×⋯×rK is a core tensor 
whose elements are sampled from a normal distribution specifying the multilinear rank 
(r1,⋯ , rK) and Uk ∈ ℝ

rk×nk , k = 1,… ,K are orthogonal component matrices. We create 
a tensor with the CP rank of r using the CP decomposition (Kolda and Bader 2009) as 
T =

∑r

i=1
ciu1i ⊗ u2i ⊗⋯⊗ uKi where uki ∈ ℝ

nk , k = 1,… ,K, i = 1,… , r are sampled 
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from a normal distribution and normalized such that ‖uki‖22 = 1 and ci ∈ ℝ
+ . From the total 

number of elements in the generated tensors, we randomly selected 10, 40, and 70 percent-
ages as training sets, and from the remaining we selected 10 percent of elements as valida-
tion set, and the rest were taken as test data. We conducted 3 simulations for each randomly 
generated tensor.

For all simulation experiments, we tested completion using our proposed completion 
models (3) with the reshaped tensor nuclear norm (abbreviated as RTNN) and (4) with the 
reshaped latent tensor nuclear norm (abbreviated as RLTNN). Additionally, we performed 
completion using the tensor nuclear norm (abbreviated as TNN) without reshaping and 
the square norm (abbreviated as SN). As further baseline methods, we used tensor com-
pletion with regularization using the overlapped trace norm (abbreviated as OTN), scaled 
latent trace norm (abbreviated as SLTN), and the Schatten TT norm (Imaizumi et al. 2017) 
(abbreviated as STTN). As the performance measure of completion, we calculated the 
mean squared error (MSE) on the validation data and test data. For all completion models, 
we performed cross-validation of regularization parameters in power of 2x , with x ranging 
from −5 to 15 with intervals of 0.25.

For our first simulation experiment, we created a 4-way tensors T1 ∈ ℝ
n1×n2×n3×n4 with 

n1 = n2 = 10, n3 = n4 = 40 with a multilinear rank of (r1, r2, r3, r4) = (9, 9, 3, 3) . From Mu 
et  al. (2014) we can reshape T1 by using a reshaping set of (D1,D2) = ((n1, n3), (n2, n4)) 
such that it creates a square matrix for the square norm. From Theorem 1, we see that the 
rank components in the Rademacher complexity for the nuclear norm and the square norm 
are 

∏K

k=1
rk∕(maxj=1,…,4 rj) = 243 and 

∏K

k=1
rk∕(maxj=1,2

∏
i∈Dj

ri) = 27 , respectively. Fur-
ther, Theorem  1 shows that the mode based components for the nuclear norm and the 
square norm are log(4 ⋅ 4)(

∑4

k=1

√
nk) ≈ 53 and log(4 ⋅ 2)(

√
n1n3 +

√
n2n4) ≈ 83 , respec-

tively. This leads to a lower generalization bound for the nuclear norm compared to the 
square norm justifying its better performance as shown in the Fig. 1a. However, Theorem 1 
indicates that the lowest generalization bound is obtained by using the reshaping set 
(D�

1
,D�

2
,D�

3
) = ((n1, n2), n3, n4) , which combines the high ranked modes (mode 1 and mode 

2) together resulting in a rank based component of 
∏K

k=1
rk∕(maxj=1,2,3

∏
i∈D�

j

ri) = 9 and a 
mode based component of log(4 ⋅ 3)(

√
n1n2 +

√
n3 +

√
n4) ≈ 56 . Figure  1a agrees with 

our theoretical analysis showing that our proposed reshaped tensor nuclear norm obtains 
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Fig. 1  Performances of completion of the tensors (a) Tensor T1 ∈ ℝ
10×10×40×40 with a multilinear rank 

(9, 9, 3, 3) and (b) tensor T2 ∈ ℝ
10×10×10×10×10 with a CP rank 3
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the best performance compared to other norms. For the reshaped latent tensor nuclear 
norm, we combined the two reshaping sets ((n1, n2, n3, n4), ((n1, n2), n3, n4)) . Applying The-
orem 2, we see that this reshaping set combination leads to a lower Rademacher complex-
ity. However, this combination only gave a comparable performance  compared to the 
reshaped tensor nuclear norm.

As our second simulation, we created a 5-mode tensor T2 ∈ ℝ
n1×n2×⋯×n5 , where 

n1 = n2 = … = n5 = 10 with a CP rank of 3. From Theorem  1, we know that we 
can only consider the mode based component of the Rademacher complexity to 
obtain a lower generalization bound. For the square norm we can use a reshaping set 
such as (D1,D2) = ((n1, n2), (n3, n4, n5)) , which results in the mode based compo-
nent as log(4 ⋅ 2)(

√
n1n2 +

√
n3n4n5) ≈ 86 . The tensor nuclear norm leads to a mode 

based component of log(4 ⋅ 5)(
∑5

k=1

√
nk) ≈ 47 . As an alternative reshaping method, 

we propose to combine any two modes together to create a reshaping set such as 
(D�

1
,D�

2
,D�

3
) = (n1, n2, n3, (n4, n5)) for the reshaped tensor nuclear norm, which lead to a 

mode based component of log(4 ⋅ 4)(
√
n1 +

√
n2 +

√
n3 +

√
n4n5) ≈ 54 . Comparing the 

Rademacher complexities using the mode based components we see that the lowest gen-
eralization bound is given by the tensor nuclear norm. Figure 1b shows that our theoreti-
cal observation is accurate since the tensor nuclear norm gives the best performance com-
pared to other two reshaped norms. For the reshaped latent tensor nuclear norm we used 
all the 10 combinations of two modes combinations, which resulted in reshaping sets of 
D = (((n1, n2), n3, n4, n5), (n1, (n2, n3), n4, n5),… , (n1, n2, n3, (n4, n5))) . Figure 1b shows that 
the reshaped latent tensor nuclear norm has outperformed the tensor nuclear norm.

The next simulation focuses on a different multilinear rank for the 4-way tensor 
T3 ∈ ℝ

n1×n2×n3×n4 with n1 = n2 = 10, n3 = n4 = 40 . Figure 2a shows the simulation experi-
ment with multilinear rank of (3,  3,  35,  35). Again based on Mu et  al. (2014) we can 
reshape T3 by using a reshaping set of (D1,D2) = ((n1, n3), (n2, n4)) or 
(D1,D2) = ((n1, n4), (n2, n3)) to create a square matrix to use with the square norm. From 
Theorem 1 we can observe that the square norm will result in a rank based component of ∏K

k=1
rk∕(maxj=1,2

∏
i∈Dj

ri) = 105 and a mode based component of 
log(4 ⋅ 2)(

√
n1n3 +

√
n2n4) ≈ 63 . However, if we combine the high ranked modes 3 and 4 

together to create the reshaping set (D�
1
,D�

2
,D�

3
) = (n1, n2, (n3, n4)) for the reshaped tensor 

nuclear norm, then the rank based component will decrease to 
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∏K

k=1
rk∕(maxj=1,2,3

∏
i∈D�

j

ri) = 9 and mode based component will decrease to 
log(4 ⋅ 2)(

√
n1
√
n3 +

√
n2n4) ≈ 55 . Furthermore, the tensor nuclear norm leads to a rank 

based component of 
∏K

k=1
rk∕(maxj=1,…,4 rj) = 315 and mode based component of 

log(4 ⋅ 4)(
∑4

k=1

√
nk) ≈ 53 resulting in a larger generalization bound compared to the pro-

posed reshaped set (D�
1
,D�

2
,D�

3
) = (n1, n2, (n3, n4)) . This analysis is also confirmed with the 

experimental results as shown in Fig. 2a where the reshaped tensor nuclear norm gives the 
best performance. Using the Theorem  2, we find that if we use reshaping sets 
((n1, n2, n3, n4), ((n1, n2), n3, n4)) for the reshaped latent tensor nuclear norm, the 
Rademacher complexity will be bounded by the smaller rank based component from the 
reshaping set (n1, n2, n3, n4) and the mode based component from  the reshaping 
set ((n1, n2), n3, n4) . However, the reshaped latent tensor nuclear norm was not able to per-
form better than the tensor nuclear norm or the proposed reshaped norm with 
(D�

1
,D�

2
,D�

3
) = (n1, n2, (n3, n4)).

The final simulation result shown in Fig. 2b is for a tensor T4 ∈ ℝ
10×10×10×10×10 with a 

CP rank of 243. For this experiment, we used the same reshaping strategies as in the previ-
ous experiment with CP rank. We see that when the fraction of training samples is less than 
40 percent the tensor nuclear norm has given the best performance. When the fraction of 
the training samples increases beyond 40 percent the reshaped latent tensor nuclear norm 
has outperformed the tensor nuclear norm.

6.2  Multi‑view video completion

We performed completion on multi-view video data using the EPFL data set: Multi-camera 
Pedestrian Videos data (Berclaz et al. 2011). Videos in this data set capture sequentially 
entering a room and walking around of four people from 4 views using 4 synchronized 
cameras. We down-sampled each video frame to a height of 96 and width of 120 to obtain 
a frame as a RGB-color image with dimensions of 96 × 120 × 3 . We sequentially selected 
391 frames from each video. Combining all the video frames from all views resulted in a 
tensor of dimensions of 96 × 120 × 3 × 391 × 4 (height × width × color × frames × views).

To evaluate completion, we randomly removed entries from the multi-view ten-
sor and performed completion using the remaining elements. We randomly selected 
percentages of 2, 4, 8, 16, 32, and 64 of the total number of elements in the tensor as 
training elements. As our validation set we selected 10 percent of the total number 
of elements. The rest of the remaining elements were taken as the test set. To create a 
square norm, we considered the reshaping set ((height,width),(color,frames,views)) . 
For the reshaped tensor nuclear norm, we experimentally found that the reshaping set 
((height,views),(width,color),(frames)) gives the best performance. To create the reshap-
ing set for the reshaped tensor nuclear norm we combined the reshaping sets of the square 
norm and the reshaped tensor nuclear norm with the unreshaped original tensor. The result-
ing set was D = ((height,width,color,frames,views), ((height,width), (color,frames,views)), 
((height,views),(width,color),(frames))) . We cross-validated all the completion models 
with regularization parameters out of 10−1, 10−0.75, 10−0.5,… , 107.

Figure 3 shows that when the training set is small (or the reshaped tensor nuclear norm 
is sparse) the reshaped tensor nuclear norm and the tensor nuclear norm have given good 
performance compared to the square norm. When the percentage of observed elements 
increases more than 16 percent, the square norm outperforms the other norms. However, 
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the reshaped latent tensor nuclear norm has shown to be adaptive to all fractions of training 
samples and has given the overall best performance.

7  Conclusions

In this paper, we generalize tensor reshaping for low-rank tensor regularization and 
introduce the reshaped tensor nuclear norm and the reshaped latent tensor nuclear norm. 
We propose tensor completion models that are regularized by the proposed norm. Using 
generalization bound analysis of the proposed completion models we show that the 
proposed norms lead to smaller Rademacher complexity bounds compared to exiting 
norms. Further, using our theoretical analysis we discuss optimal conditions to create 
reshaped tensor nuclear norms. Simulation and real-data experiments confirm our theo-
retical analysis.

Our research opens up several future research directions. The most important 
research should be focused on developing theoretical guaranteed methods for optimi-
zation of completion models regularized by the the proposed tensor nuclear norms. 
Though the approximation methods we have adopted for computing the tensor spectral 
norm to be used with the Frank-Wolfe from Yang et  al. (2015) provide performances 
that agrees with our generalization bounds we do not know its approximation error. We 
believe that future theoretical investigations are needed to understand qualitative prop-
erties of the proposed optimization procedures. Furthermore, optimization methods for 
nuclear norms that can scale for large-scale higher order tensors would be an important 
future research direction. Another important research direction is to further explore the 
theoretical foundation of tensor completion using the reshaped tensor nuclear norm. In 
this regard, recovery bounds (Yuan and Zhang 2016) would provide us with stronger 
bounds on sample complexities for the proposed method.
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Appendix

Dual norms of reshaped tensor nuclear norms

In this section, we discuss the dual norm of the proposed reshaped tensor nuclear norm. 
The dual norm is useful in developing optimization procedures and proving theoretical 
bounds.

The dual norm of the tensor nuclear norm (Yang et al. 2015; Yuan and Zhang 2016) 
for a K-mode tensor T ∈ ℝ

n1×⋯×nK is given by

This definition applies to all tensor nuclear norms including the reshaped norms.
The next lemma provides the dual norm for the reshaped latent tensor nuclear norm.

Lemma 1 The dual norm of the reshaped latent tensor nuclear norm for a tensor 
W ∈ ℝ

n1×⋯×nK for a collection of G reshaping sets DL = (D(1),… ,D(G)) is

Proof Using the standard formulation of the dual norm, we write the dual norm for 
‖W‖r_latent(DL)

∗ as

The solution to (7) resides on the simplex of inf
X
(1)+⋯+X(G)=X

∑G

k=1
‖X(k)

(D(k))
‖⋆ ≤ 1 and one 

of the edges of the simplex is a solution. Then, we can take any g ∈ 1,… ,G such that 
X

(g) = X  and all X(k≠g) = 0 , and arrange (7) as

which results in the following

  ◻

Proofs of theoretical analysis

In this section, we provide proofs of the theoretical analysis in Sect. 4.
First, we prove following useful lemmas. These lemmas bound the tensor nuclear 

norm and the reshaped tensor nuclear norms with respect to the multilinear rank of a 
tensor.

(6)‖T‖op = max‖yi‖2=1,1≤i≤K
⟨T, y1 ⊗ y2 ⊗⋯⊗ yK⟩.

‖W‖r_latent(DL)
∗ = max

g
‖W(D(g))‖op.

(7)‖W‖r_latent(DL)
∗ = sup

� G�
k=1

X
(k),W

�
s.t. inf

X
(1)+⋯+X(G)=X

G�
k=1

‖X(k)

(D(k))
‖⋆ ≤ 1.

‖W‖r_latent(DL)
∗ = sup

g∈1,…,G

�
X(D(g)),W(D(g))

�
s.t. ‖X(D(g))‖⋆ ≤ 1,

‖W‖r_latent(DL)
∗ = max

g∈1,…,G
‖W(D(g))‖op.
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Lemma 2 Let X ∈ ℝ
n1×⋯×nK be a random K-mode tensor with a multilinear rank of 

(r1,… , rK) . Let rcp be the CP rank of X ,then

where �i is the ith singular value of X .

Proof Let us consider the Tucker decomposition of X  as

where C ∈ ℝ
r1×⋯×rK is the core tensor and uj

(i)
∈ ℝ

nj , ‖uj
(i)
‖2 = 1, i = 1,… , ri, j = 1,… ,K 

are component vectors.
Following Chapter 8 of Hackbusch (2012), we can express the above Tucker decompo-

sition as

where we have taken summation over the multiplications of core tensor elements and com-
ponent vectors of the mode 1. It is easy to see that we can also consider the summation 
over component vectors of any other mode in a similar manner.

By considering û(1)[j2,… , jK] = 𝛾[j2,… , jK]
û(1)[j2,…,jK ]

‖û(1)[j2,…,jK ]‖2 where 
𝛾[j2,… , jK] = ‖û(1)[j2,… , jK]‖2 , the above arrangement  leads to a CP decomposition 
with a rank of rcp =

∏K

k=1
rk

maxj=1,…,K ri
.

By arranging �[j2,… , jK] in descending order along component vectors û(1)[j2,… , jK] 
and renaming them as �1 ≥ �2 ≥ … and u1j , respectively, we obtain

where ukj ∈ [u
(k)

1
,… u(k)

rk
] are component vectors from (8) for each k = 2,… ,K.

Then we arrive at the final bound of 

  ◻

‖X‖⋆ =

� rcp�
j=1

𝛾j�X =

rcp�
j=1

𝛾ju1j ⊗ u2j ⊗⋯⊗ uKj, ‖ukj‖22 = 1, 𝛾j ≥ 𝛾j+1 > 0

�

≤

∏K

k=1
rk

maxj=1,…,K ri
𝛾1,

X =

r1∑
j1=1

r2∑
j2=1

⋯

rK∑
jK=1

Cj1,…,jK
u
(1)

j1
⊗ u

(2)

j2
⊗⋯⊗ u

(K)

jK
,

(8)
X =

r2∑
j2=1

⋯

rK∑
jK=1

( r1∑
j1=1

Cj1,…,jK
u
(1)

j1

)

���������������������
û(1)[j2,…,jK ]∈ℝ

n1

⊗u
(2)

j2
⊗⋯⊗ u

(K)

jK
,

‖X‖⋆ =

� rcp�
j=1

𝛾j�X =

rcp�
j=1

𝛾ju1j ⊗ u2j ⋯⊗ uKj, ‖ukj‖22 = 1, 𝛾j ≥ 𝛾j+1 > 0

�
,

‖X‖⋆ =

� rcp�
j=1

𝛾j�X =

rcp�
j=1

𝛾ju1j ⊗ u2j ⋯⊗ uKj, ‖ukj‖22 = 1, 𝛾j ≥ 𝛾j+1 > 0

�

≤

∏K

k=1
rk

maxj=1,…,K ri
𝛾1.
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Lemma 3 Let X ∈ ℝ
n×…×n be a random K-mode tensor with multilinear rank of 

(r1,… , rK) . We consider a set of M reshaping modes Di, i = 1,… ,M . Let rcp be the CP 
rank of X  , then

where �i is the ith singular value of X(D1,…,DM )
.

Proof Let us consider the Tucker decomposition of X  as

where C ∈ ℝ
r1×⋯×rK is the core tensor and uj

i
∈ ℝ

nj , ‖uj
i
‖2 = 1, i = 1,… , ri, j = 1,… ,K 

are component vectors. We rearrange the Tucker decomposition for the reshaped tensor 
X(D1,…,DM )

 as

with û1[D�
2
,… ,D�

M
] = 𝛾[D�

2
,… ,D�

M
]

û1[D
�
2
,…,D�

M
]

‖û1[D�
2
,…,D�

M
]‖2 where 𝛾[D�

2
,… ,D�

M
] = ‖û1[D�

2
,… ,D�

M
]‖2 . 

We can consider the above summation over any reshaping set and it is easy to see that the 
arrangement takes a CP decomposition with a CP rank of rcp =

∏K

k=1
rk

maxj=1,…,M

∏
i∈Dj

ri
.

By arranging �[D2,… ,DM] in descending order order along with component vectors 
û(1)[D2,… ,DM] and renaming them as �1 ≥ �2 ≥ … and u1j , respectively, we obtain

where ukj ∈ [𝛱Dk
(u

(a�)

1
⊗ u

(b�)

1
⋯),… ,𝛱Dk

(u
(a�)

r�
a

⊗ u
(b�)

r�
b

⋯)] are components for each 
k = 2,… ,M and a�, b�,… ∈ Dk.

Using the above results we arrive at the following bound 
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j=1

𝛾j�X(D1,…,DM )
=

rcp�
j=1

𝛾ju1j ⊗ u2j ⋯⊗ uMj, ‖ukj‖22 = 1, 𝛾j ≥ 𝛾j+1 > 0

�
,
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  ◻

Lemma 4 Let X ∈ ℝ
n1×…×nK be a random K-mode tensor with CP rank of rcp . We con-

sider a set of M reshaping sets Di, i = 1,… ,M . Then

where �i is the ith singular value of X(D1,…,DM )
.

Proof Let us consider X  as

with ‖ukj‖22 = 1, 𝛾j ≥ 𝛾j+1 > 0 . For the reshaping set (D1,… ,DM) , we rearrange X  as

where a◦b = [a1b, a2b,… , anb]
⊤ is the Khatri-Rao product (Kolda and Bader 2009). 

It is easy to verify that vec((a◦b)⊗ (c◦d)) = vec(a⊗ b⊗ c⊗ d) , which indicates that 
vec(X) = vec(X(D1,…,DM )

).
Using the fact that Rank(a⊗ b) ≤ Rank(a)Rank(b) from Kolda and Bader (2009), we 

have

This lead to the final observation

  ◻

In order to prove Rademacher complexities in Theorems 1 and 2, we use the follow-
ing lemma form Raskutti et al. (2015).

Lemma 5 (Raskutti et  al. 2015) Consider a K-mode tensor X ∈ ℝ
n1×⋯×nK with random 

samples from an i.i.d. Gaussian tensor ensemble. Then

Given a tensor X ∈ ℝ
n1×⋯×nK with Gaussian entries, we can write

‖X(D1,…,DM )
‖⋆ =

� rcp�
j=1

𝛾j�X(D1,…,DM )
=

rcp�
j=1

𝛾ju1j ⊗ u2j ⋯⊗ uMj,

‖ukj‖22 = 1, 𝛾j ≥ 𝛾j+1 > 0

�
≤

∏K

k=1
rk

maxj=1,…,M

∏
i∈Dj

ri
𝛾1,

‖X(D1,…,DM )
‖⋆ ≤ rcp𝛾1,

X =

rcp∑
j=1

𝛾ju1j ⊗ u2j ⋯⊗ uKj,

X(D1,…,DM )
=

rcp∑
j=1

𝛾j(◦i1∈D1
ui1j)⊗ (◦i2∈D2

ui2j)⋯⊗ (◦iM∈DM
uiMj),

Rank(X(D1,…,DM )
) ≤ Rank(X) = rcp.

‖X(D1,…,DM )
‖⋆ ≤ rcp𝛾1.

�‖X‖op ≤ 4 log(4K)

K�
k=1

√
nk.
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where eik is the vector with 1 at the kth element and rest of the elements are zero. Due to 
each Xi1,i2,…,iK

 being a Gaussian entry, we have

where �i1,i2,…,iK
∈ {−1, 1} . Using the Jensen’s inequality, we have

This shows that we can use the Lemma 3 to bound tensors with Bernoulli random variables.
Next we give the detailed proof of Theorem 1.

Proof of Theorem 1 We expand the Rademacher complexity in (5) as

where Σi1,…,iK
= �j when (i1,… , iK) ∈ S and Σi1,…,iK

= 0 , otherwise.
We analyze the Rademacher complexity

(a) Given that tensor has a multilinear rank of (r1,… , rK) , using the Lemma 3 we know 
that

Using Lemma 5 we can bound �𝜎
‖‖‖Σ(D1,…,DM)

‖‖‖⋆∗
 as

By substituting (10) and (11) to (9), we obtain the following bound

�X = �

∑
i1,i2,…,iK

Xi1,i2,…,iK
ei1 ⊗ ei2 ⊗⋯⊗ eiK ,

�X = �g�𝜖

∑
i1,i2,…,iK

𝜖i1,i2,…,iK
|Xi1,i2,…,iK

|ei1 ⊗ ei2 ⊗⋯⊗ eiK ,

�g�𝜖

�
i1,i2,…,iK

𝜖i1,i2,…,iK
�Xi1,i2,…,iK

�ei1 ⊗ ei2 ⊗⋯ eiK

≥ �𝜖

�
i1,i2,…,iK

𝜖i1,i2,…,iK
�g�Xi1,i2,…,iK

�ei1 ⊗ ei2 ⊗⋯ eiK

≥
√
2𝜋�𝜖

�
i1,i2,…,iK

𝜖i1,i2,…,iK
ei1 ⊗ ei2 ⊗⋯ eiK .

RS(l◦W) =
1

|S|��

[
sup
W∈W

∑
i1,…,iK

Σi1,…,iK
l
(
Xi1,…,iK

,Wi1,…,iK

)]
,

(9)

RS(l◦W) =
1

|S|�𝜎

[
sup
W∈W

∑
i1,…,iK

Σi1,…,iK
l
(
Xi1,…,iK

,Wi1,…,iK

)]
,

≤
𝛬

|S|�𝜎

[
sup
W∈W

∑
i1,…,iK

Σi1,…,iK
Wi1,…,iK

]
, (Rademacher contraction)

≤
𝛬

|S|�𝜎 sup
W∈W

‖‖‖W(D1,…,DM)
‖‖‖⋆

‖‖‖Σ(D1,…,DM)
‖‖‖⋆∗

, (Duality relationship)

(10)‖W(D1,…,DM )
‖⋆ ≤

� ∏K

k=1
rk

maxj=1,…,M

∏
i∈Dj

ri

�
𝛾1(W(D1,…,DM )

).

(11)�𝜎
‖‖‖Σ(D1,…,DM)

‖‖‖⋆∗
≤ 4 log (4M)

M∑
j=1

√
Π

p∈Dj

np.
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(b) Given that a tensor has a CP rank of rcp , using the Lemma 4 we have

From Lemma 5, we have

By substituting (13) and (14) to (9), we obtain the desired bound

  ◻

Next, we give the proof for Theorem 2.

Proof of  Theorem  2 We expand the Rademacher complexity in (5) using latent tensors 
W

(1),… ,W(G) for the reshaped latent tensor nuclear norm as

where Σi1,…,iK
= �j when (i1,… , iK) ∈ S and Σi1,…,iK

= 0 , otherwise.
We analyze the Rademacher complexity as

(a) For a tensor with multilinear rank, using Lemma 4 we obtain

Using Lemma 1 we can bound ��‖Σ‖r_latent* as

(12)RS(l◦W) ≤
c�

�S�
� ∏K

k=1
rk

maxj=1,…,M

∏
i∈Dj

ri

�
�1(W(D1,…,DM )

) log(4M)

M�
j=1

��
p∈Dj

np.

(13)‖W(D1,…,DM )
‖⋆ ≤ rcp𝛾1(W(D1,…,DM )

).

(14)�𝜎
‖‖‖Σ(D1,…,DM)

‖‖‖⋆∗
≤ 4 log (4M)

M∑
j=1

√
Π

p∈Dj

np.

(15)RS(l◦W) ≤
c�

|S| rcp�1(W(D1,…,DM )
) log(4M)

M∑
j=1

√∏
p∈Dj

n|Dj|.

RS

(
l◦
(
W

(1) +⋯ +W
(G)

))
=

1

|S|��

[
sup

W
(1)+⋯+W(G)=W∈Wr1

∑
i1,…,iK

Σi1,…,iK
l
(
Xi1,…,iK

,Wi1,…,iK

)]
,

(16)

RS

�
l◦
�
W

(1) +⋯ +W
(G)

��
=

1

�S���

�
sup

W
(1)+⋯+W(G)=W�Wr1

�
i1,…,iK

Σi1,…,iK l
�
Xi1,…,iK ,Wi1,…,iK

��
,

≤
�

�S���

�
sup

W
(1)+⋯+W(G)=W�Wr1

�
i1,…,iK

Σi1,…,iKWi1,…,iK

�
, (Rademacher contraction)

≤
�

�S��� sup
W

(1)+⋯+W(G)=W�Wr1

‖W‖r_latent‖Σ‖r_latent∗ (Duality relationship).

(17)

‖W‖r_latent = inf
W

(1)+⋯+W(G)=W

G�
g=1

‖W(k)

(D
(g)

1
,…,D

(g)
mg

)
‖⋆

≤ min
g∈G

� ∏K

k=1
rk

maxj=1,…,M

∏
i∈D

(g)

j

ri

�
𝛾1(W

(g)

(D
(g)

1
,…,D

(g)

Mg
)
).
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By substituting (17) and (18) to (16), we obtain the following bound

(b) For tensor with CP rank, using Lemma 4 we obtain

By substituting (19) and (18) to (16), we obtain the following bound

  ◻

Finally, we derive the Rademacher complexity for the tensor completion model regular-
ized by the Schatten TT norm.

Theorem  3 Consider a K-mode tensor W ∈ ℝ
n1×…×nK with a multilinear rank of 

(r1,… , rK) . Let us consider the hypothesis class �TT = {W�‖T‖s,T ≤ t} . Then Rademacher 
complexity is bounded as

where ‖W‖F ≤ BT  and c′ is a constant.

Proof For this case we consider the hypothesis class WTT for the Rademacher complexity 
follows as

where Σi1,…,iK
= �j when (i1,… , iK) ∈ S and Σi1,…,iK

= 0 , otherwise.
Now we analyze the Rademacher complexity for the hypothesis class WTT . We have

(18)�𝜎‖Σ‖r_latent* = max
g∈G

�����
W

(g)�
D

(g)

1
,…,D

(g)

Mg

�
�����⋆

≤ 4max log(4Mg)
g∈G

Mg�
j=1

�
Π

p∈D
(g)

j

np.

RS(l◦W) ≤
c�

�S� min
g∈G

� ∏K

k=1
rk

maxj=1,…,M

∏
i∈D

(g)

j

ri

�
�1(W

(g)

(D
(g)

1
,…,D

(g)

Mg
)
)

max
g∈G

log(4Mg)

Mg�
j=1

� �
p∈D

(g)

j

np.

(19)‖W‖r_latent = inf
W

(1)+⋯+W(G)=W

G�
g=1

‖W(k)

(D
(g)

1
,…,D

(g)
mg

)
‖⋆ ≤ min

g∈G
rcp𝛾1

�
W

(g)

(D
(g)

1
,…,D

(g)

Mg
)

�
.

RS(l◦W) ≤
c�

|S| min
g∈G

rcp�1(W
(g)

(D
(g)

1
,…,D

(g)

Mg
)
)max
g∈G

log(4Mg)

Mg∑
j=1

√ ∏
p∈D

(g)

j

np.

(20)

RS(l◦W) ≤
c�𝛬

�S�
K−1�
k=1

min

� k�
i=1

√
ri,

K�
j=k+1

√
rj

�
BT min

k=1,…,K−1

���
i<k

ni +

���� K�
j≥k

nj

�
,

RS(l◦W) =
1

|S|��

[
sup

WTT∈W

∑
i1,…,iK

Σi1,…,iK
l
(
Xi1,…,iK

,Wi1,…,iK

)]
,
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where ‖ ⋅ ‖s,T∗ is the dual norm of ‖ ⋅ ‖s,T . The last step can be obtained by applying the 
Holder’s inequality to the sum of trace norms in the Schatten TT norm.

Considering ‖W‖s,T , we can expand it as

where Qk ∶ T → ℝ
n≥k×nk< is a reshaping operator, and �ik () and r̂k are the ik th singular value 

and the rank of the reshaped tensor by Qk , respectively. Using the Cauchy-Schwarz ine-
quality, we have

where ‖T‖F = BT  . Using Lemmas 1 and 2, we can infer that

Similar to the overlapped trace norm (Tomioka and Suzuki 2013), the Schatten TT norm 
also sums nuclear norms of the the same tensor reshaped into different matrices. Hence, 
we can extend the dual norm of the overlapped trace norm in Tomioka and Suzuki (2013) 
to the Schatten TT norm. Using (Tomioka and Suzuki 2013), it is easy to the dual norm of 
Schatten TT norm as

We want to bound

and since we can take any of Σ(k), k = 1,… ,K to be equal to Σ , we have

We apply Latała’s Theorem (Latała 2005; Shamir and Shalev-Shwartz 2014) to the reshap-
ing by the Qk operator and bound �‖‖Qk(Σ)

‖‖op as

(21)

RS(l◦W) =
1

�S���

�
sup

W∈WTT

�
i1,…,iK

Σi1,…,iK
l
�
Xi1,…,iK

,Wi1,…,iK

��
,

≤
�

�S���

�
sup

W∈WTT

�
i1,…,iK

Σi1,…,iK
Wi1,…,iK

�
, (Rademacher contraction)

≤
�

�S��� sup
W∈WTT

‖W‖s,T‖Σ‖s,T∗ , (Duality relationship)

‖W‖s,T =
1

K − 1

K−1�
k=1

‖Qk(T)‖tr = 1

K − 1

K−1�
k=1

r̂k�
ik=1

𝛾ik (Qk(T)),

‖W‖s,T ≤
1

K − 1

K−1�
k=1

√
r̂k

�����
r̂k�

ik=1

𝛾2
ik
(Qk(T)) =

1

K − 1

K−1�
k=1

√
r̂kBT,

(22)‖W‖s,T ≤
1

K − 1

K−1�
k=1

min

� k�
i=1

√
ri,

K�
j=k+1

√
rj

�
BT,

‖Σ‖s,T∗ = inf
Σ(1)+⋯+Σ(K)=Σ

�K−1

k=1

���Qk

�
Σ(k)

����op.

�‖Σ‖s,T∗ = � inf
Σ(1)+⋯+Σ(K)=Σ

�K−1

k=1

���Qk

�
Σ(k)

����op.

�‖Σ‖s,T∗ ≤ min
k=1,…,K−1

��Qk(Σ)
��op.
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and since 4
√�Qk(Σ)� ≤ 4

�∏K

i=1
ni ≤

1

2

�√∏
i<k ni +

�∏K

j≥k
nj

�
 , we have,

This gives us the bounds for �‖Σ‖s,T∗ as

By combining (22) and (23) to (21), we obtain

  ◻
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