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Abstract
Optimal transport (OT) is a powerful tool for measuring the distance between two probabil-
ity distributions. In this paper, we introduce a new manifold named as the coupling matrix 
manifold (CMM), where each point on this novel manifold can be regarded as a transporta-
tion plan of the optimal transport problem. We firstly explore the Riemannian geometry 
of CMM with the metric expressed by the Fisher information. These geometrical features 
can be exploited in many essential optimization methods as a framework solving all types 
of OT problems via incorporating numerical Riemannian optimization algorithms such as 
gradient descent and trust region algorithms in CMM manifold. The proposed approach 
is validated using several OT problems in comparison with recent state-of-the-art related 
works. For the classic OT problem and its entropy regularized variant, it is shown that our 
method is comparable with the classic algorithms such as linear programming and Sink-
horn algorithms. For other types of non-entropy regularized OT problems, our proposed 
method has shown superior performance to other works, whereby the geometric informa-
tion of the OT feasible space was not incorporated within.
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1  Introduction

An Optimal Transport (OT) problem can be briefly described as to find out the opti-
mized transport plan (defined as transportation polytope) between two or more sets of 
subjects with certain constraints (Peyre and Cuturi 2019). It was firstly formalized by 
French mathematician Gaspard Monge in 1781 (Monge 1781), and was relaxed by Kan-
torovich who provided a solution of Monge’s problem in 1942 (Kantorovich 1942) and 
established its importance to logistics and economics.

As the solution of the OT problem provides the optimized transportation plan 
between probability distributions, and the advance in computer science allows us to per-
form a large amount of computation in a high dimensional space, the optimized distance 
induced by the OT solution, known as the Wasserstein distance (Panaretos and Zemel 
2019), Monge–Kantorovich distance (Brezis 2018) and Earth Mover’s distance (Rubner 
et al. 2000), has been treated as a target being analyzed in various aspects such as image 
processing (Rabin and Papadakis 2015; Ferradans et  al. 2014), pattern analysis (Zhao 
and Zhou 2018; Cuturi 2013; Miller and Lent 2016) and domain adaption (Courty et al. 
2016; Maman et al. 2019; Yair et al. 2019).

The OT-based method for comparing two probability densities and generative mod-
els are vital in machine learning research where data are often presented in the form 
of point clouds, histograms, bags-of-features, or more generally, even manifold-valued 
data set. In recent years, there has been an increase in the applications of the OT-based 
methods in machine learning. Bousquet et  al. (2017) approached OT-based generative 
modeling, triggering fruitful research under the variational Bayesian concepts, such as 
Wassertein GAN (Arjovsky et al. 2017; Gulrajani et al. 2017), Wasserstein Auto-encod-
ers (Tolstikhin et  al. 2018; Zhang et  al. 2019), and Wasserstein variational inference 
(Ambrogioni et  al. 2018) and their computationally efficient sliced version (Kolouri 
et  al. 2019). Another reason that OT gains its popularity is convexity. As the classic 
Kantorovich OT problem is a constrained linear programming problem or a convex min-
imization problem where the minimal value of the transport cost objective function is 
usually defined as the divergence/distance between two distributions of loads (Peyre and 
Cuturi 2019), or the cost associated with the transportation between the source subjects 
and targets. Therefore, the convex optimization plays an essential role in finding the 
solutions of OT. The computation of the OT distance can be approached in principle by 
interior-point methods, and one of the best is from Lee and Sidford (2014).

Although the methods for finding the solutions of OT have been widely investigated 
in the literature, one of the major problems is that these algorithms are excessively slow 
in handling large scale OT problems.A great deal of effort have been paid to find more 
efficient algorithms under the classic OT problem setting with some specifications. For 
example, a better algorithm (Haker et al. 2004) was proposed in the image registration 
and wrapping. Under the homogeneous cost assumption, Jacobs and Lèger (2020) pro-
posed a faster back-and-forth algorithm. Another issue with the classic Kantorovich OT 
formulation is that its solution plan merely relies on a few routes as a result of the spar-
sity of optimal couplings, and therefore fails to reflect the practical traffic conditions. 
These issues limit the wider applicability of OT-based distances for large-scale data 
within the field of machine learning until a regularized transportation plan was intro-
duced by Cuturi (2013). By applying this new method (regularized OT), we are not only 
able to reduce the sparsity in the transportation plan, but also speed up the Sinkhorn 
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algorithm with a linear convergence (Knight 2008). The new research (Schmitzer 2019) 
further improves the stability of the entropy regularized OT problem.

By offering a unique solution, better computational stability compared with the previous 
algorithms and being underpinned by the Sinkhorn algorithm, the entropy regularization 
method has successfully delivered OT approaches into modern machine learning aspects 
(Villani 2009), such as unsupervised learning using Restricted Boltzmann Machines (Mon-
tavon et al. 2016), Wasserstein loss function (Frogner et al. 2015), computer graphics (Sol-
omon et al. 2015) and discriminant analysis (Flamary et al. 2018). Other algorithms that 
aim for high calculation speed in the area of big data have also been explored, such as the 
stochastic gradient-based algorithms (Genevay et  al. 2016) and fast methods to compute 
Wasserstein barycenters (Cuturi and Doucet 2014). Altschuler et al. (2017) proposed the 
Greenkhorn algorithm, a greedy variant of the Sinkhorn algorithm that updates the rows 
and columns which violate most of the constraints.

In order to meet the requirements of various practical situations, many works have been 
done to define suitable regularizations. For newly introduced regularizations, Dessein et al. 
(2018) extended the regularization in terms of convex functions. To apply OT to power 
functions, the Tsallis Regularized Optimal Transport (trot) distance problem was intro-
duced in Su and Hua (2017). Furthermore, in order to involve OT into series data, the 
order-preserving Wassertein distance with its regularizor was developed in Courty et  al. 
(2016). In addition, to maintain the locality in OT-assisted domain adaption, the Laplacian 
regularization was also proposed in Courty et al. (2016). While entropy-based regulariza-
tions have achieved great success in terms of calculation efficiency, those problems without 
such regularization are still challenging. For example, to solve a Laplacian regularized OT 
problem, Courty et al. proposed a generalized conditional gradient algorithm, which is a 
variant of the classic conditional gradient algorithm (Bertsekas 1999). In this paper, we 
shall compare the experimental results of several entropy and non-entropy regularized OT 
problems based on previous studies and the new manifold optimization algorithm proposed 
in Sect. 4.

Non-entropy regularized OT problems arise the question about the development of a 
uniform and generalized method that is capable of efficiently and accurately calculating 
all sort of regularized OT problems. To answer this question, we first consider that all OT 
problems are constrained optimization problems on the transport plane space, namely the 
set of polytope (Peyre and Cuturi 2019). Such constrained problems can be regarded as the 
unconstrained problem on a specific manifold with certain constraints. The well-defined 
Riemannian optimization can provide better performance than the original constrained 
problem with the advantage of treating lower dimensional manifold as a new search space. 
Consequentially, those fundamental numerical iterative algorithms, such as the Riemann-
ian gradient descent (RGD) and Riemannian trust region (RTR), can naturally solve the OT 
problems, achieving convergence under mild conditions.

The main purpose of this paper is to propose a manifold-based framework to optimize 
the transportation polytope in which the related Riemannian geometry will be explored. 
The “Coupling Matrix Manifold” provides an innovative method for solving OT prob-
lems under the framework of manifold optimization. The research on the coupling matrix 
manifold has rooted in our earlier paper (Sun et al. 2016) in which the so-called multino-
mial manifold was explored in the context of tensor clustering. The optimization on mul-
tinomial manifolds has successfully been applied to several density learning tasks (Hong 
and Gao 2015; Hong et al. 2015; Hong and Gao 2018). More recently, Douik and Hassibi 
(2019) explored the manifold geometrical structure and the related convex optimization 
algorithms on three types of manifolds constructed by three types of matrices, namely the 
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doubly stochastic matrices, symmetric stochastic matrices and positive stochastic matrices. 
The CMM introduced in this paper can be regarded as the generalization of their doubly 
positive stochastic manifolds. According to the mathematical and experimental results, our 
CMM paves the way to solve all types of OT problems,including regularized (commonly 
solved by using the famous Sinkhorn algorithm) and non-regularized (previously solved by 
using the classic linear programming algorithm) under the manifold optimization frame-
work (Absil et al. 2008), thus providing a form of unconstrained optimization on manifold 
to exploit geometry information with higher efficiency.

In summary, the main contribution of this paper are three folds. 

1.	 We define the Coupling Matrix Manifold. We explore the geometric properties of this 
manifold, including its tangent space, the projection mapping onto the tangent space, a 
numerically efficient retraction mapping and the calculation of Riemann gradient and 
Riemann Hessian on the manifold.

2.	 Following the framework of optimization on manifolds, we formulate the Riemann 
optimization algorithm on the Coupling Matrix Manifold, so that most OT related opti-
mization problems can be solved in a consistent way.

3.	 We compare our newly presented algorithm with the existing algorithms in literature 
for several state-of-the-art OT models.

The remainder of the paper is organized as follows. Section 2 introduces CMM and its Rie-
mannian geometry,including the tangent space, Riemannian gradient, Riemannian Hessian, 
and Retraction operator, all the ingredients for the Riemannian optimization algorithms. 
In Sect. 3, we review several OT problems with different regularizations from other stud-
ies. These regularization problems will be then converted into the optimization problem 
on CMM so that the Riemannian version of optimization algorithms (RGD and RTR) can 
be applied. In Sect. 4, we will conduct several numerical experiments to demonstrate the 
performance of the new Riemannian algorithms and compare the results with classic algo-
rithms (i.e. Sinkhorn algorithm). Finally Sect. 5 concludes the paper with several recom-
mendations for future research and applications.

2 � Coupling matrix manifolds—CMM

In this section, we introduce the CMM and Riemannian geometry of this manifold in order 
to solve any generic OT problems (Peyre and Cuturi 2019) under the framework of CMM 
optimization (Absil et al. 2008).

Throughout this paper, we use a bold lower case letter for a vector � ∈ ℝ
d , a bold upper 

case letter for a matrix � ∈ ℝ
n×m , and a calligraphy letter for a manifold M  . The embed-

ded matrix manifold M  is a smooth subset of vector space E  embedded in the matrix space 
ℝ

n×m . For any � ∈ M  , T�M  is the tangent space of the manifold M  at � (Absil et  al. 
2008). �d and �d ∈ ℝ

d are the d-dimensional vectors of zeros and ones, respectively, and 
ℝ

n×m
+

 is the set of all n × m matrices with real and positive elements.

2.1 � The definition of a manifold

Definition 1  Two vectors � ∈ ℝ
n
+
 and � ∈ ℝ

m
+
 are coupled if �T�n = �T�m . A matrix 

� ∈ ℝ
n×m
+

 of positive entries is called a coupling matrix of the coupled vectors � and � if 
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��m = � and �T�n = � . The set of all the coupling matrices for the given coupled � and � 
is denoted by

The open subset defined in (1) is indeed a linear manifold. We will introduce an appropri-
ate new metric to make it a Riemannian manifold in the following for the purpose of mani-
fold optimization.

Remark 1  The coupling condition

is vital in this paper as this condition ensures a non-empty transportation polytope so that 
the manifold optimization process can be naturally employed. This condition is checked 
in Lemma 2.2 of De Loera and Kim (2014), and the proof of this lemma is based on the 
north-west corner rule algorithm described in Queyranne and Spieksma (2009).

Remark 2  The defined space ℂm
n
(�, �) of positive plans is a subset of the classic transport 

plan space (or polytope)

where each entry of a plan � in ℙm
n
(�,�) is non-negative. In practice, this constraint on 

ℂ
m
n
(�, �) may pull the solution plan from being sparsity while the classic linear program-

ming algorithm for the OT problem restricts the entries of a plan to be non-negative, 
resulting in zero entries, i.e., sparsity. Given the practical requirement of non-sparsity, the 
entropy regularization is used to enforce such non-sparsity.

Proposition 1  The subset ℂm
n
(�, �) forms a smooth manifold of dimension (n − 1)(m − 1) 

in its embedding space ℝn×m
+

 , named as the Coupling Matrix Manifold.

Proof  Define a mapping F ∶ ℝ
n×m
+

→ ℝ
n+m by

Hence

Clearly DF(�) is a linear mapping from ℝn×m
+

 to ℝn+m with

Hence the null space of DF(�) is

As there are only n + m − 1 linearly independent constraints among ���m = �n, and 
��T�n = �m , the rank of the null space is nm − n − m + 1 = (n − 1)(m − 1) . Hence the 

(1)ℂ
m
n
(�, �) = {� ∈ ℝ

n×m
+

∶ ��m = � and �T�n = �}.

(2)�T�n = �T�m

ℙ
m
n
(�, �) = {� ∈ ℝ

n×m
0

∶ ��m = � and �T�n = �},

F(�) =

[
��m − �

�T�n − �

]
.

ℂ
m
n
(�, �) = F−1(�n+m).

DF(�)[��] =

[
���m
��T�n

]
.

� = {�� ∶ ���m = �n,��
T�n = �m}.
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dimension of the range will be n + m − 1 . According to the sub-immersion theorem [Propo-
sition 3.3.4 in Absil et al. (2008)], the dimension of the manifold ℂm

n
(�, �) is (n − 1)(m − 1)

.
This completes the proof. 	�  ◻

Several special cases of the coupling matrix manifolds that have been explored 
recently are as follows:

Remark 3  When both � and � are discrete distributions, i.e., �T�n = �T�m = 1 which are 
naturally coupled. In this case, we call ℂm

n
(�, �) the double probabilistic manifold, denoted 

by

and the coupling condition becomes:

Remark 4  The doubly stochastic multinomial manifold (Douik and Hassibi 2019): This 
manifold is the special case of ℂm

n
(�, �) with n = m and � = � = �n , e.g.

𝔻ℙn can be regarded as the two-dimensional extension of the multinomial manifold 
introduced in Sun et al. (2016), defined as

2.2 � The tangent space and its metric

From now on, we only consider the coupling matrix manifold ℂm
n
(�, �) where � and � 

are a pair of coupled vectors. For any coupling matrix � ∈ ℂ
m
n
(�, �) , the tangent space 

T�ℂ
m
n
(�, �) is given by the following proposition.

Proposition 2  The tangent space T�ℂm
n
(�, �) can be calculated as

and its dimension is (n − 1)(m − 1).

Proof  It is easy to prove Proposition 2 by differentiating the constraint conditions. We omit 
this.

Also it is clear that ��m = �n and �T�n = �m consist of m + n equations where only 
m + n − 1 conditions are in general independent because 

∑
ij Yij = �T

n
��m = 0 . Hence the 

dimension of the tangent space is nm − n − m + 1 = (n − 1)(m − 1) . The proof is com-
pleted. 	�  ◻

𝔻ℙ
m
n
(�, �) = {� ∈ ℝ

n×m
+

∶ ��m = �,�T�n = �

and �T�n = �T�m = 1}

�T�n = �T�m = 1

𝔻ℙn = {� ∈ ℝ
n×n
+

∶ ��n = �n,�
T�n = �n}.

ℙ
m
n
= {� ∈ ℝ

n×m
+

∶ ��m = �n}.

(3)T�ℂ
m
n
(�, �) = {� ∈ ℝ

n×m ∶ ��m = �n, �
T�n = �m}
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Following Sun et al. (2016); Douik and Hassibi (2019), we still use the Fisher infor-
mation as the Riemannian metric g on the tangent space T�ℂm

n
(�, �) . The motivation of 

using the Fisher information metric is due to the characteristic of � in definition (1): 
{� ∈ ℝ

n×m
+

∶ ��m = � and �T�n = �} such that the set consists of discrete distributions 
with fixed marginal source and target distributions (vectors) and the fact that the Fisher 
information metric is a widely used metric (i.e. Riemannian metric) on the manifold of 
the probability distributions (Amari and Nagaoka 2000, 2007). Here, for any two tan-
gent vectors ��, �� ∈ T�ℂ

m
n
(�,�) , the Fisher information metric is defined as

where the operator ⊘ means the element-wise division of two matrices in the same size.

Remark 5  Equivalently we may use the normalized Riemannian metric as follows

As one of building blocks for the optimization algorithms on manifolds, we con-
sider how a matrix of size n × m can be orthogonally projected onto the tangent space 
T�ℂ

m
n
(�, �) under its Riemannian metric g.

Theorem 1  The orthogonal projection from ℝn×m to T�ℂm
n
(�, �) takes the following form

where the symbol ⊙ denotes the Hadamard product, and � and � are given by

where � = diag(�) and � = diag(�).

Proof  We only present a simple sketch of the proof here. First, it is easy to verify that for 
any vectors � ∈ �n and � ∈ �m , � = (𝛼�T

m
+ �n𝛽

T )⊙ � is orthogonal to the tangent space 
T�ℂ

m
n
(�, �) . This is because for any � ∈ T�ℂ

m
n
(�,�) , we have the following inner product 

induced by g,

By counting the dimension of the tangent space, we conclude that, for any � ∈ �n×m and 
� ∈ ℂ

m
n
(�, �) , there exist � and � such that the following orthogonal decomposition is valid

Hence

(4)g(𝜉�, 𝜂�) =
∑
ij

(𝜉�)ij(𝜂�)ij

Xij

= Tr((𝜉� ⊘ �)(𝜂�)
T )

g(��, ��) = (�T�n)
∑
ij

(��)ij(��)ij

Xij

(5)𝛱�(�) = � − (𝛼�T
m
+ �n𝛽

T )⊙ �,

(6)� = (� − ��−1�)−1(��m − ��−1�T�n) ∈ ℝ
n

(7)� = �−1(�T�n − �T�) ∈ ℝ
m

⟨�, �⟩� = Tr((�⊘ �)�T ) = Tr((𝛼�T
m
+ �n𝛽

T )�T )

= 𝛼T��m + 𝛽T�T�n = 0.

� = 𝛱�(�) + (𝛼�T
m
+ �n𝛽

T )⊙ �
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By direct element manipulation, we have

Similarly

From the second equation we can express � in terms of � as

Taking this equation into the first equation gives

This gives both (6) and (7). The proof is completed. 	�  ◻

Remark 6  For numerical stability, we can replace the inverse (� − ��−1�)−1 in (6) with its 
pseudo-inverse (� − ��−1�)+.

2.3 � Riemannian gradient and retraction

The classical gradient descent method can be extended to the case of optimization on man-
ifold with the aid of the so-called Riemannian gradient. As the coupling matrix manifold is 
embedded in the Enclidean space, the Riemannian gradient can be calculated via project-
ing the Euclidean gradient onto its tangent space. Given the Riemannian metric which is 
defined in (4), we can immediately formulate the following lemma, see Sun et al. (2016) 
and Douik and Hassibi (2019).

Lemma 1  Suppose that f (�) is a real-valued smooth function defined on ℂm
n
(�, �) with its 

Euclidean gradient Gradf (�) , then the Riemannian gradient gradf (�) can be calculated as

Proof  As Df (�)[��] , the directional derivative of f along any tangent vector �� , according 
to the definition of Riemannian gradient, for the metric g(⋅, ⋅) in (4) we have:

where the right equality comes from the definition of Euclidean gradient Gradf (�) with the 
classic Euclidean metric ⟨⋅, ⋅⟩ . Clearly we have

where g(Gradf (�)⊙ �, 𝜉�) can be simply calculated according to the formula in (4), 
although Gradf (�)⊙ � is not in the tangent space T�ℂm

n
(�, �) . Considering its orthogonal 

decomposition according to the tangent space, we shall have

��m = ((𝛼�T
m
+ �n𝛽

T )⊙ �)�m

��m = �� + ��.

�T�n = �T� +��.

� = �−1(�T�n − �T�)

��m = (� − ��−1�T )� + ��−1�T�n

(8)gradf (�) = 𝛱�(Gradf (�)⊙ �).

(9)g(gradf (�), ��) = Df (�)[��] = ⟨Gradf (�), ��⟩

(10)⟨Gradf (�), 𝜉�⟩ = g(Gradf (�)⊙ �, 𝜉�)

(11)Gradf (�)⊙ � = 𝛱�(Gradf (�)⊙ �) +�
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where � is the orthogonal complement satisfying g(�, ��) = 0 for any tangent vector �� . 
Taking (11) into (10) and combining it with (9) gives

Hence

This completes the proof. 	�  ◻

As an important part of the manifold gradient descent process, retraction function 
retracts a tangent vector back to the manifold (Absil et al. 2008). For Euclidean submani-
folds, the simplest way to define a retraction is

In our case, to ensure R�(��) ∈ ℂ
m
n
(�, �) , �� should be in the smaller neighbourhood of � 

particularly when � has smaller entries. This will result an inefficient descent optimiza-
tion process. To provide a new retraction with high efficiency, following Sun et al. (2016), 
Douik and Hassibi (2019), we define P as the projection from the set of element-wise posi-
tive matrices ℝn×m

+
 onto the manifold ℂm

n
(�, �) under the Euclidean metric, that is,

This projection may not be unique because of the openness of ℂm
n
(�, �) . Here the following 

lemma offers one such projection through an algorithm.

Lemma 2  For any matrix � ∈ ℝ
n×m
+

 , there exist two diagonal scaling matrices 
�1 = diag(�1) ∈ ℝ

n×n
+

 and �2 = diag(�2) ∈ ℝ
m×m
+

 such that

where both �1 and �2 can be determined by the extended Sinkhorn–Knopp algorithm 
(Peyre and Cuturi 2019).

The Sinkhorn–Knopp algorithm is specified in Algorithm 1 below, which implements 
the projection P in Lemma 2.

Based on the projection P, a simple retraction can be defined as

Df (�)[𝜉�] = g(𝛱�(Gradf (�)⊙ �), 𝜉�).

gradf (�) = 𝛱�(Gradf (�)⊙ �).

R�(��) = � + ��

P(�) = arg min
�∈ℂm

n
(�,�)

‖� −�‖2
F
.

P(�) = �1��2 ∈ ℂ
m
n
(�,�)
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However it may cause numerical uncertainty in the optimization process when both � and 
�� contains smaller entries. Instead we define the following retraction mapping for ℂm

n
(�, �)

Lemma 3  Let P be the projection defined in Lemma  2, the mapping 
R� ∶ T�ℂ

m
n
(�, �) → ℂ

m
n
(�, �) given by

is a valid retraction on ℂm
n
(�, �) . Here exp(⋅) is the element-wise exponential function and 

�� is any tangent vector at �.

Proof  We only present a sketch of the proof here. First we need to prove that (i) R�(�) = � 
and (ii) ��� (�) = R�(���) satisfies 

d���
(�)

d�

||||�=0 = ��.

For (i), it is obvious that R�(�) = � as P(�) = � for any � ∈ ℂ
m
n
(�, �).

For (ii),

As all exp(⋅) , ⊙ and ⊘ are element-wise operations, the first order approximation of the 
exponential function gives

where lim�→0
o(�)

�
= 0 . The next step is to show that P(� + ���) ≈ � + ��� when � is very 

small. For this purpose, consider a smaller tangent vector �� such that � + �� ∈ ℝ
n×m
+

 . 
There exist two smaller diagonal matrices ��1 ∈ ℝ

n×n
+

 and ��2 ∈ ℝ
m×m
+

 that satisfy

where � are identity matrices. By ignoring higher order small quantity, we have

As both P(� + ��) and � are on the coupling matrix manifold and �� is a tangent vector, 
we have

where �� = diag(��) and � = diag(�)1. Hence,

R�(��) = P(� + ��).

R�(𝜉�) = P(�⊙ exp(𝜉� ⊘ �))

d𝛾𝜉� (𝜏)

d𝜏

|||||𝜏=0
= lim

𝜏→0

𝛾𝜉� (𝜏) − 𝛾𝜉� (0)

𝜏

= lim
𝜏→0

P(�⊙ exp(𝜏𝜉� ⊘ �)) − �

𝜏

P(�⊙ exp(𝜏𝜉� ⊘ �)) = P(� + 𝜏𝜉�) + o(𝜏)

P(� + ��) = (�n + ��1)(� + ��)(�m + ��2)

P(� + ��) ≈ � + �� + ��1� + ���2.

� =P(� + ��)�m ≈ (� + �� + ��1� + ���2)�m

≈� + � + ��1� + ���2�m = � + ���1 + ���2

���1 + ���2 ≈ �.

1  For a matrix � , diag(�) is the vector formed by � ’s diagonal elements. For a vector � , the result of 
diag(�) is the matrix whose diagonal elements come from �.
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Similarly,

That is

Hence [��T
1
, ��T

2
]T is in the null space of the above matrix which contains [�T

n
,−�T

m
]T . In 

general, there exists a constant c such that ��1 = c�n and ��2 = −c�m and this gives

Combining all results obtained above, we have P(� + ���) ≈ � + ��� as � is sufficiently 
smaller. Hence, this completes the proof. 	�  ◻

2.4 � The Riemannian Hessian

Theorem  2  Let Gradf (�) and Hessf (�)[��] be the Euclidean gradient and Euclidean 
Hessian, respectively. The Riemennian Hessian hessf (�)[��] can be expressed as

with

Proof  It is well known (Absil et al. 2008) that the Riemannian Hessian can be calculated 
from the Riemannian connection ∇ and Riemannian gradient via

Furthermore the connection ∇��
�� on the submanifold can be given by the projection of 

the Levi-Civita connection ∇��
�� , i.e., ∇��

�� = ��(∇��
��) . For the Euclidean space ℝn×m 

�T��1 +���2 ≈ �.

[
� �

�T �

] [
��1

��2

]
≈ �.

��1� + ���2 = �.

hessf (�)[𝜉�] = 𝛱�

(
𝛾̇ −

1

2
(𝛾 ⊙ 𝜉�)⊘ �

)

𝜇 = (� − ��−1�t)+

𝜂 = Gradf (�)⊙ �

𝛼 = 𝜇(𝜂�m − ��−1𝜂T�n)

𝛽 = �−1(𝜂T�n − �T𝛼)

𝛾 = 𝜂 − (𝛼�T
m
+ �n𝛽

T )⊙ �

𝜇̇ = 𝜇(��−1𝜉T
�
+ 𝜉��

−1�T )𝜇

𝜂̇ = Hessf (�)[𝜉�]⊙ � + Gradf (�)⊙ 𝜉�

𝛼̇ = 𝜇̇(𝜂�m − ��−1𝜂T�n)

+ 𝜇(𝜂̇�m − 𝜉��
−1𝜂T�n − ��−1𝜂̇T�n)

𝛽̇ = �−1(𝜂̇T�n − 𝜉T
�
𝛼 − �T 𝛼̇)

𝛾̇ = 𝜂̇ − (𝛼̇�T
m
+ �n𝛽̇

T )⊙ � − (𝛼�T
m
+ �n𝛽

T )⊙ 𝜉�.

hessf (�)[��] = ∇��
gradf (�).
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endowed with the Fisher information, with the same approach used in Sun et al. (2016), it 
can be shown that the Levi-Civita connection is given by

Hence,

According to Lemma 1, the directional derivative can be expressed as

Taking in the expressions for �, �, � and directly computing directional derivatives give all 
formulate in the theorem. 	�  ◻

3 � Riemannian optimization applied to OT problems

In this section, we illustrate the Riemannian optimization in solving various OT problems, 
starting by reviewing the framework of the optimization on Riemannian manifolds.

3.1 � Optimization on manifolds

Early attempts to adapt standard manifold optimization methods were presented by Gabay 
(1982) in which steepest descent, Newton and qusasi-Newtwon methods were introduced. The 
second-order geometry related optimization algorithm such as the Riemannian trust region 
algorithm was proposed in Absil et al. (2008), where the algorithm was applied on some spe-
cific manifolds such as the Stiefel and Grassman manifolds.

This paper focuses only on the gradient descent method which is the most widely used 
optimization method in machine learning.

Suppose that � is a D-dimensional Riemannian manifold. Let f ∶ 𝕄 → ℝ be a real-valued 
function defined on � . Then, the optimization problem on � has the form

For any � ∈ � and �� ∈ T�� , there always exists a geodesic starting at � with ini-
tial velocity �� , denoted by ��� . With this geodesic the so-called exponential mapping 
exp� ∶ T�� → � is defined as

∇𝜉�
𝜂� = D(𝜂�)[𝜉�] −

1

2
(𝜉� ⊙ 𝜂�)⊘ �.

hessf (�)[𝜉�] = 𝛱�(∇𝜉�
gradf (�))

= 𝛱�

(
D(gradf (�))[𝜉�] −

1

2
(𝜉� ⊙ gradf (�))⊘ �

)

D(gradf (�))[𝜉�] = D(𝛱�(𝜂))[𝜉�]

= D(𝜂 − (𝛼�T
m
+ �n𝛽

T )⊙ �)[𝜉�]

= D(𝜂)[𝜉�] − (D(𝛼)[𝜉�]�
T
m
+ �nD(𝛽)[𝜉�]

T )⊙ �

− (𝛼�T
m
+ �n𝛽

T )⊙ 𝜉�.

min
�∈�

f (�).

exp�(��) = ��� (1), for any �� ∈ T��.
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Thus the simplest Riemannian gradient descent (RGD) consists of the following two main 
steps: 

1.	 Compute the Riemannian gradient of f at the current position �(t) , i.e. ��(t) = gradf (�(t));
2.	 Move in the direction −��(t) according to �(t+1) = exp�(t) (−���(t) ) with a step-size 𝛼 > 0.

Step 1) is straightforward as the Riemannian gradient can be calculated from the Euclidean 
gradient according to (8) in Lemma  1. However, it is generally difficult to compute the 
exponential map effectively as the computational processes require some second-order Rie-
mannian geometrical elements to construct the geodesic, which sometimes is not unique 
on a manifold point. Therefore, instead of using the exponential map in RGD, an approxi-
mated method, namely the retraction map R� is commonly adopted to replace the exponen-
tial mapping exp� in Step 2).

For the coupling matrix manifold ℂm
n
(�, �) , a retraction mapping has been proposed in 

Lemma 3. Hence Step 2) in the RGD can be modified by using the computable retraction 
mapping as follows,

Hence for any given OT-based optimization problem

conducting the RGD algorithm comes down to computing the Euclidean gradient 
Gradf (�) . Similarly, formulating the second-order Riemannian optimization algorithms 
based on Riemannian Hessian, such as Riemannian Newton method and Riemannian trust 
region method, boils down to calculating the Euclidean Hessian. See Theorem 2.

3.2 � Computational complexity of coupling matrix manifold optimization

In this section we give a simple complexity analysis on optimizing a function defined on 
the coupling matrix manifold by taking the RGD algorithm as an example. Suppose that 
we minimize a given objective function f (�) defined on ℂm

n
 . For the sake of simplicity, we 

consider the case of m = n.
In each step of RGD, we first suppose we need the number of flops Et(n) to calculate 

the Euclidean gradient Gradf (�(t)) . In most cases shown in the next subsection, we have 
Et(n) = O(n2) . Before applying the RGD step, we shall calculate the Riemannian gradient 
gradf (�(t)) by the projection according to Lemma  3 which is implemented by the Sink-
horn–Knopp algorithm in Algorithm 1. The complexity of Sinkhorn–Knopp algorithm to 
have an �-approximate solution is O(n log(n)�−3) = O(n log(n)) (Altschuler et al. 2017).

If RGD is coducted T iterations, the overall computational complexity will be

Remark 7  This complexity is comparable to other optimization algorithms for most OT 
problems, for example, equivalent to the complexity of the Order-Preserving OT problem 

�(t+1) = R�(t) (−���(t) ).

min
�∈ℂm

n
(�,�)

f (�),

O(n log(n)T) + TEt(n) = O(n log(n)T) + O(Tn2) = O(Tn2).
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(Su and Hua 2017), see Sect. 3.3.4 below. However as our optimization algorithm has suf-
ficiently exploited the geometry of the manifold, the experimental results are much better 
than other algorithms, as demonstrated in Sect. 4.

Remark 8  Although the Sinkhorn–Knopp algorithm has a complexity of O(n log(n)) , it 
can only be directly applied to solve the entropy regularized OT problem,, see Application 
Example 2) in Sect. 3.3 below.

3.3 � Application examples

As mentioned before, basic Riemannain optimization algorithms are constructed on the 
Euclidean gradient and Hessian of the objective function. In the first part of our application 
example, some classic OT problems are presented to illustrate the calculation process for their 
Riemannian gradient and Hessian.

3.3.1 � The classic OT problem

The objective function of the classic OT problem (Peyré et al. 2019) is

where � = [Cij] ∈ ℝ
n×m is the given cost matrix and f (�) gives the overall cost under the 

transport plan � . The solution �∗ to this optimization problem is called the transport plan 
which induces the lowest overall cost f (�∗) . When the cost C is defined by the distance 
between the source objects and the target objects, the best transport plan X∗ assists in defin-
ing the so-called Wasserstein distance between the source distribution � and the target dis-
tribution � by

Given that problem (12) is indeed a linear programming problem, it is straightforward to 
solve the problem by the linear programming algorithms. In this paper, we solve the OT 
problem under the Riemannian optimization framework. Thus, for the classic OT, obvi-
ously the Euclidean gradient and Hessian can be easily computed as:

and

3.3.2 � The entropy regularized OT problem

To enforce the non-sparse OT plan, the entropy regularized OT problem was proposed (Peyre 
and Cuturi 2019). It takes the following form,

where �(�) is the discrete entropy of the coupling matrix and is defined by:

(12)min
�∈ℂm

n
(�,�)

f (�) = Tr(�T�)

d(�,�) = Tr(�∗T�).

Gradf (�) = �

Hessf (�)[�] = �.

min
�∈ℂm

n
(�,�)

f (�) = Tr(�T�) − ��(�),
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In terms of matrix operation, �(�) has the form

where log applies to each element of the matrix. The minimization is a strictly convex opti-
mization process, and for 𝜆 > 0 the solution �∗ is unique and has the form:

where � = e
−C

�  is computed entry-wisely (Peyre and Cuturi 2019), and � and � are obtained 
by the Sinkhorn–Knopp algorithm.

Now, for objective function

one can easily check that the Euclidean gradient is

where � is a matrix of all 1s in size n × m , and the Euclidean Hessian is, in terms of map-
ping differential, given by

3.3.3 � The power regularization for OT problem

Dessein et al. (2018) further extended the regularization to

where � is an appropriate convex function. As an example, we consider the squared regu-
larization proposed by Essid and Solomon (2018)

and we apply a zero truncated operator in the manifold algorithm. It is then straightforward 
to prove that

and

The Tsallis Regularized Optimal Transport is used in Muzellec et al. (2017) to define trot 
distance which comes with the following regularization problem

�(�) ≜ −
∑
ij

�ij(log(�ij)).

�(�) = −�T
n
(�⊙ log(�))�m

𝐗∗ = diag(�)𝐊diag(�)

f (�) = Tr(�T�) − ��(�),

Gradf (�) = � + �(� + log(�)),

Hessf (�)[�] = 𝜆(� ⊘ �).

min
�∈ℂn

n
(�,�)

Tr(�T�) + ��(�)

min
�∈ℂn

n
(�,�)

f (�) = Tr(�T�) + �
∑
ij

X2
ij

Gradf (�) = � + 2��

Hessf (�)[�] = 2��.

min
�∈ℂn

n
(�,�)

f (�) = Tr(�T�) − �
1

1 − q

∑
ij

(X
q

ij
− Xij).
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For the sake of convenience, we denote �q ∶= [X
q

ij
]
n,m

i=1,j=1
 for any given constant q > 0 . 

Then we have

and

3.3.4 � The order‑preserving OT problem

The order-preserving OT problem is proposed in Su and Hua (2017) and is adopted by Su 
and Wu (2019) for learning distance between sequences. This learning process takes the 
local order of temporal sequences and the learned transport defines a flexible alignment 
between two sequences. Thus, the optimal transport plan only assigns large loads to the 
most similar instance pairs of the two sequences.

For sequences � = (�1, ...,�n) and � = (�1, ..., �m) in the respective given orders, the 
distance matrix between them is

Define an n × m matrix (distance between orders)

and the (exponential) similarity matrix

where 𝜎 > 0 is the scaling factor and

The (squared) distance between sequences � and � is given by

where the optimal transport plan �∗ is the solution to the following order-preserving regu-
larized OT problem

where the KL-divergence is defined as

Gradf (�) = � −
�

1 − q
(q�q−1 − �)

Hessf (�)[�] = q𝜆
[
�q−2 ⊙ �

]
.

� = [d(�i, �j)
2]

n,m

i=1,j=1
.

� =

⎡
⎢⎢⎢⎣

1�
i

n
−

j

m

�2

+ 1

⎤⎥⎥⎥⎦

� =
1

�
√
2�

�
exp

�
−
l(i, j)2

2�2

��

l(i, j) =

||||||||

i

n
−

j

m√
1

n2
+

1

m2

||||||||
.

(13)d2(�,�) = Tr(�T�∗)

�∗ = arg min
�∈ℂm

n
(�,�)

f (�) = Tr(�T (� − �1�))+�2KL(�||�)
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and specially � =
1

n
�n and � =

1

m
�m are uniform distributions. Hence

and

3.3.5 � The OT domain adaption problem

OT has also been widely used for solving the domain adaption problems. In this subsection, 
Courty et al. (2016) formalized two class-based regularized OT problems, namely the group-
induced OT (OT-GL) and the Laplacian regularized OT (OT-Laplace). As the OT-Laplace is 
found to be the best performer for domain adaption, we only apply our coupling matrix mani-
fold optimization to it and thus we summarize its objective function here.

As pointed out in Courty et al. (2016), this regularization aims at preserving the data graph 
structure during transport. Consider �s = [�s

1
, �s

2
, ...,�s

n
] to be the n source data points and 

�t = [�t
1
, �t

2
, ...,�t

m
] the m target data points, both are defined in ℝd . Obviously, �s ∈ ℝ

d×n and 
�t ∈ ℝ

d×m . The purpose of domain adaption is to transport the source �s towards the target 
�t so that the transported source �̂s = [�̂s

1
, �̂s

2
, ..., �̂s

n
] and the target �t can be jointly used for 

other learning tasks.
Now suppose that for the source data we have extra label information �s = [ys

1
, ys

2
, ..., ys

n
] . 

With this label information we sparsify similarities �s = [Ss(i, j)]
n
i,j=1

∈ ℝ
n×n
+

 among the 
source data such that Ss(i, j) = 0 if ys

i
≠ ys

j
 for i, j = 1, 2, ..., n . That is, we define a 0 similarity 

between two source data points if they do not belong to the same class or do not have the same 
labels. Then the following regularization is proposed

With a given transport plan � , we can use the barycentric mapping in the target as the 
transported point for each source point (Courty et  al. 2016). When we use the uniform 
marginals for both source and target and the �2 cost, the transported source is expressed as

It is easy to verify that

where �s = diag(�s�n) − �s is the Laplacian of the graph �s and the regularizer �c(�) is 
therefore quadratic with respect to � . Similarly when the Laplacian �t in the target domain 
is available, the following symmetric Laplacian regularization is proposed

KL(�||�) = ∑
ij

Xij(log(Xij) − log(Pij))

Gradf (�) = (� − �1�)+�2(� + log(�) − log(�))

Hessf (�)[�] = 𝜆2(� ⊘ �).

�s
c
(�) =

1

n2

n�
i,j=1

Ss(i, j)‖�̂si − �̂s
j
‖2
2
.

(14)�̂s = n��t.

(15)�s
c
(�) = Tr(�T

t
�T�s��t),

�c(�) = (1 − �)Tr(�T
t
�T�s��t) + �Tr(�T

s
��t�

T�s)

= (1 − �)�s
c
(�) + ��t

c
(�).
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When � = 0 , this goes back to the regularizer �s
c
(�) in (15).

Finally the OT domain adaption is defined by the following Laplacian regularized OT 
problem

Hence the Euclidean gradient and uclidean Hessian are given by

and

respectively.

4 � Experimental results and comparisons

In this section, we investigate the performance of our proposed methods. The implementa-
tion of the coupling matrix manifold follows the framework of ManOpt Matlab toolbox 
in http://www.manop​t.org from which we call the conjugate gradient descent algorithm as 
our Riemannian optimization solver in experiments. All experiments are carried out on a 
laptop computer running on a 64-bit operating system with Intel Core i5-8350U 1.90GHz 
CPU and 16G RAM with MATLAB 2019a version.

4.1 � Synthetic data for the classic OT problem

First of all, we conduct a numerical experiment on a classic OT problem with synthetic 
data and the performance of the proposed optimization algorithms are demonstrated.

Consider the following source load � and target load � , and their per unit cost matrix �:

For this setting, we solve the classic OT problem using the coupling matrix manifold opti-
mization (CMM) and the standard linear programming (LinProg) algorithm, respectively. 
We visualize the learned transport plan matrices from both algorithms in Fig. 1.

The results reveal that, for the non-negative constrained conditions for the entries of 
transport plan, the linear programming algorithm gives a transportation plan demonstrat-
ing sparse patterns, while our coupling matrix manifold imposes the positivity constraints, 
resulting in an relatively denser transportation plan which is preferable to many practical 

(16)min
�∈ℂm

n
(�n,�m)

f (�) = Tr(�T�) − ��(�) +
1

2
��c(�)

Gradf (�) = � + �(� + log(�))

+ �((1 − �)�s��t�
T
t
+ ��s�

T
s
��t).

Hessf (�)[�] = 𝜆(� ⊘ �) + 𝜂((1 − 𝛼)�s��t�
T
t
+ 𝛼�s�

T
s
��t),

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3

3

3

4

2

2

2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � =

⎡
⎢⎢⎢⎢⎣

4

2

6

4

4

⎤⎥⎥⎥⎥⎦
, � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1.2 2 2

2 4 4 4 0

1 0 0 0 3

0 1 2 1 3

1 1 0 1 2

2 1 2 0.8 3

4 0 0 1 1

0 1 0 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

http://www.manopt.org


551Machine Learning (2021) 110:533–558	

1 3

problems, i.e., in practical logistic planning, one prefers to use all the possible routes from 
multiple suppliers to retailers rather than to congest on several routes. The proposed mani-
fold optimization performs well in this regard.

Next we consider an entropy regularized OT problem which can be easily solved by 
the Sinkhorn algorithm. We test both the Sinkhorn algorithm and the new coupling matrix 
manifold optimization on the same synthetic problem over 100 regularizer � values on a 
log scale ranging [−3, 2] , i.e., � = 0.001 = 10−3 to 100.0 = 102 . Mean squared error (MSE) 
is used as a criterion to measure the closeness between transport plan matrices in both 
algorithms. We run the experiment 10 times each and the mean MSE and the mean time 
used for 10 runs are reported in Fig. 2.

In the experiments, we observed that when the Sinkhorn algorithm breaks down for 
� ≤ 0.001 due to computational instability. On the contrary, the manifold-assisted algo-
rithm generates reasonable results for a wider range of regularizer values. From Fig. 2a, we 
also observe that both algorithms give almost exactly same transport plan matrices when 
𝜆 > 0.1668.

In terms of computational complexity, the Sinkhorn algorithm is generally more effi-
cient than the manifold assisted method in the entropy regularized OT problem, given the 
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Fig. 1   Two transport plan matrices via: a linear Programming and b Coupling Matrix Manifold Optimiza-
tion
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Fig. 2   Algorithm comparison over 100 regularizer values at log scale [−3, 2] : a the mean Squared errors 
between the solutions of CMM and Sinkhorn algorithms and b time difference (in seconds) between CMM 
and Sinkhorn algorithms
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information on computational time difference between CMM and Sinkhorn as shown in 
Fig. 2b. This is expected as CMM works on manifold optimization where extra computa-
tion is needed to maintain the constrain conditions for the manifold. However we shall note 
that when the regularizer is larger, the time difference between two algorithms is negligi-
ble. For the cases of smaller � values, the CMM is much more stable than the Sinkhorn 
algorithm although more computational cost is needed, but worthwhile.

4.2 � Experiments on the order‑preserving OT

In this experiment, we demonstrate the performance in calculating the order-preserving 
Wasserstein distance (Su and Hua 2017) using a real dataset. The “Spoken Arabic Digits 
(SAD)” dataset, available from the UCI Machine Learning Repository (https​://archi​ve.ics.
uci.edu/ml/datas​ets/Spoke​n+Arabi​c+Digit​), contains 8,800 vectorial sequences from ten 
spoken Arabic digits. The sequences consist of time series of the mel-frequency cepstrum-
coefficients (MFCCs) features extracted from the speech signals. This is a classification 
learning task on ten classes. The full set of training data has 660 sequence samples per 
digit spoken repeatedly for 10 times by 44 male and 44 female Arabic native speakers. For 
each digit, another 220 samples are retained as testing sets.

The experimental setting is similar to that in Su and Hua (2017). Based on the order-
preserving Wasserstein distance (OPW) between any two sequences, we directly test the 
nearest neighbour (NN) classifier. To define the distance in (13), we use three hyperparam-
eters: the width parameter � of the radius basis function (RBF), two regularizers �1 and �2 . 
For the comparative purpose, these hyperparameters are chosen to be � = 1 , �1 = 50 and 
�2 = 0.1 , as in Su and Hua (2017). Our purpose here is to illustrate that the performance of 
the NN classifier based on the coupling matrix manifold optimization algorithm (named as 
CM-OPW) is comparable to the NN classification results from Sinkhorn algorithm (named 
as S-OPW). We randomly choose 10% training data and 10% testing data for each run in 
the experiments. The classification mean accuracy and their standard error are reported in 
Table 1 based on five runs.

In this experiment, we also observe that the distance calculation fails for some pairs 
of training and testing sequences due to numerical instability of the Sinkhorn algorithm. 
Our conclusion is that the performance of the manifold-based algorithm is comparable 
in terms of similar classification accuracy. When k = 1 , the test sequence is also viewed 
as a query to retrieve the training sequences, and the mean average precision (MAP) is 
MAP = 0.1954 for the S-OPW and MAP = 0.3654 for CM-OPW. Theoretically the Sink-
horn algorithm is super-fast, outperforming all other existing algorithms; however, it is not 
applicable to those OT problems with non-entropy regularizations. We demonstrate these 
problems in the next subsection.

Table 1   The classification 
accuracy of the kNN classifiers 
based on two algorithms for the 
order-preserving Wasserstein 
distance

Algorithms 1NN 3NN 5NN 7NN 13NN 19NN

S-OWP (Su 
and Hua 
2017)

0.8236 0.8454 0.8454 0.8418 0.8473 0.8290

(std) 0.0357 0.0215 0.0215 0.0220 0.0272 0.0240
CM-OWP 0.8091 0.8309 0.8255 0.8218 0.8109 0.8091
(std) 0.0275 0.0212 0.0194 0.0196 0.0317 0.0315

https://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit
https://archive.ics.uci.edu/ml/datasets/Spoken+Arabic+Digit
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4.3 � Laplacian regularized OT problems: synthetic domain adaption

Courty et al. (2016) analyzed two moon datasets and found that the OM domain adaption 
method significantly outperformed the subspace alignment method significantly.

We use the same experimental data and protocol as in Courty et al. (2016) to perform 
a direct and fair comparison between results2. Each of the two domains represents the 
source and the target respectively presenting two moon shapes associated with two specific 
classes. See Fig. 3.

The source domain contains 150 data points sampled from the two moons. Similarly, 
the target domain has the same number of data points, sampled from two moons shapes 
which rotated at a given angle from the base moons used in the source domain. A classifier 
between the data points from two domains will be trained once transportation process is 
finished.

To test the generalization capability of the classifier based on the manifold optimiza-
tion method, we sample a set of 1000 data points according to the distribution of the target 
domain and we repeat the experiment for 10 times, each of which is conducted on 9 differ-
ent target domains corresponding to 10◦ , 20◦ , 30◦ , 40◦ , 50◦ , 60◦ , 70◦ , 80◦ and 90◦ rotations, 
respectively. We report the mean classification error and variance as comparison criteria.

We train the SVM classifiers with a Gaussian kernel, whose parameters were automati-
cally set by 5-fold cross-validation. The final results are shown in Table 1. For comparative 
purpose, we also present the results based on the DA-SVM approach (Bruzzone and Marc-
oncini 2010) and the PBDA (Germain et al. 2013) from Courty et al. (2016).

From Table 2, we observe that the coupling matrix manifold assisted optimization algo-
rithm significantly improves the efficiency of the GCG (the generalized conditional gra-
dient) algorithm which ignores the manifold constraints although a weaker Lagrangian 
condition was imposed in the objective function. This results in a sub-optimal solution to 
the transport plan, producing poorer transported source data points. The results in Table 2 
show our coupling matrix manifold optimal transport Laplacian (CM-OT-Lap) algorithm 
provides a more stable classification results along with different data structures (from 10◦ 
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Fig. 3   Two moons’ example for increasing rotation angles

2  We sincerely thanks to the authors of Courty et al. (2016) for providing us the complete simulated two 
moon datasets.
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to 90◦ rotations) with the highest classification error only 0.0466 at 70◦ rotation. Especially 
for the problem with highest difficulty in 90◦ , the CM-OT-Lap resulted in a mean clas-
sification error as 0.0797 whereas other methods are with the results as 0.82 (DASVM), 
0.687 (PBDA) and 0.524 (OT-Lap) respectively, indicating that computing the transporta-
tion map between two data sets can significantly help us to accurately do the classification 
work. We also provided the variance of the classification results to show the robustness of 
our method. Our results show relatively low variances.

4.4 � Laplacian regularized OT problems: image domain adaption

We now apply our manifold-based algorithm to solve the Laplician regularized OT prob-
lem for the challenging real-world adaptation tasks. In this experiment, we test the domain 
adaption for both handwritten digits images and face images for recognition. We follow the 
same setting used in Courty et al. (2016) for a fair comparison.

4.4.1 � Digit recognition

We use the two-digit famous handwritten digit datasets USPS and MNIST as the source 
and target domain and verse, respectively, in our experiment3. The datasets share 10 classes 
of features (single digits from 0-9). We randomly sampled 1800 images from USPS and 
2000 from MNIST. In order to unify the dimensions of two domains, the MNIST images 
are re-sized into 16 × 16 resolution same as USPS. The grey level of all images are then 
normalized to produce the final feature space for all domains. For this case, we have two 
settings U-M (USPS as source and MNIST as target) and M-U (MNIST as source and 
USPS as target).

4.4.2 � Face recognition

In the face recognition experiment, we use PIE (“Pose, Illumination, Expression”) dataset 
which contain 32 × 32 images of 68 individuals with different poses: pose, illuminations 
and expression conditions.4 In order to make a fair and reasonable comparison with Courty 

Table 2   Mean error rate over 10 realizations for the two moons simulated example

DASVM (Bruzzone and Marconcini 2010); PBDA (Germain et al. 2013); OT-Laplace (Courty et al. 2016)

Rotate Angle 10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM (no adapt.) 0 0.104 0.24 0.312 0.4 0.764 0.828
DASVM 0 0 0.259 0.284 0.334 0.747 0.82
PBDA 0 0.094 0.103 0.225 0.412 0.626 0.687
OT-Laplace 0 0 0.004 0.062 0.201 0.402 0.524
CM-OT-Lap (ours) 0.0027 0.0043 0.0014 0.0142 0.0301 0.0446 0.0797
(variance) 0.0000 0.0002 0.0000 0.0007 0.0013 0.0015 0.0057

3  Both datasets can be found at http://www.cad.zju.edu.cn/home/dengc​ai/Data/MLDat​a.html.
4  http://www.cs.cmu.edu/afs/cs/proje​ct/PIE/Multi​Pie/Multi​-Pie/Home.html.

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
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et al. (2016), we select PIE05(C05, denoted as P1, left pose), PIE07(C07, denote as P2, 
upward pose), PIE09(C09, denoted as P3, downward pose) and PIE29(C29, denoted as P4, 
right pose). This four domains induce 12 adaptation problems with increasing difficulty 
(the hardest adaptation is from left to the right). Note that large variability between each 
domain is due to the illumination and expression.

4.4.3 � Experiment settings and result analysis

We generate the experimental results by applying the manifold-based algorithm on two 
types of Laplacian regularized problems, namely: Problem (16) with � = 0 (CMM-OT-
Lap) and with � = 0.5 (CMM-OT-symmLap). We follow the same experimental settings 
in Courty et al. (2016). For all methods, the regularization parameter � was initially set to 
0.01, similarly, another parameter, � that controls the performance of Laplacian terms was 
set to 0.1.

In both Face and digital recognition experiments, 1NN is trained with the adapted 
source data and target data, and then we report the overall accuracy (OA) score (in %) cal-
culated on testing samples from the target domain. We compare OAs between our CMM-
OT solutions to the baseline methods and the results generated by the methods provided in 
Courty et al. (2016) in Table 3. Note that, we applied both coupling matrix OT Laplacian 
and coupling matrix OT symmetric Laplacian algorithm for all experiments, and due to the 
high similarity of the results generated from these two methods, we only list the OA gener-
ated from the non-symmetric CMM-OT-Lap algorithm in table.

As a result, the OA based on the solution generated from CMM based OT Laplician 
algorithm over-performs all other methods in both digital and face recognition experi-
ments, with mean OA = 65.52% and 72.59% , respectively. Averagely, our method is able 
to increase 4% and 16% of the OA from the previous results. However, in terms of the 
adaptation problem with the highest difficulty : P1 to P4, we got similar result compared 

Table 3   Overall recognition 
accuracies in % in both digital 
and face recognition

Domains 1NN OT-IT OT-Lap CMM-OT-Lap

U-M 39.00 53.66 57.43 60.67
M-U 58.33 64.73 64.72 70.37
mean 48.66 59.20 61.07 65.52
P1-P2 23.79 53.73 58.92 58.08
P1-P3 23.50 57.43 57.62 62.65
P1-P4 15.69 47.21 47.54 48.98
P2-P1 24.27 60.21 62.74 93.10
P2-P3 44.45 63.24 64.29 69.18
P2-P4 25.86 51.48 53.52 65.10
P3-P1 20.95 57.50 57.87 91.70
P3-P2 40.17 63.61 65.75 75.66
P3-P4 26.16 52.33 54.02 87.60
P4-P1 18.14 45.15 45.67 90.30
P4-P2 24.37 50.71 52.50 66.46
P4-P3 27.30 52.10 52.71 62.29
mean 26.22 54.56 56.10 72.59
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with previous results, with the OA = 47.54% from Courty et al. (2016) and 48.98% from 
our method respectively.

5 � Conclusions

This paper explores the so-called coupling matrix manifolds on which the majority of the 
OT objective functions are defined. We formally defined the manifold, explored its tangent 
spaces, defined a Riemennian metric based on information measure, proposed all the for-
mulas for the Riemannian gradient, Riemannina Hessian and an appropriate retraction as 
the major ingradients for implementation Riemannian optimization on the manifold. We 
apply manifold-based optimization algorithms (Riemannian gradient descent and second-
order Riemannian trust region) into several types of OT problems, including the classic 
OT problem, the entropy regularized OT problem, the power regularized OT problem, the 
state-of-the-art order-preserving Wasserstein distance problems and the OT problem in 
regularized domain adaption applications. The results from three sets of numerical experi-
ments demonstrate that the newly proposed Riemannian optimization algorithms perform 
as well as the classic algorithms such as Sinkhorn algorithm. We also find that the new 
algorithm overperforms the generalized conditional gradient when solving non-entropy 
regularized OT problem where the classic Sinkhorn algorithm is not applicable.

Acknowledgements  This project is partially supported by the University of Sydney Business School ARC 
Bridging grant. The authors are graeteful to the anonymous reviewers for their constructive comments to 
improve this work.
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