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Abstract
The development of semi-supervised learning techniques is essential to enhance the gener-
alization capacities of machine learning algorithms. Indeed, raw image data are abundant 
while labels are scarce, therefore it is crucial to leverage unlabeled inputs to build better 
models. The availability of large databases have been key for the development of learn-
ing algorithms with high level performance. Despite the major role of machine learning in 
Earth Observation to derive products such as land cover maps, datasets in the field are still 
limited, either because of modest surface coverage, lack of variety of scenes or restricted 
classes to identify. We introduce a novel large-scale dataset for semi-supervised semantic 
segmentation in Earth Observation, the MiniFrance suite. MiniFrance has several unprece-
dented properties: it is large-scale, containing over 2000 very high resolution aerial images, 
accounting for more than 200 billions samples (pixels); it is varied, covering 16 conurba-
tions in France, with various climates, different landscapes, and urban as well as country-
side scenes; and it is challenging, considering land use classes with high-level semantics. 
Nevertheless, the most distinctive quality of MiniFrance is being the only dataset in the 
field especially designed for semi-supervised learning: it contains labeled and unlabeled 
images in its training partition, which reproduces a life-like scenario. Along with this data-
set, we present tools for data representativeness analysis in terms of appearance similar-
ity and a thorough study of MiniFrance data, demonstrating that it is suitable for learning 
and generalizes well in a semi-supervised setting. Finally, we present semi-supervised deep 
architectures based on multi-task learning and the first experiments on MiniFrance. These 
results will serve as baselines for future work on semi-supervised learning over the Mini-
France dataset. The Minifrance suite and related semi-supervised networks will be publicly 
available to promote semi-supervised works in Earth Observation.
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1  Introduction

Earth Observation (EO) data analysis plays a major role on the way we understand our 
planet and its dynamics. Indeed, the ever-growing amount of remote sensing imagery data 
in the last decades has allowed new developments in the fields of ecology, urban planning 
or natural disaster response (Runting et al. 2020), and will certainly be crucial on the battle 
against climate change.

In recent years, deep learning techniques—and the significant growth of computing 
power jointly with massive amounts of (labeled) data available—have transformed the 
fields of machine learning and computer vision. Moreover, remote sensing imagery has not 
been the exception since several state-of-the-art methods for classification, object detection 
and image segmentation have proved to be most effective in this kind of data too (Audebert 
et al. 2018; Maggiori et al. 2017; Zhu et al. 2017).

Unfortunately, most of the machine learning algorithms—and particularly, deep learn-
ing methods—developed to date rely heavily on the availability of annotated image 
databases. Labeled data is hard to obtain, requiring too much effort and time, while raw 
data—without labels—is abundant, especially in remote sensing where satellites generate 
data continuously (e.g., Copernicus Sentinels provide up to 5 day coverage of the Earth). 
Because of this, we are convinced that semi-supervised methods—which leverage unla-
beled data to help on the learning process—will be essential to push further the generaliza-
tion capacities of the models.

To this end, we propose the first large-scale dataset for semi-supervised semantic seg-
mentation in the field: the MiniFrance dataset. It will encourage research on semi-super-
vised methods and will provide a common and reliable benchmark to new algorithms, just 
as ImageNet  (Deng et  al. 2009) did on traditional computer vision a decade ago. Along 
with the MiniFrance suite, we conduct a thorough analysis of data in terms of representa-
tiveness to define a convenient partition for semi-supervision and we present semi-super-
vised methods for semantic segmentation, based on multi-task learning, that show the 
effectiveness of semi-supervised learning and will serve as baselines for future work on 
this dataset. For this reason, the MiniFrance suite and related semi-supervised networks 
will be made publicly available.

Thus, our contributions are threefold:

•	 We introduce MiniFrance a new large scale dataset for semi-supervised semantic seg-
mentation in Earth Observation.1

•	 We define techniques for prior analysis of the representativeness of datasets for training 
and deploying models which help evaluate the need for domain adaptation.

•	 We show the benefits of semi-supervised learning strategies to improve semantic seg-
mentation:

•	 In particular, we propose a new loss function for unsupervised or semi-supervised 
image segmentation;

•	 we report an extensive study of semi-supervised learning with different losses and 
multi-task architectures.

1  Preliminary work on this dataset have been published in Castillo-Navarro et al. (2019), where the limita-
tions of existing EO datasets are shown and one can understand the interest of varied and rich datasets as 
MiniFrance.
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On account of this, we start by exploring some related work in Sect.  2. Section  3 
describes the MiniFrance suite in details, while Sect.  4 introduces some tools to ana-
lyze data representativeness and appearance similarity in multi-location datasets. This 
allows us to get meaningful insight about the MiniFrance dataset and to define a suitable 
partition—labeled training, unlabeled training and testing—to perform semi-supervised 
learning. We introduce our semi-supervised strategies in Sect. 5, including neural net-
work architectures and unsupervised losses to consider in a multi-task learning scheme. 
We then present in Sect.  6 the analysis and experimental study of semi-supervised 
learning over the MiniFrance dataset. They provide deeper understanding about semi-
supervised learning and show the interest of the development of these techniques, that 
use unlabeled data to enhance the learning process, improving the generalization capac-
ities of the models. These results will also serve as baselines for future work on semi-
supervised learning over the MiniFrance dataset.

2 � Related work

Since we aim to perform semantic segmentation on remote sensing data using deep 
semi-supervised neural networks, we discuss here the related work on semantic segmen-
tation, EO datasets, and semi-supervised learning.

2.1 � Semantic segmentation

Semantic segmentation consists in the process of assigning a class label to every pixel 
on an image. It is a relevant task in computer vision because it implies understanding 
the context of a scene or an image which might be crucial for some applications, like 
autonomous driving or medical image diagnostics.

If in the last decade convolutional neural networks (CNNs) became the state-of-
the-art to perform image classification and object detection, the breakthrough of fully 
convolutional networks  (Long et  al. 2015) (FCNs) revolutionized the way of obtain-
ing dense pixel-wise predictions. This kind of architectures takes advantage of CNNs 
replacing the last fully connected layers by convolutional ones, obtaining dense predic-
tion maps. Today, state-of-the-art semantic segmentation networks, from SegNet (Badr-
inarayanan et  al. 2017) and U-Net  (Ronneberger et  al. 2015) to PSPNet  (Zhao et  al. 
2017) or DeepLab (Chen et al. 2017), all inherit from the FCN paradigm. A comprehen-
sive review can be found in Minaee et al. (2020).

Processing of EO data has also greatly benefited from these techniques which now 
define the state-of-the-art in the field. Semantic segmentation is one of the main tasks in 
remote sensing since it provide pixel-wise classification that corresponds to land cover 
or land use maps (i.e. the most popular EO products). After seminal works for road 
detection (Mnih and Hinton 2010), generic multi-class segmentation was soon tackled 
with CNNs and FCNs (Paisitkriangkrai et al. 2015; Campos-Taberner et al. 2016; Aude-
bert et al. 2018; Rey et al. 2017), until latest developments which result in global cover 
maps of a continent or the entire planet (Demuzere et al. 2019). With respect to these 
approaches, our work aims at leveraging also unlabeled data for estimating the classifi-
cation model.



3128	 Machine Learning (2022) 111:3125–3160

1 3

2.2 � Datasets for Earth Observation

The tremendous progress of computer vision—where machine learning is applied on 
images—in the last decades would not have been possible without the development of 
large public datasets, such as ImageNet (Deng et al. 2009), COCO (Lin et al. 2014) or City-
scapes (Cordts et al. 2016) for learning on visual data. These datasets provide the means 
to compare models, and to test their scalability and reliability. They are the key to improve 
performance of algorithms and push research limits further.

In view of the above, the remote sensing community has also published several datasets 
for different tasks in order to encourage the research in the field. Table 1 describes the main 
initiatives.

If some of the datasets mentioned above already take into account multiple locations, 
most are limited to urban scenes only and they are devoted to a single class (such as build-
ings) or to land cover (and not land use) classes. Land cover refers to the ground surface 
coverage: vegetation, urban infrastructure, water, etc; while land use indicates the purpose 
the land serves: urban, industrial buildings, agriculture, etc. The second is more interesting 
to analyze, because it provides further information about human activity in a given area, 
however extracting this information from images only remains a major challenge (Fisher 
et al. 2005). MiniFrance, however, offers scenes from urban and countryside zones, with 
land-use, high semantic level of classes and covers a vast surface (larger than other data-
sets at very high resolution—VHR), with aerial images at a sub-meter resolution, including 
∼ 150 GB of data.

Furthermore, all the aforementioned datasets were designed for fully supervised learn-
ing, which does not correspond to the real practical case where huge amounts of imagery 
are available, but only a few images come with some labeled regions. MiniFrance is the 
first dataset that includes labeled and unlabeled data that can be used in training phases, 
thus recreating a realistic scenario.

2.3 � Semi‑supervised learning

Semi-supervised learning (Chapelle et al. 2006) refers to all the techniques that are half-
way between supervised and unsupervised learning. In these settings, available data can 
be divided in two parts: a labeled set where raw data and its corresponding target are pro-
vided, and an unlabeled set for which only raw data are available. The key idea behind 
semi-supervised learning is to learn a representation function (that maps a data point to its 
target) from labeled data as in the supervised approach, but using the available unlabeled 
data to leverage information about structure of these data to help the learning process. This 
is a much realistic and compelling approach than supervised learning, since in real-life 
applications annotated data is difficult to procure—even harder in the context of semantic 
segmentation, since one needs pixel-wise labels—while raw data is plentiful.

Semi-supervised methods for semantic segmentation in deep learning have been devel-
oped in the last years, but mostly in the form of weakly supervision: from scribbles (Mag-
giolo et al. 2018; Durand et al. 2017) bounding boxes (Khoreva et al. 2017; Papandreou 
et al. 2015) and image-level annotations (Papandreou et al. 2015) to obtain dense, pixel-
wise predictions. Pseudo-labels (Lee 2013) can also be used to address the semi-supervised 
problem  (Chen et  al. 2020), propagating labels from annotated examples through non-
annotated ones, according to a confidence criterion, to artificially enlarge available training 
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data. Other works include unlabeled data during training in a generative adversarial net-
work framework (Souly et al. 2017; Hung et al. 2018). The method in Kalluri et al. (2019) 
is similar to our settings in the way unlabeled images are exploited, but targets a domain 
adaptation task and requires an alignment of the features from multiple domains through an 
entropy module.

Semi-supervised methods for remote sensing applications have also been studied in the 
last years.  Xia et al. (2013) presents a feature extraction method based on principal com-
ponent analysis that uses labeled and unlabeled data, Tuia et  al. (2014) and Hong et  al. 
(2019) leverage unlabeled examples to achieve manifold alignment of data coming from 
different modalities. More recently, deep learning based approaches have leveraged weakly 
labeled data for different purposes. Nivaggioli and Randrianarivo (2019) and Schmitt et al. 
(2020) use weak supervision for land cover classification. Zhang et al. (2020) uses open 
and incomplete available data (OpenStreetMap—OSM) to generate maps of a large-scale 
zone. Bonafilia et al. (2019) also uses OSM data as weak labels for building extraction. Le 
et al. (2019) performs weakly supervised semantic segmentation to detect penguin colonies 
on the Antarctic.

Fewer are the works that, like us, exploit completely unlabeled examples during the 
training process. Tao et al. (2017) uses labeled and unlabeled data in an alternating train-
ing process to perform semi-supervised semantic segmentation of remote sensing images, 
while Zhu et al. (2019) leverages unlabeled data for domain adaptation purposes using an 
adversarial training strategy.

Conversely to previous works, we aim here to leverage completely unlabeled images 
and fully annotated ones to jointly train deep neural networks with an adapted loss and 
architecture, in a multi-task learning framework, training one unique model end-to-end, for 
semi-supervised semantic segmentation of aerial images.

3 � The MiniFrance suite

Considering the limitations of current Earth Observation (EO) datasets emphasized in 
Sect.  2.2, we propose a new large-scale benchmark suite for semi-supervised semantic 
segmentation: MiniFrance. As in real life EO applications, it comprises both labeled and 
unlabeled imagery for developing and training algorithms. To our knowledge, this is the 
first dataset designed for benchmarking semi-supervised learning in the field. Moreover, it 
consists of a variety of classes on several locations with different appearances: this allows 
to push further the generalization capacities of the models.

3.1 � MiniFrance

It consists of data corresponding to 16 conurbations and their surroundings from different 
regions in France (see Fig. 1; Table 2). It includes urban and countryside scenes: residential 
areas, industrial and commercial zones but also fields, forests, sea-shore or low mountains.

MiniFrance gathers data from two sources:
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•	 Open data VHR aerial images from the French National Institute of Geographical and 
Forest Information (IGN) BD ORTHO database.2

Fig. 1   Dataset overview

Table 2   List of cities in MiniFrance and split details (Color figure online)

2  https://​geose​rvices.​ign.​fr/​docum​entat​ion/​diffu​sion/​index.​html.

https://geoservices.ign.fr/documentation/diffusion/index.html
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	   They are provided as RGB tiles of size 10,000  px × 10,000  px at a resolution of 
50  cm/px, namely 25  km2 per tile. Images included in this dataset were acquired 
between 2012 and 2014.

•	 Labeled class-reference from the UrbanAtlas 2012 database. Original data are openly 
available as vector images (i.e. containing polygon annotations) at the European Coper-
nicus program website.3 Using the georeferenced data available in the BD  ORTHO, 
we have made rasters of these images that geographically match the VHR tiles from 
the BD ORTHO. We consider 14 land-use classes (see Table 3), corresponding to the 
second level of the semantic hierarchy defined by UrbanAtlas  (Montero et  al. 2014). 
For this reason, some of them might not be present in the regions considered for Mini-
France and they are colored in gray in Table 3.

Collecting data from different sources brings some burden that must be considered. 
Land use maps from UrbanAtlas are obtained through a semi-automatic process and thus 
they are not 100% accurate (Lefebvre et al. 2016), besides polygon annotations might not 
match 50 cm/px resolution images precisely. Moreover, additional errors might come from 
the fact that image and ground-truth may not correspond to the same year. Nonetheless, 
MiniFrance has several peculiar, unprecedented properties that we detail now.

Large-scale MiniFrance is a very large-scale dataset. It contains a total of 2121 aerial 
images of size 10,000 px × 10,000 px at 50 cm/px resolution. In terms of ground cover-
age, with 53,000 km2 it is 12 times larger than DeepGlobe and larger than xBD, among the 
datasets of similar resolution.

Rich and varied MiniFrance includes aerial images of 16 conurbations and their surround-
ings from different regions with various climates and landscapes (Mediterranean, oceanic 
and mountainous) in France. Introducing various locations leads to various appearances for 
the same class (buildings look different, vegetation is not the same and so on). Moreover, it 
combines urban centers, rural areas and large forest scenes. With respect to remote sensing 
datasets like ISPRS Vaihingen and Potsdam, it offers much more variety, as already observed 
in Sect. 2.2. We propose an experimental comparison between MiniFrance and Vaihingen in 
Sect. 6.1.

High semantic level of classes MiniFrance considers 14 land-use classes, which is more 
than most of the datasets exposed in Sect.  2.2. However, these classes have higher seman-
tics: to identify an “urban area” an algorithm must be able to find several houses or buildings 
together, same to classify a forest. It is much easier to only consider classes at an object level 
(cars, buildings, trees, etc). Moreover, land-use classes are hard to learn, even for humans: 
how to distinguish pastures   from artificial non-agricultural vegetated areas   in Fig. 2?

Underlying domain adaptation problem Since train and test sets were split by city—
instead of excluding random tiles from all the zones—algorithms developed on MiniFrance 
must address the underlying problem of domain adaptation. The appearance of classes 
might vary considerably from one city to another. Architecture is not the same, agriculture 
may change, etc. In Fig. 2 we observe that urban fabric   does not look alike between the 
three exposed images.

Designed for semi-supervised semantic segmentation To our knowledge, this is the first 
dataset specifically designed for semi-supervised learning strategies. Indeed, our training 
split includes labeled (two cities) and unlabeled images (six ones) while algorithms can 

3  https://​land.​coper​nicus.​eu/​local/​urban-​atlas/​urban-​atlas-​2012/​view.

https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012/view
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be tested on the eight remaining cities. With such a proportion of unlabeled examples, this 
fosters the development of new methods to leverage them. Moreover, these methods are 
likely to be easily transferred to lifelike scenarios and to have better generalization proper-
ties by design. Table 2 presents our training—labeled and unlabeled images—and testing 
splits.

Table 3   Land use classes available in MiniFrance

Fig. 2   Some samples of MiniFrance dataset on different localizations. Images  (up) and their associated 
ground-truth (down). From left to right: Nice, Rennes and Vannes
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3.2 � Tiny MiniFrance

To allow prototyping new algorithms with fast processing and validation times we also 
introduce tinyMiniFrance (tMF), a small, computationally tractable version of the Mini-
France dataset.

tinyMiniFrance consists in a subsample of the original data: it contains 3500 images 
of size 1000 px × 1000 px. Containing around 1,7% of the original data, it preserves 
the variety and richness of MiniFrance.

Sampling is uniform over each region. To preserve the same balance between 
classes, it is performed by randomly selecting sub-tiles from original tiles in the data-
set and verifying that there is at least one sub-tile from each tile in MiniFrance. Fig-
ure  3 illustrates the result of sampling over the region of Cherbourg. Moreover, we 
keep the original proportion of images per region on the dataset (e.g. the region of 
Nice contains more data than Brest, as in Table 2). Training—labeled and unlabeled—
and testing splits remain unchanged with respect to the original dataset.

Fig. 3   Subsample for tinyMiniFrance over Cherbourg region

Table 4   Classes distribution on 
tinyMiniFrance

Class % px Class % px Class % px

Urban 9.9 Permanent 1.3 Herbaceous 4.5
Industrial 6.5 Pastures 27.3 Open 0.1
Mine 0.7 Complex 0.0 Wetlands 0.7
Artificial 1.2 Orchards 0.0 Water 1.0
Arable 30.7 Forest 16.0 Clouds 0.1
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Table  4 shows the classes distribution over tinyMiniFrance. When compared with 
Table  3, the original proportions of classes of MiniFrance are well preserved. Thus, 
we can expect that algorithms developed on tinyMiniFrance will scale up similarly 
to MiniFrance. For this reason and for computing capacities, all the following anal-
ysis and experiments will be performed over tinyMiniFrance, with the exception of 
Sect.  6.6. However, and for the sake of simplicity, we will mostly employ the term 
MiniFrance.

4 � Statistical analysis of the representativeness of training and test 
datasets

This section introduces two concepts that are required to have adequate learning conditions 
to achieve satisfying results and that explain our choice for labeled training data, unlabeled 
training data and test data for MiniFrance: class representativeness and appearance.

On the one hand, class representativeness refers to the fact that to properly learn a cer-
tain class, any learning algorithm needs to see at least some examples of this class during 
training. Otherwise, it will not be able to identify it successfully at inference time. Hence, 
the labeled training split should contain examples of all possible classes in the dataset.

On the other hand, in a standard supervised setting, appearance features in the train-
ing set should have the same distribution as those on the test set to achieve good inference 
results. However, in a semi-supervised learning setting, unlabeled training data relax such 
a strong constraint. Indeed, by providing more information on the possible visual features, 
they help learning a wider appearance of each class. This is appealing since it favors gener-
alization, but also brings more robustness against distribution shift (i.e. it is more unlikely 
that the test set contains very new appearances w.r.t. the test set).

According to this, we consider that a good training split should satisfy two conditions: 

1.	 Labeled training data must contain a good representation of all classes in the dataset, 
ideally with the same distribution than the testing data.

2.	 Training data (labeled and unlabeled) must cover all the range of appearances of different 
visual features in the dataset.

In what follows we present a statistical analysis of the MiniFrance dataset to show that 
our chosen split (in Table 2) satisfies these two requirements.

4.1 � Appearance analysis

To study the appearance similarity between the training split and testing split of Mini-
France data, we rely mainly on two tools. First, we use pre-trained convolutional neural 
networks (CNNs) as image feature extractors. Indeed, thanks to their shared-weight archi-
tecture and translation invariance, CNNs are reliable encoding tools for images. Further-
more models pretrained on ImageNet—a very large database for visual recognition—have 
seen a wide variety of representations that allow them to output a vector encoding the 
image’s appearance. Secondly, we apply the t-SNE (Maaten and Hinton 2008) algorithm 
to reduce the dimension of the high-dimensional feature vectors and visualize them in a 2D 
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space.4 Given the assumption that CNNs encode for image appearance, look-alike images 
should be close in the 2D representation space, while images with different visual features 
should be apart.

Thus, our algorithm for appearance coverage assessment between datasets is summa-
rized as follows:

•	 For each image in the dataset we obtain an encoded feature vector through a CNN (in 
particular, we use a VGG16 (Simonyan and Zisserman 2015) and a ResNet34 (He et al. 
2016)5).

•	 Then, we apply a t-SNE to this set of high-dimensional feature vectors to obtain a 2D 
representation of the dataset images which preserves the original similarity of visual 
features. Figure 4 shows the mapping result and validates that similar images are close 
while different appearances are put apart.

Fig. 4   2D representation of images by t-SNE after ResNet34 encoding. Similar projections are close, while 
different visual features are separated. In  , mostly urban scenes; in   fields images and in   mostly 
forest scenes

5  In what follows, we present only images of the results with ResNet34 encoding. However, VGG16 encod-
ing shows similar results.

4  t-SNE is a non-linear dimensionality reduction technique that allows visualization of high-dimensional 
data. In brief, the algorithm starts by converting the euclidean distances between high dimensional objects 
into conditional probabilities that represent similarities. Then, it defines a Student t-distribution with one 
degree of freedom over the low-dimensional points. Finally, it minimizes the Kullback–Leibler divergence 
between the high and low-dimensional distributions with respect to the locations of the low-dimensional 
points. At the end, if two high-dimensional objects are similar, then their representations at the low-dimen-
sional t-SNE visualization are close and vice-versa.
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•	 Each point in the 2D space can be traced back to the original tile and so to the city it 
comes from. Then, we use a one-class SVM  (Schölkopf et  al. 2001) to estimate the 
distribution of the city images in the 2D space. It results in appearance maps which are 
shown in Fig. 5.

•	 Finally, we evaluate the appearance similarity and coverage between cities using two 
metrics: 

1.	 We use the intersection over union score (IoU, the standard metric for object detec-
tion) between the surfaces defined by the distributions, or appearance maps, to 
assess appearance similarity. Let S1 and S2 be two sets, the IoU score between them 
is defined as IoU(S1, S2) =

|S1∩S2|
|S1∪S2|

 . In our context, higher IoU scores relate to resem-
blance between the appearance maps of cities.

Fig. 5   Distributions of cities in the 2D appearance space
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2.	 We also introduce the Intersection over Test area score (IoT). Let S1 and S2 be two 
sets, the IoT score between them is defined as IoT(S1, S2) =

|S1∩S2|
|S2|

 . This score meas-
ures the area covered by the intersection of the two surfaces normalized over the 
second area, which is the objective. We compute IoT considering S1 ∈ T and S2 ∈ E , 
where T and E are the set of training cities and the set of testing cities, respectively. 
Thereby IoT measures how well the objective appearance map is covered by appear-
ances of the training data.

Figure 6 shows these scores as two heatmaps between cities in the training set and the 
ones in the test set. Results are consistent with reality, to name a few examples: Nice exhib-
its low similarity scores with all cities, except Marseille, because those are the only cities 
from Mediterranean coast. Quimper has its higher IoU score with Brest, which is coherent 
because of their geographic proximity; in terms of IoT Quimper is well covered by Lorient 
and Saint-Brieuc, which are also geographically close (all these cities are located in Brit-
tany). High IoU score between Angers and Caen is justified by the fact that both are agri-
cultural localities, with similar landscapes.

To summarize, we propose a method to assess representativeness in terms of appear-
ance similarity between cities in the MiniFrance training split and the ones in the testing 
split. IoU scores show that, even if there are similarities between cities, no locality in the 
training set is identical to another one in the test set. However, IoT proves that testing cities 
are well covered by the ensemble of training cities, which is confirmed by the last dark row 
of this score in Fig. 6 (right).

4.2 � Class representativeness analysis

A class cannot be learnt if no example of it has been seen at training time. In other words, 
the labeled training partition has to contain all the existing classes on the dataset. If pos-
sible, the distribution of the classes during training should be similar to the one of test data.

Fig. 6   IoU and IoT (Intersection over Test) scores between the 2D distributions of cities in the training split 
and the testing split, represented as heatmaps. Last column represents the scores between a training city and 
the union of surfaces of the testing split. Similarly, last row corresponds to the scores between the union of 
surfaces in the training split and every city in the test. The dark last row of the IoT score indicates that the 
train split covers well every city in the test partition
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To fulfill this condition, we study the classes distribution on the dataset. We compute 
class histograms of each geographic area and present them in Fig. 7. We observe that they 
vary significantly from one city to another. Besides, among the 12 classes that we consider 
in this analysis—we do not consider complex and mixed cultivation patterns, orchards at 
the fringe of urban classes nor clouds and shadows,6 see Table 3—, no city contains all 
of them. The best coverage of classes is given by the Nantes, Saint-Nazaire or Marseille, 

Fig. 7   Histograms of class distributions by city. x axis represents the classes with colors as in Table 3. y 
axis presents the percentage of each class by city (Color figure online)

6  Clouds and shadows is not a land use class and thus it is not interesting to our problem.
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Martigues conurbations that exhibit 10 of the classes. However, most of the regions con-
tain only 7 or 8 categories in total.

Another problem is the heterogeneous proportions of classes in each region. The most 
striking example is Cherbourg where 6 classes are represented and one of them—pas-
tures—covers 70% of the total pixels, while the other categories count for less than 10% 
each.

Therefore, defining a labeled training split that represents all the classes in a good pro-
portion is not straightforward.

Along with the histograms, we make use of our precedent analysis to understand 
the distribution of the classes in the images in terms of appearance. Each subplot in 
Fig. 8 presents a class in the dataset and contains all the images in the 2D appearance 
representation space. Each point is colored according to the proportion occupied by 
the class over the image. That is, the darker the point in the figure  , the more pixels 
corresponding to the class are in the image. On the contrary, a light point   indicates 
that there are very few pixels representing the class. We observe that some classes 
(such as pastures or arable land) are well-spread over the whole appearance space, 
with high proportions in many tiles. This means that they are represented by diverse 
images and that they are likely to have a lot of examples (as confirmed by the histo-
grams of Fig. 7). These classes should be easier to learn. Others—like urban fabric or 
industrial, commercial, public, military, private and transport units—are widespread, 
but do not reach majority in most of the images in which they are present. This means 
that these classes have a large variance in their appearance but not so many examples 
per appearance mode, which could make them more difficult to learn. Moreover, other 

Fig. 8   Class distributions in the 2D appearance space. One subplot represents one class. Each point is 
colored as the proportion occupied by a given class over the corresponding image (Color figure online)
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categories (like artificial non-agricultural vegetated areas or herbaceous vegetation 
associations) are mostly concentrated over one zone—that could correspond to only 
one geographic region—, that is, they are present in images of specific appearances, 
which makes them even harder to learn. Finally, we see classes that are extremely rare 
(e.g. wetlands and open spaces with little or no vegetation), they are present in a few 
images only, and thus they should be the more difficult to learn.

All of the above shows that we can combine class distribution and visual appear-
ance mapping to get further insight on the data. These tools help us to define a suitable 
partition of the MiniFrance dataset—labeled, unlabeled and test data—that satisfies 
the class distribution and appearance conditions as we will show in Sect. 6.2.

5 � Semi‑supervised semantic segmentation with deep neural networks

In this section, we introduce multi-task deep neural networks for semi-supervised semantic 
segmentation which will serve as baselines on the MiniFrance dataset. We aim to use unla-
beled data to help generalization for semantic segmentation of aerial images. The challenge 
is twofold: designing network architectures able to deal with both labeled and unlabeled 
images, and selecting unsupervised tasks to perform along with the appropriate auxiliary 
loss function.

Let �s(⋅) be the function learned by a supervised segmentation network (for the sake of 
simplicity, the corresponding network will also be referred as �s ). Such a network can be 
optimized through supervised learning using stochastic gradient descent and a classifica-
tion loss Ls (cross entropy loss is a standard choice). We denote x the input image and y the 
target label, then:

From a general point of view, using unlabeled data to help the previous optimization can 
be seen as a second task optimized with a loss function Lu and a transfer function through 
the network denoted by �u . Without labels, unsupervised losses usually rely on comparing 
in some way the output to the input image:

In order to improve the genericity of �s , one has to relate �s and �u . This is generally 
done by partially sharing parameters between both networks. Finally, the semi-supervised 
loss is a weighted sum of the losses for each individual task:

(1)(x, y) ↦ Ls(�s(x), y).

(2)x ↦ Lu(�u(x), x).

(3)L(x) = Ls(�s(x), y) + �Lu(�u(x), x).

Fig. 9   Proposed neural network architectures for semi-supervised learning. Shared layers are depicted in 
blue, supervised layers are in purple, and unsupervised layers are shown in green (Color figure online)



3142	 Machine Learning (2022) 111:3125–3160

1 3

5.1 � Neural network architectures

We propose here two types of semi-supervised networks which process the multi-task 
optimization—semantic segmentation as the supervised task, along with an unsupervised 
task—either as parallel streams or as sequential objectives (Fig. 9).

BerundaNet (with early and late task splitting) Standard encoder–decoder networks 
for semantic segmentation—such as SegNet (Badrinarayanan et al. 2017) or U-Net (Ron-
neberger et al. 2015)—can easily be extended for multiple task learning by adding a new 
head with a loss for the new, unsupervised task (Daudt et al. 2019; Carvalho et al. 2019). 
With such an architecture (thereafter named BerundaNet after the mythological two-
headed bird), both tasks have shared parameters until the data streams are split. We dis-
tinguish two variants depending on the splitting layer. Early splitting networks have one 
encoder and two decoders, one for each task (Fig. 9a). On the contrary, with late-splitting 
task specialization occurs at the very end. It has an almost-all shared decoder with only a 
single separate convolutional layer for each task (Fig. 9b).

Eventually, all architectures optimize the global loss defined in Eq. (3). Ls can be any 
supervised loss for semantic segmentation, and in the following we consider the cross-
entropy loss. Lu is an unsupervised loss. In the experiments we will consider reconstruc-
tion losses (such as L1 or L2 ) and unsupervised image segmentation losses that will be 
presented in Sect. 5.2.

W-Net (Xia et al. 2017; Chen et al. 2018) Multiple task learning can also be processed 
sequentially, as in W-Net (Xia et al. 2017) which combines two unsupervised objectives: 
segmentation and reconstruction. W-Net consists of two stacked U-Net (Ronneberger et al. 
2015), hence its name. We adapt the original design to semi-supervised learning by spe-
cializing the first U-Net block on the semantic segmentation task and focusing the second 
one on the unsupervised objective (Fig. 9c). With respect to previous notations, in this case 
the network �s shares all parameters with �u . At the end of the first U-Net block, a soft-
max layer is included to achieve the supervised classification.

The loss function for our semi-supervised W-Net architecture is then more precisely 
decomposed as follows:

where x is the input image, y its corresponding ground truth, �s(⋅) represents the first U-Net 
block and �u(⋅) represents the second U-Net block. As before, Ls can be any supervised 
loss for semantic segmentation and Lu is an unsupervised loss.

This kind of architectures—BerundaNet and W-Net—allows us to deal with both 
labeled and unlabeled data during training. When a labeled example is processed the gradi-
ent is backpropagated trough the whole network, whereas if an unlabeled example is pro-
cessed gradients are only backpropagated through the unsupervised part and shared param-
eters of the network (green and blue blocks in Fig. 9). However, the main objective is still 
the semantic segmentation task. Thus, even if unsupervised parts are helpful during the 
training process, evaluation can be performed without them, which yields in standard-size 
inference networks.

(4)L(x) = Ls(�s(x), y) + �Lu(�u(�s(x)), x)
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5.2 � Unsupervised losses for image segmentation

We now present some unsupervised losses Lu which can leverage the information brought 
by images with no label. Two task objectives are usually considered, image reconstruction 
and image segmentation, leading to the following general formulation:

where L(rec) is a reconstruction loss, L(reg) is a regularization loss and �(rec), �(reg) are bal-
ance coefficients.

In the following, we adapt some existing losses to semi-supervised semantic segmenta-
tion, and also propose a novel implementation of a relaxed K-means loss for unsupervised 
image segmentation.

Image reconstruction losses Image reconstruction losses can be simply defined using 
solely standard reconstruction losses such as the classical L1 and L2 , as in Eqs. (6) and 
(7). They enforce the encoding power of internal representations built by the network 
�s by closing the loop from it to the original input, the image itself. This kind of self-
supervision is for example used in Xia et al. (2017).

where xi denotes the ith pixel of the image, x̂i its reconstructed version and N the number of 
pixels in the image.

Relaxed K-means We propose a new loss for unsupervised image segmentation, 
which combines the old intuitions behind the k-means algorithm with the expressive 
power of neural network’s non-linear modeling. In a standard manner, it is cast as a 
color image quantization problem, where the objective is to find an optimal, reduced 
set of K colors for encoding the image. Formally, it minimizes the reconstruction loss 
L
(rec)(x, xc) where xc is the quantized image.

We still denote x the input image and xi its value at pixel i. k-means alternatively 
optimizes centroids of color clusters ck ( k ∈ {1,K} ) and membership matrices ŷ(k) of x to 
cluster k. It follows:

and

In standard k-means, memberships ŷ(k)
i

∈ {0, 1} are then determined such that 
||xi − ck||2 is minimum. Instead, we relax the hard constraint so that ŷ(k)

i
∈ [0, 1] and 

(5)Lu(⋅) = �(rec)
L
(rec)(⋅) + �(reg)

L
(reg)(⋅)

(6)L1(x) =
1

N

N∑
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(k)



3144	 Machine Learning (2022) 111:3125–3160

1 3

estimate memberships as the output ŷ = 𝜙(x) of a network which minimizes L(rec)(x, xc) . 
In our experiments we will use:

Eventually, to compensate for the relaxation we add a regularization term which 
ensures memberships are peaked to a one-cluster-per-pixel distribution:

The whole unsupervised loss is then in the form of Eq. (5).
Mumford–Shah loss Recent works on unsupervised image segmentation have brought 

the power of level set methods based on minimization of the Mumford–Shah func-
tional (Mumford and Shah 1985) in CNNs (Kim and Ye 2019).

The unsupervised segmentation loss is then expressed as:

where we kept the same notations as before.
In Eq. (12), the first term corresponds to the reconstruction loss, while the regulariza-

tion term penalizes gradient variations in the resulting segmentation, thus leading to more 
homogeneous regions.

6 � Experiments with MiniFrance and analysis

This section intends to evaluate two aspects of our work: first, the contributions of the 
MiniFrance dataset with respect to existing EO datasets, and secondly, the potential of 
semi-supervised learning on a realistic scenario.

Furthermore, the experiments and results presented in the following will serve as base-
lines for future works on semi-supervised learning on the MiniFrance suite.

Implementation details For all the following experiments, networks are trained using 
Adam optimizer  (Kingma and Ba 2015) with learning rate of 10−4 , during 150 pseudo-
epochs, where we observed convergence of models. Each pseudo-epoch consists of 5000 
annotated samples and, in the case of semi-supervised methods, 5000 additional unlabeled 
samples. One sample is a 512 × 512 tile randomly chosen from training data, this patch 
size allows to observe enough context on one image to identify the important elements on 
it. In terms of losses hyperparameters for semi-supervised methods, � in Eq. (3) is set to 
� = 2.0 for reconstruction losses ( L1 and L2 ) and to � = 5.0 for unsupervised segmenta-
tion losses ( Lkm and LMS ) to get comparable values with respect to cross-entropy. �(rec) and 
�(reg) in Eq. (5) are set to �(rec) = �(reg) = 1 , for simplicity. SegNet and U-Net encoders and 
decoders are implemented using the architectures defined on the original papers (the last 
layer of the decoder being adapted to the reconstruction or unsupervised segmentation loss 
under consideration).

PyTorch  (Paszke et  al. 2019) is used for all implementations. Experiments over the 
tinyMiniFrance dataset are executed using a Nvidia GeForce RTX 2080, while experi-
ments over MiniFrance run on a Nvidia Tesla V100 32GB.
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6.1 � Limits of supervised and semi‑supervised learning on standard EO datasets

The ISPRS Vaihingen dataset is a very popular dataset for semantic segmentation in EO 
data. It has served to benchmark several methods over the years. However, as we mentioned 
in Sect. 2.2, it is constrained to urban scenes over one city only and thus lacks variety.

Fig. 10   Influence of the training 
set size (number of tiles) on the 
network performances, in terms 
of overall accuracy and mean 
Intersection over union (mIoU). 
The curves show the mean and 
the standard deviation for each 
score and ⋆ shows raw results

Fig. 11   2D representation of 
images by t-SNE, applied to 
tinyMiniFrance and Vaihingen 
together, after ResNet34 encod-
ing. Points from tinyMiniFrance 
are colored according to the 
proportion occupied by the 
class urban fabric (Color figure 
online)
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The following results show the limits of a dataset such as Vaihingen, and prove the 
necessity of a more realistic dataset—that includes various locations and scenes—as 
offered by MiniFrance.

In our first experiment, we aim to test the sensitivity of a classic supervised learning 
framework to the amount of available training data. We train a SegNet model, which has 
already shown remarkable results on this dataset  (Audebert et al. 2018). The experiment 
consists in reducing the amount of annotated images used for training, from 12 tiles to only 
one, while the validation set remains unchanged (4 tiles). We repeat the experiment four 
times to get more statistically significant curves. Results are shown in Fig. 10.

The outcomes of this experiment are somehow surprising. When reducing the number 
of training tiles from 12 to 1 (only 8% of original data!), we report a decrease of only 12% 
of overall accuracy (from 90 to 78%) and 21% of mIoU (from 77 to 56%), i.e. much less 
than one would expect. Indeed, we supposed that reducing the number of training tiles 
would seriously impact the performance of the network. One possible reason is that all the 
images in the Vaihingen dataset are alike, thus, to generalize on them is a relatively easy 
task. However, one can note that training with more data is nevertheless preferable in terms 
of reliability: the variance increases as the number of tiles decreases.

To investigate this explanation, we apply our tool for appearance coverage assessment 
presented in Sect. 4 to the union of both datasets, tinyMiniFrance and Vaihingen. To get 
a fair comparison, images from the Vaihingen dataset were downsampled to the tinyMini-
France resolution (from 9 to 50 cm/px) before being encoded by the CNN.

Fig. 12   Class distributions aggregated by split as defined in Table 2

Fig. 13   Appearance representation aggregated by split as defined in Table 2
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Due to the stochastic nature of the t-SNE algorithm, it is important to note that subse-
quent runs can lead to different embeddings. However since tinyMiniFrance is much larger 
than the 16 Vaihingen tiles, the projection is not noticeably perturbed up to rotation and 
reflection. We chose the embedding which resulted in the same visualization as Sect. 4. 
Results are shown in Fig. 11. Red stars ( ) represent Vaihingen tiles, while shading blue 
circles ( ) are tinyMiniFrance tiles, colored according to the proportion occupied by 
urban fabric (as in Fig. 8, darker points contain a higher proportion of urban pixels). We 
consider specifically the urban fabric class since it is the most related to the Vaihingen 
urban dataset.

The previous visualization is insightful. On the one hand, we realize how small the Vaihin-
gen dataset is compared to tinyMiniFrance (and even more to the entire MiniFrance), in terms 
of number of available tiles. On the other hand, the t-SNE algorithm places Vaihingen as a 
very small cluster next to the urban scenes of tinyMiniFrance, which means that: (1) Vaihin-
gen is slightly different from tinyMiniFrance (may be due to the IRRG encoding vs. RGB); (2) 
at the same time, it remains visually close to the urban images from tinyMiniFrance (confirm-
ing our choice to consider here the urban fabric class); and (3) the wide surface covered by 
tinyMiniFrance on the 2D appearance projection space w.r.t. Vaihingen shows that our dataset 
presents a much larger variety of appearances in terms of urban scenes; furthermore, these 
urban scenes form only a small part of the appearance space, thus proving the very wide diver-
sity of tinyMiniFrance, and to a larger extent of MiniFrance.

6.2 � Defining the labeled/unlabeled/test split for MiniFrance

Using all the tools and information presented in Sect.  4, MiniFrance has been carefully 
designed to satisfy the conditions of appearance and class representativeness. Indeed, the split 
proposed in Table 2 allows to represent all the classes with a proper distribution, as shown in 
the histograms of Fig. 12. Hence, all classes present in the test set have training examples in 
the labeled split.

On the appearance side as shown in Fig. 13, even if labeled cities do not cover the whole 
appearance space of test images, the union of labeled and unlabeled does. This should ensure 
that all appearances are seen in a semi-supervised setup. Moreover, in terms of IoU scores of 
appearance shown in Fig. 6, the labeled split comprises one region with a high score (Nantes) 
and one with a low score (Nice) which should help to learn different appearances of classes. In 
addition, in the unlabeled split most of the cities have a high score with respect to the test set, 
so they should help to extract the implicit information from images.

Table 5 presents the IoU and IoT scores between the surfaces in Fig. 13 and confirms the 
information above. Thus, even if the labeled training split contains all classes of the test split, 
64% of IoT means it is far from covering all the possible appearances. However, with 93% of 
IoT score with the test area, the unlabeled training split offers wider information about the 

Table 5   IoU and IoT scores between training data—labeled and unlabeled—and test data. Scores are pre-
sented in numerical form as well as color code for comparison with Fig. 6

S1 - S2 IoU(S1, S2) IoT (S1, S2)

Labeled - Test 0.63 0.64
Unlabeled - Test 0.87 0.93
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visual features present in the MiniFrance dataset that should be exploited to achieve good 
quality classification and generalization.

In brief, MiniFrance is a very challenging dataset for semantic segmentation that promotes 
new solutions in a semi-supervised manner as some appearances can only be extracted from 
the unlabeled data. However, train and test adequacy was carefully controlled to avoid domain 
shift and such disentangle semi-supervised learning from domain adaptation and transfer 
learning.

6.3 � Supervised and semi‑supervised learning on MiniFrance

The purpose of this section is to show that we can benefit from semi-supervised learning—
using unlabeled data during the learning process—to achieve better results and generaliza-
tion than vanilla supervised approaches.

To this end, we perform experiments to compare a semi-supervised setting with an 
equivalent supervised approach, using different backbone architectures. First, we train 
supervised networks (SegNet and U-Net) in a classical way, using the cross-entropy loss, 
over the labeled training split of tinyMiniFrance. Secondly, we train a BerundaNet-late 
architecture (with SegNet and U-Net backbone) over tinyMiniFrance—using both, labeled 
and unlabeled data—, which is the equivalent semi-supervised strategy. We train Berun-
daNet-late with a reconstruction task ( L1 as auxiliary loss) and with an unsupervised seg-
mentation task ( Lkm as auxiliary loss) and show that in both cases, semi-supervised learn-
ing can improve the results obtained by the supervised network.

Results of these experiments are summarized in Table 6. The oracle corresponds to the 
hypothetical case where annotations are available for all training cities (i.e, we can access 
the ground-truth for all the images of the 8 regions in the training split) during the training 
phase. The oracle results might be seen as an upper bound for semi-supervised learning 
strategies and they are brought out here just for comparison and not as a result of this work.

Along with Table  6, Fig.  14 shows segmentation maps obtained during the testing 
phase for the previous experiments with a SegNet backbone. We refer as undisclosed to the 
entries that are not publicly available but that are shown here as a reference and compari-
son to our results: ground-truth and oracle. At a global scale, we observe that semi-super-
vised methods—whether with reconstruction or with segmentation auxiliary task—present 
more homogeneous and finer segmentation maps than their supervised counterpart. This is 

Table 6   Supervised versus semi-supervised experiments over tinyMiniFrance using different backbone 
architectures

Bold values indicate best results
Italics in oracle column indicate an hypothetical scenario
We refer to the hypothetical case where annotations are available for all 8 training regions as oracle. Semi-
supervised denotes results for BerundaNet-late with the corresponding backbone

Backbone Oracle Supervised Semi-supervised (BerundaNet-late)

L
ce

L
ce

L
ce
+ �L

1
L
ce
+ �L

km

OA mIoU OA mIoU OA mIoU OA mIoU

SegNet 59.06 23.95 36.76 14.03 45.52 14.43 42.26 15.75
U-Net 57.71 25.25 46.30 18.18 47.90 18.70 46.92 18.26
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noticeable in particular in clear roads and less noisy regions. Adding unlabeled data dur-
ing the learning process helps to regularize and generalize better, especially in the case 
of MiniFrance data, where labels are often approximate. In some cases, semi-supervised 
methods can even beat the oracle predictions, as in the last row example where the oracle 
mistook a pasture section for a water section.

Several remarks can be raised from these results:

Fig. 14   Classification examples of different methods. Oracle refers to the hypothetical case where all 
ground-truths are available for training regions (8 annotated training cities). Supervised refers to the results 
of a network trained only on the labeled training split of tinyMiniFrance, while semi-supervised corre-
sponds to the BerundaNet-late network trained over all available training data (labeled and unlabeled). Seg-
Net architecture is used as backbone
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•	 First, MiniFrance is challenging. The oracle shows that even if we could access all 
images labels (of the 8 cities in the training split) during training, we would only get 
59% overall accuracy with a fully supervised approach (see Table 6, oracle column). 
This is far below the accuracy that can be achieved with other datasets.

•	 The amount of labeled data influences a lot the performance of supervised settings. 
Focusing on the results of the oracle and the supervised experiment (second and 
third columns on Table 6), we see that for a SegNet architecture going from 8 to 2 
training labeled cities implies a 22% loss in accuracy and 10% less of mIoU. And 
even if the U-Net seems more robust to the amount of labeled data, reducing anno-
tated data diminishes network performances notoriously. From a visual perspective, 
prediction quality is noticeably worse for the supervised approach with respect to 
the oracle (third and forth columns in Fig. 14).

•	 Semi-supervised strategies exhibit promising results. In both cases, whether we use 
a SegNet or a U-Net backbone, the benefits of semi-supervised learning are clear, 
regardless of the chosen auxiliary task there is a gain of accuracy and mIoU with 
respect to the supervised method.

•	 Finally, from a visual perspective, semi-supervised methods (fifth and sixth columns in 
Fig. 14) are superior to the supervised one (fourth column). Indeed, semi-supervised 
segmentation maps are more homogeneous than the supervised ones (see the second, 
fourth and sixth row examples). Besides, urban cartography is better delineated in the 
semi-supervised semantic maps and seems more appropriated with respect to the origi-
nal image.

Those are encouraging results for future works on semi-supervised learning for seman-
tic segmentation.

6.4 � Analysis of semi‑supervised learning on tinyMiniFrance

We have seen that semi-supervised learning can be beneficial to improve segmentation 
results. Next sections intend to explore some possibilities to approach semi-supervised 
learning, in terms of neural network architectures or losses to use in a multi-task learning 
strategy.

Table 7   Neural networks for semi-supervised semantic segmentation comparison

Bold values indicate best results

Auxiliary loss Architecture Backbone OA (%) mIoU (%)

L
1

BerundaNet-early SegNet 35.94 9.51
BerundaNet-late SegNet 45.52 14.43
BerundaNet-late U-Net 47.90 18.70
W-Net (Xia et al. 2017) U-Net 40.72 13.79

L
km

BerundaNet-early SegNet 38.20 10.26
BerundaNet-late SegNet 42.26 15.75
BerundaNet-late U-Net 46.92 18.26
W-Net (Xia et al. 2017) U-Net 45.20 16.13
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For this purpose, we present several experiments performed over tinyMiniFrance to 
analyze the contributions of the neural network architectures in Sect. 6.4.1. We also study 
the effect of the choice of auxiliary task to perform and the unsupervised loss function in 
Sect. 6.4.2.

6.4.1 � Influence of the choice of architecture on semi‑supervision

In the following, we compare the architectures presented in Sect. 5.1 with respect to both 
auxiliary tasks, reconstruction (using L1 loss) and unsupervised segmentation (with Lkm 
loss). For the BerundaNet-early architecture a SegNet backbone is used. Results of these 
experiments are reported in Table 7.

Fig. 15   Results comparison for different neural network architectures with reconstruction as auxiliary task 
( L

1
 auxiliary loss). BN-e stands for BerundaNet-early, BN-l-S/BN-l-U for BerundaNet-late with SegNet/U-

Net backbone, respectively

Fig. 16   Results comparison for different neural networks with unsupervised segmentation as auxiliary task 
( L

km
 auxiliary loss). BN-e stands for BerundaNet-early, BN-l-S/BN-l-U for BerundaNet-late with SegNet/

U-Net backbone, respectively
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Whatever the chosen auxiliary task, BerundaNet-late with U-Net backbone is the archi-
tecture that achieves the best scores, followed by W-Net and BerundaNet-late with SegNet 
backbone. BerundaNet-early is just slightly better than a supervised approach with same 
backbone. This indicates that, in terms of network architecture, it might be better to split 
the supervised and unsupervised tasks rather late, enabling more shared parameters. Thus, 
the image statistics learned through optimization of the auxiliary task are better harnessed 
for the main objective.

Figures 15 and 16 show some examples of semantic maps and unsupervised outputs 
at inference time for these methods, using reconstruction and unsupervised segmenta-
tion as auxiliary task, respectively. From these examples, we confirm that whether we 
choose reconstruction or segmentation as auxiliary unsupervised task, BerundaNet-late 
(U-Net backbone) gets the finer and smoother results, especially in the second case.

Therefore, the choice of the architecture and backbone matters for the semi-super-
vised task. BerundaNet-late performs better than BerundaNet-early with same backbone. 

Table 8   Auxiliary unsupervised 
loss effect comparison using 
BerundaNet-late with U-Net 
backbone

Bold values indicate best results

Auxiliary task Aux. loss OA (%) mIoU (%)

Reconstruction L
1

47.90 18.70
L
2

44.55 16.27

Segmentation L
km

46.92 18.26
L
MS

 (Kim and Ye 
2019)

46.88 18.57

Fig. 17   Segmentation maps and reconstruction outputs for BerundaNet-late (U-Net backbone), using differ-
ent unsupervised reconstruction losses for the auxiliary task



3153Machine Learning (2022) 111:3125–3160	

1 3

Moreover, the U-Net backbone outperforms the SegNet backbone. Finally, the simple 
architecture BerundaNet-late presented in this work places it first, before W-Net.

Thus, it seems the choice of architecture is at least as important as the loss design. 
This choice does not only rely on the number of parameters (W-Net has about twice the 
number of parameters of BerundaNet, since it relies on two U-Nets) but also how the 
supervised and unsupervised information are mixed.

6.4.2 � Influence of the choice of auxiliary loss on semi‑supervision

In this section, we analyze the effect on the semantic segmentation results of different aux-
iliary losses presented in Sect.  5.2. To this end, we train the same network architecture 
while changing the loss. We choose BerundaNet-late with U-Net backbone, since it was the 
network with the best scores in the previous sections, regardless of the auxiliary task.

Fig. 18   Semantic segmentation maps and unsupervised segmentation outputs for BerundaNet-late (U-Net 
backbone), using different unsupervised segmentation losses for auxiliary task

Table 9   Results comparison for 
supervised and semi-supervised 
methods over the Christchurch 
Aerial Semantic Dataset

Bold values indicate best results

Mode Aux. task Aux. loss � OA (%) mIoU (%)

Sup – – – 81.06 ± 0.46 67.43 ± 0.49

Semi-sup Rec L
1

0.5 82.28 ± 0.55 68.78 ± 1.27

L
2

5 82.36 ± 0.42 68.99 ± 0.85

Seg L
km

1 ��.�� ± �.�� ��.�� ± �.��

L
MS

1 82.94 ± 0.26 70.24 ± 0.84
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Table 8 reports the results obtained through these experiments. Figure 17 exhibits some 
examples of segmentation maps and unsupervised outputs obtained by BerundaNet-late 
with reconstructions losses ( L1 and L2 ) at inference time, while Fig. 18 shows examples 
using unsupervised segmentation as auxiliary task.

For the reconstruction task, L1 loss outperforms the L2 approach, this is confirmed 
by visual examples in Fig. 17 where we perceive that results are marginally better for L1 
than for L2 in terms of smoothness, especially in urban areas like the third and fourth row 
examples.

In the case of segmentation, Lkm and LMS are somehow equivalent. However, from 
Fig. 18 the Lkm loss seems to be superior to LMS in most cases, especially when it comes to 
road detection.

6.5 � Experiments on the Christchurch Aerial Semantic Dataset

We also perform experiments on the Christchurch Aerial Semantic Dataset (CASD)7 to test 
the reliability of our framework (Castillo-Navarro et al. 2020).

CASD comprises aerial imagery at 10 cm/px resolution over Christchurch, New Zea-
land. Dense semantic annotations were produced by ONERA/DTIS on 4 images, consider-
ing 4 classes: buildings, cars, vegetation and background (Audebert et al. 2017; Randriana-
rivo et  al. 2013). The dataset also includes 20 aerial images without annotations, which 
makes it suitable for semi-supervised learning algorithms.

Fig. 19   Two examples of inference over the CASD dataset.  buildings,  cars,  vegetation and  
background

Table 10   First semi-supervised results over MiniFrance

Bold values indicate best results

Method Network Backbone Aux. loss OA mIoU

Supervised U-Net U-Net – 44.28 20.77
Semi-supervised BerundaNet-late U-Net L

km
45.16 21.20

7  Available at https://​doi.​org/​10.​5281/​zenodo.​35660​05.

https://doi.org/10.5281/zenodo.3566005
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For these experiments, we use a training partition containing labeled and unlabeled 
data—2 annotated tiles and 20 non-annotated tiles—, and keep 2 annotated tiles for vali-
dation. We train a BerundaNet-late architecture with U-Net backbone, because of its sim-
plicity and efficiency. The network is trained during 50 pseudo-epochs with 5000 labeled 

Fig. 20   Semi-supervised results over MiniFrance. BerundaNet-late with U-Net backbone and L
km

 as auxil-
iary loss
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iterations and 5000 unlabeled iterations. Since the dataset allows it (training only takes a 
few hours), we also evaluate different values of the hyperparameter � [in Eq. (3)].

Results are reported in Table 9. Mean and variance are obtained over 4 runs of each 
experiment. We note that semi-supervised methods outperform the supervised setting. 
Moreover, best scores are obtained with unsupervised segmentation losses, and especially 
our relaxed K-means loss allows to improve the mIoU score by + 3.39% and overall accu-
racy by + 1.97%, with respect to the supervised setting.

Figure 19 shows two examples of segmentation maps obtained by the different methods. 
In the first row example, the supervised approach is the only one that mistakes the river 
as a building; the supplementary information provided by unlabeled images to the semi-
supervised methods allows to prevent this error. In the second row, the Lkm loss is the only 
one that correctly segments the central building, likely due to its color clustering capacity.

In general, we observe from the experiments over CASD that including unlabeled data 
during training helps to improve the segmentation maps with respect to the case where we 
only use our limited labeled data.

6.6 � Experiments on MiniFrance

All the results and analysis exposed above were conducted using the tinyMiniFrance 
dataset, due to computing capacity and processing time. In this section we present the 
first semi-supervised results over the entire MiniFrance dataset.

To this end, we train a BerundaNet-late with U-Net backbone as it is the best result we 
got in a semi-supervised setting (see Table 6). We use our regularized k-means loss ( Lkm ) 
as auxiliary unsupervised loss. We also train a U-Net network on the labeled partition of 
MiniFrance in a classic supervised way for comparison with the semi-supervised setting. 
Results are reported in Table 10 and some visual results of the semi-supervised experiment 
are shown in Fig. 20.

These results on MiniFrance are coherent with previous ones reported with tinyMini-
France. They confirm our hypothesis that tinyMiniFrance is a good representation of the 
entire MiniFrance dataset. Moreover, they confirm that including unlabeled data during the 
learning process helps to improve the results on semantic segmentation.

It is worth to mention that training these models over the entire MiniFrance dataset for 
450 pseudo-epochs takes roughly 3 weeks. While inference time—processing all the tiles 
on the testing partition—takes about 6 days (with a single GPU).

7 � Conclusions

We have introduced the MiniFrance suite, a new large-scale dataset designed for semi-
supervised semantic segmentation in Earth Observation. MiniFrance has unprecedented 
properties, the diversity of landscapes and scenes reflects the complexity of reality. Above 
all, it was thoroughly designed for semi-supervised learning, including labeled and unla-
beled data in its training partition and recreating a life-like application setting, which 
makes MiniFrance unique. In addition to the dataset, we presented a comprehensive analy-
sis of the data in terms of appearance similarity and representativeness, showing that Mini-
France is well-suited to address the semi-supervised problem.
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We also introduced deep neural networks, based on multi-task learning, to perform 
semi-supervised semantic segmentation. In particular, we presented BerundaNet—a sim-
ple extension of classic encoder–decoder architectures—which proves to be very effective 
in the semi-supervised task. Together with these architectures, we explored unsupervised 
auxiliary losses to use alongside with semantic segmentation. Especially, we introduced 
the relaxed k-means loss to perform unsupervised image segmentation.

Our experiments have shown that we can benefit from unlabeled data during the learn-
ing process to improve semantic segmentation maps. Indeed, semi-supervised approaches 
allow to generate finer and more homogeneous predictions. We also observed that a sim-
ple architecture like BerundaNet-late with a suitable backbone such as U-Net is enough to 
enhance the segmentation performances. These results are very encouraging and will serve 
as baselines for future works on semi-supervised semantic segmentation over the Mini-
France dataset.

Nevertheless, the problem of semi-supervised learning is not solved. We have seen that 
our approaches can improve semantic segmentation results, but it is not always the case. 
In a multi-task approach as ours, we must be careful on the choice of architecture and the 
auxiliary task to perform along. Furthermore, there exist other possible ways to solve the 
semi-supervised problem. For instance, one could develop generative models to learn the 
intrinsic distribution of data from labeled and unlabeled examples and use this information 
together with labels to improve the segmentation. Another possibility is the use of pseudo-
label methods that propagate labels from annotated examples through non-annotated ones, 
based on a confidence criterion, to enlarge available training data. These methods were not 
explored in this work, but they should be considered in future research.

Acknowledgements  Javiera Castillo-Navarro’s work is partially funded by a grant from Centre National 
d’Études Spatiales (CNES). The authors acknowledge the IGN for providing the BD ORTHO database 
under Open Licence v1.0 (https://​www.​etalab.​gouv.​fr/​licen​ce-​ouver​te-​open-​licen​ce) and the European 
Copernicus Program for providing the Urban Atlas data (https://​land.​coper​nicus.​eu/​local/​urban-​atlas). This 
work contains modified Copernicus Urban Atlas data.

References

Audebert, N., Le Saux, B., & Lefèvre, S. (2017). Segment-before-detect: Vehicle detection and classifica-
tion through semantic segmentation of aerial images. Remote Sensing, 9(4), 368.

Audebert, N., Le Saux, B., & Lefevre, S. (2018). Beyond RGB: Very high resolution urban remote sensing 
with multimodal deep networks. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 20–32.

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder–decoder 
architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
39(12), 2481–2495. https://​doi.​org/​10.​1109/​TPAMI.​2016.​26446​15.

Bonafilia, D., Gill, J., Basu, S. & Yang, D. (2019). Building high resolution maps for humanitarian aid and 
development with weakly-and semi-supervised learning. In Proceedings of the IEEE conference on 
computer vision and pattern recognition workshops (CVPRW) (pp. 1–9).

Campos-Taberner, M., Romero-Soriano, A., Gatta, C., Camps-Valls, G., Lagrange, A., Le Saux, B., et al. 
(2016). Processing of extremely high-resolution LiDAR and RGB data: Outcome of the 2015 IEEE 
GRSS data fusion contest-part A: 2-D contest. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 9(12), 5547–5559. https://​doi.​org/​10.​1109/​JSTARS.​2016.​25691​62.

Carvalho, M., Le Saux, B., Trouvé-Peloux, P., Champagnat, F., & Almansa, A. (2019). Multi-task learn-
ing of height and semantics from aerial images. IEEE Geoscience and Remote Sensing Letters, 17(8), 
1391–1395. https://​doi.​org/​10.​1109/​LGRS.​2019.​29477​83.

Castillo-Navarro, J., Audebert, N., Boulch, A., Le Saux, B., & Lefèvre, S. (2019). What data are needed for 
semantic segmentation in earth observation? In 2019 Joint Urban Remote Sensing Event (JURSE) (pp. 
1–4). IEEE.

https://www.etalab.gouv.fr/licence-ouverte-open-licence
https://land.copernicus.eu/local/urban-atlas
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/JSTARS.2016.2569162
https://doi.org/10.1109/LGRS.2019.2947783


3158	 Machine Learning (2022) 111:3125–3160

1 3

Castillo-Navarro, J., Le Saux, B., Boulch, A., & Lefèvre, S. (2020). On auxiliary losses for semi-supervised 
semantic segmentation. In European conference on machine learning and principles and practice of 
knowledge discovery workshops—MACLEAN (ECML-PKDD W).

Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-supervised learning. Cambridge: The MIT Press.
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). DeepLab: Semantic image 

segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848.

Chen, W., Zhang, Y., He, J., Qiao, Y., Chen, Y., Shi, H., & Tang, X. (2018). W-Net: Bridged U-net for 2D 
medical image segmentation. arXiv preprint arXiv:​1807.​04459.

Chen, Z., Zhang, R., Zhang, G., Ma, Z., & Lei, T. (2020). Digging into pseudo label: A low-budget approach 
for semi-supervised semantic segmentation. IEEE Access, 8, 41830–41837.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., et al. (2016). The cityscapes 
dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer 
vision and pattern recognition (CVPR) (pp. 3213–3223).

Daudt, R., Le Saux, B., Boulch, A., & Gousseau, Y. (2019). Multitask Learning For Large-Scale Semantic 
Change Detection. Computer Vision and Image Understanding, 187, 102783.

Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., et al. (2018). DeepGlobe 2018: A 
challenge to parse the earth through satellite images. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshops (CVPRW).

Demuzere, M., Bechtel, B., Middel, A., & Mills, G. (2019). Mapping Europe into local climate zones. PLOS 
ONE, 14(4), 1–27. https://​doi.​org/​10.​1371/​journ​al.​pone.​02144​74.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchi-
cal image database. In Proceedings of IEEE conference on computer vision and pattern recognition 
(CVPR) (pp. 248-255).

Durand, T., Mordan, T., Thome, N., & Cord, M. (2017). WILDCAT: Weakly supervised learning of deep 
ConvNets for image classification, pointwise localization and segmentation. In IEEE conference on 
computer vision and pattern recognition (CVPR) (Vol. 2).

Fisher, P., Comber, A. J., & Wadsworth, R. (2005). Land use and land cover: Contradiction or complement. 
Re-presenting GIS (pp. 85–98).

Gupta, R., Goodman, B., Patel, N., Hosfelt, R., Sajeev, S., Heim, E., et al. (2019). Creating xBD: A dataset 
for assessing building damage from satellite imagery. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition workshop computer vision for global challenges (CVPRW).

Haala, N., Cramer, M., & Jacobsen, K. H. (2010). The German Camera Evaluation Project—results from 
the geometry group. In Canadian geomatics conference and symposium of commission I—geom-
etry. https://​doi.​org/​10.​15488/​1119.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 770–778).

Hong, D., Yokoya, N., Ge, N., Chanussot, J., & Zhu, X. X. (2019). Learnable manifold alignment 
(LeMA): A semi-supervised cross-modality learning framework for land cover and land use clas-
sification. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 193–205.

Hung, W. C., Tsai, Y. H., Liou, Y. T., Lin, Y. Y., & Yang, M. H. (2018). Adversarial learning for 
semi-supervised semantic segmentation. In Proceedings of the British machine vision conference 
(BMVC).

Kalluri, T., Varma, G., Chandraker, M., & Jawahar, C. (2019). Universal semi-supervised semantic seg-
mentation. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 
5259–5270).

Khoreva, A., Benenson, R., Hosang, J. H., Hein, M., & Schiele, B. (2017). Simple does it: Weakly 
supervised instance and semantic segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (CVPR).

Kim, B., & Ye, J. C. (2019). Mumford–Shah loss functional for image segmentation with deep learning. 
IEEE Transactions on Image Processing.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the 
international conference on learning representations (ICLR).

Lam, D., Kuzma, R., McGee, K., Dooley, S., Laielli, M., Klaric, M., Bulatov, Y., & McCord, B. (2018). 
xView: Objects in context in overhead imagery. arXiv e-prints

Le, H., Gonçalves, B., Samaras, D., & Lynch, H. (2019). Weakly labeling the Antarctic: The Penguin 
Colony case. In Proceedings of the IEEE conference on computer vision and pattern recognition 
workshops (CVPRW) (pp. 18–25).

https://arxiv.org/abs/1807.04459
https://doi.org/10.1371/journal.pone.0214474
https://doi.org/10.15488/1119


3159Machine Learning (2022) 111:3125–3160	

1 3

Lee, D. H. (2013). Pseudo-label: The simple and efficient semi-supervised learning method for deep 
neural networks. In Proceedings of the international conference on machine learning workshop on 
challenges in representation learning (ICMLW) (Vol. 3, p. 2).

Lefebvre, A., Sannier, C., & Corpetti, T. (2016). Monitoring urban areas with sentinel-2A data: Applica-
tion to the update of the Copernicus high resolution layer imperviousness degree. Remote Sensing, 
8(7), 606.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft COCO: 
Common objects in context. In Proceedings of European conference on computer vision (ECCV) 
(pp. 740–755). Berlin: Springer.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. 
In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 
3431–3440).

Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning 
Research, 9, 2579–2605.

Maggiolo, L., Marcos, D., Moser, G., & Tuia, D. (2018). Improving maps from CNNs trained with 
sparse, scribbled ground truths using fully connected CRFs. In Proceedings of the IEEE interna-
tional symposium on geoscience and remote sensing (IGARSS).

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2017). Can semantic labeling methods generalize 
to any city? The INRIA aerial image labeling benchmark. In Proceedings of the IEEE international 
symposium on geoscience and remote sensing (IGARSS). https://​doi.​org/​10.​1109/​IGARSS.​2017.​
81276​84.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., & Terzopoulos, D. (2020). Image seg-
mentation using deep learning: A survey. arXiv preprint arXiv:​2001.​05566.

Mnih, V., & Hinton, G. (2010). Learning to detect roads in high-resolution aerial images. In Proceedings 
of the European conference on computer vision (ECCV).

Montero, E., Van Wolvelaer, J., & Garzón, A. (2014). The European Urban Atlas. In Land use and land 
cover mapping in Europe (pp. 115–124). Springer.

Mumford, D., & Shah, J. (1985). Boundary detection by minimizing functionals. In Proceedings of the 
IEEE conference on computer vision and pattern recognition (CVPR), (Vol. 17, pp. 137-154).

Nivaggioli, A., & Randrianarivo, H. (2019). Weakly supervised semantic segmentation of satellite 
images. In 2019 Joint Urban Remote Sensing Event (JURSE) (pp. 1–4). IEEE.

Paisitkriangkrai, S., Sherrah, J., Janney, P., & Van-Den  Hengel, A. (2015). Effective semantic pixel 
labelling with convolutional networks and conditional random fields. In Proceedings of the IEEE 
conference on computer vision and pattern recognition workshops (CVPRW).

Papandreou, G., Chen, L. C., Murphy, K. P., & Yuille, A. L. (2015). Weakly-and semi-supervised learning 
of a deep convolutional network for semantic image segmentation. In Proceedings of the IEEE interna-
tional conference on computer vision (ICCV) (pp. 1742–1750).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019) PyTorch: an imperative 
style, high-performance deep learning library. In Advances in neural information processing systems 
32 (NeurIPS).

Randrianarivo, H., Le Saux, B., & Ferecatu, M. (2013). Urban structure detection with deformable part-
based models. In 2013 IEEE international geoscience and remote sensing symposium (IGARSS) (pp. 
200–203). IEEE.

Rey, N., Volpi, M., Joost, S., & Tuia, D. (2017). Detecting animals in African Savanna with UAVs and the 
crowds. Remote Sensing of Environment, 200, 341–351.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image seg-
mentation. In Proceedings of the international conference on medical image computing and computer-
assisted intervention (MICCAI) (pp. 234–241). Berlin: Springer.

Rottensteiner, F., Sohn, G., Gerke, M., & Wegner, J. D. (2014). Journal of Photogrammetry and Remote 
Sensing: Special issue on Urban object detection and 3D building reconstruction (Vol. 93). Elsevier.

Runting, R. K., Phinn, S., Xie, Z., Venter, O., & Watson, J. E. (2020). Opportunities for big data in conser-
vation and sustainability. Nature Communications, 11(1), 1–4.

Schmitt, M., Prexl, J., Ebel, P., Liebel, L., & Zhu, X. X. (2020). Weakly supervised semantic segmentation 
of satellite images for land cover mapping—challenges and opportunities. arXiv preprint arXiv:​2002.​
08254.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the sup-
port of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recogni-
tion. In Proceedings of the international conference on learning representations (ICLR).

https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/IGARSS.2017.8127684
https://arxiv.org/abs/2001.05566
https://arxiv.org/abs/2002.08254
https://arxiv.org/abs/2002.08254


3160	 Machine Learning (2022) 111:3125–3160

1 3

Souly, N., Spampinato, C., & Shah, M. (2017). Semi-supervised semantic segmentation using generative 
adversarial network. In Proceedings of the IEEE international conference on computer vision (ICCV) 
(pp. 5688–5696).

Sumbul, G., Charfuelan, M., Demir, B., & Markl, V. (2019). Bigearthnet: A large-scale benchmark archive 
for remote sensing image understanding. In IEEE international geoscience and remote sensing sympo-
sium (IGARSS).

Tao, Y., Xu, M., Zhang, F., Du, B., & Zhang, L. (2017). Unsupervised-restricted deconvolutional neural net-
work for very high resolution remote-sensing image classification. IEEE Transactions on Geoscience 
and Remote Sensing, 55(12), 6805–6823.

Tuia, D., Volpi, M., Trolliet, M., & Camps-Valls, G. (2014). Semisupervised manifold alignment of mul-
timodal remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 
7708–7720.

Xia, G. S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., et al. (2018). DOTA: A large-scale dataset for 
object detection in aerial images. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition (CVPR) (pp. 3974–3983).

Xia, J., Chanussot, J., Du, P., & He, X. (2013). (Semi-) supervised probabilistic principal component analy-
sis for hyperspectral remote sensing image classification. IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, 7(6), 2224–2236.

Xia, X., & Kulis, B. (2017). W-Net: A deep model for fully unsupervised image segmentation. arXiv 
e-prints arXiv:​1711.​08506.

Zhang, R., Albrecht, C., Zhang, W., Cui, X., Finkler, U., Kung, D., & Lu, S. (2020). Map generation from 
large scale incomplete and inaccurate data labels. arXiv preprint arXiv:​2005.​10053.

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017) Pyramid scene parsing network. In Proceedings of the 
IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2881–2890).

Zhu, R., Yan, L., Mo, N., & Liu, Y. (2019). Semi-supervised center-based discriminative adversarial learn-
ing for cross-domain scene-level land-cover classification of aerial images. ISPRS Journal of Photo-
grammetry and Remote Sensing, 155, 72–89.

Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in 
remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing 
Magazine, 5(4), 8–36.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Javiera Castillo‑Navarro1,2   · Bertrand Le Saux3 · Alexandre Boulch4 · 
Nicolas Audebert5 · Sébastien Lefèvre2

	 Bertrand Le Saux 
	 bertrand.le.saux@esa.int

	 Alexandre Boulch 
	 alexandre.boulch@valeo.com

	 Nicolas Audebert 
	 nicolas.audebert@cnam.fr

	 Sébastien Lefèvre 
	 sebastien.lefevre@irisa.fr

1	 ONERA, Université Paris-Saclay, 91123 Palaiseau, France
2	 IRISA UMR 6074, Université Bretagne Sud, 56000 Vannes, France
3	 European Space Agency, ESRIN, Φ-lab, 00044 Frascati, Rome, Italy
4	 valeo.ai, 75008 Paris, France
5	 Conservatoire National des Arts et Métiers, CEDRIC EA 4629, 75003 Paris, France

https://arxiv.org/abs/1711.08506
https://arxiv.org/abs/2005.10053
http://orcid.org/0000-0003-4917-5103

	Semi-supervised semantic segmentation in Earth Observation: the MiniFrance suite, dataset analysis and multi-task network study
	Abstract
	1 Introduction
	2 Related work
	2.1 Semantic segmentation
	2.2 Datasets for Earth Observation
	2.3 Semi-supervised learning

	3 The MiniFrance suite
	3.1 MiniFrance
	3.2 Tiny MiniFrance

	4 Statistical analysis of the representativeness of training and test datasets
	4.1 Appearance analysis
	4.2 Class representativeness analysis

	5 Semi-supervised semantic segmentation with deep neural networks
	5.1 Neural network architectures
	5.2 Unsupervised losses for image segmentation

	6 Experiments with MiniFrance and analysis
	6.1 Limits of supervised and semi-supervised learning on standard EO datasets
	6.2 Defining the labeledunlabeledtest split for MiniFrance
	6.3 Supervised and semi-supervised learning on MiniFrance
	6.4 Analysis of semi-supervised learning on tinyMiniFrance
	6.4.1 Influence of the choice of architecture on semi-supervision
	6.4.2 Influence of the choice of auxiliary loss on semi-supervision

	6.5 Experiments on the Christchurch Aerial Semantic Dataset
	6.6 Experiments on MiniFrance

	7 Conclusions
	Acknowledgements 
	References




