
Vol.:(0123456789)

Machine Learning (2024) 113:2841–2875
https://doi.org/10.1007/s10994-021-05947-2

1 3

Incremental learning of iterated dependencies

Denis Béchet1 · Annie Foret2

Received: 17 September 2019 / Revised: 3 December 2020 / Accepted: 7 January 2021 /
Published online: 7 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
We study some learnability problems in the family of Categorial Dependency Grammars
(CDG), a class of categorial grammars defining dependency structures. CDG is a for-
mal system, where types are attached to words, combining the classical categorial gram-
mars’ elimination rules with valency pairing rules defining non-projective (discontinu-
ous) dependencies; very importantly, the elimination rules are naturally extended to the
so called “iterated dependencies” expressed by a specific type constructor and related
elimination rules. This paper first reviews key points on negative results: even the rigid
(one type per word) CDG cannot be learned neither from function/argument structures, nor
even from dependency structures themselves. Such negative results prove the impossibil-
ity to define a learning algorithm for these grammar classes. Nevertheless, we show that
the CDG satisfying reasonable and linguistically valid conditions on the iterated depend-
encies are incrementally learnable in the limit from dependency structures. We provide
algorithms and also discuss these aspects for recent variants of the formalism that allow the
inference of CDG from linguistic treebanks.

Keywords Grammatical inference · Categorial grammar · Dependency grammar ·
Incremental learning · Iterated types · Treebanks

1 Introduction

The paper studies the problem of inference of dependency grammars presented in the CDG
style from positive examples of dependency trees or structures they generate.

Editors: Olgierd Unold, François Coste, Colin de la Higuera.

 * Denis Béchet
 Denis.Bechet@univ-nantes.fr

 Annie Foret
 Annie.Foret@irisa.fr

1 LS2N and Univ Nantes, Nantes, France
2 IRISA and Univ Rennes, Rennes, France

http://orcid.org/0000-0001-7955-1339
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05947-2&domain=pdf

2842 Machine Learning (2024) 113:2841–2875

1 3

1.1 Generalities on dependency grammars

There is no general agreement on the notion of dependency grammar. Generally speaking,
it is a grammar which represents the syntactic structure as a graph of binary relations on
words in the sentence, dependencies, and not as a hierarchy of syntagmas (i.e. of phrases
referred to their grammatical categories), which is the case of all syntagmatic grammars.
These syntactic structure graphs called dependency structures (DS) are sometimes linearly
ordered by the precedence order of the words in the sentence, sometimes they are consid-
ered without this order. Very often it is claimed that the DS is a tree (called dependency
tree (DT)) and, moreover, for the ordered DT, it is often claimed that its arcs do not cross
(such DS are called projective). For example the DT in Fig. 1 is not projective (considering
only the arcs above the sentence in the DS), whereas the DS in Fig. 2 is a projective DT.
In many theoretical papers the dependency relations in DS are not named, whereas in the
linguistic and in the NLP literature on dependency grammars, as a rule, they are named.

The DS we consider below are actually directed acyclic graphs (DAG) as they are in
general neither trees, nor projective, but they are linearly ordered and use named depend-
encies (see examples in Figs. 1, 2, 3). The dependency linguistic models (DLM) them-
selves are conceptually and technically diverse. Basically, there are three main formalisms:
dependency grammars (DG) as formal systems generating DS, constraint-based DLM and
structure conversion DLM. The first formal DG were defined as formal systems generating
projective DT (Hays (1960); Gaifman (1965), see also a survey in Dikovskij and Modina
(2000)). Among such kind of formal DG there are also the Link Grammars (Sleator and
Temperley (1995)) and the Categorial Dependency Grammars (Dikovsky (2004)) con-
sidered in this paper. The constraint-based DLM define DS as models of formulae sets
(cf. Maruyama (1990); Kruijff (2001); Duchier and Debusmann (2001)) or using finite
automata (or regular expressions) on trees (cf. Eisner (1991)). Numerous systems belong
to the third class which defines DS using a standard transformation of syntactic structures
of a different nature (constituent structures, feature structures, unordered DT, etc.) defined
algebraically or through an automaton or a lexicalized grammar (CF, HPSG, LTAG, LFG,
CCG, etc.).

1.2 Categorial dependency grammars

The Categorial Dependency Grammars (CDG) considered in this paper is a unique class of
DG directly generating unbounded DS (without tree-constraints, projectivity constraints,

Fig. 1 Iterated circumstantial dependency.(fr. *now all the evenings when he took her home he had to enter
[M: Proust])

2843Machine Learning (2024) 113:2841–2875

1 3

etc.), which is well adapted to real NLP applications and is analysed in tractable poly-
nomial in Dekhtyar et al. (2015) for grammars with bounded numbers of non-projective
valency symbols.12

A CDG is a formal system combining the classical categorial grammars’ elimination
rules with valency pairing rules defining discontinuous dependencies. A special feature of
CDG is that the elimination rules are interpreted as local dependency constructors. Very
importantly, these rules are naturally extended to the so called “iterated dependencies”.
This point needs explanation. A dependency d is iterated in a DS D if some word in D
governs through dependency d several other words. For instance, in the DS in Fig. 1, the
dependency circ is iterated because the main verb fallait (fr. had to) governs through this
dependency three words: maintenant (fr. now), soirs (fr. evenings) and quand (fr. when).
The iterated dependencies are due to the one of the basic principles of dependency syntax,
which concerns optional repeatable dependencies (cf. Mel’čuk (1988)): All modifiers of a
noun n share n as their governor and, similarly, all words circumstantial of a verb v share v
as their governor. The DG incompatible with this principle, i.e., unfit for expression of iter-
ated dependencies, cannot be considered as linguistically relevant. At the same time, as we
explain below, the iterated dependencies are a challenge for grammatical inference, so as
to infer a grammar that exactly generates the targeted language to which examples belong.

1.3 Grammatical inference

The idea of grammatical inference is as follows. A class of languages defined using a class
of grammars G is learnable if there exists a learning algorithm � from finite sets of words
generated by the target grammar G0 ∈ G to hypothetical grammars in G , such that for any
increasing enumeration of finite sublanguages of L(G0) , the sequence of output grammars
in G converges to a grammar in G generating the target language L(G0).

This concept of identification in the limit is due to E.M. Gold Gold (1967). Learning
from strings refers to hypothetical grammars generated from finite sets of strings. More
generally, the hypothetical grammars may be generated from finite sets of structures
defined by the target grammar. This kind of learning is called learning from structures.
Both concepts were intensively studied (see surveys in Angluin (1980), Kanazawa (1998),
Bonato (2006) and de la Higuera (2010)). Most results are pessimistic. In particular, any
family of grammars generating all finite languages and at least one infinite language (as it
is the case of all classical grammars) is not learnable from strings. Other negative results
have been shown in Costa Florêncio (2012, 2003); Béchet and Foret (2003, 2003) Never-
theless, due to several sufficient conditions of learnability, such as finite elasticity Wright
(1989); Motoki et al. (1991) and finite thicknessShinohara (1991), some interesting positive
results were obtained. In particular, for every k, k-rule string and term generating gram-
mars are learnable from strings Shinohara (1991) and k-valued (i.e. assigning no more than
k types per word) classical categorial grammars (CG) are learnable from so called “func-
tion-argument” structures and also from strings Buszkowski (1987); Buszkowski and Penn
(1990); Kanazawa (1998). Other classes such as least cardinality grammars are studied in
Costa Florêncio and Fernau (2012); Costa Florêncio and Fernau (2010).

1 Theorem 8 in Dekhtyar et al. (2015) provides the time complexity of the CdgAnalyst parsing algorithm.
2 A large scale wide coverage CDG of French and a general purpose deterministic parser have been imple-
mented Dikovsky (2011); Béchet et al. (2014); Lacroix and Béchet (2014).

2844 Machine Learning (2024) 113:2841–2875

1 3

In Béchet et al. (2004) it was shown that, in contrast with the classical categorial gram-
mars, the rigid (i.e. 1-valued) CDG are not learnable. This negative effect is due to the
use of iterated types which express the iterated dependencies. On the other hand, it is also
shown that the k-valued CDG with iteration-free types are learnable from the so called
“dependency nets” (an analogue of the function-argument structures adapted to CDG) and
also from strings. A similar positive result was also obtained for Link Grammars (which do
not express iterated dependencies) Béchet (2003). But, as we explain above, iteration-free
DG cannot be considered as an acceptable compromise. Still worse, as we prove in Sect. 3,
the CDG with iterated types cannot be learned even from the DS themselves. This means
that linguistically relevant CDG cannot be inferred from dependency treebanks (in which
the iterated dependencies are of course not marked).

1.4 Main results of the paper

Firstly, in this paper, we follow the results presented in Béchet et al. (2010). We consider
two main different approaches to CDG, in the presence of iterated types, with different
underlying structured examples. The first one considers functor-argument structures that
provide information in a proof-tree manner, but where no dependency name is known;
in this case a bound on the number of types may be required. The second one relies on
labelled dependency structures, but with a relaxed cardinality constraint. We propose a
pragmatic solution of the learnability problem for CDG with iterated dependency types.
It consists in limiting the family of CDG to the grammars satisfying a strong and at the
same time a linguistically well-grounded condition. Intuitively, in the grammars satisfying
this condition, the iterated dependencies and the dependencies repeatable at least K times
for some fixed K are indiscernible. For example, in Fig. 1 the dependency circ is repeated
three times: for K = 2 or for K = 3 , the underlying grammar can have an iterated depend-
ency allowing more than three repetitions. This constraint, called below K-star revealing, is
more or less generally accepted in the traditional dependency syntax (cf. Mel’čuk (1988),
where K = 2). For the class of K-star revealing CDG, we present an algorithm which incre-
mentally learns the target CDG from dependency structures with iterated dependencies.

The K-star revealing condition is difficult to check on a grammar. On the contrary, we
introduced in Béchet and Foret (2016) a syntactic criterion called simple K-star that can be
easily checked on a grammar. In Béchet and Foret (2016) it is studied only on projective
CDG. Here, an extension of this concept to the whole class of CDG (not only the projective
CDG but also the CDG with non-projective dependencies) is presented and compared to
the K-star revealing condition. The class of (projective or non-projective) CDG is proved
also to be learnable from dependency structures.

Finally, a new criterion called global simple K-star that introduces iterated types on a
more global principle for each inferred type is studied. In fact, this variant corresponds to
a different interpretation of the repetition principle. Because the learning algorithm for the
class of simple K-star CDG does not produce a global simple K-star grammar, variants of
this algorithm are discussed. Table 1 shows a synthetic view of the different positive results
presented here.

1.5 Organization of the paper

The paper is organized as follows. Section 2 contains all background notions and facts, in par-
ticular, those concerning the Categorial Dependency Grammars and learnability from positive

2845Machine Learning (2024) 113:2841–2875

1 3

examples. In Sect. 3, functor-argument structures for CDG are defined and several negative
results concerning learnability of CDG from these structures are shown. In particular, it is
shown that CDG cannot be learned even from dependency structures. In Sect. 4, the main
notions of the paper are presented: those of incremental learning and of K-star-revealing CDG.
In this section, the inference algorithm for the K-star revealing CDG is also presented and
proved. In Sect. 5 we define and study “simple K-star” grammars with a syntactic condition.
We also introduce the “global” variants. Section 6 concludes the paper.

2 Background

2.1 Categorial dependency grammars

Categorial dependency grammars may be seen as an assignment to words of first order
(unnested) dependency types of the form: t = [lm�…�l1�g∕r1∕…∕rn]

P . Intuitively,
w ↦ [⋯ �d�⋯]P means that the word w has a left subordinate through dependency d (similar
for the right part […∕d∕…]P). Similarly w ↦ […�d∗�…]P means that w may have 0, 1 or
several left subordinates through dependency d. The head type g in w ↦ […�g∕…]P means

Table 1 Approaches in the presence of iterated types

Structured example Annotation Number (k) of
types per word

Repetition number
(K) for indiscern-
ibility

Functor-argument (FA, proof-tree) Unlabelled (no dep. name) Bound No bound
Dependency structure (DS) Labelled (dep. names) No bound Bound

Fig. 2 Projective dependency
structure

Fig. 3 Non-projective depend-
ency structure

2846 Machine Learning (2024) 113:2841–2875

1 3

that w is governed through dependency g. For instance, the assignment of Example 1 deter-
mines the projective dependency structure in Fig. 2.

Example 1
In Fig. 2, a pseudo-dependency S links an anchor and the main word of the depend-

ency structure that has the head type S. Not essential dependencies that end on punctua-
tion marks start by the symbol @ like @fs for the full stop. For the verb was, the type
[c_copul�S∕@fs∕pred] means that the word has a left subordinate through dependency
c_copul and two right subordinates through dependencies @fs and pred. It implies the the
right subordinate through dependency pred is on the left of the right subordinate through
dependency @fs: In types, the lists of right and left dependency names appear in the
reverse order as the order of the right and left subordinates.

The intuitive meaning of part P, called potential, is that it defines discontinuous depend-
encies of the word w. P is a string of polarized valencies, i.e. of symbols of four kinds: ↙d
(left negative valency d), ↘d (right negative valency d), ↖d (left positive valency d), ↗d
(right positive valency d). Intuitively, v =↖d requires a subordinate through dependency
d situated somewhere on the left, whereas the dual valency v̆ =↙d requires a governor
through the same dependency d situated somewhere on the right. So together they describe
the discontinuous dependency d. Similarly for the other pairs of dual valencies. For nega-
tive valencies ↙d,↘d a special kind of types #(↙d), #(↘d) is provided. Intuitively, they
serve to check the adjacency of a distant word subordinate through discontinuous depend-
ency d to a host word. The dependencies of these types are called anchor. For instance, the
assignment of Example 2 determines the non-projective DS in Fig. 3.

Example 2
In Fig. 3, there are two non-projective dependencies. The dependency clit−a−obj

links the past participle donnée to the (accusative) clitic la (it�=fem). The dependency
clit−3d−obj links donnée to the (3rd case dative) clitic lui (to him). Each non-projec-
tive dependency is associated to an anchor that is shown below the words: the anchor
#(↙clit−a−obj) for the dependency clit−a−obj and the anchor #(↙clit−3d−obj) for the
dependency clit−3d−obj . For the clitic la, the head type is #(↙clit−a−obj) and the left
negative valency is ↙clit−a−obj . It means that the word must be the (left or right) sub-
ordinate of a word through an anchor #(↙clit−a−obj) and in the same time must be the
left subordinate of another word through the non-projective dependency clit−a−obj . The
auxiliary verb a (has) has two left subordinates through the anchors #(↙clit−a−obj) and
#(↙clit−3d−obj) . The order of subtypes in the type of the auxiliary verb means that the
clitic la must be before the clitic lui in the linear order of the sentence. The left positive
valencies ↖clit−3d−obj and ↖clit−a−obj mean that the past participle donnée has two

in ↦ [c_copul∕prepos−l]

the ↦ [det]

beginning ↦ [det�prepos−l]

was ↦ [c_copul�S∕@fs∕pred]

word ↦ [det�pred]

. ↦ [@fs]

elle ↦ [pred]

la ↦ [#(↙clit−a−obj)]↙clit−a−obj

lui ↦ [#(↙clit−3d−obj)]↙clit−3d−obj

a ↦ [#(↙clit−3d−obj)�#(↙clit−a−obj)�pred�S∕@fs∕aux−a−d]

donnée ↦ [aux−a−d]↖clit−3d−obj↖clit−a−obj

. ↦ [@fs]

2847Machine Learning (2024) 113:2841–2875

1 3

left subordinates through the non-projective dependencies clit−3d−obj and clit−a−obj .
For a word, the order of polarized valencies is not important and does not imply an order
of the subordinates. In fact, the order of subordinates is specified by anchors. Anchors
are very important because they fix the places where the subordinates of a non-projec-
tive dependency can be inserted in the linear order. The polarized valencies are impor-
tant to define the real non-projective dependency. A positive valency (on the governor) and
negative valency (on the subordinate) create a non-projective dependency when the link
corresponds to the first available principles for a valency (the name of the dependency)
and orientation (from left to right or from right to left). For instance, the non-projective
dependency clit−3d−obj between donnée and lui is a (right to) left non-projective depend-
ency with the valency clit−3d−obj . The first available principle is applied here for left
clit−3d−obj independently to any other right non-projective dependency or to any other
left non-projective dependency with another valency. This is the case for the left non-
projective dependency clit−a−obj between donnée and la. The kind of links in CDG is
also reminiscent of polarized axiom links in proof nets as in linear logic and in Lambek
grammars analysis, which by the way can also be used as structures for learning categorial
grammars Bonato and Retoré (2014).

Definition 1 (CDG dependency structures) Let W = a1 … an be a list of symbols and
{d1,… , dm} be a set of dependency names, with their dependency nature that can be either
local, discontinuous or anchor. A structure D = (W,E) , viewed as a graph of occurrences
of the symbols in W, with the labeled arcs E is a dependency structure (DS) of W if it has a
root, i.e. a node ai ∈ W such that (i) for any node a ∈ W, a ≠ ai, there is a path from ai to a
and (ii) there is no arc (a�, d, ai).3 An arc (a, d, a�) ∈ E is called dependency d from a to a′ .
The symbol a is called a governor of a′ and a′ is called a subordinate of a through d. The
linear order on W is the precedence order on D.

Definition 2 (CDG types) Let � be a set of local dependency names and � be a set of
valency names.

The expressions of the form ↙v , ↖v , ↘v , ↗v , where v ∈ � , are called polarized valen-
cies. ↖v and ↗v are positive, ↙v and ↘v are negative; ↖v and ↙v are left, ↗v and ↘v
are right. Two polarized valencies with the same valency name and orientation, but with
opposite arrow directions are dual.

An expression of one of the forms #(↙v) , #(↘v) , v ∈ � , is called an anchor type or
just an anchor. An expression of the form d∗ where d ∈ � , is called an iterated dependency
type.

Local dependency names, iterated dependency types and anchor types are primitive
types.

An expression of the form t = [lm�…�l1�H∕r1∕…∕rn] in which m, n ≥ 0 ,
l1,… , lm, r1,… , rn are primitive types and H is either a local dependency name or an
anchor type, is called a basic dependency type. l1,… , lm and r1,… , rn are left and right
argument types of t, H is called the head type of t. We may write t = H instead of [H],
when t has no argument type.

A (possibly empty) string P of polarized valencies is called a potential.

3 Evidently, every DS is connected and has a unique root.

2848 Machine Learning (2024) 113:2841–2875

1 3

A dependency type is an expression BP in which B is a basic dependency type and P is a
potential. ���(�,�) will denote the set of all dependency types over � and �.

CDG are defined using the following calculus of dependency types.4 These rules are
relativized with respect to the word positions in the sentence, which allows us to interpret
them as rules of construction of DS. Namely, when a type Bv1…vk is assigned to the word
in a position i, we encode it using the state (B, i)(v1,i)…(vk ,i) . In these rules, states must be
adjacent.

Definition 3 (Relativized calculus of dependency types) In the following set of rules
on lists of states, the symbol C stands for a local dependency name or an anchor type, but
cannot be an anchor in rules �� and �� (anchors are not iterated); The symbol � ranges over
expressions of the form lm�…�l1�H∕r1∕…∕rn

��. ([C], i1)P1 ([C�𝛽], i2)
P2 ⊢ ([𝛽], i2)

P1P2

��. ([C], i1)P1 ([C∗�𝛽], i2)
P2 ⊢ ([C∗�𝛽], i2)

P1P2

��. ([C∗�𝛽], i)P ⊢ ([𝛽], i)P

��. ([𝛽], i)P1(↙v,i1)P(↖v,i2)P2 ⊢ ([𝛽], i)P1PP2 ,

if i1 < i2 (non-internal constraint)5 and
if the potential (↙v, i1)P(↖v, i2) satisfies
the following pairing rule ��:
�� (first available): P has no occurrences of (↙v, i) or (↖v, i) for any i

The rule �� is the classical elimination rule. Eliminating the argument type C ≠ #(�)
constructs the (projective) dependency C and concatenates the potentials. The type
C = #(�) creates an anchor dependency. The rule �� derives k > 0 instances of C. The rule
�� serves in particular for the case k = 0. �� creates discontinuous dependencies. It pairs
and eliminates dual valencies with name C satisfying the rule FA to create the discontinu-
ous dependency C.

Now, in this relativized calculus, for every proof � represented as a sequence of rule
applications, we may define the DS DSx(�) constructed in this proof. Namely, let us con-
sider the calculus relativized with respect to a sentence x with the set of word occurrences
W. Then DSx(�) = (W, �) is the DS constructed in the empty proof � = � . Now, let (�,R)
be a nonempty proof with respect to x and (W,E) = DSx(�) . Then DSx((�,R)) is defined as
follows:

If R = �� or R = �� , then DSx((�,R)) = (W,E ∪ {(ai2 ,C, ai1)}) . When C is a local
dependency name, the new dependency is local. In the case where C is an anchor, this is an
anchor dependency.

If R = �� , then DSx((�,R)) = DSx(�).
If R = �� , then DSx((�,R)) = (W,E ∪ {(ai2 ,C, ai1)}) and the new dependency is

discontinuous.

5 This constraint disallows internal primitive loops because a dependency must link two different words.

4 We show left-oriented rules. The right-oriented are symmetrical.

2849Machine Learning (2024) 113:2841–2875

1 3

We may consider the following simpler version, suppressing word positions, when the
context is clear or in examples. Note that the non-internal constraint5 is not expressed but
left implicit.

Definition 4 (Simplified calculus of dependency types) In this set of rules4 on lists of
types, the symbol C stands for a local dependency name or an anchor type, but cannot be
an anchor in rules �� and �� (anchors are not iterated); The symbol � ranges over expres-
sions of the form lm�…�l1�H∕r1∕…∕rn

��. [C]P1 [C�𝛽]P2 ⊢ [𝛽]P1P2

��. [C]P1 [C∗�𝛽]P2 ⊢ [C∗�𝛽]P1P2

��. [C∗�𝛽]P ⊢ [𝛽]P

��. [𝛽]P1(↙v)P(↖v)P2 ⊢ [𝛽]P1PP2 ,

if the potential (↙v)P(↖v) satisfies the following pairing rule ��:
�� (first available): P has no occurrences of ↙v or ↖v.

For a proof � as a sequence of rule applications, DS(�) denotes the DS constructed in
this proof.

This simplified calculus enjoys a subformula property adapted to CDG types:

– each type formula without bracket and potential that occurs on the right on a rule (� , � ,
C∗��) also occurs on the left of the same rule;

– each potential expression on the right of a rule also occurs on the left of the same rule.

Definition 5 (Categorial Dependency Grammar) A Categorial Dependency Grammar
(CDG) is a system G = (W,�,�, S, �), where W is a finite set of words, � is a finite set
of local dependency names containing the selected name S (an axiom), � is a finite set of
discontinuous dependency names and �, called lexicon, is a finite substitution on W such
that 𝜆(a) ⊂ ���(�,�) for each word a ∈ W . � is extended on sequences of words W∗ in
the usual way.6

For G = (W,�,�, S, �), a DS D and a sentence x, let G[D, x] denote the relation:
“D = DSx(�) , where � is a proof of Γ ⊢ S for some Γ ∈ �(x) ”. Then the language gener-

ated by G is the set L(G) =
df
{w || ∃D G[D,w]} and the DS-language generated by G is

Fig. 4 Dependency structure correctness proof

6 �(a1 ⋯ a
n
) = {t1 … t

n
|| t1 ∈ �(a1),… , t

n
∈ �(a

n
)}.

2850 Machine Learning (2024) 113:2841–2875

1 3

the set Δ(G) =
df
{D || ∃w G[D,w]} . D(CDG) and L(CDG) will denote the families of DS-

languages and languages generated by these grammars.

Example 3 For instance, the proof in Fig. 4 shows that the DS in Fig. 3 belongs to the DS-
language generated by a grammar containing the type assignments shown above for the
French sentence Elle la lui a donnée.

CDG are very expressive. Evidently, they generate all CF-languages. They can also
generate non-CF languages. For instance, the CDG of Example 4 generates the language
{anbncn | n > 0} Dikovsky (2004).7

Example 4
Seemingly, the family L(CDG) of CDG-languages is different from that of the mildly

context sensitive languages Joshi et al. (1991); Shanker and Weir (1994) generated by
multi-component TAG, linear CF rewrite systems and some other grammars. L(CDG) con-
tains non-TAG languages, e.g. L(m) = {an

1
an
2
… an

m
|| n ≥ 1} for all m > 0. In particular, it

contains the language MIX = {w ∈ {a, b, c}+ || |w|a = |w|b = |w|c}Béchet et al. (2005), for
which E. Bach had conjectured that it is not mildly CS, but later shown to be 2-MCFL Ned-
erhof (2016); Salvati (2015). On the other hand, Dekhtyar and Dikovsky (2004) conjec-
tures that this family does not contain the TAG language Lcopy = {xx || x ∈ {a, b}+} . This
comparison shows a specific nature of the valencies’ pairing rule FA. It can be expressed
in terms of valencies’ bracketing. For this, one should interpret ↙d and ↗d as left brackets
and ↖d and ↘d as right brackets. A potential is balanced if it is well-bracketed for each
couple of positive and negative brackets independently to the other couples of positive and
negative brackets.

CDG have an important property formulated in terms of two images of sequences of
types �:

Definition 6 (Local and valency projections) For a CDG G with lexicon � the local pro-
jection ‖�‖l and the valency projection ‖�‖v are defined as follows:

1. ‖�‖l = ‖�‖v = �; ‖��‖l = ‖�‖l‖�‖l and ‖��‖v = ‖�‖v‖�‖v for a type �.
2. ‖CP‖l = C et ‖CP‖v = P for every type CP.

Theorem 1 Dekhtyar and Dikovsky (2004, 2008) For a CDG G with lexicon � and a
string x, x ∈ L(G) iff there is Γ ∈ �(x) such that ‖Γ‖l is reduced to S without the rule � and
‖Γ‖v is balanced.

On this property resides a polynomial time parsing algorithm for CDG Dekhtyar and
Dikovsky (2004, 2008).

a ↦ #(↙ A)↙A, [#(↙ A)�#(↙ A)]↙A

b ↦ [B∕C]↖A, [#(↙ A)�S∕C]↖A

c ↦ C, [B�C]

7 One can see that a DS is not always a tree.

2851Machine Learning (2024) 113:2841–2875

1 3

2.2 Learnability, finite elasticity and limit points

An observation set Φ(G) of G is associated with every grammar G ∈ C . This may be the
generated language L(G) or an image of the constituent or dependency structures generated
by G.

Definition 7 (Inference algorithm) Below we call an enumeration of Φ(G) a training
sequence for G. An algorithm A is an inference algorithm for C if, for every grammar
G ∈ C, the algorithm A applies to its training sequences � of Φ(G) and, for every initial
subsequence �[i] = {s1,… , si} of �, it returns a hypothesized grammar A(�[i]) ∈ C. The
algorithm A learns a target grammar G ∈ C if on any training sequence � for G A stabi-
lizes on a grammar A(�[T]) ≡ G.8 The grammar lim

i→∞
A(�[i]) = A(�[T]) returned at the

stabilization step is the limit grammar. The algorithm A learns C if it learns every grammar
in C. C is learnable if there is an inference algorithm learning C.

Learnability and unlearnability properties have been widely studied from a theoretical
point of view. In particular Wright (1989); Motoki et al. (1991) introduced finite elasticity,
a property of classes of languages implying their learnability. The following elegant pres-
entation of this property is cited from Kanazawa (1998).

Definition 8 (Finite elasticity) A class L of languages has infinite elasticity iff ∃(ei)i∈ℕ
an infinite sequence of sentences, ∃(Li)i∈ℕ an infinite sequence of languages of L such that
∀i ∈ ℕ ∶ ei ∉ Li and {e0,… , ei−1} ⊆ Li . A class has finite elasticity iff it doesn’t have infi-
nite elasticity.

Theorem 2 (Wright 1989) A class that is not learnable has infinite elasticity.

Corollary 1 A class that has finite elasticity is learnable.

The finite elasticity can be extended from a class to every class obtained by a finite-
valued relation9. We use here a version of the theorem that was proved in Kanazawa (1998)
and is useful for various kinds of languages (strings, structures, nets) that can be described
by lists of elements over some alphabets.

Theorem 3 (Kanazawa 1998) Let L be a class of languages over Γ that has finite
elasticity, and let R ⊆ Σ∗ × Γ∗ be a finite-valued relation. Then the class of languages
{R−1[L] = {s ∈ Σ∗ | ∃u ∈ L ∧ (s, u) ∈ R} | L ∈ L} has finite elasticity.

Definition 9 (Limit points) A class L of languages has a limit point iff there exists
an infinite sequence (Ln)n∈N of languages in L and a language L ∈ L such that:
L0 ⊊ L1 … ⊊ ⋯ ⊊ Ln ⊊ … and L =

⋃
n∈N Ln (L is a limit point of L).

8 A stabilizes on � on step T means that T is the minimal number t for which there is no t1 > t such that
A(�[t1]) ≠ A(�[t]).
9 A relation R ⊆ Σ∗ × Γ∗ is finite-valued iff for every s ∈ Σ∗ there are at most finitely many u ∈ Γ∗ such that
(s, u) ∈ R.

2852 Machine Learning (2024) 113:2841–2875

1 3

Limit Points Imply non-effective Unlearnability. If the languages of the grammars in a
class G have a limit point then the class G is unlearnable.10

2.3 Limit points for CDGs with iterated types

In Béchet et al. (2004) it is shown that, in contrast with the classical categorial grammars,
the rigid (i.e. 1-valued) CDG are not learnable. This negative result is due to the use of
iterated types. We recall the limit point construction of Béchet et al. (2004) concerning
iterative types and discuss it later.

Limit Point Construction.

Lemma 10 Let S, A, B be three local dependency names. Grammars G�
n
,G�

∗
 are defined

as follows11:

These constructions yield a limit point as follows (Béchet et al. 2004).
L(G�

n
) = {c(b∗a∗)k | k ≤ n} and L(G�

∗
) = c{b, a}∗

Proof Only three rules apply to G�
n
,G�

∗
 : �. (local dependency rule), �. and �. (�-depend-

ency rules), all of them enjoying the subformula property.

– L(G�
0
) : (1) it clearly contains c (assigned to S) and (2) only c since no rule applies to

{A,B, S}.
– L(G�

n
) (n > 0). We have D�

n
= C�

n−1
∕A∗ and C�

n
= D�

n
∕B∗.

 (1) For w ∈ {c(b∗a∗)k | k ≤ n} , we have w ∈ L(G�
n
) by :

 [C�
n
]BΔ ⊢ [C�

n
]Δ and [D�

n
]AΔ ⊢ [D�

n
]Δ (by �. rule) and [C�

n
] ⊢ [D�

n
] ⊢ [C�

n−1
] (by �.

rule)
 (2) Let w� ∈ L(G�

n
). We observe that w′ cannot start with an a or a b (an A or B on

the left part of a type could not disappear, due to the use of right constructors only);
and w′ cannot contain several c (no S under a constructor) ; thus w� = cw��, where
w�� ∈ {b, a}∗ . We get w� ∈ {c(b∗a∗)k | k ≤ n} , from the following assertion proved by
induction on n and on the length of types Γ for words w ∈ {b, a}∗ : (i) if [C�

n
]Γ ⊢ S , then

w ∈ {(b∗a∗)k | k ≤ n} and (ii) if [D�
n+1

]Γ ⊢ S then w ∈ {a∗(b∗a∗)k | k ≤ n}.

– n = 0 , (i) is clear from L(G�
0
) = {c}.

– (ii), if Γ = BΓ� , we get the first step (i) with the only possibility of
[D�

n+1
]BΓ� ⊢ [C�

n
]BΓ�.

– (ii), if Γ = AΓ� , we have two possibilities [D�
n+1

]AΓ� ⊢ [C�
n
]AΓ� or

[D�
n+1

]AΓ� ⊢ [D�
n+1

]Γ�.
– (i), if Γ = AΓ� , we get the first step with the only possibility of [C�

n
]AΓ� ⊢ [D�

n
]AΓ�.

C�
0
= S

C�
n+1

= C�
n
∕A∗∕B∗

G�
0
= {a ↦ A, b ↦ B, c ↦ C�

0
}

G�
n
= {a ↦ A, b ↦ B, c ↦ [C�

n
]}

G�
∗
= {a ↦ A, b ↦ A, c ↦ [S∕A∗]}

10 This implies that the class has infinite elasticity.
11 We may write t = H instead of [H], when t has no argument type (see Definition 2).

2853Machine Learning (2024) 113:2841–2875

1 3

– (i), if Γ = BΓ� , we have two possibilities [C�
n
]BΓ� ⊢ [D�

n
]BΓ� or [C�

n
]BΓ� ⊢ [C�

n
]Γ�.

 This implies (i), (ii) by induction on n or a shorter type.
– L(G�

∗
) : (1) it clearly contains c{b, a}∗ using [S∕A∗]AΔ ⊢ SΔ (�. rule) and [S∕A∗] ⊢ S

(�. rule)
 (2) w� ∈ L(G�

∗
) has exactly one c (at least one to provide S, and no more, as

explained above for G′
n
); it cannot start with a (otherwise a type part would remain

before S). Therefore, w� ∈ c{b, a}∗.

 ◻

Theorem 11 The constructions show the non-learnability from strings for the classes of
(rigid) grammars allowing iterative types (A∗).

We observe that in these constructions, the number of iterative types (A∗) is
unbounded.

3 Learnability from positive examples

Below we study the problem of learning CDG from positive examples of structures
analogous to the FA-structures used for learning the classical categorial grammars.

3.1 Original algorithm on functor‑argument data

FA Structures. Let Σ be an alphabet. An FA structure over Σ is a binary tree where each
leaf is labelled by an element of Σ and each internal node is labelled by the name of the
binary rule.

Background - RG Algorithm. We recall Buszkowski’s Algorithm Buszkowski and
Penn (1990), called RG in Kanazawa (1998) (see also Moot and Retoré (2012)), where it
is defined for the classical categorial grammars with the rules ∕e and ∖e (binary elimina-
tion rules, like the local rules of CDG �� and �� , without potentials) :

∕e ∶ [A∕B] [B] ⇒ [A] and �e ∶ [B] [B�A] ⇒ [A]

The RG algorithm takes a set D of functor-argument structures as positive examples and
returns a rigid grammar RG(D) compatible with the input if there is one (compatible
means that D is in the set of functor-argument structures generated by the grammar).

Sketch of RG-algorithm, computing RG(D):

1. assign S to the root of each structure
2. assign distinct variables to argument nodes
3. compute the other types on functor nodes according to ∕e and ∖e
4. collect the types assigned to each symbol, this provides GF(D)
5. unify (classical unification) the types assigned to the same symbol in GF(D), and com-

pute the most general unifier �mgu of this family of types.
6. The algorithm fails if unification fails, otherwise the result is the application of �mgu to

the types of GF(D) : RG(D) = �mgu(GF(D)).

2854 Machine Learning (2024) 113:2841–2875

1 3

3.2 Functor‑argument structures for CDG with iterated types

The functor-argument structure and labelled functor-argument structure associated
with a dependency structure proof, are obtained as below.

Definition 12 Let � be a dependency structure proof, ending in a type t. The functor-
argument structure associated to � , denoted faiter(�) , is defined by induction on the length
of the dependency proof � considering the last rule in �.

– if � has no rule, then it is reduced to a type t assigned to a word w, let faiter(�) = w
– if the last rule is: cP1 [c�𝛽]P2 ⊢ [𝛽]P1P2 , by induction let �1 be a dependency structure

proof for cP1 and T1 = faiter(�1) and let �2 be a dependency structure proof for [c��]P2
and T2= faiter(�2) : then faiter(�) is the tree with root labelled by �� and subtrees T1 , T2.

– if the last rule is: [c∗�𝛽]P2 ⊢ [𝛽]P2 , by induction let �2 be a dependency structure
proof for [c∗��]P2 and T2= faiter(�2) : then faI(�) is T2.

– if the last rule is: cP1 [c∗�𝛽]P2 ⊢ [c∗�𝛽]P1P2 , by induction let �1 be a dependency
structure proof for cP1 and T1 = faiter(�1) and let �2 be a dependency structure proof
for [c∗��]P2 and T2= faiter(�2) : faiter(�) is the tree with root labelled by �� and sub-
trees T1 , T2.

– we define similarly the function faiter when the last rule is on the right, using ∕ and
�� instead of ∖ and ��.

– if the last rule is the one with potentials, faI(�) is taken as the image of the proof
above.

The functor-argument structure faiter(�) is obtained from lfaiter(�) (the labelled one)
by erasing the labels [c].

Example 5 Let �(John)=N , �(ran)=[N�S∕A∗] , �(yesterday)= �(fast) =A , then
s3 = ��(John,��(��(ran, fast), yesterday)) are associated to �1 below :

3.3 On RG‑like algorithms and iteration

In this subsection, we discuss that an RG-like algorithm cannot converge when applied
on rigid grammars where the positive examples are functor-argument structures (with-
out dependency names).

2855Machine Learning (2024) 113:2841–2875

1 3

By flat types, we mean types without embedded operators. A grammar is said flat if it
assigns only flat types as in next example. A flat structure denotes a structure associated
with a proof that has only flat types.

Example 6 We consider the following functor-argument structures :

An RG-like algorithm could compute the following assignments and grammar from
{s1, s2, s3}:

In the third column unification (without iterated types) fails for ran ; in the last column, we
sketch a possible type (with iterated types) if a generalized unification is used instead.

Notice that the next annotated sentence s4 would not change the type of ran.

In fact, when applied to rigid grammars in the case where the positive examples are
functor-argument structures (without dependency names), such an RG-like algorithm can-
not converge (in the sense of Gold).

This can be seen, as explained below, using the same grammars as in the limit point
construction for string languages in Béchet et al. (2004) and as in Definition 10, involving
iterated dependency types. In fact, the functor-argument structures are all flat structures,
with only ∕ operators.

Positive structured examples are then of the form :
c, ��(c, b) , ��(��(c, b), b) , ��(c, a),��(��(c, a), a) , ��(��(c, b), a) , ...

Definition 13 We define flat�� and flat��
[A]

 on words by :
flat�� (x1) = x1 = flat��

[A]
(x1) for words of length 1, and

s1 = ��(John, ran)

s2 = ��(John,��(ran, fast))

s3 = ��(John,��(��(ran, fast), yesterday))

s4 = ��(John,��(��(��(ran, fast), yesterday), nearby))

��(John ∶ X1, ran ∶ X1�S) ∶ S

��(John ∶ X�
1
,��(ran ∶ X�

1
�S∕X2, fast ∶ X2) ∶ X�

1
�S) ∶ S

��(John ∶ X��
1
,��(��(ran ∶ X��

1
�S∕X��

2
∕X�

2
, fast ∶ X�

2
) ∶ X��

1
�S∕X��

2
,

yesterday ∶ X��
2
) ∶ X��

1
�S) ∶ S

general form unification
flat rigid grammar

for 2-iteration

John X1,X
�
1
,X��

1
X1 = X�

1
= X��

1
X1

ran

X1�S

X�
1
�S∕X2

X��
1
�S∕X��

2
∕X�

2

fails
X1�S∕X

∗
2

with X2 = X�
2
= X��

2

fast X2,X
�
2

X2 X2

yesterday X��
2

X��
2

X2

C�
0
= S

C�
n+1

= C�
n
∕A∗∕B∗

G�
0
= {a ↦ A, b ↦ B, c ↦ C�

0
}

G�
n
= {a ↦ A, b ↦ B, c ↦ [C�

n
]}

G�
∗
= {a ↦ A, b ↦ A, c ↦ [S∕A∗]}

2856 Machine Learning (2024) 113:2841–2875

1 3

flat�� (x1.w1) = ��(x, flat�� (w1)) ;
flat��

[A]
(x1.w1) = ��

[A](x, flat��
[A]
(w1)) ;

we extend the notation flat�� and flat��
[A]

 to sets of words (as the set of word images).

Let FL(G) denote the language of functor-arguments structures of G. We use the same
grammars as in the limit point construction for string languages in Sect. 2.3:

Lemma 14 FL(G�
n
) = flat�� ({c(b∗a∗)k | k ≤ n}) and FL(G�

∗
) = flat�� (c{b, a}∗)

This property follows from the similar property on string language in Sect. 2.3, and
the above remark that the functor-argument structures are all flat structures, with only ∕
operators.

Theorem 15 FL(G�
n
) and FL(G�

∗
) define a limit point that establishes the non-learnability

from functor-argument structures for the underlying classes of grammars (rigid or k-val-
ued) allowing iterated dependency types (A∗) with at least three words.

These impossibility results are to be contrasted with the case without iterated depend-
ency types (A∗).

3.4 A limit point for labelled functor‑arguments structures

If we drop restrictions such as k-valued, and consider learnability from labelled functor-
arguments structures, we have a limit point as follows :

In fact, the functor-argument structures are all flat structures, with only ∕ operators and
always the same label A.

Let LFL(G) denote the language of labelled functor-argument structures of G, we have :

Lemma 16 LFL(Gn) = flat��
[A]
({c ak | k ≤ n}) and LFL(G∗) = flat��

[A]
(c a∗)

Proof Only three rules apply to Gn,G∗ : �. (local dependency rule), �. and �. (�-depend-
ency rules), all of them enjoying the subformula property. We consider the string languages
and show that L(Gn) = {c ak | k ≤ n} and L(G∗) = (c a∗)

– L(G0) : (1) it clearly contains c (assigned to S) and (2) only c since no rule applies to
{A, S}.

– L(Gn) (n > 0). We have Cn = Cn−1∕A

 (1) By induction L(Gn) contains {c ak | k < n} ; it also contains w = c an , because :
[Cn]A ⊢ [Cn−1] (by �. rule)

 (2) Let w� ∈ L(Gn). We observe that w cannot start with an a (an A on the left part
of a type could not disappear, due to the use of right constructors only); and w′ cannot

C0 = S

Cn+1 = Cn∕A

G0 = {a ↦ A, c ↦ C0}

Gn = {a ↦ A, c ↦ [Cn], c ↦ [Cn−1],… , c ↦ C0}

G∗ = {a ↦ A, c ↦ [S∕A∗]}

2857Machine Learning (2024) 113:2841–2875

1 3

contain several c (no S under a constructor) ; thus w� = cw��, where w�� ∈ {a}∗ . Clearly
if Γ has more that n occurrences of A, CnΓ ⊬ S , hence w ∈ {c ak | k ≤ n}

– L(G∗) : (1) it clearly contains c{a}∗ using [S∕A∗]AΔ ⊢ SΔ (�. rule) and [S∕A∗] ⊢ S (�.
rule)

 (2) w� ∈ L(G∗) has exactly one c (at least one to provide S, and no more, as explained
above for Gn); it cannot start with a (otherwise a type part would remain before S).
Therefore, w� ∈ c{a}∗.

The language characterization extends to the (labelled) functor-argument structures,
because types have only ∕ operator, providing flat structures, and they have the same label
A. ◻

Theorem 17 LFL(Gn) and LFL(G∗) define a limit point that establishes the non-learnabil-
ity from labelled functor-argument structures for the classes of grammars allowing iterated
dependency types (A∗) and at least 3 words.

The similar question for rigid or k-valued CDG with iteration is left open.

3.5 Limit points for labelled and inlabelled sependency structures

We show that the former limit point constructions also give limit points for the dependency
structure languages. Let �k and �∗,k denote the following proof trees (with word positions):

In fact, the dependency structures corresponding to �k and �∗,k are the same, let DSk
denote this dependency structure.

We recall that Δ(G) denotes the DS-language of G (the generated structures, see
definition 5).

Lemma 18 Δ(Gn) = {DSk | k ≤ n} and Δ(G∗) = {DSk | k ≥ 0}

Proof These proof trees are generated by grammars Gn,G∗ respectively (this can be shown
using the former string language characterization and the discussion concerning these
grammars). ◻

Note that ∪i≥1Δ(Gi) = Δ(G∗) , and that these Δ(Gi) form an infinite ascending chain.

Theorem 19 The limit point Δ(Gn),Δ(G∗) establishes the non-learnability from
(labelled) dependency structures for the underlying classes of grammars: those allowing
iterated dependency types (A∗).

2858 Machine Learning (2024) 113:2841–2875

1 3

Remark if we drop the dependency names in dependency structures, and consider the lan-
guages generated in this way, then we obtain a limit point in the rigid case, based on the
previous limit point construction G�

n
,G�

∗
 in Definition 10 : these grammars generate the

unlabelled version of {DSk | k ≤ n} and of {DSk | k ≥ 0} respectively.

The similar learnability question from labelled dependency structures for rigid or k-rigid
CDG with iteration is left open. It would be interesting to know the amount of information
needed to have the possibility to design a grammar learning algorithm in this paradigm,
and to understand better the frontier between learnability and un-learnability.

3.6 Bounds and string learnability

A List-like Simulation. In order to simulate an iterated type such that :

we can distinguish two types, one type a for a first occurrence in a sequence and one type
a∖a for following occurrences in a sequence of elements of type a (this encodes in fact one
or more iterations of a). As in :

We have two assignments for ran in “John ran”, ran ↦ n∖s but in “John ran fast, yester-
day”, ran ↦ n�s∕a . Unfortunately, this approach increases the number of types in the lexi-
con: if a type includes N subtypes of the form A∗ , the simulation associates 2N types. For
instance, x∕a∗∕b∗ is transformed into x, x∕a , x∕b and x∕a∕b . A similar encoding is given
for an extension of pregroups in Béchet et al. (2008).

In the case of structures, note that, however, such a simulation induces a particular and
rather unnatural dependency structure (in the example above, every adverb is subordinate
to the next adverb rather than directly to the verb). It is more pertinent for theoretical issues
on string languages.

Bounds. As a corollary, for a class of CDG without discontinuous dependencies for
which the number of iterated types is bounded by a fixed N, the simulation leads to a class
of grammars without iterated types, which is also k-valued: the number of assignments per
word is bounded by a large but fixed number (k = 2N). This means that the class of rigid
CDG allowing at most N iterated types is learnable from strings. This fact also extends to
k-valued CDG, not only to rigid (1-valued) CDG.

4 Incremental learning

Below we show an incremental algorithm strongly learning CDG from structures DS
(rather than from strings). This means that Δ(G) serves as the observation set Φ(G) and that
the limit grammar is strongly equivalent (in the sense of Definition 20) to the target gram-
mar. From the very beginning, it should be clear that, in contrast with the constituent struc-
ture grammars and also with the classical CG, the existence of such learning algorithm is
not guaranteed because, due to the iterated types, the straightforward arguments of sub-
formulas’ set cardinality do not work. On the other hand, the learning algorithm A below

[𝛽∕a∗]P0aP1 … aPn ⊢ [𝛽]P0P1…Pn

John ran fast yesterday nearby

n [n�s∕a] a [a�a] [a�a]

2859Machine Learning (2024) 113:2841–2875

1 3

is incremental in the sense that every next hypothetical CDG A(�[i + 1]) “extends” the
preceding grammar A(�[i]) and it is so without any rigidity constraint (the algorithm and
results apply without bound on the number of types). Incremental learning algorithms are
rare. Those that we know, are unification-based and they apply only to rigid grammars (cf.
Buszkowski and Penn 1990; Béchet et al. 2004). They cannot be considered as practical
(at least for NLP) because the real application grammars are never rigid. In the cases when
k-valued learnability is a consequence of rigid learnability, it is more of theoretical interest
because the existence of a learning algorithm is based on Kanazawa’s finite-valued-relation
reduction Kanazawa (1998), that may be untractable.

4.1 Grammar order and incrementality

Our notion of incrementality is based on a partial “flexibility” order ⪯ on CDGs. Basi-
cally, the order corresponds to grammar expansion in the sense that G1 ⪯ G2 means that G2
defines no less dependency structures than G1 and defines dependency structures at least as
precise as those of G1.

Definition 20 (Strong equivalence) Let G1 and G2 be two CDG, G1 ≡s G2 iff
Δ(G1) = Δ(G2).

Definition 21 Δ is said to be monotonic with respect to a partial order ⪯ on CDGs iff for
any CDG G1 , G2:

if G1 ⪯ G2 then Δ(G1) ⊆ Δ(G2).
When this holds ⪯ is said to induce structure-monotonicity.

Such a partial order ⪯ is an element of our definition of incremental learning.

Definition 22 (Incremental learning algorithm) Let A be an inference algorithm for
CDGs from DS and � be a training sequence for a CDG G.

1. A is monotonic on � if A(�[i]) ⪯ A(�[j]) for all i ≤ j.

2. A is faithful on � if Δ(A(𝜎[i])) ⊆ Δ(G) for all i.
3. A is expansive on � if 𝜎[i] ⊆ Δ(A(𝜎[i])) for all i.

A is said incremental w.r.t. ⪯ when it satisfies properties 1, 2 and 3.12

Theorem 4 Let ⪯ denote a partial order that induces structure-monotonicity. Let � be a
training sequence for a CDG G. If an inference algorithm A is monotonic, faithful, and
expansive on �, and if A stabilizes on � then lim

i→∞
A(�[i]) ≡s G.

Proof Indeed, stabilization implies that lim
i→∞

A(�[i]) = A(�[T]) for some T. Then
Δ(A(𝜎[T])) ⊆ Δ(G) because of faithfulness. At the same time, by expansiveness and

monotonicity, Δ(G) = � =
∞⋃
i=1

𝜎[i] ⊆
∞⋃
i=1

Δ(A(𝜎[i])) ⊆
T⋃
i=1

Δ(A(�[i])) ⊆ Δ(A(�[T])). ◻

12 The notions of faithful and of expansive are close to those of prudent and of consistent in Kanazawa
(1998).

2860 Machine Learning (2024) 113:2841–2875

1 3

We now define a particular partial order ⪯cr called “flexibility PO” in the case of CDG
flexible types, where cr stands for “consecutive repetitions”. This PO is the reflexive-tran-
sitive closure of the following relation <cr (basic flexibility relation).

Definition 23 (Basic flexibility relation and flexibility PO)

1. fo r a l l i ≥ 0 , 0 ≤ j ≤ m , n ≥ 0 : [lm�⋯ �lj��⋯ ���lj−1�⋯ l1�g∕r1 ⋯ ∕rn]
P

<cr [lm�⋯ �lj��
∗�lj−1�⋯ l1�g∕r1 ⋯ ∕rn]

P and for all i ≥ 0 , 0 ≤ k ≤ n , m ≥ 0 :
[lm�⋯ l1�g∕r1 ⋯ ∕rk−1∕�⋯ ∕�∕rk∕⋯ ∕rn]

P <cr [lm�⋯ l1�g∕r1 ⋯ ∕rk−1∕�
∗∕rk∕⋯ ∕rn]

P
where c is repeated successively i times in �∖⋯ ∖�∖ or in �∕⋯ ∕�∕ accordingly (i may
be 0).

2. 𝜏 <cr 𝜏
′ for sets of types �, �′, if either:

 (i) �� = � ∪ {t} for a type t ∉ � or
 (ii) � = �0 ∪ {t�} and �� = �0 ∪ {t��}

 for a set of types �0 and some types t′, t′′ such that t′ <cr t
′′.

 3. 𝜆 <cr 𝜆
′ for two type assignments � and �′, if 𝜆(w�) <cr 𝜆

�(w�) for a word w′ and
�(w) = ��(w) for all words w ≠ w′.

 4. ⪯cr is the PO which is the reflexive-transitive closure of

It is not difficult to prove that the expressive power of CDG grows monotonically with
respect to this PO:

Lemma 24 Let G1 and G2 be two CDG such that G1 ⪯cr G2 . Then Δ(G1) ⊆ Δ(G2) and
L(G1) ⊆ L(G2).

In other words <cr induces structure-monotonicity, and Theorem 4 will apply.

4.2 K‑star revealing grammars

As we explain it in Sect. 3, the unlearnability of rigid or k-valued CDG is due to the use
of iterated types. Such types are unavoidable in real grammars (cf. the iterated dependency
circ, as illustrated in Fig. 1 by three successive circumstantial arguments of one verb). But
in particular in the real application grammars, the iterated types have very special proper-
ties. Firstly, the discontinuous dependencies are never iterated. Secondly, in natural lan-
guages, the optional constructions repeated successively several times (two or more) are
exactly those iterated (for example a circumstancial is an optional argument of a verb, but
the same verb can occur with successively repeated circumstancial arguments, like verb
“fallait” in Figure 1). This is the resource we use to resolve the learnability problem. To
formalize these properties we need some notations and definitions. The main definition
concerns a restriction on the class of grammars that is learned. This class corresponds to
grammars where an argument that is used at least K times in a DS must be an iterated argu-
ment. Such grammars are called K-star revealing grammars.

Definition 25 (K-star-generalization) Let K > 1 be an integer. We define a CDG CK(G) ,
the K-star-generalization of G, by recursively adding for every word w and every local
dependency name d the types

2861Machine Learning (2024) 113:2841–2875

1 3

and

when w has a type assignment w ↦ t , where

every t1,… , tk is either d or an iterated dependency type x∗ and among t1,… , tk there are at
least K occurrences of d or at least one occurrence of d∗ . Symmetrically, we also add the
corresponding types if t1,… , tk appear in the right part of t.

Example 7 For instance, with K = 2 , for the type [a�b∗�a�S∕a∗] , we add the types
[a�a�S∕a∗] and [a�b∗�a�S] but also [a∗�S∕a∗] and [S∕a∗] . Recursively, we also add
[a�a�S] , [a∗�S] and [S]. The size of CK(G) can be exponential with respect to the size of G.

Definition 26 (K-star revealing CDG) Let K > 1 be an integer. CDG G is K-star reveal-
ing if CK(G) ≡s G . The class of CDGs that are K-star revealing is noted CDG

K→∗.

Example 8 For instance, if we define the grammar G(t) by A ↦ [a],B ↦ [b],C ↦ t , where
t is a type, then we can prove that:

– G([a∗�S∕a∗]) , G([a∗�b∗�a∗�S]) and G([a∗�b�a∗�S]) are all 2-star revealing,
– G([a∗�a�S]) , G([a∗�b∗�a�S]) and G([a�b∗�a�S]) are not 2-star revealing.

We see that in a K-star revealing grammar, one and the same iterated type d∗ may be
used in a type several times. Usually, each occurrence is not in the same block as the local
dependency name d. Besides this, there should be less than K occurrences of d in a block if
there is no occurrence of d∗ and this block is separated from other blocks by types that are
not iterated.

4.3 Inference algorithm

A vicinity corresponds to the part of a type that is used in a DS.

Definition 27 (Vicinity) Given a DS D, the incoming and outgoing dependencies of a
word w can be either local, anchor or discontinuous. For a discontinuous dependency d on
a word w, we define its polarity p (↖,↘,↙,↗), according to its direction (left, right) and
as negative if it is incoming to w, positive otherwise.

Let D be a DS in which an occurrence of a word w has : the incoming projective depend-
ency or anchor h (or the axiom S), the left projective dependencies or anchors lk,… , l1 (in
this order), the right projective dependencies or anchors r1,… , rm (in this order), and the
discontinuous dependencies d1,… , dn ∈ � with their respective polarities p1,… , pn.

Then the vicinity of w in D is the type

[l1�⋯ �la�d
∗�m1�⋯ �mb�h∕r1∕⋯ ∕rc]

P

[l1�⋯ �la�m1�⋯ �mb�h∕r1∕⋯ ∕rc]
P

t = [l1�⋯ �la�t1�⋯ �tk�m1�⋯ �mb�h∕r1∕⋯ ∕rc]
P,

V(w,D) = [l1�…�lk�h∕rm∕…∕r1]
P,

2862 Machine Learning (2024) 113:2841–2875

1 3

in which P is a permutation of p1d1,… , pndn in a standard lexicographical order <lex , for
instance, compatible with the polarity order ↖<↘<↙<↗.

For instance, the verb fallait in the DS in Figure 1 has the vicinity

The vicinity corresponding to donnée (given) in Figure 3 is

Definition 28 (Algorithm ���(K)) Figure 5 shows the inference algorithm ���(K)
which, for every next DS in a training sequence, transforms the observed local, anchor and
discontinuous dependencies of every word into a type with repeated local dependencies by
introducing iteration for each group of at least K consecutive local dependencies with the
same name.

Example 9 We illustrate the learning algorithm, for K = 2 , with the following 2-star-
revealing CDG Gtarget as target grammar:

John ↦ [N] to_the_station ↦ [L]

ran ↦ [N�A∗�S∕A∗∕L∕A∗], [N�A∗�S∕A∗]

seemingly, slowly, alone, during_half_an_hour, every_morning ↦ [A]

Algorithm ���(2) on (�[i]) will add for ran:
ran ↦ [N�S] for (i = 1) :

[pred�circ�circ�circ�S∕a−obj].

[aux]↖clit−3d−obj↖clit−a−obj

Fig. 5 Inference algorithm
���(K)

2863Machine Learning (2024) 113:2841–2875

1 3

ran ↦ [N�S∕A] for (i = 2) :

ran ↦ [N�S∕L∕A] for (i = 3) :

ran ↦ [N�A�S∕A∗] for (i = 4) :

etc...
ran ↦ [N�A�S∕A∗∕L∕A∗] for:

The algorithm also assigns from this training sequence :
John ↦ [N]

to_the_station ↦ [L]

seemingly, slowly, alone, during_half_an_hour, every_morning ↦ [A]

Notice that, given a word, each type assigned at some stage of the algorithm is sub-
sumed by a type in the target grammar:

[N�S] ⪯cr [N�A
∗�S∕A∗] etc.

[N�S∕L∕A] ⪯cr [N�A
∗�S∕A∗∕L∕A∗]

2864 Machine Learning (2024) 113:2841–2875

1 3

We will show in the next section that ���(K) learns CDG
K→∗.

4.4 Learnability properties

The section shows that the class of K-star revealing CDG is (incrementally) learnable from
DS ; to prove Theorem 5, we consider the inference algorithm ���(K) (see Figure 5) and
introduce further definitions.

Lemma 29 For G a CDG, there exists a grammar G′ such that G ≡s G
′ and the poten-

tials that appear in the type of G verify the standard lexicographical order <lex used
to define vicinities. The potentials of CK(G�) are also compatible with the order and
CK(G) ≡s C

K(G�).

Proof The types in the lexicon of G with a potential of the form P1 ↙ CP ↖ CP2 can
never be used in a proof of a DS because it would create an internal dependency which are
forbidden (see non-internal constraint in Definition 3). Thus, those types can be deleted in
G without changing the resulting language. For the other types, the order of the valencies
in potentials is not important as long as we do not create internal dependency. For CK(G)
and CK(G�) , their potentials are the same as the potentials of G and G′ . ◻

For the rest of the section, we fix the order for potentials as the one defined by
vicinity.

Definition 30

1. Repetition blocks (R-blocks) : For d ∈ � ,

 Elements of LBd and of RBd are called d R-blocks.
2. Patterns: Patterns are defined exactly as types, but in the place of � , we use � ,

where � is the set of gaps � = {<d> || d ∈ �} . Moreover, for any �, �,P and d,
[𝛼� <d> � <d> �𝛽]P and [𝛼∕ <d> ∕ <d> ∕𝛽]P are not patterns. The head, the anchors
and the valencies of a type cannot be replaced by gaps. Gaps cannot be iterated.

3. Superposition and indexed occurrences of R-blocks :
 (i) Let � be a pattern, �1,… , �m be R-blocks and <d1>,… ,<dm> be gaps. Then

𝜋(<d1>← 𝛽1,… ,<dm>← 𝛽m) is the expression resulting from � by the parallel substitu-
tion of the R-blocks for the corresponding gaps.

 (ii) Let E be a type or a vicinity. Then � is superposable on E if:

 for some <d1>,… ,<dm>, 𝛽1,… , 𝛽m , such that all �i are di R-blocks (�i are not empty).

A repetition block in LBd is the part of a type that can correspond to a list of
d dependencies on the left and a repetition block in RBd is the part of a type that
can correspond to a list of d dependencies on the right. For instance, for the type

LBd = {t1�⋯ �ti || i > 0, t1,… , ti ∈ {d, d∗}}

RBd = {t1∕⋯ ∕ti || i > 0, t1,… , ti ∈ {d, d∗}}

E = 𝜋(<d1>← 𝛽1,… ,<dm>← 𝛽m)

2865Machine Learning (2024) 113:2841–2875

1 3

[a�b∗�d�d�d∗�h∕a] , the repetition block d∖d corresponds to a list of 2 d dependen-
cies on the left and the repetition block d�d�d∗ corresponds to a list of at least 2 d
dependencies on the left. A pattern is a type with gaps that may be filled by a repe-
tion block of a particular dependency name. The main characteristic of a pattern is that
two consecutive gaps cannot correspond to the same dependency name. For instance,
[<a> � � <d> �h∕ <a>] is a pattern but [<a> � � <d> � <d> �h∕ <a>] is not
a pattern. A type is obtained from a pattern by replacing the gaps by a repetition block
of the same dependency name. For instance the type [a�b∗�d�d�d∗�h∕a] is obtained
from [<a> � � <d> �h∕ <a>] by replacing the left gap <a> by a, the gap
by b∗ , the gap <d> by d�d�d∗ and the right gap <a> by a. This substitution is noted :
[<a> � � <d> �h∕ <a>](<a>← a,← b∗,<d>← d�d�d∗,<a>← a) . Gaps are
introduced only for types that can be iterated. Thus, there is no gap for the heads, the
anchors and the valencies of types.

Lemma 31 For every vicinity V there is a single pattern � superposable on V and a single
decomposition (called R-decomposition)

Proof The proposition comes from the fact that a vicinity contains no iterated type, a pat-
tern cannot have 2 consecutive gaps for the same dependency and a repetition block is not
empty. ◻

The verb fallait in Figure 1 has the vicinity [pred�circ�circ�circ�S∕@fs∕a−obj] . The
only pattern superposable on this vicinity is:

and the corresponding type is obtained through the following substitution:

The vicinity of the participle ramenée is:

Lemma 32 For D ∈ Δ(G) and an occurrence w of a word in D, let
V(w,D) = 𝜋(<d1>← 𝛽1,… ,<dm>← 𝛽m) be the R-decomposition of the vicinity of w. There
exists a type t that is assigned to w in the lexicon of CK(G) and can be used in a proof of D
for w such that � is superposable on t.

Proof For D ∈ Δ(G) and w a word of D. There exists a type that is associated to w in the
lexicon of G and is used in a proof of D. Thus, there exists at least one type associated to
w in the lexicon of CK(G) that can be used for w in a proof of Δ . Let t be the minimum
length type associated to w in the lexicon of CK(G) that can be used for w in a proof of Δ .
The R-decompostion of the vicinity of w in D is V(w,D) = 𝜋(<d1>← 𝛽1,… ,<dm>← 𝛽m) .
The vicinity of w in D must match t because we suppose that the valencies of the potential
are ordered (Proposition 29). If � is not superposable on t, it means that some part of t does
not correspond to V(w, D): It must be an iterative type x∗ , with x ∈ � that corresponds to
no dependency in the match. Because the types assigned to w in the lexicon of CK(G) are

V = 𝜋(<d1>← 𝛽1,… ,<dm>← 𝛽m)

𝜋 = [<pred> � <circ> �S∕ <@fs> ∕ <a−obj>]

𝜋(<pred>← pred,<circ>← circ�circ�circ,<@fs>← @fs,<a−obj>← a−obj)

[aux−a∕l−obj]↖clit−a−obj = [aux−a∕ <l−obj>]↖clit−a−obj(<l−obj>← l−obj)

2866 Machine Learning (2024) 113:2841–2875

1 3

closed when an iterated type is removed, we could find a smaller type for w in CK(G) that
can be used in a proof of D that is not possible. Thus � is superposable on t. ◻

Lemma 1 The inference algorithm ���(K) is monotonic, faithful and expansive on every
training sequence � of a K-star revealing CDG.

Proof By definition, the algorithm ���(K) is monotonic (the lexicon is always extended).
It is expansive because for �[i] , we add types to the grammar that are based on the vicini-
ties of the words of �[i] . Thus, 𝜎[i] ⊆ Δ(���(K)(𝜎[i])).

To prove that ���(K) is faithful for �[i] of Δ(G) = Δ(CK(G)) , we prove that
���(K)(�[i]) ⪯cr C

K(G) . In fact, we prove that for any type t in the lexicon of ���(K)(�[i]) ,
there exists a type tG in the lexicon of CK(G) such that t = tG or t = t1 <cr ⋯ <cr tn = tG
with n > 0 , and t1,… , tn types.

Let t be a type of the word w in the lexicon of ���(K)(�[i]) . The algorithm
��� produces t for the analysis D of a DS. The analysis D is a positive example thus
D ∈ Δ(G) = Δ(CK(G)) . By Proposition 32, if � is the pattern superimposable on the
vicinity V(w, D), there exists a minimum length type t′ in the lexicon of CK(G) assigned
to w which can be used in a proof of D. The two superimposings of � for t and t′ are :
t = 𝜋(<d1>← 𝛼1,… ,<dm>← 𝛼m) and t� = 𝜋(<d1>← 𝛽1,… ,<dm>← 𝛽m) . For 1 ≤ i ≤ m ,
�i contains either a list of at most K − 1 di or d∗

i
 and �i can be any di R-block (a list of di and

d∗
i
).
The type t′ is not more general than or not equal to t if ∃i, 1 ≤ i ≤ m , such that �i = d∗

i

and �i = di ⋯ di (di l times and no d∗
i
). It means that the vicinity has exactly l depend-

encies labelled by di for the position i of the pattern and l must be greater than or equal
to K (�i = d∗

i
). The type t�� = 𝜋(<d1>← 𝛽1,… ,<di>← 𝛼i,… ,<dm>← 𝛽m) must be also

assigned to w in CK(G) , associated is more general than t′ (it can be used in a proof of D)
but is strictly smaller than t′ which is not possible (t′ has the minimum type length). Thus t′
more general or equal to t. ◻

Lemma 2 The inference algorithm ���(K) stabilizes on every training sequence � of a
K-star revealing CDG.

Proof Because CK(G) has a finite number of types, the number of corresponding patterns
is also finite. Thus the number of patterns that correspond to the DS in Δ(CK(G)) (and of
course in �) is also finite. Because the R-blocks are generalized using ∗ by ���(K) when
their length is greater or equal to K, the number of R-blocks used by ���(K) is finite. Thus
the number of generated types is finite and the algorithm certainly stabilizes. ◻

Theorem 5 The class CDG
K→∗ of K-star revealing CDG is (incrementally) learnable

from DS.

This theorem results from the two preceding lemmas, Lemma 1 and Lemma 2.

2867Machine Learning (2024) 113:2841–2875

1 3

5 Simple K‑star grammars

A K-star revealing grammar G verifies a complex property that is difficult or even impos-
sible to check: CK(G) ≡s G . We need to define classes of CDG using a more constructive
property. This section reconsiders a recent syntactic criterion on categorial grammar types
that is easy to check, leading to the definition of simple K-star grammars.13

5.1 Simple K‑star types and grammar classes

The original definition of “simple K-star” Béchet and Foret (2016) was restricted to
CDG with empty potentials and related to consecutive repetitions. We consider it
below in the full general case with potentials. Note that considering string languages,
the class of CDG with empty potentials generates the context-free languages, but with
potentials it goes beyond this class. We also introduce a variant called “global simple
K-star” corresponding to a different reading of the repetition principle, when repeti-
tions need not be consecutive in a type.

Definition 33 (Simple K-star) Let K > 1 be an integer. Let t denote a categorial type and
d denote a dependency name. The type t is said to be simple left K-star on d if for any suc-
cessive occurrences l1∖l2∖⋯ lp∖ on the left where each li is either d or some x∗ , there are:
(1) at most K − 1 occurrences of d and (2) no occurrence of d if there exists at least one
occurrence of d∗ . The type t is said to be simple left K-star if it is simple left K-star on d,
for all d. These two notions are defined similarly on the right.

The type t is said to be simple K-star if it is simple left K-star and simple right K-star.
The CDG G is said to be simple K-star whenever all types in its lexicon are simple

K-star.
The class of CDG that are simple K-star is noted CDG

K∼∗.

Example 10 For a type t, we define the grammar G(t) by the lexicon
{a↦ [A], b↦ [B], c↦ t} . Then for t1=[A

∗�S∕A∗] , t2=[A
∗�B∗�A∗�S] , t3=[A

∗�B�A∗�S] :
G(t1),G(t2),G(t3) are simple 2-star and for t4=[A∗�A�S] , t5=[A∗�B∗�A�S] , t6=[A�B∗�A�S] :
G(t4),G(t5),G(t6) are not simple 2-star. In fact, for G(t4) , the type assigned to c contains A∗

and A in A∗�A� on the left, for G(t5) , A∗ and A are separated by B∗ and for G(t6) , there are 2
occurrences of A (separated by B∗).

Definition 34 (Global Simple K-star) Let K > 1 be an integer. Let t denote a categorial
type and d denote a dependency name. The type t is said to be global simple left K-star
on d if for any successive occurrences l1∖l2∖⋯ lp∖ on the left there are: (1) at most K − 1
occurrences of d and (2) no occurrence of d if there exists at least one occurrence of d∗ .
The type t is said to be global simple left K-star if it is global simple left K-star on d, for all
d. These two notions are defined similarly on the right.

The type t is said to be global simple K-star if it is global simple left K-star and global
simple right K-star.

13 By “simple” we mean here “un-nested”

2868 Machine Learning (2024) 113:2841–2875

1 3

The CDG G is said to be global simple K-star whenever all types in its lexicon are
global simple K-star.

The class of CDG that are global simple K-star is noted CDG
K∼g∗.

Notice that given K, the set of global simple K-star is still infinite (the set of gram-
mars CDG

K∼g∗ is infinite): consider for example S�A∗�B∗�A∗�B∗
⋯

Obviously “global simple K-star” entails “simple K-star”, at each stage of the two
above definitions, and a global simple K-star grammar is simple K-star.

Example 11 In Example 10, grammars G(t1),G(t2),G(t3) are global simple 2-star and
G(t4),G(t5),G(t6) are not global simple 2-star.

Limit point The grammars in Sect. 3.3 are simple K-star (∀K>1). The class of rigid
simple K-star CDG ∀K>1 is thus unlearnable from strings. (also for k-valued classes).

These grammars are moreover global simple K-star. A similar unlearnability result
thus holds for the class of rigid global simple 2-star CDG (also for any K>1 or non
rigid class).

5.2 Simple K‑star grammars and K‑star revealing grammars

A K-star revealing grammar G is a CDG such that its K-star generalisation CK(G) is
equivalent to itself: CK(G) ≡s G . This definition is not constructive because one must
prove that two grammars generate the same set of dependency structures. For instance,
the following CDG G1 corresponds to the string language xa∗ : x ↦ [S∕A∗] ; a ↦ [A]
. The K-star generalisation of this grammar CK(G1) is: x ↦ [S∕A∗], [S] ; a ↦ [A] . G1
and CK(G1) are equivalent because a dependency structure of G1 can be obtained from
a dependency structure of CK(G1) by replacing the type [S] assigned to x by [S∕A∗] .
For complex grammars the problem is more difficult and may be even not decidable
for the full class of CDG (CDG with potentials are beyond context-free grammars); In
one direction, equivalence problems are shown decidable for large grammar classes in
Sénizergues (2002).

Conversely, the notion of being a simple K-star grammar can be easily checked: each
type in the lexicon must be checked independently to the other types. Thus it is simpler to
use the class of simple K-star grammars rather than the class of K-star revealing grammars.

Theorem 6 A simple K-star grammar is a K-star revealing grammar.

Proof Let G be a simple K-star grammar. We have to prove that CK(G) ≡s G or equiva-
lently that the sets of DS are equal: Δ(CK(G)) = Δ(G) . Because CK(G) has the same lexicon
as G except that some types are added to some words, Δ(G) ⊆ Δ(CK(G)) . For the reverse
inclusion, we have to look at the types that are added to the lexicon of G in the K-star gen-
eralization CK(G) . Potentially, for a word w and a dependency name d, the following types
have to be added:

[l1�⋯ �la�d
∗�m1�⋯ �mb�h∕r1∕⋯ ∕rc]

and [l1�⋯ �la�m1�⋯ �mb�h∕r1∕⋯ ∕rc]

2869Machine Learning (2024) 113:2841–2875

1 3

when w has an assignment w ↦ t where

every t1,… , tp is either d or an iterated dependency type x∗ and among t1,… , tp there are at
least K occurrences of d or at least one occurrence of d∗ (and symmetrically).

Because G is a simple K-star grammar, the p successive occurrences t1,… , tp of t con-
tain at most K − 1 occurrences of d and contain no occurrence of d or no occurrence of d∗ .
It means that t1,… , tp contain at least one occurrence of d∗ and no occurrence of d: Each
ti is an iterated dependency type x∗ and from them at least one is d∗ . As a consequence, a
vicinity of a DS that matches one of the added types also matches t and the DS is also gen-
erated by G. G and the grammar obtained by adding the two types are equivalent.

Moreover, the grammar with the two new types is also a simple K-star grammar. The
new types verify the condition of the types of a simple K-star grammar. Let t′

1
∖⋯ ∖t′

q
 be

q successive occurrences on the left of one of the new types. If the added d∗ type or la and
m1 aren’t in t′

1
∖⋯ ∖t′

q
 , the q occurrences verify the condition for simple K-star grammars.

Otherwise, the condition on t for simple K-star grammars holds for a segment of successive
occurrences where t1∖⋯ ∖tp is inserted in t′

1
∖⋯ ∖t′

q
 or replaces d∗ in t′

1
∖⋯ ∖t′

q
 . As a conse-

quence, t′
1
∖⋯ ∖t′

q
 must also verify the condition for simple K-star grammars.

Thus, the added types don’t change the DS-language and define a simple K-star gram-
mar. Recursively, the completion algorithm, that starts with a simple K-star grammar G,
ends with a simple K-star grammar CK(G) that is equivalent to G: G is K-star revealing.
 ◻

Corollary 2 The class CDG
K∼∗ of simple K-star CDG is (incrementally) learnable from

DS. The class is learnt by the inference algorithm ���(K).

In fact, the class of simple K-star grammars and the class of K-star revealing gram-
mars are not identical. Some K-star revealing grammars are not simple K-star grammar. A
very simple reason for this fact comes from the syntactical definition of the simple K-star
grammars versus the language equivalence definition of the K-star revealing grammars. It
is easy to define a grammar where some part of the lexicon is not used. This part does
not create a problem for the definition of a K-star revealing grammar but is a problem for
the definition of a simple K-star grammar. For instance, the following grammar is a 2-star
revealing grammar (a can never be used) but is not a simple 2-star grammar (2 successive
A on the left of [A�A�S]): x ↦ [S] ; a ↦ [A�A�S] .

A more interesting example is given by x ↦ [S], [A�A∗�S] ; a ↦ [A] : It is a 2-star
revealing grammar that has only useful types but is not simple 2-star. It is not simple 2-star
because the type [A�A∗�S] contains the two successive types A and A∗ on the left. The
completion mechanism gives the following grammar: x ↦ [S], [A�A∗�S], [A�S], [A∗�S] ;
a ↦ [A] ; this grammar is equivalent to the initial one and thus it is 2-star revealing.

Moreover, there exist DS-languages that are generated by K-star revealing grammars but
are not generated by any simple K-star grammar.

Theorem 7 Let G2 be the 2-star revealing grammar:

There is no simple 2-star grammar that generates Δ(G2).

t = [l1�⋯ �la�t1�⋯ �tp�m1�⋯ �mb�h∕r1∕⋯ ∕rc],

x ↦ [A�B∗�A�S], [A∗�S] a ↦ [A] b ↦ [B]

2870 Machine Learning (2024) 113:2841–2875

1 3

Useless types For a CDG, some parts of the lexicon may be useless. It can be all the
types associated to a word (a word that doesn’t appear in the language generated by the
grammar), one or several types of a word (the word appears in the language but the deri-
vations cannot use these types). It can also be some iterated type of useful types when
it is impossible to define a derivation ending in this type. For instance, for the grammar
x ↦ [Z∗�S] , there is only one DS, [Z∗�S] is useful but the left iterated type Z∗ is useless.

We suppose below that we have a simple 2-star grammar that generates Δ(G2) and that
has no useless part (in the previous example, a simplified grammar would be x ↦ [S]).

Proof The DS-language Δ(G2) is the set of dependency structures that have one main head
x and a set of dependent on the left that can be either one a, none, one or several b and one
a or that can be none, one or several a. For this grammar, the types associated to a and
to b are respectively [A] and [B] (a DS contains the local dependency names A and B for
dependencies ending in a and b). The types associated to x are of the form [t1�⋯ �tp�S]
where each ti is A, B, A∗ or B∗ . Because the number of b is not bound in the DS-language,
there exists at least one type associated to x that contains at least one B∗ . The type cannot
contain A∗ and it must have exactly two local dependency names A that must be the left and
the right ends of the left part of the type (t1 = A and tp = A). The part between t1 and tp can
only be occurrences of B or B∗ . Because the grammar is simple 2-star and because one of
them is B∗ , the other cannot be B. Thus the type is [A�B∗�⋯ �B∗�A�S] . But it is not possi-
ble because A�B∗�⋯ �B∗�A contains 2 occurrences A separated by iterated types and this
sequence is forbidden in a simple 2-star grammar. ◻

The class of simple K-star grammars defines a smaller set of DS-languages than the
class of K-star revealing grammars. This is generally not a problem because from a K-star
revealing grammar it is always possible to define a simple K-star grammar that is a general-
ization of the former grammar: some local dependency names are transformed into iterated
types. For instance, G2 can be transformed into the following grammar which is a simple
2-star grammar: x ↦ [A∗�B∗�A∗�S], [A∗�S] ; a ↦ [A] ; b ↦ [B] . This example is in fact
global simple 2-star. We may consider for any grammar its global simple K-star generaliza-
tion as follows:

Definition 35 (Global Simple K-star Generalization)
For any type t, its global simple K-star generalization, written gs(K)(t) is obtained by

applying these rules:

– for each d on the left, where d∖ occurs at least K times or if d∗� is present, then replace
each d∖ with its starred version d∗�;

– for each d on the right, proceed similarly.

The definition is extended to grammars, by replacing each assigned type t by gs(K)(t).
The grammar G is said to be global simple K-star when G = gs(K)(G).

We get the following structure language inclusions, for any CDG G:
Δ(G) ⊆ Δ(gs(K+1)(G)) ⊆ Δ(gs(K)(G)) , for each K > 1.
If G is global simple K-star, then gs(K)(G) = G and the above inclusions are equalities.
Using directly algorithm TGE(K) on a global simple K-star grammar will provide a sim-

ple K-star grammar but not necessarily a global simple K-star grammar (for example, if

2871Machine Learning (2024) 113:2841–2875

1 3

a vicinity such as S∕A∕B∕A is used in a DS and if K = 2). A possible adaptation of this
approach to the global variant is to use algorithm TGE(K) and then apply gs(K) to the result;
an alternative is to adapt the learning algorithm using a different generalization step, apply-
ing gs(K) at each stage.

These adaptations of the algorithm TGE(K) preserve the global simple K-star property as
sketched below.

Lemma 3 (Global Simple Generalization Properties)

1. If G is global simple K-star, then gs(K)(CK(G)) ≡s G

2. For any types t1, t2 : if t1 ⪯cr t2 then gs(K)(t1) ⪯cr gs
(K)(t2)

3. For any grammars G1,G2 : if G1 ⪯cr G2 then gs(K)(G1) ⪯cr gs
(K)(G2)

Proof (1) comes from the fact that a global simple K-star grammar is also a simple K-star
grammar and thus a K-star revealing grammar. (2) and (3) are straightforward. ◻

Theorem 8 If G is global simple K-star, then for any step i

and the application of gs(K) on the output of TGE(K) at stabilization is equivalent to G (with
the same set of DS).

Proof As a corollary of the above lemma, from TGE(K)(�[i]) ⪯cr C
K(G),

we get gs(K)(TGE(K)(�[i])) ⪯cr gs
(K)(CK(G)) ≡s G which implies:

We then have Δ(TGE(K)(𝜎[i])) ⊆ Δ(gs(K)(TGE(K)(𝜎[i]))) ⊆ Δ(G) . We thus get a global sim-
ple K-star grammar equivalent to G if we apply gs(K) on the result of the TGE(K) algorithm
at stabilization. ◻

6 Conclusion

In this paper, we propose a new model of incremental learning of categorial dependency
grammars with unlimited iterated types from input dependency structures without marked
iteration. The model reflects the real situation of deterministic inference of a dependency
grammar from a dependency treebank. The definition of K-star revealing grammars is a
sufficient condition to insure learnability from dependency structures. It is widely accepted
in traditional linguistics for small K, which makes this model interesting for practical pur-
poses. As our study shows, the more traditional unification-based learning from function-
argument structures fails even for rigid categorial dependency grammars, in the presence
of iterated types with unlimited iteration.

The K-star revealing condition was defined in “semantic” terms. The question was
raised whether one can find a syntactic formulation. In this paper, we replace this non-con-
structive criterion on CDG grammars by a syntactic constructive one called simple K-star

Δ(gs(K)(TGE(K)(𝜎[i]))) ⊆ Δ(G)

Δ(gs(K)(TGE(K)(𝜎[i]))) ⊆ Δ(gs(K)(CK(G))) = Δ(G)

2872 Machine Learning (2024) 113:2841–2875

1 3

that is slightly more restrictive. We show that the new class is learnable from dependency
structures.

We also consider several interpretations of repeatable dependency (local with simple
K-star condition or global to a type with global simple K-star condition). Another source
of variation for the global simple K-star grammars lies in the learning algorithm and the
way types are generalized: instead of the local replacements of TGE(K) , these could be dealt
globally (on each side), which would lead to somewhat different definitions, orders and
algorithm. For example, instead of [N�A∗�S∕A∕L∕A∗] (which A and A∗ at the same time
on the right side) we would get [N�A∗�S∕A∗∕L∕A∗] directly (A and A∗ cannot be used at
the same time on each side). This variant can be seen as an intermediate between the strict
reading of repeatable optional dependencies as consecutive repetitions of TGE(K) and more
flexible interpretations like “dispersed iterations” Béchet et al. (2011).

Other variants are still possible: such as a more global principle on types on the whole
grammar (having “super-global” dependencies) where a dependency A is either repeatable
every where (A∗) or never repeatable (A) in the whole grammar.

As further remarks on the inference algorithm: the algorithm presented in Sect. 4 may
be improved by deleting types that are subsumed by another one. The resulting grammar
would then be strongly equivalent but in a compressed form. We can also think of marking
some dependency names as not following the repetition principle, the definition and the
algorithm should then be adapted with respect to a given subset.

This work has been developed in the computational linguistic domain. It would be inter-
esting to reconsider these notions in a purely theoretical way (other languages and automa-
ton) or other application domains (such as bioinformatics).

This article contributes on symbolic learning possibilities and impossibilities for CDG.
This could be extended to dependency grammars in general or other lexicalized grammar
formalisms. As concern the CDG formalism itself, important questions for CDG and their
languages were solved in Dekhtyar et al. (2015) but some theoretical questions listed in
their conclusion remain open for CDG. One of them is the positioning of CDG in the vari-
ety of grammatical frameworks for NLP, going beyond context-free grammars.

On the practical side, works aiming at developping large-scale CDG grammars could
integrate Algorithm ���(K) presented in this paper. Such developments would also help to
validate the hypotheses introduced (K-star revealing, simple K-star, global simple K-star)
for defining restricted classes of CDG.

References

Angluin, D. (1980). Inductive inference of formal languages from positive data. Information and Control,
45, 117–135.

Béchet, D. (2003). k-valued link grammars are learnable from strings. In G. Penn (Ed.), Proceedings of the
8th conference on formal grammar (FG-2003 or FGVienna), Vienna, Austria, August 16–17, 2003
(pp. 3–12). CSLI Publications. http://cslip ublic ation s.stanf ord.edu/FG/2003.

Béchet, D., Dikovsky, A., & Foret, A. (2005). Dependency structure grammar. In P. Blache, E. Stabler,
J. Busquets, R. Moot (Eds.), Logical aspects of computational linguistics, 5th international confer-
ence, LACL 2005, Bordeaux, France, April 28–30, 2005. Proceedings, Lecture notes in artificial intel-
ligence (LNAI) (Vol. 3492, pp. 18–34). Springer. https ://doi.org/10.1007/b1360 76.

Béchet, D., Dikovsky, A., & Foret, A. (2010). Two models of learning iterated dependencies. In
P. de Groote, M. Nederhof (Eds.), Formal grammar, 15th and 16th international conferences, FG
2010, Copenhagen, Denmark, August 2010, FG 2011, Ljubljana, Slovenia, August 2011, Revised

http://cslipublications.stanford.edu/FG/2003
https://doi.org/10.1007/b136076

2873Machine Learning (2024) 113:2841–2875

1 3

selected papers, Lecture notes in computer science (LNCS) (Vol. 7395, pp. 17–32). Springer. https ://
doi.org/10.1007/978-3-642-32024 -8_2.

Béchet, D., Dikovsky, A., & Foret, A. (2011). On dispersed and choice iteration in incrementally learnable
dependency types. In: S. Pogodalla, J. Prost (Eds.), Logical aspects of computational linguistics, 6th
international conference, LACL 2011, Montpellier, France, June 29–July 1, 2011. Proceedings, Lec-
ture notes in computer science (LNCS) (Vol. 6736, pp. 80–95). Springer. https ://doi.org/10.1007/978-
3-642-22221 -4_6.

Béchet, D., Dikovsky, A., Foret, A., & Garel, E. (2008). Optional and iterated types for pregroup grammars.
In: C. Martín-Vide, F. Otto, H. Fernau (Eds.), Language and automata theory and applications, 2nd
international conference, LATA 2008, Tarragona, Spain, March 13–19, 2008, Revised Papers, Lecture
notes in computer science (LNCS) (Vol. 5196, pp. 88–100). Springer. https ://doi.org/10.1007/978-3-
540-88282 -4.

Béchet, D., Dikovsky, A., Foret, A., Moreau, E. (2004). On learning discontinuous dependencies from posi-
tive data. In P. Monachesi (Ed.), Proceedings of the 9th international conference on formal grammar.

Béchet, D., Dikovsky, A., & Lacroix, O. (2014). “CDG Lab”: An integrated environment for categorial
dependency grammar and dependency treebank development. In K. Gerdes, E. Hajičová, L. Wanner
(Eds.), Computational dependency theory, Frontiers in artificial intelligence and applications (Vol.
258, pp. 153–169). IOS Press. https ://doi.org/10.3233/978-1-61499 -352-0-153.

Béchet, D., & Foret, A. (2003). k-valued non-associative Lambek categorial grammars are not learnable
from strings. In Proceedings of the 41st annual meeting of the association for computational linguis-
tics (ACL 2003), Sapporo, Japan, July 2003 (pp. 351–358). ACL.

Béchet, D., & Foret, A. (2003). k-valued non-associative Lambek grammars are learnable from function-
argument structures. In Proceedings of the 10th workshop on logic, language, information and compu-
tation (WoLLIC’2003), Ouro Preto, Brazil (Vol. 84).

Béchet, D., & Foret, A. (2016). Simple k-star categorial dependency grammars and their inference. In
S. Verwer, M. van Zaanen, R. Smetsers (Eds.), Proceedings of the 13th international conference
on grammatical inference, ICGI 2016, Delft, The Netherlands, October 5–7, 2016, JMLR workshop
and conference proceedings (Vol. 57, pp. 3–14). JMLR.org. http://proce eding s.mlr.press /v57/beche
t16.html.

Bonato, R. (2006). A Study on Learnability for Rigid Lambek Grammars. Research Report RR-5964,
INRIA. https ://hal.inria .fr/inria -00088 818.

Bonato, R., & Retoré, C. (2014). Learning lambek grammars from proof frames. In C. Casadio,
B. Coecke, M. Moortgat, P. Scott (Eds.), Categories and types in logic, language, and physics—
essays dedicated to Jim Lambek on the Occasion of His 90th Birthday, Lecture notes in computer
science (Vol. 8222, pp. 108–135). Springer. https ://doi.org/10.1007/978-3-642-54789 -8_7.

Buszkowski, W. (1987). Discovery procedures for categorial grammars. In E. Klein & J. van Benthem
(Eds.), Categories, polymorphism and unification. Amsterdam: University of Amsterdam.

Buszkowski, W., & Penn, G. (1990). Categorial grammars determined from linguistic data by unifica-
tion. Studia Logica, 49, 431–454.

Costa Florêncio, C. (2003). Rigid grammars in the associative-commutative Lambek calculus are not
learnable. In A. Copestake, J. Hajic̆ (Eds.), Proceedings of EACL2003, 10th conference of the Euro-
pean chapter of the association for computational linguistics, Agro Hotel, Budapest, April 12–17,
2003 (pp. 75–82). ACL.

Costa Florêncio, C. (2012). Learning tree adjoining grammars from structures and strings. In Proceed-
ings of ICGI 2012, Washington D.C., USA, September 5–8, 2012, JMLR: Workshop and conference
proceedings (Vol. 21, pp. 129–132).

Costa Florêncio, C., & Fernau, H. (2010). Hölder norms and a hierarchy theorem for parameterized
classes of CCG. In J.M. Sempere, P. García (Eds.), Proceedings of the international colloquium on
grammatical inference, ICGI’10, Lecture notes in computer science (LNCS) (Vol. 6339, pp. 280–
283). Springer. https ://doi.org/10.1007/978-3-642-15488 -1.

Costa Florêncio, C., & Fernau, H. (2012). On families of categorial grammars of bounded value, their
learnability and related complexity questions. Theoretical Computer Science, 452, 21–38. https ://
doi.org/10.1016/j.tcs.2012.05.016.

de la Higuera, C. (2010). Grammatical inference: Learning automata and grammars. New York: Cam-
bridge University Press.

Dekhtyar, M., & Dikovsky, A. (2004). Categorial dependency grammars. In M. Moortgat, V. Prince
(Eds.), Proceedings of the international conference on categorial grammars (CG2004), Montpel-
lier, France, June 2004 (pp. 76–91).

https://doi.org/10.1007/978-3-642-32024-8_2
https://doi.org/10.1007/978-3-642-32024-8_2
https://doi.org/10.1007/978-3-642-22221-4_6
https://doi.org/10.1007/978-3-642-22221-4_6
https://doi.org/10.1007/978-3-540-88282-4
https://doi.org/10.1007/978-3-540-88282-4
https://doi.org/10.3233/978-1-61499-352-0-153
http://proceedings.mlr.press/v57/bechet16.html
http://proceedings.mlr.press/v57/bechet16.html
https://hal.inria.fr/inria-00088818
https://doi.org/10.1007/978-3-642-54789-8_7
https://doi.org/10.1007/978-3-642-15488-1
https://doi.org/10.1016/j.tcs.2012.05.016
https://doi.org/10.1016/j.tcs.2012.05.016

2874 Machine Learning (2024) 113:2841–2875

1 3

Dekhtyar, M., & Dikovsky, A. (2008). Generalized categorial dependency grammars. In Trakhtenbrot/
Festschrift, Lecture notes in artificial intelligence (LNCS) (Vol. 4800, pp. 230–255). Springer.

Dekhtyar, M. I., Dikovsky, A., & Karlov, B. (2015). Categorial dependency grammars. Theoretical Com-
puter Science, 579, 33–63. https ://doi.org/10.1016/j.tcs.2015.01.043.

Dikovskij, A., & Modina, L. (2000). Dependencies on the other side of the Curtain. Traitement Automa-
tique des Langues (TAL), 41(1), 79–111.

Dikovsky, A. (2004). Dependencies as categories. In Recent advances in dependency grammars. COL-
ING’04 workshop (pp. 90–97).

Dikovsky, A. (2011). Categorial dependency grammars: From theory to large scale grammars. In K. Ger-
des, E. Hajicova, L. Wanner (Eds.), Conference on dependency linguistics 2011 (pp. 262–271).
Barcelona, Spain.

Duchier, D., & Debusmann, R. (2001). Topological dependency trees: A constraint-based account of lin-
ear precedence. In Association for computational linguistic, 39th annual meeting and 10th confer-
ence of the European Chapter, Proceedings of the Conference, July 9–11, 2001, Toulouse, France
(pp. 180–187). ACL & Morgan Kaufmann Publishers.

Eisner, J. M. (1991). Bilexical grammars and their cubic-time parsing algorithms. In H. Bunt, A. Nijholt
(Eds.), Advances in probabilistic and other parsing technologies (pp. 29–62). Kluwer.

Gaifman, H. (1965). Dependency systems and phrase-structure systems. Information and Control, 8(3),
304–337. https ://doi.org/10.1016/S0019 -9958(65)90232 -9.

Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447–474.
Hays, D. (1960). Grouping and dependency theories. Research memorandum RM-2646, The RAND

Corporation. In Proc. of the National Symp. on Machine Translaion, Englewood Cliffs (N.Y.), 1961
(pp. 258–266).

Joshi, A. K., Shanker, V. K., & Weir, D. J. (1991). The convergence of mildly context-sensitive grammar
formalisms. In Foundational issues in natural language processing (pp. 31–81). Cambridge, MA.

Kanazawa, M. (1998). Learnable classes of categorial grammars. Studies in logic, language and informa-
tion. FoLLI & CSLI.

Kruijff, G.J. (2001). Dependency grammar logic and information structure. Ph.D. thesis, Charles University,
Prague.

Lacroix, O., & Béchet, D. (2014). A three-step transition-based system for non-projective dependency pars-
ing. In J. Hajic, J. Tsujii (Eds.), COLING 2014, 25th international conference on computational lin-
guistics, Proceedings of the conference: Technical papers, August 23–29, 2014, Dublin, Ireland (pp.
224–232). ACL.

Maruyama, H. (1990). Structural disambiguation with constraint propagation. In: R.C. Berwick (Ed.), 28th
annual meeting of the association for computational linguistics, June 6–9, 1990, University of Pitts-
burgh, Pittsburgh, Pennsylvania, USA, Proceedings (pp. 31–38). ACL.

Mel’čuk, I. (1988). Dependency syntax. Albany, NY: SUNY Press.
Moot, R., & Retoré, C. (2012). The logic of categorial grammars—A deductive account of natural lan-

guage syntax and semantics, Lecture notes in computer science (Vol. 6850). Springer. https ://doi.
org/10.1007/978-3-642-31555 -8.

Motoki, T., Shinohara, T., & Wright, K. (1991). The correct definition of finite elasticity: Corrigendum to
identification of unions. In The 4th annual workshop on computational learning theory (p. 375). San
Mateo, CA.

Nederhof, M. J. (2016). A short proof that o_2 is an MCFL. In Proceedings of the 54th annual meeting of
the association for computational linguistics (Volume 1: Long Papers) (pp. 1117–1126). Association
for Computational Linguistics, Berlin, Germany. https ://doi.org/10.18653 /v1/P16-1106. https ://www.
aclwe b.org/antho logy/P16-1106.

Salvati, S. (2015). MIX is a 2-MCFL and the word problem in z2 is captured by the IO and the OI hier-
archies. Journal of Computer and System Sciences, 81(7), 1252–1277. https ://doi.org/10.1016/j.
jcss.2015.03.004.

Sénizergues, G. (2002). L(A) = L(B)? Decidability results from complete formal systems. In: P. Widmayer,
F.T. Ruiz, R.M. Bueno, M. Hennessy, S.J. Eidenbenz, R. Conejo (Eds.), Automata, languages and pro-
gramming, 29th international colloquium, ICALP 2002, Malaga, Spain, July 8–13, 2002, Proceedings,
Lecture notes in computer science (Vol. 2380, p. 37). Springer. https ://doi.org/10.1007/3-540-45465
-9_4.

Shanker, V. K., & Weir, D. J. (1994). The equivalence of four extensions of context-free grammars. Math-
ematical Systems Theory, 27, 511–545.

Shinohara, T. (1991). Inductive inference of monotonic formal systems from positive data. New Generation
Computing, 8(4), 371–384.

https://doi.org/10.1016/j.tcs.2015.01.043
https://doi.org/10.1016/S0019-9958(65)90232-9
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.18653/v1/P16-1106
https://www.aclweb.org/anthology/P16-1106
https://www.aclweb.org/anthology/P16-1106
https://doi.org/10.1016/j.jcss.2015.03.004
https://doi.org/10.1016/j.jcss.2015.03.004
https://doi.org/10.1007/3-540-45465-9_4
https://doi.org/10.1007/3-540-45465-9_4

2875Machine Learning (2024) 113:2841–2875

1 3

Sleator, D. D., & Temperley, D. (1995). Parsing english with a link grammar. CoRR arXiv :abs/cmp-
lg/95080 04.

Wright, K. (1989). Identification of unions of languages drawn from an identifiable class. In: R.L. Rivest,
D. Haussler, M.K. Warmuth (Eds.), Proceedings of the 2nd annual workshop on computational
learning theory, COLT 1989, Santa Cruz, CA, USA, July 31–August 2, 1989 (pp. 328–333). Morgan
Kaufmann.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/abs/cmp-lg/9508004
http://arxiv.org/abs/abs/cmp-lg/9508004

	Incremental learning of iterated dependencies
	Abstract
	1 Introduction
	1.1 Generalities on dependency grammars
	1.2 Categorial dependency grammars
	1.3 Grammatical inference
	1.4 Main results of the paper
	1.5 Organization of the paper

	2 Background
	2.1 Categorial dependency grammars
	2.2 Learnability, finite elasticity and limit points
	2.3 Limit points for CDGs with iterated types

	3 Learnability from positive examples
	3.1 Original algorithm on functor-argument data
	3.2 Functor-argument structures for CDG with iterated types
	3.3 On RG-like algorithms and iteration
	3.4 A limit point for labelled functor-arguments structures
	3.5 Limit points for labelled and inlabelled sependency structures
	3.6 Bounds and string learnability

	4 Incremental learning
	4.1 Grammar order and incrementality
	4.2 K-star revealing grammars
	4.3 Inference algorithm
	4.4 Learnability properties

	5 Simple K-star grammars
	5.1 Simple K-star types and grammar classes
	5.2 Simple K-star grammars and K-star revealing grammars

	6 Conclusion
	References

