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Abstract
In this paper, we study the asymptotic properties of regularized least squares with indefi-
nite kernels in reproducing kernel Kreĭn spaces (RKKS). By introducing a bounded hyper-
sphere constraint to such non-convex regularized risk minimization problem, we theoreti-
cally demonstrate that this problem has a globally optimal solution with a closed form on 
the sphere, which makes approximation analysis feasible in RKKS. Regarding to the origi-
nal regularizer induced by the indefinite inner product, we modify traditional error decom-
position techniques, prove convergence results for the introduced hypothesis error based on 
matrix perturbation theory, and derive learning rates of such regularized regression prob-
lem in RKKS. Under some conditions, the derived learning rates in RKKS are the same as 
that in reproducing kernel Hilbert spaces (RKHS). To the best of our knowledge, this is the 
first work on approximation analysis of regularized learning algorithms in RKKS.

Keywords  Approximation analysis · Regularized least squares · Indefinite kernel · Matrix 
perturbation theory

Fanghui Liu and Lei Shi equally contribute to this work.

Editor: Thomas Gärtner.

 *	 Fanghui Liu 
	 fanghui.liu@esat.kuleuven.be

	 Lei Shi 
	 leishi@fudan.edu.cn

	 Xiaolin Huang 
	 xiaolinhuang@sjtu.edu.cn

	 Jie Yang 
	 jieyang@sjtu.edu.cn

	 Johan A. K. Suykens 
	 johan.suykens@esat.kuleuven.be

1	 Department of Electrical Engineering (ESAT‑STADIUS), KU Leuven, Leuven, Belgium
2	 Shanghai Key Laboratory for Contemporary Applied Mathematics, and also with School 

of Mathematical Sciences, Fudan University, Shanghai, People’s Republic of China
3	 Institute of Image Processing and Pattern Recognition, and also with Institute of Medical Robotics, 

Shanghai Jiao Tong University, Shanghai, People’s Republic of China

http://orcid.org/0000-0003-4133-7921
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05955-2&domain=pdf


1146	 Machine Learning (2021) 110:1145–1173

1 3

1  Introduction

Kernel methods (Schölkopf and Smola 2003; Suykens et al. 2002; Liu et al. 2020) have 
demonstrated success in statistical learning, such as classification (Zhu and Hastie 2002; 
Shang et al. 2019), regression (Shi et al. 2019; Farooq and Steinwart 2019), and cluster-
ing (Dhillon et al. 2004; Terada and Yamamoto 2019; Liu et al. 2020). The key ingre-
dient of kernel methods is a kernel function, that is positive definite (PD) and can be 
associated with the inner product of two vectors in a reproducing kernel Hilbert space 
(RKHS). Nevertheless, in real-world applications, the used kernels might be indefinite 
(real, symmetric, but not positive definite) (Ying et al. 2009; Loosli et al. 2016; Oglic 
and Gärtner 2019) due to intrinsic and extrinsic factors. Here, intrinsic means that 
we often meet some indefinite kernels by specific domain metrics such as tanh kernel 
(Smola et al. 2001), TL1 kernel (Huang et al. 2018), log kernel (Boughorbel et al. 2005), 
and hyperbolic kernel (Cho et al. 2019). Meanwhile, extrinsic indicates that some posi-
tive definite kernels degenerate to indefinite ones in some cases. An intuitive example is 
that a linear combination of PD kernels (with negative coefficient) (Ong et al. 2005) is 
an indefinite kernel. Polynomial kernels on the unit sphere are not always PD (Penning-
ton et al. 2015). In manifold learning, the Gaussian kernel with some geodesic distances 
would lead to be an indefinite one. In neural networks, the sigmoid kernel with various 
values of hyper-parameters are mostly indefinite (Ong et al. 2004). We refer to a survey 
(Schleif and Tino 2015) for details.

Efforts on indefinite kernels are often based on a reproducing kernel Kreĭn space 
(RKKS) (Ong et al. 2004; Loosli et al. 2016; Alabdulmohsin et al. 2016; Saha and Pala-
niappan 2020) which is endowed by the indefinite inner product. The (reproducing) indefi-
nite kernel associated with RKKS can be decomposed as the difference between two PD 
kernels, a.k.a, positive decomposition (Bognár 1974). The related optimization problem is 
often non-convex due to the non-positive definiteness of the used indefinite kernel. Since 
the indefinite inner product in RKKS does not define a norm, most previous works on 
RKKS (Ong et al. 2004; Loosli et al. 2016; Saha and Palaniappan 2020) focus on stabili-
zation instead of risk minimization in RKHS. Here stabilization aims to finding a station-
ary point (more precisely, saddle points) instead of a minimum. Interestingly, stabilization 
in RKKS and minimization in RKHS can be linked together in a projection view (Ando 
2009). In this sense, indefinite inner product in RKKS in a projection view can be still 
served as a valid regularization mechanism (Loosli et  al. 2016). It is worth noting that, 
recently, Oglic and Gärtner (2018, 2019) directly consider empirical risk minimization in 
RKKS restricted in a hyper-sphere, which is demonstrated to generalize well.

In learning theory, the asymptotic behavior of these regularized indefinite kernel 
learning based algorithms in RKKS has not been fully investigated in an approxima-
tion theory view. Current literature (Wu et  al. 2006; Steinwart et  al. 2009; Lin et  al. 
2017; Jun et al. 2019) on approximation analysis often focus on regularized methods in 
RKHS, but their results could not be directly applied to that in RKKS due to the follow-
ing two reasons. First, approximation analysis in RKHS often requires a (globally) opti-
mal solution yielded by learning algorithms. While most indefinite kernel based meth-
ods via stabilization in RKKS seek for saddle points instead of a minimum. In this case, 
traditional concentration estimates could be invalid to that in RKKS. Second, in RKKS, 
the regularizer endowed by the indefinite inner product might be negative, which would 
fail to quantify complexity of a hypothesis. The classical error decomposition technique 
(Cucker and Zhou 2007; Lin et al. 2017) might be infeasible to our setting in RKKS.
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To overcome the mentioned essential problems, in this paper, we study learning rates 
of least squares regularized regression in RKKS. Motivated by Oglic and Gärtner (2018), 
we focus on a typical empirical risk minimization in RKKS, i.e., indefinite kernel ridge 
regression in a hyper-sphere region endowed by the indefinite inner product. For this pur-
pose, we provide a detailed error analysis and then derive learning rates. To be specific, 
in algorithm, we demonstrate that, the solution to our considered kernel ridge regression 
model in RKKS with a spherical constraint can be achieved on the hyper-sphere. Subse-
quently, albeit non-convex, this model admits a global minimum with a closed form as 
demonstrated by Oglic and Gärtner (2018).

We start the analysis from the regularized algorithm that has an analytical solution and 
obtain the first-step to understand the learning behavior in RKKS. In theory, we modify 
the traditional error decomposition approach, and thus the excess error can be bounded 
by the sample error, the regularization error, and the additional hypothesis error. We pro-
vide estimates for the introduced hypothesis error based on matrix perturbation theory for 
non-Hermitian and non-diagonalizable matrices and then derive convergence rates of such 
model. Our analysis is able to bridge the gap between the least squares regularized regres-
sion problem in RKHS and RKKS. Under some conditions, the derived learning rates in 
RKKS is the same as that in RKHS (the best case). To the best of our knowledge, this is the 
first work to study learning rates of regularized risk minimization in RKKS.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce the basic 
concepts of Kreĭn spaces and RKKS. Section  3 presents the problem setting and main 
results under some fair assumptions. In Sect. 4, we present the least squares regularized 
regression model in RKKS and give a globally optimal solution to aid the proof. In Sect. 5, 
we give the framework of convergence analysis for the modified error decomposition tech-
nique, detail the estimates for the introduced hypothesis error, and derive the learning rates. 
In Sect. 6, we report numerical experiments to demonstrate our theoretical results and the 
conclusion is drawn in Sect. 7.

2 � Preliminaries

In this section, we briefly introduce the definitions and basic properties of Kreĭn spaces and 
the reproducing kernel Kreĭn space (RKKS) that we shall need later. Detailed expositions 
can be found in the book by Bognár (1974).

We begin with a vector space HK defined on the scalar field ℝ.

Definition 1  (Inner product space) An inner product space is a vector space HK defined on 
the scalar field ℝ together with a bilinear form ⟨⋅, ⋅⟩HK

 called inner product that satisfies the 
following conditions 

i)	� symmetry: ∀f , g ∈ HK , we have ⟨f , g⟩HK
= ⟨g, f ⟩HK

.
ii)	� linearity: ∀f , g, h ∈ HK and two scalars a, b ∈ ℝ , we have 

⟨af + bg, h⟩HK
= a⟨f , h⟩HK

+ b⟨g, h⟩HK
.

iii)	� non-degenerate: for f ∈ HK , if ⟨f , g⟩HK
= 0 for all g ∈ HK implies that f = 0.

If ⟨f , f ⟩HK
> 0 holds for any f ∈ HK with f ≠ 0 , then the inner product on HK is 

positive. If there exists f , g ∈ HK such that ⟨f , f ⟩HK
> 0 and ⟨g, g⟩HK

< 0 , then the inner 
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product is called indefinite, and HK is an indefinite inner product space. Recall that Hilbert 
spaces satisfy the above conditions and admit the positive inner product. After reviewing 
the indefinite inner product, we are ready to introduce the definition of Kreĭn space.

Definition 2  (Kreĭn space, Bognár 1974) The vector space HK with the inner product 
⟨⋅, ⋅⟩HK

 is a Kreĭn space if there exist two Hilbert spaces H+ and H− such that 

i)	� the vector space HK admits a direct orthogonal sum decomposition HK = H+ ⊕H−.
ii)	� all f ∈ HK can be decomposed into f = f+ + f− , where f+ ∈ H+ and f− ∈ H− , 

respectively.
iii)	� ∀f , g ∈ HK , ⟨f , g⟩HK

= ⟨f+, g+⟩H+
− ⟨f−, g−⟩H−

.

From the definition, the decomposition HK = H+ ⊕H− is not necessarily unique. 
For a fixed decomposition, the inner product ⟨f , g⟩HK

 is given accordingly (Loosli 
et  al. 2016; Oglic and Gärtner 2018). Kreĭn spaces are indefinite inner product spaces 
endowed with a Hilbertian topology. The key difference with Hilbert spaces is that the 
inner products might be negative for Kreĭn spaces, i.e., there exists f ∈ HK such that 
⟨f , f ⟩HK

< 0 . If H+ and H− are two RKHSs, the Kreĭn space HK is a RKKS associated 
with a unique indefinite reproducing kernel k such that the reproducing property holds, i.e., 
∀f ∈ HK, f (x) = ⟨f , k(x, ⋅)⟩HK

.

Proposition 1  (Positive decomposition, Bognár 1974) An indefinite kernel k associated 
with a RKKS admits a positive decomposition k = k+ − k− , with two positive definite ker-
nels k+ and k−.

Typical examples include a wide range of commonly used indefinite kernels, such as a 
linear combination of PD kernels (with negative coefficients) (Ong et al. 2005; Oglic and 
Gärtner 2018), and conditionally PD kernels (Schaback 1999; Wendland 2004). It is impor-
tant to note that, not every indefinite kernel function admits such positive decomposition as 
a difference between two positive definite kernels. Nevertheless, this can be conducted on 
finite discrete spaces, e.g., eigenvalue decomposition of indefinite kernel matrices. In fact, 
for any given an indefinite kernel, whether it can be associated with RKKS still remains a 
long-lasting open question. For example, the hyperbolic kernel (Cho et al. 2019) is based 
on the hyperboloid model (Sala et al. 2018), in which the distance between two point is 
defined as the length of the geodesic path on the hyperboloid that connects the two points. 
Although the used hyperboloid space stems from a finite-dimensional Kreĭn space, it is 
unclear whether the derived hyperbolic kernel is associated with RKKS or not. Besides, 
the existence of positive decomposition for the TL1 kernel (Huang et al. 2018), defined by 
the truncated �1 distance, is also unknown. Our results in this paper are based on RKKS, 
and can be applied to these kernels if they can be associated with RKKS.

Definition 3  (Associated RKHS of RKKS (Ong et al. 2004)) Let HK be a RKKS with the 
direct orthogonal sum decomposition into two RKHSs H+ and H− . Then the associated 
RKHS HK̄ endowed by HK is defined with the positive inner product

⟨f , g⟩HK̄
= ⟨f+, g+⟩H+

+ ⟨f−, g−⟩H−
, ∀f , g ∈ HK.
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Note that HK̄ is the smallest Hilbert space majorizing the RKKS HK with 
�⟨f , f ⟩HK

� ≤ ‖f‖2
HK̄

= ‖f+‖2H+
+ ‖f−‖2H−

 . Denote C(X) as the space of continuous functions on 
X with the norm ‖ ⋅ ‖∞ , and suppose that 𝜅 ∶=

√
2 supx∈X

√
k+(x, x) + k−(x, x

�) < ∞ . The 
reproducing property in RKKS indicates that ∀f ∈ HK , we have

Definition 4  (The empirical covariance operator in RKKS (Pȩkalska and Haasdonk 2009)) 
Let k be an indefinite kernel associated with a RKKS HK , � ∶ X → HK be a mapping of 
the data in HK and � = [�(x1),�(x2),… ,�(xm)] be a sequence of images of the training 
data in HK , then its empirical non-centered covariance operator T ∶ HK → HK is defined 
by

which is not positive definite in the Hilbert sense, but it is in the Kreĭn sense satisfying 
⟨� , T�⟩HK

≥ 0 for � ≠ 0.

The operator T actually depends on the sample set and can be linked to an empirical 
kernel (Guo and Shi 2019). In our paper, we choose the mapping �(x) ∶= k(x, ⋅) to obtain 
the empirical covariance operator T. Since ⟨f , Tf ⟩HK

 is nonnegative, we use it as a regular-
izer to aid our proof.

3 � Problem setting and main results

In this section, we introduce our problem setting and present our results under some fair 
assumptions.

3.1 � Problem setting

Let X be a compact metric space and Y ⊆ ℝ , we assume that a sample set 
z = {(xi, yi)}

m
i=1

∈ Zm is drawn from a non-degenerate Borel probability measure � on 
X × Y  . In the context of statistical learning theory, the target function of � is defined by 
f�(x) = ∫

Y
yd�(y|x), x ∈ X , where �(⋅|x) is the conditional distribution of � at x ∈ X . The 

indefinite kernel function k ∶ X × X → ℝ is endowed by the RKKS HK . The associated 
indefinite kernel matrix is given by K = [k(xi, xj)]

m
i,j=1

 on the sample set. The goal of a 
supervised learning task in RKKS endowed by k is to find a hypothesis f ∶ X → Y  such 
that f (x) is a good approximation of the label y ∈ Y  corresponding to a new instance x ∈ X

.
Motivated by Oglic and Gärtner (2018), we consider the least squares regularized 

regression problem in a bounded region induced by the original regularization mechanism 
of RKKS

(1)‖f‖∞ = sup
x∈X

��
�
f , k(x, ⋅)

��� ≤ 𝜅‖f‖HK̄
.

(2)T =
1

m
��

∗,

(3)fz,� ∶= argmin
f∈B(r)

�
1

m

m�
i=1

�
f (xi) − yi

�2
+ �⟨f , f ⟩HK

�
,
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where B(r) ∶=
�
f ∈ span{k(x1, ⋅), k(x2, ⋅),… , k(xm, ⋅)} ∶

1

m

∑m

i=1

�
f (xi)

�2
≤ r2

�
 is 

assumed to be spanned by the training data {xi}mi=1 in HK in a bounded hyper-sphere. This 
setting can be also used in Ong et al. (2004). Here we employ the original regularization 
mechanism of RKKS, which aims to understand the learning behavior in RKKS and avoid 
the inconsistency when using various regularizers spanned by different spaces. Our result 
in fact can be applied to other settings with different regularizers. Following Oglic and 
Gärtner (2018), we consider a risk minimization problem in a hyper-sphere instead of sta-
bilization. The considered hyper-spherical constraint in RKKS is able to prohibit the objec-
tive function value in Problem (3) approaches to infinity, avoiding a meaningless solution. 
The radius r can be chosen by cross validation or hyper-parameter optimization (Oglic and 
Gärtner 2018) in practice and is naturally needed and common in classical approximation 
analysis in RKHS (Wu et al. 2006; Cucker and Zhou 2007; Steinwart et al. 2009). Such risk 
minimization problem still preserves the specifics of learning in RKKS, i.e., there exists 
some points f ∈ B(r) such that ⟨f , f ⟩HK

< 0 , and generalizes well when compared to stabi-
lization, as indicated by Oglic and Gärtner (2018). One main reason why we consider the 
risk minimization problem is that, stabilization in RKKS does not necessarily have a 
unique saddle point, which makes approximation analysis infeasible to define the concen-
tration of certain empirical hypotheses around some target hypothesis. Conversely, the 
studied risk minimization in a hyper-sphere, problem 3, leads to a (globally) optimal solu-
tion. This nice result motivates us to obtain the first-step to understand the learning behav-
ior in RKKS.

3.2 � Main results

In this section, we state and discuss our main results. To illustrate our analysis, we need the 
following notations and assumptions.

In the least squares regression problem, the expected (quadratic) risk is defined as 
E(f ) = ∫

Z
(f (x) − y)2d� . The empirical risk functional is defined on the sample z , i.e., 

Ez(f ) =
1

m

∑m

i=1

�
f (xi) − yi

�2 . To measure the estimation quality of fz,� , one natural way in 
approximation theory is the excess risk: E(fz,�) − E(f�).

Assumption 1  (Existence and boundedness of f� ) we assume that the target function 
f� ∈ HK exists and bounded. There exits a constant M∗ ≥ 1 , such that

Remark   This is a standard assumption in approximation analysis (Cucker and Zhou 2007; 
Lin et al. 2017; Rudi and Rosasco 2017). Here we remark that existence of f� implies a 
bounded hyper-sphere region is needed, e.g., the used radius r in problem (3). In fact, the 
existence of f� is not ensured if we consider a potentially infinite dimensional RKKS HK , 
possibly universal (Steinwart and Andreas 2008). Instead, in approximation analysis, the 
infinite dimensional RKKS is substituted by a finite one, i.e., Hr

K
= {f ∈ HK ∶ ‖f‖ ≤ r} 

with r fixed a priori, where the norm ‖f‖ is defined in some associated Hilbert spaces, e.g., 
HK̄ or using the non-negative inner product ⟨f , Tf ⟩HK

 by the empirical covariance operator. 
In this case, a minimizer of risk E always exists but r is fixed with a prior and Hr

K
 cannot 

be universal. As a result, assuming the existence of f� implies that f� belongs to a ball of 
radius r�,HK

 . So this is the reason why the spherical constraint is indeed taken into account 
in approximation analysis.

|f�| ≤ M∗ for almost x ∈ X with respect to �X .
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For a tighter bound, we need the following projection operator.

Definition 5  (Projection operator (Chen et  al. 2004)) For B > 0 , the projection operator 
� ∶= �B is defined on the space of measurable functions f ∶ X → ℝ as

and then the projection of f is denoted as �B(f )(x) = �B(f (x)).

The projection operator is beneficial to the ‖ ⋅ ‖∞-bounds for sharp estimation. Besides, 
we consider the standard output assumption1 |y| ≤ M , and then we have 
Ez

(
�B(fz,�)

)
≤ Ez

(
fz,�

)
 . So it is more accurate to estimate f� by �M∗ (fz,�) instead of fz,� . 

Therefore, our approximation analysis attempts to bound the error ‖�M∗ (fz,�) − f�‖2
L
p∗

�X

 in the 

space Lp
∗

�X
 with some p∗ > 0 , where Lp

∗

�X
 is a weighted Lp∗-space with the norm 

‖f‖
L
p∗

�X

=
�
∫
X
�f (x)�p∗d�X(x)

�1∕p∗

 . Specifically, in our analysis, the excess error is exactly 
the distance in L2�X due to the strong convexity of the squared loss.

To derive the learning rates, we need to consider the approximation ability of HK with 
respect to its capacity and f� in L2�X . Since the original regularizer ⟨f , f ⟩HK

 in RKKS fails to 
quantify complexity of a hypothesis, here we use the empirical regularizer ⟨f , Tf ⟩HK

 in Def-
inition 4 as an alternative. Note that, other RKHS regularizers, such as ⟨f , f ⟩HK̄

 in Defini-
tion 3, is also acceptable, but the used ⟨f , Tf ⟩HK

 will result in elegant and concise theoreti-
cal results. Accordingly, the approximation ability of HK can be characterised by the 
regularization error.

Assumption 2  Rregularity condition) The regularization error of HK is defined as

The target function f� can be approximated by HK with exponent 0 < 𝛽 ≤ 1 if there exists a 
constant C0 such that

Remark   This is a natural assumption and approximation theory requires it, e.g., Wu et al. 
(2006); Wang and Zhou (2011); Steinwart and Andreas (2008). Note that � = 1 is the best 
choice as we expect, which is equivalent to f� ∈ HK when HK is dense.

Furthermore, to quantitatively understand how the complexity of HK affects the learn-
ing ability of algorithm  (3), we need the capacity (roughly speaking the “size”) of HK 
measured by covering numbers.

𝜋B(f )(x) =

⎧
⎪⎨⎪⎩

B, if f (x) > B;

−B, if f (x) < −B;

f (x), if − B ≤ f (x) ≤ B,

(4)D(�) = inf
f∈HK

�
E(f ) − E(f�) + �⟨f , Tf ⟩HK

�
.

(5)D(𝜆) ≤ C0𝜆
𝛽 , ∀𝜆 > 0.

1  For unbounded outputs, the moment hypothesis (Wang and Zhou 2011) is suitable but the introduced 
hypothesis error in our analysis depends on the standard output assumption.
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Definition 6  (Covering numbers (Cucker and Zhou 2007; Shi et  al. 2019)) For a subset 
Q of C(X) and 𝜖 > 0 , the covering number N(Q, �) is the minimal integer l ∈ ℕ such that 
there exist l disks with radius � covering Q.

In this paper, the covering numbers of balls are defined by

as subsets of L∞(X) . Note that the used R in Eq. (6) and r in problem (3) admits R = Cr 
for some positive constant C, as the definition of such non-negative inner product leads 
to a hyper-sphere with different radius. Hence there is no difference of using R or r in our 
analysis and thus we directly use R for convenience.

Assumption 3  (Capacity) We assume that for some s > 0 and Cs > 0 such that

Remark   This is a standard assumption to measure the capacity of HK that follows with 
that of RKHS (Cucker and Zhou 2007; Wang and Zhou 2011; Shi et al. 2019), When X is 
bounded in ℝd and k ∈ C� (X × X) , Eq. (7) always holds true with s = 2d

�
 . In particular, if 

k ∈ C∞(X × X) , Eq. (7) is still valid for an arbitrary small s > 0.

It can be noticed that, the capacity of a RKHS can be also measured by eigenvalue 
decay of the PSD kernel matrix, which has been has been fully studied, e.g., Steinwart 
and Andreas (2008), Bach (2013). A small RKHS indicates a fast eigenvalue decay so as 
to obtain a promising prediction performance. In other words, functions in the RKHS are 
potentially smoother than what is necessary, which means an arbitrary small s in Assump-
tion 3. Nevertheless, eigenvalue decay of the indefinite kernel matrix has not been stud-
ied before due to the extra negative eigenvalues. By virtue of eigenvalue decomposition 
K = K+ − K− with two PSD matrices K± , we can easily make the assumption for K based 
on the eigenvalue decay of K±.

Assumption 4  (Eigenvalue assumption for indefinite kernel matrices) Sup-
pose that the indefinite kernel matrix K = V�V⊤ has p positive eigenvalues, q 
negative eigenvalues, and m − p − q zero eigenvalues, i.e., � = �+ +�− , where 
�+ = diag (�1, �2,… �p, 0,… , 0) , �− = diag (0,… , 0, �m−q+1,… , �m) with the decreas-
ing order 𝜎1 ≥ … ≥ 𝜎p > 0 > 𝜎m−q+1 ≥ ⋯ ≥ 𝜎m and �p+1 = �p+2 = ⋯ = �m−q = 0 . Here 
we assume that its (positive) largest eigenvalue satisfies �1 ≥ c1m

�1 with c1 > 0 , 𝜂1 > 0 and 
its smallest (negative) eigenvalue admits �m ≤ cmm

�2 with cm < 0 , 𝜂2 > 0 . And we denote 
� ∶= min{�1, �2}.

Remark   Our assumption only requires the lower bound of the largest (positive) eigenvalue 
and the upper bound of the smallest (negative) eigenvalue, which is weaker than the com-
mon decay of a PSD kernel matrix, e.g., polynomial/exponential decay. In particular, if we 
take these common eigenvalue decays of K± , then our assumption on �1 and �m is naturally 
satisfied. To be specific, Bach (2013) considers three eigenvalue decays of a PSD kernel 
matrix, including i) the exponential decay �i ∝ me−ci with c > 0 , ii) the polynomial decay 
�i ∝ mi−2t with t ≥ 1 , and iii) the slowest decay with �i ∝ m∕i . Hence, under such three 

(6)BR = {f ∈ HK ∶
�

⟨f , Tf ⟩HK
≤ R},

(7)logN(B1, 𝜖) ≤ Cs

(
1

𝜖

)s

, ∀𝜖 > 0.
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eigenvalue decays of K± , then our assumption on �1 ≥ c1m
�1 and �m ≤ cmm

�2 always holds. 
Specifically, although the number of positive/negative eigenvalues depends on the sample 
set, our theoretical results will be independent of the unknown p and q.

Formally, our main result about least squares regularized regression in RKKS is 
stated as follows.

Theorem 1  Suppose that |f�(x)| ≤ M∗ with M∗ ≥ 1 in Assumption 1, � satisfies the condi-
tion in Eq. (5) with 0 < 𝛽 ≤ 1 in Assumption 2, the indefinite kernel matrix K satisfies the 
eigenvalue assumption in Assumption 4 with 𝜂 = min{𝜂1, 𝜂2} > 0 . Assume that for some 
s > 0 in Assumption 3, take � ∶= m−� with 0 < 𝛾 ≤ 1 . Let

Then for 0 < 𝛿 < 1 with confidence 1 − � , when 𝛾 + 𝜂 > 1 , we have

where C̃ is a constant independent of m or � and the power index � is

where � is further restricted by max{0, 1 − 2∕s} < 𝜂 < 1 for a positive � , i.e., a valid 
learning rate.

We hence directly have the following corollary that corresponds to learning rates in 
RKHS.

Corollary 1  (Link to learning rates in RKHS) If � ∶= min{�1, �2} ≥ 1 in Assumption 4, the 
power index � in Eq. (9) can be simplified as

which is actually the learning rate for least squares regularized regression in RKHS, inde-
pendent of �.

Remark   We provide learning rates in RKKS in Theorem 1 and also demonstrate the rela-
tion of the derived learning rates between RKKS and RKHS in Corollary 1. We make the 
following remarks. 

i)	� In Theorem  1, our results choose � ∶= m−� and the radius R (or r) is implicit in 
Eq.  (9). The estimation for R depends on a bound for �⟨fz,�, Tfz,�⟩HK

 , see Lemma 3 
for details. Note that s can be arbitrarily small when the kernel k is C∞(X × X) . In this 
case, � in Eq. (9) can be arbitrarily close to min(��, � + � − 1).

(8)0 < 𝜖 <
1

s
− (𝛾 + s𝛾 − 1)(2 + s).

‖‖�M∗ (fz,�) − f�
‖‖2L2�X ≤ C̃

(
log

2

�

)2
log

2

�
m−�,

(9)

�=min

{
��, � + � − 1,

2 − s�(1 − �)

2(1 + s)
,
2 − s(1 − �)

2(1 + s)
,
1 − s(� + s� − 1)(2 + s) − s�

1 + s

}
,

(10)� = min

{
��,

2 − s�(1 − �)

2(1 + s)
,
1 − (s�(1 + s) − s)(2 + s) − s�

1 + s

}
,
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ii)	� Corollary 1 derives the learning rates in RKHS, which recovers the result of Wang 
and Zhou (2011) for least squares in RKHS. That is, when choosing � = 1 and s is 
small enough, the derived learning rate in Corollary 1 can be arbitrary close to 1, and 
hence is optimal (Wang and Zhou 2011).

iii)	� Based on Theorem 1 and Corollary 1, we find that if � ∶= min{�1, �2} ≥ 1 , our analy-
sis for RKKS is the same as that in RKHS. This is the best case. However, if 𝜂 < 1 , 
the derived learning rate in RKKS demonstrated by Eq. (9) is not faster than that in 
RKHS. This is reasonable since the spanning space of RKKS is larger than that of 
RKHS.

 The proof of Theorem  1 is fairly technical and lengthy, and we briefly sketch some 
main ideas in the next section.

Furthermore, if problem (3) considers some nonnegative regularizers, such as ‖f‖2
HK̄

 in 
Definition 3 and ⟨f , Tf ⟩HK

 in Definition 4, the analysis would be simplified due to the used 
nonnegative regularizer. To be specific, denote 
fz,𝜆 ∶= argmin f∈B(r)

�
1

m

∑m

i=1

�
f (xi) − yi

�2
+ 𝜆‖f‖2

HK̄

�
 as demonstrated by Oglic and Gärt-

ner (2018), its learning rate could be given by the following corollary.

Corollary 2  Under the same assumption with Theorem 1 (without the eigenvalue assump-
tion), by defining the regularization error as

satisfying D�(�) ≤ C�
0
��

� with a constant C′
0
 and �� ∈ (0, 1] , we have

where C̃′ is a constant independent of m or � and the power index �′ is defined as Eq. (10) 
with �′.

Remark   In fact, Corollary 2 gives the convergence rates of the model in Oglic and Gärtner 
(2018).

Note that the learning rates would be effected by different regularizers, as indicated 
by the regularization error in Assumption 2. In Table 1 we summarize the learning rates 
of problem  (3) with different non-negative regularizers. Although the associated Hilbert 
space norms generated by different decomposition of the Krein space are topologically 

D�(𝜆) = inf
f∈HK

�
E(f ) − E(f𝜌) + 𝜆‖f‖2

HK̄

�
,

‖‖�M∗ (fz,�) − f�
‖‖2L2�X ≤ C̃�

(
log

2

�

)2
log

2

�
m−��

,

Table 1   Comparisons of different 
least squares regression problems

Learning problem in RKKS Learning rates

fz,� ∶= argmin
f∈B(r)

�
Ez(f ) + �⟨f , f ⟩HK

�
Eq. (9)

fz,𝜆 ∶= argmin
f∈B(r)

�
Ez(f ) + 𝜆⟨f , f ⟩HK̄

� Corollary 2 (applied 
to Oglic and Gärtner 
(2018))

f̃z,� ∶= argmin
f∈B(r)

�
Ez(f ) + �⟨f ,Tf ⟩HK

� Corollary 2 ( � is different)
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equivalent (Langer 1962), the derived learning rates cannot be ensured to be the same due 
to their respective spanning/solving spaces. Besides, Oglic and Gärtner (2019) demon-
strate that, stabilization of support vector machine (SVM) in RKKS can be transformed 
to a risk minimization problem with a PSD kernel matrix by taking the absolute value of 
negative eigenvalues of the original indefinite one. That means, stabilization of SVM in 
RKKS could also achieve the same convergence behavior as risk minimization with a PSD 
kernel matrix in RKHS, e.g., Steinwart and Scovel (2007). Accordingly, the considered 
problem (3), i.e., risk minimization in RKKS with the original regularizer induced by the 
indefinite inner product is general. The obtained results in Theorem 1 provide the worst 
case, and can be improved to the same learning rates as other settings, e.g., least-squares in 
RKHS, minimization in RKKS but with non-negative regularizers.

4 � Solution to regularized least‑squares in RKKS

In this section, we study the optimization problem (3), obtain a globally optimal solution to 
aid our analysis.

By virtue of f =
∑m

i=1
�ik(xi, ⋅) , problem (3) can be formulated as

where the output is y = [y1, y2,… , ym]
⊤ . We can see that the above regularized risk mini-

mization problem is in essence non-convex due to the non-positive definiteness of K . But 
more exactly, problem  (11) is non-convex when 1

m
K2 + �K is indefinite. This condition 

always holds in practice due to m ≫ 𝜆 . Following Oglic and Gärtner (2018), we do not 
strictly distinguish between the two differences in this paper. This is because, approxima-
tion analysis considers the m → ∞ and � → 0 case, so it always holds true when m is large 
enough. Even if 1

m
K2 + �K is PSD, our analysis for problem  (11) is still applicable and 

reduces to a special case (i.e., using a RKHS regularizer), of which the learning rates are 
demonstrated by Corollary 2.

To obtain a global minimum of problem (11), we need the following proposition.

Proposition 2  Problem (11) is equivalent to

Proof  Denote the objective function in problem  (11) as F(�) = 1

m
‖K� − y‖2

2
+ 𝜆�⊤K� , 

we aim to prove that the solution �∗ ∶= argmin
�
F(�) of this unconstrained optimization 

problem would be unbounded. Due to the non-positive definiteness of 1
m
K2 + �K , there 

exists an initial solution �0 such that

By constructing a solving sequence {�i}
∞
i=0

 admitting �i+1 ∶= c�i with c > 1 , we have

(11)�z,𝜆 ∶= argmin
�∈ℝm∶�⊤K2

�≤mr2

�
1

m
‖K� − y‖2

2
+ 𝜆�⊤K�

�
,

(12)�z,𝜆 ∶= argmin
�∈ℝm∶�⊤K2

�=mr2

�
1

m
‖K� − y‖2

2
+ 𝜆�⊤K�

�
.

�
⊤
0

(
1

m
K2 + 𝜆K

)
�0 < 0.

F(c�i+1) − cF(�i) = c(c − 1)�⊤
i

�
1

m
K2 + 𝜆K

�
�i −

c − 1

m
‖y‖2

2
< 0,
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which indicates that, after the t-th iteration, F(�t) < ctF(�0) < 0 and ‖�t‖2 = ct‖�0‖2 
with c > 1 . Therefore, the minimum F(�∗) is unbounded, and tends to negative infinity. 
In this case, ‖�∗‖2 would also approach to infinity, i.e., a meaningless solution. Based on 
the above analyses, for problem min

�
F(�) , by introducing the constraint �⊤K2

� ≤ mr2 , its 
solution is obtained on the hyper-sphere, i.e., �⊤K2

� = mr2 , which concludes the proof. 	
� ◻

As demonstrated by Proposition  2, the inequality constraint in problem  (11) can be 
transformed into an equality constraint, which is also suitable to problem (3). Then, albeit 
non-convex, problem (12) can be formulated as solving a constrained eigenvalue problem 
(Gander et al. 1988; Oglic and Gärtner 2018), yielding an optimal solution with closed-
form.2 Accordingly, the optimal solution �z,� is given by

where the notation (⋅)† denotes the pseudo-inverse, I is the identity matrix, and � is the 
smallest real eigenvalue of the following non-Hermitian matrix

where K† is the pseudo-inverse of K , i.e. K† = V diag
(
�1, 0m−p−q,�2

)
V⊤ with two invert-

ible diagonal matrices

It is clear that we cannot directly calculate � . However, � is very important in our analysis 
and thus we attempt to estimate it based on matrix perturbation theory (Stewart and Sun 
1990). We will detail this in Sect. 5.

Besides, to aid our analysis, we introduce another nonnegative regularization scheme in 
RKKS to problem (3)

where the empirical covariance operator T is defined in RKKS but nonnegative, see Defini-
tion 4. Based on the above regularized risk minimization problem and Eq. (2), the regular-
izer can be represented as

Accordingly, problem (16) can be formulated as

(13)�z,� =
1

m
(�I − �K)†y,

(14)G =

[
𝜆K† − I

−yy⊤∕m3r2 𝜆K†

]
,

(15)�1 = diag
(
�
�1

,… ,
�
�p

)
, �2 = diag

(
�

�m−q+1
,… ,

�
�m

)
.

(16)f̃z,� ∶= argmin
f∈B(r)

�
1

m

m�
i=1

�
f (xi) − yi

�2
+�⟨f , Tf ⟩HK

�
,

⟨f , Tf ⟩HK
=

1

m

m�
i,i�=1

𝛼i𝛼i�

m�
j=1

k(xi, xj)k(xi� , xj) =
1

m
�
⊤K2

�.

2  As a generalized trust-region subproblem, problem (12) can be also solved by the S-lemma with equality 
to yield a globally optimal solution (Adachi and Nakatsukasa 2017; Xia et al. 2016).
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with �̃z,� = −
1

m�̃
K†y , and �̃  is the smallest real eigenvalue of the matrix

By Sylvester’s determinant identity, we directly calculate the largest and smallest real 
eigenvalues of G̃ as ‖y‖2√

mmr
 and − ‖y‖2√

mmr
 , respectively. So we have �𝜇 = −

‖y‖2
m
√
mr

< 0 . Note that 
the regularizer in problem (16) can be also chosen to be other RKHS regularizers, such as 
⟨f , f ⟩HK̄

 in Definition 3. But using the empirical kernel regularizer ⟨f , Tf ⟩HK
 , one obtains 

elegant and concise theoretical results, i.e., directly compute �̃ .

5 � Framework of proofs

In this section, we establish the framework of proofs for Theorem 1. By the modified error 
decomposition technique in Sect. 5.1, the total error can be decomposed into the regulari-
zation error, the sample error, and an additional hypothesis error. We detail the estimates 
for the hypothesis error in Sect. 5.2. These two points are the main elements on novelty in 
the proof. We briefly introduce estimates for the sample error in Sect. 5.3 and derive the 
learning rates in Sect. 5.4.

5.1 � Error decomposition

In order to estimate error ‖�M∗ (fz,�) − f�‖ in the L2�X space, i.e., to bound ‖�B(fz,�) − f�‖ for 
any B ≥ M∗ , we need to estimate the excess error E

(
�B(fz,�)

)
− E(f�) which can be con-

ducted by an error decomposition technique (Cucker and Zhou 2007). However, since 
⟨fz,�, fz,�⟩HK

 might be negative, traditional techniques are invalid. Formally, our modified 
error decomposition technique is given by the following proposition by introducing an 
additional hypothesis error.

Proposition 3  Let f� = argmin f∈HK

�
E(f ) − E(f�) + �⟨f , Tf ⟩HK

�
 , then E

(
�B(fz,�)

)
− E(f�) 

can be bounded by

where D(�) is the regularization error defined by Eq. (4). The sample error S(z, �) is given 
by

The introduced hypothesis error P(z, �) is defined by

where fz,� and f̃z,� are optimal solutions of problem (3) and problem (16), respectively.

(17)��z,𝜆 ∶= argmin
�∈ℝm∶�⊤K2

�=mr2

�
1

m
‖K� − y‖2

2
+

𝜆
m
�
⊤K2

�

�
,

(18)�G =

[
0m − I

−yy⊤∕m3r2 0m

]
.

E
�
�B(fz,�)

�
− E(f�) ≤ E

�
�B(fz,�)

�
− E(f�) + �⟨fz,�, Tfz,�⟩HK

≤ D(�) + S(z, �) + P(z, �),

S(z, �) = E
(
�B(fz,�)

)
− Ez

(
�B(fz,�)

)
+ Ez

(
f�
)
− E

(
f�
)
.

(19)P(z, �) =Ez

�
fz,�

�
+ �⟨fz,�, Tfz,�⟩HK

− Ez

�
f̃z,�

�
− �⟨f̃z,�, Tf̃z,�⟩HK

,
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Proof  We write E
�
�B(fz,�)

�
− E(f�) + �⟨fz,�, Tfz,�⟩HK

 as

where we use Ez
(
�B(fz,�)

)
≤ Ez

(
fz,�

)
 in the first inequality, and the second inequality holds 

by the condition that f̃z,� is a global minimizer of problem (16). 	�  ◻

It can be found that the additional hypothesis error stems from the difference between 
⟨fz,�, fz,�⟩HK

-regularization and ⟨fz,�, Tfz,�⟩HK
-regularization in essence. Hence, we estimate 

the introduced hypothesis error in the following descriptions.

5.2 � Bound hypothesis error

Since f̃z,� is an optimal solution of problem (16), obviously, we have P(z, �) ≥ 0 . To bound 
the hypothesis error, we need to estimate the objective function value difference of the two 
learning problems (3) and (17) by the following proposition.

Proposition 4  Suppose that the spectrum of the indefinite kernel matrix K satisfies 
Assumption 4, denote the condition number of two invertible matrices �1 , �2 in Eq. (15) as 
C1,C2 < ∞ . When 𝜂 + 𝛾 > 1 with � = min{�1, �2} , the hypothesis error defined in Eq. (19) 
holds with probability 1 such that

where C̃1 ∶= 2Mr + 2M2
(−cm

C2

+
M2

r2
+

C1

c1

)
 and the power index is �1 = min

{
1, � + � − 1

}
.

Proof  The proof can be found in Sect. 5.2.3. 	�  ◻

Remark   The condition number of invertible matrices is finite, which is mild as demon-
strated by Gao et al. (2015).

In the next, we give the proof of Proposition 4. For better presentation, we divide the 
proof into three parts: in Sect. 5.2.1, we decompose the hypothesis error P(z, �) into the 
sum of two terms that would depend on � , i.e., the smallest real eigenvalue of a non-Her-
mitian matrix G in Eq. (14). Then we estimate � in Sect. 5.2.2 so as to bound P2(z, �) and 
P(z, �) in Sect. 5.2.3.

5.2.1 � Decomposition of hypothesis error

The hypothesis error P(z, �) can be decomposed into the sum of two parts that depend on � 
and 𝜇̃ by the following proposition.

E
�
�B(fz,�)

�
− E(f�) + �⟨fz,�, Tfz,�⟩HK

=
�
E
�
�B(fz,�)

�
− Ez

�
�B(fz,�)

��

+
�
Ez

�
�B(fz,�)

�
+ �⟨fz,�, Tfz,�⟩HK

�
−
�
Ez(f�) + �⟨f�, Tf�⟩HK

�
+
�
Ez(f�) − E(f�)

�

+
�
E(f�) − E(f�) + �⟨f�, Tf�⟩HK

�

≤ D(�) + P(z, �) + S(z, �),

P(z, �) ≤ C̃1m
−�1 ,
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Proposition 5  Given the hypothesis error P(z, �) defined in Eq. (19), it can be decomposed 
as

where P1(z, �) depends on �̃ ∶= −
‖y‖2
m
√
mr

 and P2(z, �) depends on � , i.e., the smallest real 
eigenvalue of a non-Hermitian matrix G in Eq. (14).

Proof  According to the definition of the hypothesis error P(z, �) , we have

where fz,� and f̃z,� are optimal solutions of problem  (3) and problem  (16), respectively. 
Therefore, both of them can be obtained on the hyper-sphere. Besides, the regularizer is 
�
⊤
z,𝜆
K2

�z,𝜆 = mr2 can be canceled out in P(z, �) . Based on this, P(z, �) can be further repre-
sented as

	�  ◻

5.2.2 � Estimate �

To bound P(z, �) , we need to bound P1(z, �) and P2(z, �) respectively. The estimation for 
P1(z, �) is simple (we will illustrate it in the next subsection). However, P2(z, �) involves 
with � , i.e., the smallest real eigenvalue of a non-Hermitian matrix G , which makes our 
estimation for P2(z, �) quite intractable. Based on this, here we attempt to present an 
estimation for � based on matrix perturbation theory (Stewart and Sun 1990).

Typically, there are three classical and well-known perturbation bounds for matrix 
eigenvalues, including the Bauer–Fike theorem and the Hoffman-Wielandt theorem for 
diagonalizable matrices (Hoffman and Wielandt 2003), and Weyl’s theorem for Hermi-
tian matrices (Stewart and Sun 1990). However, G is neither Hermitian nor diagonaliz-
able. To aid our proof, we need the following lemma.

Lemma 1  (Henrici theorem (Chu 1986)) Let A be an m × m matrix with Schur decomposi-
tion QHAQ = D + U , where Q is unitary, D is a diagonal matrix and U is a strict upper 
triangular matrix, with (⋅)H denoting the Hermitian transpose. For each eigenvalue 𝜎̃ of 
A + �̃  , there exists an eigenvalue �(A) of A such that

P(z, 𝜆) = P1(z, 𝜆) + P2(z, 𝜆) ∶= −
2

m2𝜇̃
y⊤KK†y −

2

m2
y⊤K(𝜆I − 𝜇K)†y,

P(z, �) = Ez

�
fz,�

�
+ �⟨fz,�, Tfz,�⟩HK

− Ez

�
f̃z,�

�
− �⟨f̃z,�, Tf̃z,�⟩HK

,

P(z, 𝜆) =
1

m

m�
i=1

�
fz,𝜆(xi) − yi

�2
+ 𝜆⟨fz,𝜆, Tfz,𝜆⟩HK

−
1

m

m�
i=1

�
�fz,𝜆(xi) − yi

�2
− 𝜆⟨�fz,𝜆, T�fz,𝜆⟩HK

=
1

m
‖K�z,𝜆 − y‖2

2
−

1

m
‖K��z,𝜆 − y‖2

2
=

2

m
y⊤K��z,𝜆 −

2

m
y⊤K�z,𝜆

= −
2

m2𝜇̃
y⊤KK†y

���������������
≜P1(z,𝜆)

−
2

m2
y⊤K(𝜆I − 𝜇K)†y

���������������������������
≜P2(z,𝜆)

.
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where b ≤ m is the smallest integer satisfying Ub = 0 , i.e., the nilpotent index of U.

Based on the above lemma, � admits the following representation.

Proposition 6  Under the assumption of Proposition 4, as the smallest real eigenvalue of a 
non-Hermitian matrix G in Eq. (14), � admits the following expression

with c̃a ∈ [−1, 0)
⋃
(0, 1] , c̃b ∈ [−1, 1] , c̃d ∈ [0, 1] , and �𝜇 ∶= −

‖y‖2
m
√
mr

< 0.

Proof  The non-Hermitian matrix G in Eq. (14) can be reformulated as

As a result, G can be represented as a sum of a block upper triangular matrix G1 with a 
non-Hermitian perturbation G2.

To estimate G1 , by Lemma 1, from the definition of Schur decomposition on G1 , it 
can be easily verified that D and U are

Accordingly, U is a nilpotent matrix with U2 = 0 , and thus we have b = 2 . According to 
Lemma 1, there exists an eigenvalue of G1 denoting as �(G1) such that

where � is given by

Then we consider the following three cases based on the sign of �(G1).

Case 1  �(G1) = 0

The inequality in Eq. (21) can be formulated as

�𝜎̃ − 𝜎(A)� ≤ max(𝜍,
b
√
𝜍), where 𝜍 ∶= ‖ �𝛥‖2

b−1�
i=1

‖U‖i
2
,

(20)� = c̃a�̃ + c̃b�̃
2 +

[
C2

cm
+ c̃d

(
C1

c1
−

C2

cm

)]
m−(�+�),

G =

[
𝜆K† − I

0m×m 𝜆K†

]

�������������
≜G1

+

[
0m×m 0m×m

−yy⊤∕m3r2 0m×m

]

���������������������������
≜G2

.

D = diag
(
�
�1

,… ,
�
�p

, 0,… , 0,
�

�m−q+1
,… ,

�
�m

,
�
�1

,… ,
�
�p

, 0,… , 0,
�

�m−p+1
,… ,

�
�m

)
,

and U =

[
0m − I

0m 0m

]
.

(21)��� − �(G1)
�� ≤ max(�,

b
√
�) ≤ � +

b
√
�,

� ∶= ‖G2‖2
b−1�
i=1

��U��i2 = ‖G2‖2‖U‖2 = ‖G2‖2 = ‖y‖2
m3r2

.
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Case 2  𝜎(G1) > 0

Without loss of generality, we assume that �(G1) is �∕�l with l ∈ {1, 2,… , p} . Accord-
ing to the definition of condition number C1 , we have

Then, the inequality in Eq. (21) can be formulated as

Case 3  𝜎(G1) < 0

Likewise, we assume that �(G1) is �∕�l with l ∈ {m − q + 1,m − q + 2,… ,m} . Accord-
ing to the definition of condition number C2 , we have

Then, the inequality in Eq. (21) can be formulated as

Combining Eq. (22), Eqs. (23) and (24), we have

which can be further written as

Therefore, we have limm→∞ � = 0 , and its convergence rate is O(1∕m) due to 𝛾 + 𝜂 > 1 . 
Finally, � can be represented in Eq. (20) with c̃a ≠ 0 , which concludes the proof. 	�  ◻

5.2.3 � Proofs of Proposition 4

Given the expression of � with the convergence rate O(1∕m) in Proposition 6, we are ready 
to present the estimates for P2(z, �) and P(z, �) as demonstrated by Proposition 4.

Proof of Proposition 4  We cast the proof in two steps: firstly prove the consistency, i.e., 
limm→∞ P(z, �) = 0 , and then derive its convergence rate.

(22)−
‖y‖2
m
√
mr

−
‖y‖2

2

m3r2
≤ � ≤

‖y‖2
m
√
mr

+
‖y‖2

2

m3r2
.

0 <
1

𝜎1
≤ 1

𝜎l
≤

C1

c1
m−𝜂1 ≤

C1

c1
m−𝜂 , 𝜂=min{𝜂1, 𝜂2}.

(23)−
‖y‖2
m
√
mr

−
‖y‖2

2

m3r2
≤ � ≤

C1

c1
m−(�+�) +

‖y‖2
m
√
mr

+
‖y‖2

2

m3r2
.

0 >
1

𝜎m
≥ 1

𝜎l
≥

C2

cm
m−𝜂2 ≥

C2

cm
m−𝜂 , 𝜂 = min{𝜂1, 𝜂2}.

(24)
C2

cm
m−(�+�) −

‖y‖2
m
√
mr

−
‖y‖2

2

m3r2
≤ � ≤

‖y‖2
m
√
mr

+
‖y‖2

2

m3r2
.

⎧⎪⎪⎨⎪⎪⎩

� ≥
C2

cm
m−(�+�) −

‖y‖2
m
√
mr

−
‖y‖2

2

m3r2

� ≤
C1

c1
m−(�+�) +

‖y‖2
m
√
mr

+
‖y‖2

2

m3r2
,

C2

cm
m−(𝛾+𝜂) + 𝜇̃ − 𝜇̃2 ≤ 𝜇 ≤

C1

c1
m−(𝛾+𝜂) − 𝜇̃ + 𝜇̃2.
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Step 1: Consistency of P(z, �)
Based on the decomposition of the hypothesis error P(z, �) in Proposition  5, due 

to P(z, �) ≥ 0 for any m ∈ ℕ , we have limm→∞

(
P1(z, �) + P2(z, �)

)
≥ 0 if the lim-

its limm→∞ P1(z, �) and limm→∞ P2(z, �) exist. Next we analyse P1(z, �) and P2(z, �) , 
respectively.

According to the expression of P1(z, �) , it can be bounded by

where vi is the i-th column of the orthogonal matrix V from the eigenvalue 
decomposition K = V�V⊤ . The inequality in the above equation holds by 
y⊤�y = y⊤(I −

∑m−q

i=p+1
viv

⊤
i
)y ≤ y⊤y.

According to the expression of P2(z, �) , it can be rewritten as

Since the function h(�i) =
−1
�

�i
−�

 is an increasing function of �i , P2(z, �) can be bounded by

By Proposition 6, plugging Eq. (20) into the above inequality, when 𝜂 + 𝛾 > 1 , we have

which holds by ‖y‖2 = O(
√
m) and c̃a ≠ 0 . According to the squeeze theorem, we con-

clude that the limit limm→∞ P2(z, �) exists. Because of P(z, �) ≥ 0 , we have

which indicates that 1 − 1

c̃a
≥ 0 , i.e., c̃a ≥ 1 . Accordingly, the coefficient in Eq.  (20) 

c̃a ∈ [−1, 0)
⋃
(0, 1] can be further improved to c̃a = 1 . In this case, it is obvious that 

limm→∞

(
P1(z, �) + P2(z, �)

)
= 0 implies the consistency for P(z, �).

Step 2: Convergence rate of P(z, �)

(25)

P1(z, 𝜆) =
2

m
y⊤K��z,𝜆 = −

2

m2𝜇̃
y⊤KK†y

= −
2

m2𝜇̃
y⊤

�
p�
i=1

viv
⊤
i
+

m�
i=m−q+1

viv
⊤
i

�

�����������������������������������
≜�

y

≤
2‖y‖2r√

m
,

P2(z, 𝜆) = −
2

m2
y⊤K(𝜆I − 𝜇K)†y =

2

m2
y⊤
⎛⎜⎜⎝

p�
i=1

−viv
⊤
i

𝜆

𝜎i
− 𝜇

+

m�
i=m−q+1

−viv
⊤
i

𝜆

𝜎i
− 𝜇

⎞⎟⎟⎠
y.

(26)−
2

m2
⋅

1
𝜆

𝜎1
− 𝜇

y⊤�y≤P2(z, 𝜆)≤−
2

m2
⋅

1
𝜆

𝜎m−q+1
− 𝜇

y⊤�y.

lim
m→∞

−
2

m2
⋅

1
𝜆

𝜎1
− 𝜇

y⊤�y = lim
m→∞

−
2

m2
⋅

1
𝜆

𝜎m−q+1
− 𝜇

y⊤�y = lim
m→∞

2y⊤�y√
m‖y‖ ⋅

r

−�ca

≤ lim
m→∞

2‖y‖2r
−�ca

√
m

< ∞,

0 ≤ lim
m→∞

�
P1(z, �) + P2(z, �)

�
≤ lim

m→∞

�
2‖y‖2r√

m

�
1 −

1

c̃a

��
,
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Based on the consistency of P(z, �) , we derive its convergence rate as follows. For nota-
tional simplicity, we denote c̃e ∶=

[
C2

cm
+ c̃d

(
C1

c1
−

C2

cm

)]
 . Accordingly, by virtue of 

Eqs. (25), (26) and Proposition 6 for � , we have

where C̃1 ∶= 2Mr + 2M2
(−cm

C2

+
M2

r2
+

C1

c1

)
 and the power index is �1 = min

{
1, � + � − 1

}
 . 

Finally, we conclude the proof for Proposition 4. 	�  ◻

5.3 � Estimate sample error

The sample error can be decomposed into S(z, �) = S1(z, �) + S2(z, �) with

Note that S1(z, �) involves the samples z . Thus a uniform concentration inequality for a 
family of functions containing fz,� is needed to estimate S1(z, �) . Since we have fz,� ∈ BR 
defined by Eq. (6), we shall bound S1 by the following proposition with a properly chosen 
R. Considering that the estimates for S1(z, �) and S2(z, �) have been extensively investigated 
in Wu et al. (2006), Cucker and Zhou (2007), Shi et al. (2014), we directly present the cor-
responding results in Appendix 1 under the existence of f� in Assumption 1, and the regu-
larity condition on � in Assumption 3.

5.4 � Derive learning rates

Combining the bounds in Propositions 3, 4 and estimates for the sample error, the excess 
error E

(
�B(fz,�)

)
− E(f�) can be estimated. Specifically, as aforementioned, algorithmically, 

the radius r or R in Eq. (6) is determined by cross validation in our experiments. Theoreti-
cally, in our analysis, it is estimated by giving a bound for �⟨fz,�, Tfz,�⟩HK

 . This is conducted 
by the iteration technique (Wu et  al. 2006) to improve learning rates. Under Assump-
tion 1– 4, the proof for learning rates in Theorem 1 can be found in Appendix 2.

P(z, �) = P1(z, �) + P2(z, �)

≤
2‖y‖2r√

m
+

2‖y‖2
2

m2
⋅

1
�

�m−q+1
− �

≤
2‖y‖2r√

m
+

2‖y‖2
2

m

1

−1

�m−q+1
m1−� −

‖y‖2√
mr

−
c̃b‖y‖22
m2r2

− c̃em
−�

≤
2‖y‖2r√

m
+

2‖y‖2
2

m

�
−

√
mr

‖y‖
−cm

C2

m1−�−� +
‖y‖2

2

mr2
m−1 + �c̃e�m−(�+�)

�

≤
�
2Mr + 2M2

�−cm
C2

+
M2

r2
+

C1

c1

��
m−�1

≜ C̃1m
−�1 ,

S1(z, �) = E
(
�B(fz,�)

)
− E(f�) − Ez

(
�B(fz,�)

)
+Ez(f�),

S2(z, �) =
{
Ez

(
f�
)
− Ez(f�)

}
−
{
E(f�) − E(f�)

}
.
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6 � Numerical experiments

In this section, we validate our theoretical results by numerical experiments in the follow-
ing three aspects.

6.1 � Eigenvalue assumption

Here we verify the justification of our eigenvalue decay assumption in Assumption 4 on 
four indefinite kernels, including

–	 the spherical polynomial (SP) kernel (Pennington et al. 2015): kp(x, x�) = (1 + ⟨x, x�⟩)p 
with p = 10 on the unit sphere is shift-invariant but indefinite.

–	 the TL1 kernel (Huang et al. 2018): k�� (x, x�) = max{�� − ‖x − x�‖1, 0} with �� = 0.7d 
as suggested.

–	 the Delta-Gauss kernel (Oglic and Gärtner 2018): It is formulated as the difference of 
two Gaussian kernels, i.e., k

�
x, x�

�
= exp

�
−‖x − x�‖2∕�1

�
− exp

�
−‖x − x�‖2∕�2

�
 

with �1 = 1 and �2 = 0.1.
–	 the log kernel (Boughorbel et al. 2005): k(x, x�) = − log(1 + ‖x − x�‖).

Here the Delta-Gaussian kernel (Oglic and Gärtner 2018) and the log kernel Boughorbel 
et al. (2005) are associated with RKKS while the SP and TL1 kernels have not been proved 
as reproducing kernels in RKKS. It is still an open problem to verify that a kernel admits 
the decomposition (Liu et  al. 2020). The Delta-Gaussian kernel is defined as the differ-
ence of two Gaussian kernels, and thus it is clear that �1 and �m follow with the exponen-
tial decay in the same rate, i.e., �1 = �2 . For the log kernel (Boughorbel et al. 2005) is a 
conditionally positive definite kernel of order one3 associated with RKKS. According to 
Theorem 8.5 in Wendland (2004), the kernel matrix induced by this kernel has only one 
negative eigenvalue. Further, we can conclude that the only one negative eigenvalue admits 
�m = −

∑m−1

i=1
�i because of k(0) = 1

n
tr(K) =

1

n

∑n

i=1
�i = 0 , which implies 𝜂2 > 𝜂1.

Figure 1 experimentally shows eigenvalue distributions of the above four indefinite ker-
nels on the monks3 dataset.4 It can be found that our eigenvalue assumption: �1 ≥ c1m

�1 
( c1 > 0 , 𝜂1 > 0 ) and �m ≤ cmm

�2 ( cm < 0 , 𝜂2 > 0 ) in Definition 4 is reasonable. Specifically, 
our experiments on the log kernel verify that it has only one negative eigenvalue admit-
ting �m = −

∑m−1

i=1
�i . Note that although the SP and TL1 kernels have not been proved as 

reproducing kernels in RKKS, our eigenvalue assumption still covers them, which demon-
strates the feasibility of our assumption.

6.2 � Empirical validations of derived learning rates

Here we verify the derived convergence rates on the monks3 dataset effected by different 
indefinite kernels. In our experiment, we choose � ∶= 1∕m and two indefinite kernels 
including the Delta-Gauss kernel and the log kernel on monks3 to study in what degree 

3  The order in conditionally positive definite kernels is an important concept, refer to Wendland (2004) for 
details.
4  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets.​html.

https://archive.ics.uci.edu/ml/datasets.html
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they would effect the learning rates. Since the selected two kernels are C∞(X × X) , s can be 
arbitrarily small. In this case, by Theorem  1 and Corollary 2, the learning rate of prob-
lem  (3) with the RKKS regularizer ⟨f , f ⟩HK

 or the RKHS regularizer ‖f‖2
HK̄

 is close to 
min{�, �} . Here the two parameters � and � indicate the approximation ability for f� and 
the size of RKKS by different indefinite kernels, and thus they will influence the expected 

Fig. 1   Eigenvalue distribution of kernel matrices generated by various indefinite kernels on the monks3 
dataset

Fig. 2   The log–log plot of the theoretical and observed risk convergence rates averaged on 100 trials
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risk rate. Figure 2a shows the observed learning rate associated with the Delta-Gauss ker-
nel is O(1∕

√
m) , while the excess risk associated with the log kernel converges at 

O(m−1∕3) in Fig. 2b. Hence, Fig. 2 demonstrates this difference that the excess risk of prob-
lem (3) with the Delta-Gauss kernel converges faster than that with the log kernel. This is 
reasonable and demonstrated by Theorem 1, i.e., different HK spanned by various indefi-
nite kernels lead to different convergence rates due to their different approximation ability 
for f�.

The above experiments validate the rationality of our eigenvalue assumption and the 
consistency with theoretical results.

7 � Conclusion

In this paper, we provide approximation analysis of the least squares problem associated 
with the ⟨f , f ⟩HK

 regularization scheme in RKKS. For this non-convex problem with the 
bounded hyper-sphere constraint, we can get an attainable optimal solution, which makes 
it possible to conduct approximation analysis in RKKS. Accordingly, we start the analysis 
from the learning problem that has an analytical solution, and thus obtain the first-step 
to understand the learning behavior in RKKS. Our analysis and experimental validation 
bridge the gap between the regularized risk minimization problem in RKHS and RKKS.

Appendix 1: Proof for the sample error

The asymptotic behaviors of S1(z, �) and S2(z, �) are usually illustrated by the convergence 
of the empirical mean 1

m

∑m

i=1
�i to its expectation �� , where 

{
�i
}m

i=1
 are independent ran-

dom variables on (Z, �) defined as

For R ≥ 1 , denote

Lemma 2  If � is a symmetric real-valued function on X × Y  with mean �(�) . Assume that 
�(�) ≥ 0 , |� − ��| ≤ T  almost surely and ��2 ≤ c�

1
(��)� for some 0 ≤ � ≤ 1 and c′

1
≥ 0 , 

T ≥ 0 . Then for every 𝜖 > 0 there holds

Now we can bound S2(z, �) by the following proposition.

Proposition 7  Suppose that |f�(x)| ≤ M∗ with M∗ ≥ 1 , for any 0 < 𝛿 < 1 , there exists a sub-
set of Z1 of Zm with confidence at least 1 − �∕2 , such that for any ∀z ∈ Z1

�(x, y) ∶=
(
y − f�(x)

)2
−
(
y − f�(x)

)2
.

W(R) =
�
z ∈ Zm ∶

�
⟨fz,�, Tfz,�⟩HK

≤ R
�
.

Prob

� 1

m

∑m

i=1
�(zi)−��√

(��)� + ��
≥ �1−

�

2

�
≤ exp

�
−m�2−�

2c�
1
+

2

3
T�1−�

�
.
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Proof  From the definition of f� in Proposition 3, combining Eqs. (1) and (4), we have

which leads to ‖f�‖∞ ≤ �
�

D(�)

�
 . The first equality holds because the reproducing kernel 

k+ + k− associated with HK̄ is the square root of the limiting kernel in Guo and Shi (2019) 
associated with the empirical covariance operator T. Due to f�(x) contained in [−M∗,M∗] , 
we can get

For least squared loss, �(�2) ≤ 4�(�) indicates c�
1
= 4 and � = 1 . Applying Lemma 2, there 

exists a subset Z1 of Zm with confidence 1 − �∕2 , we have

Then, we obtain

which concludes the proof. 	� ◻

In the next, we attempt to bound S1(z, �) with respect to the samples z . Thus a uniform 
concentration inequality for a family of functions containing fz,� is needed to estimate S1 . 
Since we have fz,� ∈ BR , which is defined by Eq. (6), we shall bound S1 by the following 
proposition with a properly chosen R.

Proposition 8  Suppose that |f�(x)| ≤ M∗ with M∗ ≥ 1 in Assumption 1, and � satisfies the 
regularity condition in Assumption 3, for any 0 < 𝛿 < 1 , R ≥ 1 , B > 0 , there exists a subset 
Z2 of Zm with confidence at least 1 − �∕2 , such that for any z ∈ W(R) ∩ Z2,

Proof  Consider the function set FR with R > 0 by

We can easily see that each function g ∈ FR satisfies ‖g‖∞ ≤ B +M∗ , and thus we have 
|g − �g| ≤ B +M∗.

S2(z, �) ≤
1

2
D(�) +

1

m

(
�

√
D(�)

�
+M∗ + 12

)
log

2

�
.

(27)‖f�‖∞ ≤ �
�

⟨f�, Tf�⟩HK
≤ �

�
D(�)

�
≤ �

√
C0�

�−1

2 ,

||� − �(�)|| ≤ �

√
D(�)

�
+M∗.

1

m

m�
i=1

�(zi) − �� ≤
√
(��)� + ���1−

�

2 ≤ 1

2
�� +

3

2
�,

1

m

m∑
i=1

�(zi) − �� ≤ �
2

{
E(f�)−E(f�)

}
+
T + 3c�

1

m
log

2

�

≤ 1

2
D(�)+

�
√

D(�)

�
+M∗+12

m
log

2

�
,

S1(z, �) ≤
136(M∗ + B)

m
log

2

�
+
1

2

{
E
(
�B(fz,�)

)
−E(f�)

}
+ 144Cs(M

∗ + B)m
−

1

1+s R
s

1+s .

FR ∶=
{(

y − �B(f )(x)
)2

−
(
y − f�(x)

)2
∶ f ∈ BR

}
.
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So using N(FR, �) ≤ N(B1, �) and applying Lemma 2 to the function set FR with the 
covering number condition in Eq. (7) in Assumption 3, we have

with �g = E
(
�B(f )

)
− E(f�) . Hence there holds a subset Z2 of Zm with confidence at least 

1 − �∕2 such that ∀z ∈ Z2 ∩W(R)

where �∗(m,R, �
2
) is the smallest positive number � satisfying

using Lemma 7.2 in Cucker and Zhou (2007), we have

where we use M∗ ≥ 1 . For z ∈ B(R) ∩ Z2 , we have

	�  ◻

Appendix 2:  Proof for learning rates

Combining the bounds in Propositions 3, 4, 7, 8, and Eq. (27), let Eq. (7) with s > 0 , Eq. (5) 
with 0 < 𝛽 ≤ 1 , take � = m−� with 0 < 𝛾 < 1 , the excess error E

(
�B(fz,�)

)
− E(f�) can be 

bounded by

where C̃1 is given in Proposition 4. Two constants C̃2 and C̃3 are given by

In the next, we attempt to find a R > 0 by giving a bound for �⟨fz,�, Tfz,�⟩HK
.

Prob
z∈Zm

�
sup
f∈FR

�g −
1

m

∑m

i=1
g(xi, yi)√

(�g)� + ��
≥ 4�1−

�

2

�
≤ exp

�
Cs

�
R

�

�s

−
m�2−�

2c�
1
+

2

3
(B +M∗)�1−�

�
,

sup
f∈FR

�g −
1

m

∑m

i=1
g(xi, yi)�

(�g)� +
�
�∗(m,R, �

2
)
��

≤ 4
�
�∗(m,R,

�
2
)
�1− �

2 ,

Cs

(
R

�

)s

−
m�2−�

2c�
1
+

2

3
(M∗ + B)�1−�

= log
�
2
,

�∗ ≤ max

{
48 + 2(M∗ + B)

3m
log

2

�
,

(
48 + 4(B +M∗)

3m
CsR

s

) 1

1+s
}

≤
17(M∗ + B)

m
log

2

�
+ 18Cs(M

∗ + B)m
−

1

1+s R
s

1+s ,

S1(z, �) ≤ 8�∗
(
m,R,

�
2

)
+

1

2

{
E
(
�B(fz,�)

)
− E(f�)

}
.

(28)

E
�
�B(fz,�)

�
− E(f�) + �⟨fz,�, Tfz,�⟩HK

≤ 3C0m
−�� + C̃1m

−�1 + C̃2 log
2

�
m−1

+ C̃3m
−

1

1+s R
s

1+s log
2

�
+ 2�

√
C0m

−
�

�(�−1)

2
+1
�
log

2

�
,

C̃2 = 274M∗ + 272B + 24, C̃3 = 288(M∗ + B)Cs.
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Lemma 3  Suppose that � satisfies the condition in Eq. (5) with 0 < 𝛽 ≤ 1 in Assumption 2. 
For some s > 0 in Assumption  3, take � = m−� with 0 < 𝛾 ≤ 1 . Then for 0 < 𝜖 < 1 and 
0 < 𝛿 < 1 with confidence 1 − � , we have

where C̃X is given by

and �� is

Proof  According to Eq. (28), we know that for any R ≥ 1 there exists a subset VR of Zm with 
measure at most � such that

where am =

√
C̃3m

�

2
−

1

2(1+s) , and bm is defined as

where the power index � is

It tells us that W(R) ⊆ W

�
amR

s

2+2s + bm

�⋃
VR . Define a sequence {R(j)}J

j=0
 with 

R(j) = am(R
(j−1))s∕(2+2s) + bm with J ∈ ℕ , we have Zm = W(R(0)) satisfying

Since each set VR(j) is at most � , the set W(R(J)) has measure at least 1 − J�.
Denote 𝛥 = s∕(2 + 2s) < 1∕2 , the definition of the sequence {R(j)}J

j=0
 indicates that

The first term R(J)

1
 can be bounded by

(29)
�

⟨fz,�, Tfz,�⟩HK
≤ 4C̃3C̃X

�
log

2

�

�2
�

log
2

�
m�� ,

C̃X =

�
1 +

�
C̃2 +

�
2�

√
C0 +

√
3C0 +

�
C̃1

�
,

(30)��=max

{
�(1 − �)

2
,
1 − �

2
,(�(1 + s) − 1)(2 + s) + �

}
.

�
⟨fz,�, Tfz,�⟩HK

≤ amR
s

2+2s + bm, ∀z ∈ W(R)�VR,

bm=

��
C̃2 log

2

�
+

�
2�

√
C0 log

2

�
+
√
3C0+

�
C̃1

�
m� ,

� = max

{
�(1 − �)

2
,
� − 1

2
,
�

2
−

�(� − 1) + 2

4
,
1 − �

2

}

= max

{
�(1 − �)

2
,
1 − �

2

}
.

W(R(0))⊆W(R(1))
⋃

VR(0) ⊆⋯⊆W(R(J))
⋃(

J−1⋃
j=0

VR(j)

)
.

R(J) =a1+�+⋯+�J−1

m
(R(0))�

J

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
R
(J)

1

+

J−1∑
j=1

a1+�+⋯+�j−1

m
b�

j

m
+bm

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
R
(J)

2

.
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where J is chosen to be the smallest integer satisfying J ≥ log(1∕�)

log 2
 . Besides, R(J)

2
 can be 

bounded by

with b1 ∶=

�
C̃2 log

2

�
+

�
2�

√
C0 log

2

�
+
√
3C0 +

�
C̃1 . When 

� ≤ (�(1 + s) − 1)(2 + s) , R
(J)

2
 can be bounded by C̃3b1Jm

(�(1+s)−1)(2+s) . When 
𝜁 > (𝛾(1 + s) − 1)(2 + s) , R(J)

2
 can be bounded by C̃3b1Jm

� . Based on the above discussion, 
we have

with �� = max{� , (�(1 + s) − 1)(2 + s) + �} . So with confidence 1 − J� , there holds

which follows by replacing � by �∕J and noting J ≤ 2 log(2∕�) . Finally, we conclude the 
proof. 	�  ◻

Now, by Lemma 3 and Eq. (28), we are able to prove our main result in Theorem 1.

Proof  Take R to be the right hand side of Eq. (29) by Lemma 3, there exists a subset V ′
R
 of 

Zm with measure at most � such that Zm∕V �
R
⊆ W(R) . Therefore, there exists another subset 

VR of Zm with measure at most � such that for any z ∈ W(R)∕VR , Eq. (28) can be formulated 
as

where C̃4 = C̃X(4C̃3)
s

1+s . Accordingly, by setting the constant C̃ with

we have the following error bound

with confidence 1 − � and the power index � is

provided that 𝜃𝜖 < 1∕s . Combining Eqs. (30) and (31), when 0 < 𝜂 < 1 , we have

R
(J)

1
≤ C̃3m

(�(1+s)−1)(2+s)m
1

1+s
2−J

,

R
(J)

2
≤m(�(1+s)−1)(2+s)C̃3b1

J−1∑
j=0

m

(
�−(�(1+s)−1)(2+s)

)
sj

(2+2s)j,

R(J) ≤ (C̃3 + C̃3b1J)m
�� ,

�
⟨fz,�, Tfz,�⟩HK

≤ R(J) ≤ C̃3C̃XJ

�
log

2

�
m�� ,

E
�
�B(fz,�)

�
− E(f�) ≤ 3C0m

−�� + C̃1m
−�1 + C̃2 log

2

�
m−1 + 2�

√
C0m

−
�

�(�−1)

2
+1
�
log

2

�

+ C̃4

�
log

2

�

�2
�

log
2

�
m

s��−1

1+s ,

C̃ = 3C0 + C̃1 + C̃2 + 2�
√
C0 + C̃4,

‖‖�M∗ (fz,�) − f�
‖‖2L2�X ≤ C̃

(
log

2

�

)2

log
2

�
m−�,

(31)� = min

{
��, � + � − 1,

1 − s��
1 + s

}
,
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where � is given by Eq. (8) and � needs to be further restricted by max{0, 1 − 2∕s} < 𝜂 < 1 . 
These two restrictions ensure that � is positive for a valid learning rate. Specifically, when 
� ≥ 1 , the power index � can be simplified as

which concludes the proof. 	� ◻
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