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Abstract
Recently, some statistical topic modeling approaches have been widely applied in the 
field of supervised document classification. However, there are few researches on these 
approaches under label noise, which widely exists in real-world applications. For exam-
ple, many large-scale datasets are collected from websites or annotated by varying qual-
ity human-workers, and then have a few mislabeled items. In this paper, we propose two 
robust topic models for document classification problems: Smoothed Labeled LDA (SL-
LDA) and Adaptive Labeled LDA (AL-LDA). SL-LDA is an extension of Labeled LDA 
(L-LDA), which is a classical supervised topic model. The proposed model overcomes 
the shortcoming of L-LDA, i.e., overfitting on noisy labels, through Dirichlet smoothing. 
AL-LDA is an iterative optimization framework based on SL-LDA. At each iterative pro-
cedure, we update the Dirichlet prior, which incorporates the observed labels, by a con-
cise algorithm based on maximizing entropy and minimizing cross-entropy principles. This 
method avoids identifying the noisy label, which is a common difficulty existing in label 
noise cleaning algorithms. Quantitative experimental results on noisy completely at ran-
dom (NCAR) and Multiple Noisy Sources (MNS) settings demonstrate our models have 
outstanding performance under noisy labels. Specially, the proposed AL-LDA has signifi-
cant advantages relative to the state-of-the-art topic modeling approaches under massive 
label noise.
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1  Introduction

Much of texts is annotated with human interpretable labels; how to use these labels is 
an important technique with the digital text in Web growing explosively. Recently, some 
statistical topic modeling approaches, e.g., Latent Dirichlet allocation (LDA) (Blei et  al. 
2003), as interpretable, flexible, and easily extensible approaches have been widely applied 
in the field of document classification (Burkhardt and Kramer 2019). However, standard 
LDA is a completely unsupervised algorithm, and then how to incorporate prior labels into 
the topic modeling procedure is a popular research direction. To incorporate the prior infor-
mation in the generative process, there are two kinds of approaches: one first generates the 
words, and then generates the response variables, i.e., the prior information, conditioned 
on the word space; the other generates the prior knowledge first, i.e., incorporates the prior 
side information, and then generates the words conditioned on them. Roughly speaking, in 
the second approach, the side information has more influence on the modeling procedure, 
and the model has better predictive ability (Soleimani and Miller 2019). Meanwhile, the 
first type of approaches is often designed for single label classification or regression (Blei 
and McAuliffe 2010; Li et al. 2018; Lacoste-Julien et al. 2008; Magnusson et al. 2016; Zhu 
et al. 2012), and the second can support multi-label classification.

To the best of our knowledge, Labeled LDA (L-LDA) introduced by Ramage et  al. 
(2009) is the first supervised LDA model on multi-label document classification. It incor-
porates prior information by the second approach, i.e., simply defines a one-to-one cor-
respondence between topics and observed labels, and then incorporates the observed label 
information by the document-topic distribution Dirichlet prior. L-LDA has been widely 
applied for efficiency and concision. However, it constrains the topic distributions in the 
observed labels that lead to over-focus on them. So noisy labels, which widely exist, would 
worsen the performance of L-LDA (Li et al. 2015b; Ramage et al. 2011).

Label noise is an unavoidable phenomenon in real-world applications. It may be gener-
ated by machines or non-expert annotators. These days label noise in training data is more 
prevalent as many datasets are annotated through crowd-sourcing (Kumar et al. 2020). Han-
dling label noise is an important and challenging problem. There are two main approaches 
in the literatures of solving the problem: label noise cleaning algorithms and label noise 
robust algorithms (Zhang et  al. 2019). However, there are few literatures that focus on 
topic models under label noise. In this paper, we propose robust topic modeling approaches 
for document classification under label noise. Firstly, we make L-LDA robust by easing 
overfitting on noisy labels. Label Smoothing Regularization (LSR) (Szegedy et al. 2016) 
is a well known technique using soft labels in place of one-hot labels to handle the issue. 
Following this method, we introduce Smoothed Labeled LDA (SL-LDA) building on Dir-
ichlet smoothing. Secondly, we aim to further improve the model robustness by using data 
cleaning approaches. However, it is well known that data cleaning approaches suffer from 
a chicken-and-egg dilemma (Angelova et al. 2005), since good classifier depends on high 
quality datasets, but high quality datasets need a good classification filter. Sample reweight-
ing approaches have been applied as a data cleaning strategy, which inclines to suppress 
noisy labels by small weights. However, the weighting function is often manually set that 
leads to poor generalizability (Shu et al. 2019), or trained by a small unbiased validation 
set, i.e., meta-data, which is actually uncommon to construct (Ren et al. 2018). Mikalsen 
et al. (2019) propose a graph-based label propagation method that can deal with noisy data 
by iterative computing soft labels, and allowing the labeled data to change labels during the 
propagation. Tanaka et al. (2018) propose joint optimization framework of learning deep 



909Machine Learning (2021) 110:907–931	

1 3

neural network (DNN) parameters and estimating true labels. Inspired by (Mikalsen et al. 
2019) and (Tanaka et al. 2018), we propose Adaptive Labeled LDA (AL-LDA), which is 
an iterative optimization framework based on SL-LDA. To reduce the influence of noisy 
labels, we update the model prior probabilities, i.e., soft labels, at each iteration by a con-
cise optimization method based on two principles, i.e., maximizing entropy and minimiz-
ing cross-entropy. We also introduce convergence conditions to avoid overfitting on noisy 
training labels. This method does not need to identify the noisy label, and then avoid the 
chicken-and-egg dilemma. Meanwhile, the proposed method does not need the meta-data 
to train the weighting function used in sample reweighting approaches. In addition, the 
proposed method is different from common label noise-tolerant algorithms, which need 
modeling label noise that often leads to model complexity (Frénay and Verleysen 2013).

Our contribution is summarized as follows. Firstly we propose a supervised topic 
model, i.e., SL-LDA, which is an extension of L-LDA, and eases its overfitting problem 
by Dirichlet smoothing. Then we extend the model to be more robust under label noise 
by an iterative optimization framework named AL-LDA, which has a novel optimization 
algorithm that avoids identifying noisy labels or constructing meta-data, and convergence 
conditions that avoid overtraining. We evaluate the models on noisy completely at random 
(NCAR) datasets, including single-label and multi-label collections. The experiments show 
the proposed models have excellent performance under massive label noise. We also evalu-
ate the models on the document classification scenario on Multiple Noisy Sources (MNS) 
settings, where the results show our models have better performance than state-of-the-art 
works.

The rest of the paper is structured as follows. Section 2 reviews the related work; Sect. 3 
describes the proposed methods, including SL-LDA and AL-LDA; Sect. 4 introduces the 
experiments and evaluation results. We discuss the results in Sect. 5. Finally, Sect. 6 gives 
concluding remarks and an outline of future work.

2 � Related work

LDA (Blei et  al. 2003) is a hierarchical Bayesian model that aims to map a text docu-
ment into a latent low dimensional space based on a set of automatically learned top-
ics. The model considers each document as random mixtures over topics, and each 
topic is a distribution over words. Given the number of topics K, a collection of docu-
ments D and the size of the vocabulary V, word generation is defined by the conditional 
distributions P(wn = w|zn = t) , denoted by the matrix Φ(K × V) . Similarly, topic gen-
eration is defined by the conditional distributions P(zn = t|dn = d) , denoted by the 
matrix Θ(D × K) . The joint probability of a corpus W and corresponding topics Z is 
P(W,Z�Φ,Θ) =

∏
w

∏
t

∏
d �

Nw�t
w�t �

Nt�d
t�d  , where Nw|t is the number of times that word w gen-

erated by topic t, and Nt|d is the number of times that topic t in document d. The model 
places a Dirichlet prior �n over Φ , i.e., P(Φ��n) =

∏
t Dir(�t��n) , and another Dirichlet 

prior �m over Θ , i.e., P(Θ��m) =
∏

d Dir(�d��m).
For application in the field of document classification, several modifications of LDA 

to incorporate observed labels have been proposed by the second approach introduced in 
Sect.  1, i.e., incorporate the prior information first, and then generate the words condi-
tioned on them (Burkhardt and Kramer 2018; Li et al. 2015a, b; Padmanabhan et al. 2017; 
Rubin et al. 2011; Ramage et al. 2009, 2011; Wang et al. 2020; Zhang et al. 2017). Labeled 
LDA (L-LDA) (Ramage et al. 2009) is an earlier supervised LDA model for multi-label 
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document classification. It simply constrains the topic distributions to pre-assigned labels 
that lead to over-focus on them. To overcome the problems of L-LDA, there are two kinds 
of improved approaches (Wang et al. 2020). One relaxes the topic sampling restriction of 
the document pre-assigned labels to avoid over-focus on them (Li et al. 2015b; Padmanab-
han et al. 2017; Wang et al. 2020; Zhang et al. 2017). Label smoothing is also effective 
as a means of these methods, which prevent overconfidence on any one label. The other 
assumes the existence of another topic layer and aims to establish the relation between 
topics and prior labels (Burkhardt and Kramer 2018; Li et  al. 2015a; Rubin et  al. 2011; 
Ramage et  al. 2011). Dependency-LDA (Rubin et  al. 2011) incorporates another topic 
model to model the observed label correlations, which are deemed to be crucial for multi-
label classifiers (Burkhardt and Kramer 2019). Consequently, Dependency-LDA is com-
petitive with state-of-the-art discriminative methods, e.g., SVM, and is often selected as 
the baseline in related works (Burkhardt and Kramer 2018; Li et al. 2015a, b; Wang et al. 
2020).

There have been many approaches proposed for robust learning of classifiers under 
label noise (Frénay and Verleysen 2013). Some data processing methods rely on cleaning 
noisy samples from training data (Brodley and Friedl 1999; Jeatrakul et al. 2010; Sun et al. 
2007). However, they often suffer from a chicken-and-egg dilemma, since noisy sample 
classifier are hard to train from coarsely labeled dataset. Another strategy of data cleaning 
is sample reweighting approaches, which design a weighting function mapping from train-
ing loss to sample weight, since incorrect label often have large loss values (De La Torre 
and Black 2003; Jiang et al. 2014; Zhang and Sabuncu 2018). These methods often need 
to manually set a specific form of weighting function or hyper-parameters, which raise 
their application difficulty. Meta-data set (i.e., with clean labels and balanced data distri-
bution) learning is an effective method to get weighting functions (Shu et al. 2019; Veit 
et al. 2017). However, the difficulty of getting meta-data limits its application. In addition, 
there are also some approaches that modify the existing algorithms to be robust to label 
noise (Boutell et al. 2004; Biggio et al. 2011; Khardon and Wachman 2007; Manwani and 
Sastry 2013). In particular, deep neural networks (DNNs) can easily overfit to noisy labels, 
so making them robust is a popular research direction these days (Ghosh et al. 2017; Li 
et al. 2019; Patrini et al. 2017; Tanaka et al. 2018). Ghosh et al. (2017) present analyti-
cal results on the noise-tolerance of loss functions in a multi-class classification scenario, 
and derive corresponding sufficient conditions. Patrini et al. (2017) introduce a loss correc-
tion approach that is robust to label noise. Meta-learning based noise-tolerant (MLNT) (Li 
et al. 2019) is a noise-tolerant training algorithm that can be theoretically applied to any 
model trained with the gradient-based rule. The joint optimization framework for training 
DNNs on noisy labeled datasets (Tanaka et al. 2018) obtains clean labels by updating them 
using the soft-label or hard-label method, which demonstrates state-of-the-art performance 
in image classification. NMLSDR proposed by Mikalsen et al. (2019) cleans noisy multi-
labels and labels unlabeled data simultaneously. The method first constructs a neighbour-
hood graph, and then designs a label propagation algorithm for unlabeled and mislabeled 
data. However, the graph construction process is time-consuming.

In the experiments of these literatures, most studies use noisy completely at 
random(NCAR) label noise, i.e., randomly selecting instances and changing them to the 
other remaining labels (Golzari et  al. 2009). Some literatures study the scenario where 
several heterogeneous annotators with varying qualities provide the labels, i.e., Multiple 
Noisy Sources (MNS). For simplicity, the experiments often assume a single coin model 
for annotators and also that the annotator qualities are independent of the class (Raykar 
et al. 2010).
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There are few supervised topic modeling approaches for robust classification with 
noisy labels. MRTM (Multiple Relational Topic Modeling) introduced by Liu et al. (2018) 
explores latent topics for noisy short texts in social networks. To our knowledge, ML-
PA-LDA-MNS proposed by Padmanabhan et al. (2017) is the first supervised multi-label 
classification topic model that specially considers the presence of label noise, and aims to 
model it. It assumes the latent topic is generated by the document labels as well as absence 
labels, and for the multiple noisy sources, adopts a single coin model, which is suggested 
can learn the annotator qualities well. However, the reported experiments with artificial 
Multiple Noisy Sources (MNS) settings do not demonstrate the model has better perfor-
mance than ML-PA-LDA, which is the basic of ML-PA-LDA-MNS without modeling the 
annotator qualities. In addition, the additional parameters of ML-PA-LDA-MNS for label 
noise increase the model complexity.

3 � The proposed method

Firstly, we review the L-LDA model and introduce the Smoothed L-LDA (SL-LDA), then 
propose a novel optimization framework for supervised topic model with noisy labels, i.e., 
Adaptive Labeled LDA (AL-LDA). Lastly, building on the discussion of the proposed opti-
mization algorithm, the convergence condition of AL-LDA is introduced. We summarize 
some important notations in Table 1.

3.1 � SL‑LDA

For the supervised extension of LDA, L-LDA defines a one-to-one correspondence between 
topics and labels. Given the number of labels K, a vector of binary label presence/absence 
indicator �d = [l1l2...lK]

T , lk ∈ {0, 1} is defined. To make this model fully generative, lk 
can be generated by a Bernoulli distribution with a prior probability �k . To incorporate label 

Table 1   Notation descriptions

Notation Description

K Number of topics/labels
D Number of documents
V Number of words
W The corpus
Z The assigned topics of corpus W
Θ The matrix of document - topic/label distributions
Φ The matrix of topic/label - word distributions
� The concentration parameter of Dirichlet prior for topic/label - word distributions
n The base measure of Dirichlet prior for topic/label - word distributions
� The concentration parameter of Dirichlet prior for document - topic/label distributions
� The base measure of document-specific Dirichlet prior for document - topic/label distributions
� The concentration parameter of Dirichlet prior for document-specific �
� The uniform base measure of Dirichlet prior for document-specific �
� The label presence/absence indicator
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information, L-LDA places each document assigned the same labels ( �d ) a same asymmetric 
Dirichlet prior �d . The distribution over �d is given by

with

To overcome the shortcoming of L-LDA, i.e., over-focus on the pre-assigned labels, we 
add hidden topics besides the observed labels, and place Dirichlet smoothing on the docu-
ment-specific �d , so

where Kh is the number of hidden topics, � is a uniform base measure, and � is the con-
centration parameter. To incorporate the observed label frequencies, we just modify Equa-
tion (1) as

where Nt is the number of topic t in training data. This model is named Smoothed L-LDA 
(SL-LDA), which as a generative process is summarized as Algorithm 1. 

To learn the model, we use Collapsed Gibbs sampling (Griffiths and Steyvers 2004), which 
is a widely used approach to estimate LDA distributions. The Gibbs sampler is collapsed 
because the variables �d and �t are analytically integrated out, and only the latent topic vari-
ables z(d)

n
 for the word w(d)

n
 are iteratively sampled based on the probability

P (�d|��d) = Dirichlet (�d|��d),

mdt =
Λdt

∑K

t=1
Λdt

.

(1)mdt =
Λdt + ��t

∑K+Kh

t=1
Λdt + �

,

(2)mdt =
ΛdtNt + ��t

∑K+Kh

t=1
ΛdtNt + �

,

(3)P(z(d)
n
|W,Z�d,n, �m, �n) ∝

N
�d,n

w
(d)
n |z(d)n

+ �nw

N
�d,n

⋅|z(d)n

+ �
×

N
�d,n

z
(d)
n |d

+ �mt

N
⋅|d − 1 + �

,
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where N�d,n

w
(d)
n |z(d)n

 is the counts of w(d)
n

 in topic z(d)
n

 that dose not include the current assignment 
of the topic z(d)

n
 for w(d)

n
 , N�d,n

⋅|z(d)n

 is the total number of times that any word has been generated 
by topic z(d)

n
 excluding the current assignment, N�d,n

z
(d)
n |d

 is the number of times that topic z(d)
n

 in 
document d excluding the current assignment, and N

⋅|d is the total number of topics in doc-
ument d. While training SL-LDA, we replace mt with mdt calculated by Eq. (2).

3.2 � AL‑LDA

To improve the performance of our model under label noise, an iterative optimization 
procedure is introduced. Figure  1 shows the concept of our proposal. Each document 
d and prior label indicator �d , which is incorporated by the Dirichlet prior md , are 
observed. For each iterative procedure, we use Gibbs sampling to learn the proposed 
SL-LDA, which is a Bayesian inference model, where md is the prior probability of the 
document d - topic distribution, and �d , i.e., the dth row of matrix Θ , is the posterior 
probability of the same one. Thus, we suggest the divergence from md to �d indicates 
the label qualities. In other words, the divergence is high for noisy labels and low for 
clean labels (Tanaka et al. 2018). To improve the quality of training data, we consider 
updating prior probability m(n+1)

d
 by using the divergence from m(n)

d
 to �(n)

d
 of the nth 

iteration. After several iterations, the influence of noisy labels would be reduced.
To update prior probabilities, we propose a novel optimization algorithm to reduce 

the influence of noisy samples. Depending on Eq. (2), the asymmetric Dirichlet prior 
md for each document-topic distribution incorporates the prior labels of the instance 
d. In the context of noisy labels, we aim to eliminate their effects. Supposing we can 
affirm a noisy sample, we should replace md with symmetric Dirichlet prior without any 
information, i.e., clean the noisy labels. This would be like increasing the uncertainty 
of prior topic probability distributions, i.e., increase the entropy of Dirichlet prior md , 
defined as

Fig. 1   The concept of the pro-
posed optimization framework
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This idea follows the principle of Maximum-Entropy, proposed by Jaynes (1957).
On the contrary, if the training data have high quality labels and the model is well 

learned, the divergence from prior probability, which incorporates the observed labels in 
our model, to posterior probability of each document would be low. At this time, the opti-
mal m(n+1)

d
 would be close to �(n)

d
 and m(n)

d
 . Consequently, we suggest the divergences from 

the optimal m(n+1)

d
 to �(n)

d
 as well as from m(n+1)

d
 to m(n)

d
 would be as small as possible. To 

express conveniently, we replace m(n+1)

d
 with md , �

(n)

d
 with �d , and m(n)

d
 with m(old)

d
 . Measur-

ing the divergence by cross-entropy, i.e.,

we can apply the principle of minimizing cross-entropy on the md and �d as well as md and 
m

old
d

.
Intuitively, we get

We define the Lagrangian function as

where � is the Lagrangian multiplier. Clearly, setting the derivative of L with respect to mdt 
and � to zero, the result can be expressed conveniently by replacing mold

dt
 with mdt as follow,

3.3 � Discussion of the optimization algorithm

To investigate the effects of the optimization algorithm, Eq. (5), we introduce a simple 
example with two labels, i.e., L0 and L1. Figure 2a (left) is a noisy sample with the wrong 
label L0. Supposing the proposed model gives the right posterior probabilities in Fig. 2a 
(center), the updating prior probabilities are m(n+1)

d0
= 0.5 and m(n+1)

d1
= 0.5 (Fig. 2a, right) 

by Eq. ( 5). In other words, the noisy label is cleaned. Figure 2b demonstrates a right label 
sample is enhanced by a right model predictive label. In summary, if the model gives right 
posterior probabilities, the proposed algorithm could reduce the influence of noisy labels 
or enhance the right labels.

On the contrary, if the model mislabeled a document, the optimization algorithm would 
clean the right original label or even replace it with a wrong label. Figure 3 demonstrates an 
example. An instance with the right label L0 (Fig. 3a, left) is mislabeled by the model with 
the wrong label L1 (Fig. 3a, center). Depending on Eq. (5), the right label L0 is cleaned 

H(md) = −
∑

t

mdt logmdt.

H(md,�d) = −
∑

t

mdt log �dt,

H(md,m
old
d
) = −

∑

t

mdt logm
old
dt
,

(4)
m

∗
d
= argmin

md
(−H(md) + H(md,�d) + H(md,m

old
d
)),

s.t.
∑

t

mdt = 1.

L(md, �) =
∑

t

mdt logmdt −
∑

t

mdt log �dt −
∑

t

mdt logm
old
dt

+ �(
∑

t

mdt − 1),

(5)m∗
dt
=

�dtmdt∑
t �dtmdt

.



915Machine Learning (2021) 110:907–931	

1 3

(Fig. 3a, right). Furthermore, if the effect of wrong posterior probabilities was greater than 
the right prior probabilities in Eq. (5), the right label L0 would be replaced with the wrong 
label L1 (Fig.  3b).

In general, it can be seen that in Equation (5), if �dt ≥ �
m
(�d) , then m∗

dt
≥ mdt , and vice 

versa. So right posterior probabilities �d are important for the proposed algorithm. It would 
decrease the noisy label probability ( 𝜃dt < �

m
(�d) ) or increase the right label probability 

( 𝜃dt > �
m
(�d) ). At this time, the proposed algorithm is an effective and unified approach 

that optimizes the Dirichlet prior on both high quality labeled and mislabeled documents. 
However, wrong predictive labels could degrade the model. This finding suggests the 
model performance maybe stop improving after some point, or even getting worse. Conse-
quently, we need to find the exact point to stop iteration.

3.4 � The convergence condition of AL‑LDA

To judge the convergence of AL-LDA, i.e., the exact stop point, we use the average Kull-
back-Leibler (KL) - divergence from �d to original m(0)

d
 as follow,

where D is the number of training documents. The reason of using average is avoiding 
the influence of the training data size. Generally, with respect to supervised learning, the 

(6)DKL(W) =
1

D

∑

d

∑

t

�dt log
�dt

m
(0)

dt

,

(a)

(b)

Fig. 2   Positive effects of AL-LDA optimization algorithm. Supposing a two class classification task, a A 
wrong prior label (orange) cleaned by a right predictive label (green) leads to no labels (blue). b A right 
prior label (green) is enhanced by a right predictive label (green) (Color figure online)
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optimization problem is minimizing the divergence from ground-truth labels to the pre-
dictive labels, i.e., from m(0)

d
 to �d in the proposed model. It works well on clean labels; 

however, its performance decreases on coarsely labeled data, which lead to overfitting 
(Ying 2019) and model degradation introduced in Sect. 3.3 . To alleviate these issues, early 
stopping is employed. Inspired by the stopping criteria introduced by Prechelt (1998), we 
define two convergence conditions of the iterative optimization. One is the ratio between 
the current average KL-divergence D

(n)

KL
 and the first average KL-divergence D

(1)

KL
 as follow,

If R
DKL

 is less than a threshold R∗

DKL

 , which indicates there is a risk overfitting on noisy 
labels, the proposed model meets the convergence condition. The other is the difference 
between the current average KL-divergence D

(n)

KL
 and the next iteration average KL-diver-

gence D
(n+1)

KL
 as follow,

If Δ
DKL

 is less than a threshold Δ∗

DKL

 , which indicates we cannot optimize the model or even 
reduce the model performance, the model also meets the convergence condition. In 

(7)R
DKL

=
D

(n)

KL

D
(1)

KL

.

(8)Δ
DKL

= D
(n)

KL
− D

(n+1)

KL
.

(a)

(b)

Fig. 3   Negative effects AL-LDA optimization algorithm. Supposing a two class classification task, a A 
right label (green) cleaned by a misjudged label (orange) leads to no labels (blue). b A right label (green) is 
replaced with a wrong label (orange) (Color figure online)
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Section 4, we will introduce the suggested parameter values of the convergence condition, 
which works well on all experiments.

The algorithm of AL-LDA is summarized as Algorithm 2. 

4 � Experiments

In this section, we evaluate SL-LDA and AL-LDA on several popular typical document 
classification tasks under label noise. Firstly, we introduce the collections and metrics, then 
the parameter settings are introduced. Thirdly, we list the results of our models and com-
pared supervised topic models under NCAR and MNS settings. Fourthly, we introduce the 
study on the convergence condition of AL-LDA. Lastly, the further study of the optimiza-
tion algorithm of AL-LDA for neural networks is introduced.

4.1 � Collection and metric

We select five typical collections to evaluate the performance of proposed models. All 
these datasets are publicly available and have been widely used in existing document clas-
sification literatures, including some most classical topic modeling approaches (Li et  al. 
2015a, b; Padmanabhan et al. 2017; Rubin et al. 2011; Ramage et al. 2009; Wang et al. 
2020).

Yahoo Arts and Health multi-label subsets are from Yahoo Collection (Ueda and Saito 
2003). We used the same training and test data presented by Ji et al. (2008), where train-
ing data consists of 1,000 documents, ensuring that each label appeared at least once. The 
remaining documents were used as the test data. Fudan University Chinese Text Classifica-
tion Corpus collected by Dr. Li Ronglu is a popular single-label multi-class dataset. We 
selected 8,000 items from 9 categories. After removing common stop words and the terms 
occurred less than 8 times, we randomly selected 1,000 articles for training, ensuring that 
the article in each category appeared at least once, and reserved the remaining articles for 
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testing. 20NewsGroups1 is a collection of news articles across 20 different newsgroups, 
which are considered as 20 different classification labels. In our experiments, we used 
18,846 samples, 60% of them were selected for training and the remaining items for test-
ing. Reuters-21578 dataset (Asuncion and Newman 2007), which is a collection of docu-
ments with news articles, is selected to evaluate the performance of ML-PA-LDA-MNS 
under MNS settings. To compare with it, we follow the same preprocess steps as (Pad-
manabhan et al. 2017): after using the Porter Stemmer algorithm (Porter 1980), removed 
common stop words and the terms occurred less than 50 times, documents that contained 
more than 20 words were retained. We randomly selected 80% articles for training and the 
remaining items for testing. The datasets are summarized in Table 2.

We consider binary prediction metrics, i.e., Macro-F1 and Micro-F1 scores, to evaluate 
our models. Firstly we define the Recall(R), Precision(P) and F1-score(F1) (Goutte and 
Gaussier 2005) for a document as follows:

where ld and l∗
d
 denote the true and estimated label set respectively. The Macro-F1 metric 

is obtained by averaging the document F1 across all documents. Meanwhile, the Micro-
F1 metric considers the full testing corpus as a document (Yang 1999). Larger values of 
Macro and Micro-F1 scores imply better performance. We also consider One Error, which 
measures how many times the top-ranked label is not in the true label set, and is denoted as 
a percentage. Smaller values imply better classification for this metric.

To compare with the reported results of ML-PA-LDA-MNS, we used the accuracy 
(AC) measure, which is the proportion of correct predictions (both true positives and true 
negatives) among the total number of cases examined. The document labels, including 
ground-truth labels and predictive labels, are vectors of binary label. Letting TP, TN, FP 
and FN denote true positive, true negative, false positive and false negative numbers, w.r.t. 

R =
|ld ∩ l∗

d
|

|ld|
,

P =
|ld ∩ l∗

d
|

|l∗
d
|

,

F1 =
2PR

P + R
,

Table 2   Summary of experimental datasets

Training Data Test Data Labels Mean Label number 
per Document

Mean 
Label Fre-
quency

Yahoo Arts 1,000 6,441 19 1.7 530
Yahoo Health 1,000 8,109 14 1.6 500
Fudan 1,000 7,000 9 1 889
20NewsGroups 11,314 7,532 20 1 942
Reuters 5,237 1,310 10 1.1 596

1  sklearn.datasets.fetch 20newsgroups.
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individual binary labels in document label vectors of the total test dataset, the overall accu-
racy is computed by

4.2 � Hyperparameter and sampling parameter settings

Following the classical work (Griffiths and Steyvers 2004), the proposed model parameters 
originating from standard LDA are set as � = 502, �nw = 0.01 , To smooth L-LDA, we set 
� = 50 , and add two hidden topics ( Kh = 2 ). Our basic model, SL-LDA, has fast conver-
gence. The performance with respect to the number of iterations is plotted in Fig. 4. After 8 
iterations of Gibbs samplings, the proposed approach has stable performance. Zha and Li 
(2019) introduce similar results in their experiments of the supervised topic model. To 
train topic-word distributions Φ , we ran 3 independent MCMC chains. After an initial 
burn-in of 15 iterations, we took a single sample at the end of each chain, and averaged the 
samples to compute a single estimate for each iterative procedure. At test time, we ran 10 
independent MCMC chains for document topic distributions Θ , and took 3 samples from 
each chain using an initial burn-in of 10 iterations and a 5 iteration lag between samples. 
All samples were averaged to estimate. To judge the AL-LDA convergence, we heuristi-
cally set R∗

DKL

= 0.7 and Δ∗

DKL

= 0.01 , which will be explained in detail in Sect. 4.6.

AC =
TP + TN

TP + TN + FP + FN
.

Fig. 4   One Error on Yahoo Arts with different iterations of SL-LDA Gibbs samplings

2  Griffiths and Steyvers (2004) uses symmetric Dirichlet prior as � = 50∕K for the standard LDA inference. 
To incorporate prior knowledge, we use asymmetric Dirichlet prior �m . In other words, � in our models is 
the concentration parameter of Dirichlet, and m , which is not uniform, is the base measure vector of Dir-
ichlet prior. So � in our models is similar to 50 in Griffiths and Steyvers (2004), and m

t
 , i.e., the tth element 

of m , is similar to 1/K.
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In multi-label classification experiments, the positive instance threshold-selection has 
effects on binary predictions. We use the proportional approach (Fürnkranz et  al. 2008) 
on all compared algorithms. In this approach, the expected number of positive instances is 
median(NTRAIN

d
) , where NTRAIN

d
 is the number of labels for training document d.

4.3 � Evaluation on NCAR settings

To evaluate the proposed models, we use Yahoo subsets, which represent multi-label clas-
sification tasks, as well as Fudan and 20newsgroups datasets, which represent single-label 
multi-class classification tasks. The training data was artificially corrupted by introducing 
random noise, i.e., NCAR. The noise level pe = x% means that x% training articles are ran-
domly selected and their prior labels are independently changed to the other remaining 
random labels. In other words, the probability of right labels of a document is 1 − pe , and 
the probability of each error label is about pe

K−Km

 , where K is the number of labels in the cor-
pus, and Km is the mean label number per document. Because K > 2 on multi-class data-
sets, and Km <

K

2
 in the experimental datasets, we get if pe ≤ 0.5 , 1 − pe >

pe

K−Km

 . In other 
words, the prior labels are useful while pe ≤ 0.5 . To evaluate on massive label noise sce-
narios, the experiments were executed from 0% to 50% noise levels.

The state-of-the-art approach, Dependency-LDA (Rubin et  al. 2011) that is known 
to outperform other topic modeling approaches (Burkhardt and Kramer 2018) is chosen 
as the main baseline. The open source code3, which is the official release of the author, 
is implemented for inference without modification of hyper-parameters and sampling 

(a) (b)

(c) (d)

Fig. 5   Experimental binary prediction results on Yahoo Subsets with different noise levels, (a) Yahoo 
Health Micro-F1, (b) Yahoo Health Macro-F1, (c) Yahoo Arts Micro-F1, (d) Yahoo Arts Macro-F1

3  https://​github.​com/​timot​hyrub​in/​Depen​dency​LDA

https://github.com/timothyrubin/DependencyLDA
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parameters. In addition, the source code supports Flat-LDA, which is equal to L-LDA in 
practice (Rubin et al. 2011). We also list results of L-LDA (Flat-LDA) to compare.

Figure 5 shows the experimental binary prediction results, i.e., Micro-F1 and Macro-
F1, for Yahoo subsets respectively. It can be seen that Micro-F1 (Fig.  5a,c) and Macro-
F1 (Fig.  5b,d) have similar trends: SL-LDA performs better than L-LDA and AL-LDA 
performs better than SL-LDA under different noise levels. Furthermore, as the noise 
level increases, AL-LDA and SL-LDA perform significantly well relative to L-LDA. 
It is demonstrated that Micro-F1 difference between AL-LDA and L-LDA is about 1% 
under 0% noise level on Yahoo Health (Fig.    5a) , i.e., the original dataset, while the 
difference is more than 8% under 50% noise level. Similarly, Yahoo Arts Micro-F1 dif-
ference is about 1% under original dataset, while the difference is about 7% under 50% 
noise level (Fig.    5c). Dependency-LDA performs better under low noise levels, but 
under massive label noise, i.e., above 30% noise level on Yahoo Health (Fig.   5a,b) or 
above 0% noise level on Yahoo Arts (Fig.  5c,d), AL-LDA gets higher scores, and as the 
noise level increases, AL-LDA gets significantly advantage.

Figure 6 shows the Micro-F1 (a) and Macro-F1 (b) results for Fudan subset, which 
is a single-label multi-class dataset, so Micro-F1 and Macro-F1 have the same scores. It 
is clear that SL-LDA gets better scores than L-LDA on 4/6 noise levels, AL-LDA out-
performs SL-LDA under all noise levels. Dependency-LDA gets the best scores below 
40% noise level, and AL-LDA performs best on 50% noise level. 20newsgroups corpus 
is also a single-label multi-class. The results (Fig.  7) show our models perform better 

(a) (b)

Fig. 6   Experimental binary prediction results on Fudan corpus with different noise levels, a Micro-F1, b 
Macro-F1

(a) (b)

Fig. 7   Experimental binary prediction results on 20newsgroups corpus with different noise levels, a Micro-
F1, b Macro-F1
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than the compared algorithms, and the proposed models get more advantage while the 
noise level increases. Meanwhile, AL-LDA outperforms SL-LDA under all noise levels.

4.4 � Evaluation on MNS settings

To evaluate the proposed models on Multiple Noisy Sources (MNS) settings, we also use 
Yahoo, Fudan, and 20Newsgroups datasets. Supposing several groups of annotators gener-
ate observed labels, each group has a probability range that the annotator gives right ones. 
Because we use the proportional approach in multi-label classification experiments, we 
also need to make sure that the training data and the test data have the similar mean label 
number per document. So we randomly selected the labels generated by annotators, ensur-
ing the number of new labels is same as the original one. The simulation algorithm of mul-
tiple noisy sources is summarized as Algorithm 3. We simulated two MNS settings, i.e., 
MNS1 and MNS2, as Table 3. Each setting has five annotators. The label quality of MNS1 
is significantly better than MNS2. 

Table 3   MNS settings, 
MNS1(top section) and 
MNS2(bottom section)

Group1 Group2 Group3

Group probability 20% 40% 40%
Right label probability 51%-65% 66%-85% 86%-99.99%
Group probability 80% 10% 10%
Right label probability 51%-55% 56%-60% 61%-99.99%

Table 4   Experimental binary 
prediction results with MNS1 
on Micro-F1 (top section) and 
Macro-F1 (bottom section), 
larger values imply better. 
All compared models get the 
same scores on Micro-F1 
and Macro-F1 on Fudan 
and 20Newsgroups corpus, 
because they are single-label 
classification datasets

Bold entries denote the best scores

Yahoo Health Yahoo Arts Fudan 20NewsGroups

AL-LDA 54.27 39.40 84.79 82.20
SL-LDA 53.63 38.40 84.49 81.15
L-LDA 46.05 34.59 88.16 81.34
Dep-LDA 54.54 38.58 88.49 80.50
AL-LDA 58.36 43.20 84.79 82.20
SL-LDA 57.76 42.20 84.49 81.15
L-LDA 48.72 37.53 88.16 81.34
Dep-LDA 59.01 42.48 88.49 80.50
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The binary predictions on MNS1 and MNS2 are listed in Tables  4 and 5 respec-
tively. The results show AL-LDA performs best for 2/4 datasets on MNS1 (Table 4) 
and 3/4 datasets on MNS2 (Table  5). Dependency-LDA gets the best scores for 2/4 
datasets on MNS1 and 1/4 datasets on MNS2. It suggests AL-LDA achieves competi-
tive performance with Dependency-LDA on MNS1, which demonstrates relatively 

Table 5   Experimental binary 
prediction results with MNS2 
on Micro-F1 (top section) and 
Macro-F1 (bottom section), 
larger values imply better. 
All compared models get the 
same scores on Micro-F1 
and Macro-F1 on Fudan 
and 20Newsgroups corpus, 
because they are single-label 
classification datasets

Bold entries denote the best scores

Yahoo Health Yahoo Arts Fudan 20NewsGroups

AL-LDA 51.69 36.95 83.84 81.59
SL-LDA 50.95 34.88 83.47 80.43
L-LDA 41.11 29.33 82.26 77.17
Dep-LDA 51.94 34.82 82.67 77.44
AL-LDA 55.65 40.21 83.84 81.59
SL-LDA 54.62 37.82 83.47 80.43
L-LDA 43.25 31.23 82.26 77.17
Dep-LDA 55.75 37.66 82.67 77.44

Table 6   Performances for different sizes of training data on Reuters-21578 with multiple noisy sources on 
Accuracy (top section) and Micro-F1 (bottom section), larger values imply better

Bold entries denote the best scores

% of Training data used 10% 30% 50% 70% 100%

AL-LDA  96.7  97.3  97.3  97.3  97.4
SL-LDA 96.4  97.3 97.2  97.3 97.2
ML-PA-LDA (Padmanabhan et al. 2017) 94.9 95.3 95.5 96.1 96.9
ML-PA-LDA-MNS (Padmanabhan et al. 2017) 92.7 93.0 93.6 93.7 94.2
AL-LDA  84.6  87.4  87.3  87.7  87.7
SL-LDA 83.4  87.4 87.2 87.4 87.0
ML-PA-LDA (Padmanabhan et al. 2017) 76.2 78.4 78.7 82.8 82.9
ML-PA-LDA-MNS (Padmanabhan et al. 2017) 61.6 61.9 62.9 65.0 66.9
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high quality corpus, and outperforms Dependency-LDA on MNS2, which demon-
strates massive noisy labels produced by low quality annotators. The results also show 
SL-LDA performs better for 2/4 datasets on MNS1 than L-LDA, and gets higher scores 
than L-LDA on MNS2 across four datasets. AL-LDA has significant advantages to SL-
LDA on MNS1 and MNS2 across four datasets. It suggests the iterative optimization 
algorithm of AL-LDA helps to improve performance on MNS settings.

4.5 � Comparisons with the reported results

To compare with ML-PA-LDA-MNS (Padmanabhan et  al. 2017), which is a super-
vised topic model considering label noise, we use Reuters-21578 as MNS1 described 
in Sect. 4.4. Table 6 lists ML-PA-LDA and ML-PA-LDA-MNS reported results (Pad-
manabhan et al. 2017) as well as corresponding results of our models. Obviously, even 
considering the randomness of noisy label generation, our models perform better than 
the compared models. AL-LDA gets the best scores on both Accuracy and Micro-F1 
measures across all settings of different training data sizes, and SL-LDA gets the sec-
ond good results. Meanwhile, AL-LDA and SL-LDA get similar results on different 
sizes of training data. Actually, the AL-LDA AC difference between 10% and 100% 
training sizes is less than 1%. Furthermore, it is clear that our models have significant 
advantages on Micro-F1 relative to the compared models, i.e., AL-LDA and SL-LDA 
score about 20.1%-25.5% higher than ML-PA-LDA-MNS.

(a) (b)

(c) (d)

Fig. 8   AL-LDA performances and average KL-divergences for different iterations on four datasets. a Yahoo 
Health subset under 40% noise level, b Yahoo Arts subset under 30% noise level, c Fudan dataset under 
20% noise level, d 20Newsgroups under MNS2 settings
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4.6 � Study on the convergence condition of AL‑LDA

Now we study the convergence condition of the proposed AL-LDA. We select four typical 
settings of experimental datasets to study. The other settings have similar results. Figure 8 
shows the performances and model average KL-divergences defined by Eq. (6) with differ-
ent iterations. Figure 8a,b,d get the best scores after three iterations, and more iterations 
worsen performances. Meanwhile, Fig.  8c, i.e., Fudan dataset under 20% noise level, gets 
the best scores after two iterations. In addition, Fig.   8a,c,d meet the convergence condi-
tions by judging Δ

DKL
 , which are -0.0035, -0.0066, and 0.0028 respectively. Meanwhile, 

Fig.    8b meets the convergence condition by judging R
DKL

 , which is 0.64. We set 
Δ∗

DKL

= 0.01 and R∗

DKL

= 0.7 in the evaluations. The results show the proposed AL-LDA 
performs well on these hyper-parameter settings.

Table 7 lists the iterative numbers of evaluations on NCAR settings. It is demonstrated 
that the proposed AL-LDA meets the convergence conditions through 2 or 3 iterations in 
each of experiments, and often needs more iterations under more noisy labels.

4.7 � Further study on the optimization algorithm of AL‑LDA for neural networks

AL-LDA may be suggested to a generalized optimization framework for supervised docu-
ment classification. To preliminarily study the proposed optimization algorithm for neural 
networks, we design a deep neural network (DNN) of 3 fully connected layers, 1 batch 
norm layer, and 1 softmax layer. The network uses soft plus in the hidden layers. For reduc-
ing the overtraining effect, we use dropout on the third fully connected layer. The input 
layer is a 8000 dimensions of one-hot word vectors, and the sizes of the hidden layers are 
2000,1000, as well as 500. Adam optimizer is used with the second exponential decay rate 
of 0.99. To evaluate the optimization algorithm of AL-LDA, we use Yahoo, Fudan, and 
20newsgroups datasets at NCAR settings of 30% noisy level.

The hard-label method of the joint optimization framework for learning with noisy 
labels (Tanaka et al. 2018) is chosen as the main baseline. Following it, we use the loss 
function as

where X denotes the training documents, Y denotes the ground-truth labels, and � denotes 
the network parameters. Lc , Lp , Le denote the classification loss and two regularization 
terms respectively, as well as � , � denote hyper parameters. According to Tanaka et  al. 
(2018), Lc is the KL-divergence from predictive label vectors S(�,X) to ground-truth label 
vectors Y. Lc , Lp , and Le are defined as follows,

L(�) = Lc(�|X, Y) + �Lp(�|X) + �Le(�|X),

Table 7   AL-LDA iterative 
numbers of evaluations on 
NCAR settings across four 
datasets

Original 10% 20% 30% 40% 50%

Yahoo Health 2 2 3 3 3 3
Yahoo Arts 2 2 2 3 2 3
Fudan 2 2 2 2 2 2
20NewsGroups 2 2 2 2 3 3
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where s(�, xi) is the network output of xi , p is a distribution of classes among all training 
documents, and s(�,X) is the mean probability output of the network.

To train the basic model, we set the learning rate as 0.002 for 3,000 iterations, batch size 
is 200, and � = � = 0.05 . To evaluate the optimization algorithm of AL-LDA and the base-
line method, we take two steps. In the first step, we pre-train the model for learning rate 
0.02, i.e., use high learning rate introduced by Tanaka et al. (2018), and update labels by 
the proposed optimization algorithm of AL-LDA and the hard-label method. In the second 
step, we initialize the network parameters and train the network as the basic model with the 
labels obtained in the first step.

The results (Table 8) show both the proposed optimization algorithm and the hard-label 
method perform well for the neural network. They all get better scores than the basic DNN. 
Our proposed algorithm performs best for 2/4 datasets, and the hard-label method outper-
forms ours for the others. Meanwhile, the two optimization algorithms have same time 
complexity O(n) with n = KD , where K is the number of labels and D is the number of 
training documents. The comparisons demonstrate our algorithm is competitive with the 
baseline method in the experiment.

5 � Discussion

The experimental results clearly demonstrate SL-LDA performs better than L-LDA 
across four datasets under NCAR settings, and even better than Dependency-LDA while 
massive label noise. The results also show SL-LDA outperforms L-LDA for 6/8 data-
sets, and even gets higher scores than Dependency-LDA for 4/8 datasets under MNS 
settings. It is well known that Dependency-LDA has significant advantages on multi-
label classification among topic modeling approaches (Burkhardt and Kramer 2018). 
However, Dependency-LDA is also a complex model with many parameters which 
heavily depend on inference techniques (Li et al. 2015b). In other words, the proposed 

Lc(�|X, Y) =
1

n

n∑

i=1

DKL(yi||s(�, xi)),

Lp(�|X) = DKL(p||s(�,X)),

Le(�|X) =
1

n

n∑

i=1

H(s(�, xi), s(�, xi)),

Table 8   Experimental One Error results of the basic DNN, the proposed optimization algorithm for the 
DNN, and the hard-label method (Tanaka et al. 2018) for the DNN on Yahoo, Fudan and 20Newsgroups 
datasets on NCAR settings with 30% noisy level, smaller values imply better

Bold entries denote the best scores

DNN Optimization algorithm of 
AL-LDA

Hard-label method of joint 
optimization framework

Yahoo health 41.06 39.65  38.58
Yahoo arts 61.67 59.80 60.45
Fudan 56.83 55.23  54.60
20 newsgroups 33.47  28.63 31.32
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SL-LDA, which is a simple extension of L-LDA, outperforms complex Dependency-
LDA under massive label noise. In addition, the proposed SL-LDA outperforms ML-
PA-LDA-MNS, which models the multiple noisy sources and is obviously more com-
plex than our model. In summary, SL-LDA is competitive with some complex classical 
topic modeling approaches under label noise. These results suggest the proposed model 
benefits from Dirichlet smoothing. Lukasik et al. (2020) present the label smoothing has 
a connection to loss correction and regularization techniques, and empirically demon-
strate that label smoothing significantly improves performance under label noise. Our 
experimental results obviously accord with their conclusion.

Another interesting aspect of results is AL-LDA outperforms SL-LDA on all experi-
ments. To demonstrate the effect of AL-LDA optimization framework, we define

Because smaller values imply better classification for One Error, a positive value means 
AL-LDA performs better than SL-LDA, i.e., the proposed framework has performed well, 
and a negative value suggests the framework is detrimental. Table 9 lists OneError_differ-
ence of experiments on NCAR settings with different noise levels across four datasets, and 
Table 10 lists results of MNS settings. It is clear that AL-LDA outperforms SL-LDA in all 
cases. Specially, an improvement of around 3 percent in One Error under 30% noise level 
on Yahoo Arts subset. These results clearly show the optimization framework of AL-LDA 
further improves the model robustness.

Obviously, the experimental results show AL-LDA performs well under label noise. 
However, one limitation of AL-LDA is multiple iterations lead to longer training time. 
In the experiments, AL-LDA takes 2~4 times as much training time as SL-LDA to meet 
the convergence condition. SL-LDA is a relatively simple model like basic LDA and 
has high training efficiency, but the baseline approach, Dependency-LDA is a complex 
model with additional layer leading computational complexity. So the training efficiency 
of AL-LDA is competitive with the compared Dependency-LDA.

OneError_difference = OneErrorSL−LDA − OneErrorAL−LDA.

Table 9   Experimental OneError_
difference results on NCAR 
settings of Yahoo, Fudan, and 
20Newsgroups datasets, larger 
values imply better

Bold entries denote the best score

Noise level Original 10% 20% 30% 40% 50%

Yahoo health 1.57 1.10 1.05 1.27 1.81 1.73
Yahoo arts 0.99 1.43 0.88  2.92 2.15 1.38
Fudan 0.55 0.08 0.15 0.22 0.16 1.61
20 Newsgroups 0.77 0.70 0.71 0.88 0.71 1.30

Table 10   Experimental OneError_difference results on MNS settings of Yahoo, Fudan, and 20Newsgroups 
datasets, larger values imply better

Bold entries denote the best score

Yahoo health Yahoo arts Fudan 20 Newsgroups

MNS1 0.83 1.32 0.30 1.05
MNS2 0.98 2.72 0.37 1.16
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Our study on the impact of multiple iterations of AL-LDA suggests the optimization 
algorithm of AL-LDA has positive effects, i.e., reduce the influence of label noise, in the 
first few iterations; however, it has negative effects because of overfitting on noisy labels 
or cleaning right labels. To benefit from the optimization algorithm while suppressing its 
negative effects, we propose the convergence condition that works well on all experiments.

Furthermore, the optimization algorithm of AL-LDA may be suggested to a general-
ized optimization framework for supervised document classification. We evaluate the algo-
rithm on a deep neural network. The results show our algorithm is competitive with the 
compared method (Tanaka et al. 2018), which is a state-of-the-art optimization framework 
for neural networks under label noise. However, the optimization framework (Tanaka et al. 
2018) builds on the phenomenon that a DNN trained on noisy labeled datasets does not 
memorize noisy labels and maintains high performance for clean data under a high learn-
ing rate. So it has particular request for the learning rate on each iterations, and is only 
applicable to DNNs. On the contrary, the optimization algorithm of AL-LDA builds on 
general principles, i.e., maximizing entropy and minimizing cross-entropy, so it has better 
generalizability on supervised learning under label noise. The proposed algorithm not only 
works well on generative models such as statistical topic models, but also supports dis-
criminative approaches such as DNNs. Still, more research will be needed to determine the 
impact of the proposed optimization algorithm on neural networks. We leave this research 
for future work.

6 � Conclusion

Statistical topic models based on LDA have been widely developed in the field of document 
classification. They are interpretable generative models, which not only predict document 
classes, but also let us understand which words are important for the class, which parts 
of a text belong to the class. Some of them can support supervised learning and achieve 
competitive results with state-of-the-art approaches; however, massive label noise, which 
widely exists in the real world, has many negative consequences to the model performance. 
To address this issue, we propose robust topic models, i.e., Smoothed Labeled LDA (SL-
LDA) and Adaptive Labeled LDA (AL-LDA). SL-LDA overcomes the problem of noisy 
label overfitting by Dirichlet smoothing, and AL-LDA is an optimization framework based 
on SL-LDA. AL-LDA reduces the noisy influence by iteratively optimize the model prior 
based on two principles, i.e., maximizing entropy and minimizing cross-entropy. It is worth 
noting that the proposed optimization framework avoids the chicken-and-egg dilemma, i.e., 
identifying noisy labels needs good classifier and classifier learning depends on cleans-
ing data, which popularly exists in label noise cleaning approaches. In addition, to avoid 
overtraining, we study the convergence condition of AL-LDA and give the suggested 
parameters.

We evaluate the proposed models and compared methods on two noise settings, i.e., 
noisy completely at random (NCAR) and Multiple Noisy Sources (MNS), across different 
datasets. The experimental results show the proposed models have robust performances 
under label noise, and get better results under massive label noise than state-of-the-art 
topic models, which are more complex than ours. We also demonstrate the proposed opti-
mization algorithm of AL-LDA has advantages on other supervised document classifica-
tion methods, e.g., deep neural networks.
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In the future, we intend to further research the extension of AL-LDA to other super-
vised document classifiers, and plan to apply the models to some other applications, e.g., 
news video segmentation and summarization.
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