
Vol.:(0123456789)

Machine Learning (2021) 110:2005–2033
https://doi.org/10.1007/s10994-021-05980-1

1 3

Triply stochastic gradient method for large‑scale nonlinear
similar unlabeled classification

Wanli Shi1,2 · Bin Gu1,2,3 · Xiang Li4 · Cheng Deng5 · Heng Huang3,6

Received: 23 November 2019 / Revised: 5 April 2021 / Accepted: 12 April 2021 /
Published online: 6 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Similar unlabeled (SU) classification is pervasive in many real-world applications, where
only similar data pairs (two data points have the same label) and unlabeled data points are
available to train a classifier. Recent work has identified a practical SU formulation and
has derived the corresponding estimation error bound. It evaluated SU learning with linear
classifiers on medium-sized datasets. However, in practice, we often need to learn nonlin-
ear classifiers on large-scale datasets for superior predictive performance. How this could
be done in an efficient manner is still an open problem for SU classification. In this paper,
we propose a scalable kernel learning algorithm for SU classification using a triply sto-
chastic optimization framework, called TSGSU. Specifically, in each iteration, our method
randomly samples an instance from the similar pairs set, an instance from the unlabeled
set, and their random features to calculate the stochastic functional gradient for the model
update. Theoretically, we prove that our method can converge to a stationary point at the
rate of O(1∕

√

T) after T iterations. Experiments on various benchmark datasets and high-
dimensional datasets not only demonstrate the scalability of TSGSU but also show the effi-
ciency of TSGSU compared with existing SU learning algorithms while retaining similar
generalization performance.

Keywords  Weakly-supervised learning · SU classification · Kernel method · Large-scale
optimization

1  Introduction

The supervised classification has achieved great success in many real-world applications,
such as image recognition, speech recognition, and recommendation. It usually needs large
amounts of labeled data to train a classifier. However, in many other practical applications,
such as disaster resilience, medical diagnosis, and bioinformatics, massive labeled data
cannot be collected easily since manually labeling the unlabeled data is time-consuming

Editor: Zhi-Hua Zhou.

 *	 Bin Gu
	 bin.gu@mbzuai.ac.ae

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05980-1&domain=pdf

2006	 Machine Learning (2021) 110:2005–2033

1 3

and laborious. To handle this problem, great efforts have been done in weakly-supervised
classification, including semi-supervised learning (Chapelle et al. 2009; Sakai et al. 2017,
2018; Geng et al. 2019; Shi et al. 2019; Yu et al. 2019), positive unlabeled (PU) learning
(du Plessis et al. 2014, 2015b, a) and one-class classification (Khan and Madden 2009;
Schölkopf et al. 2001).

Recently, a new weakly-supervised classification problem called similar unlabeled (SU)
classification (Bao et al. 2018) has been proposed. It contains two categories of datasets.
One is the similar data pairs set, where ‘similar’ means that two data points belong to a cer-
tain (unknown) class, the other is the unlabeled dataset. The goal of SU classification is to
utilize similar data pairs and the unlabeled set to learn a classifier. This problem naturally
arises in the prediction of people’s sensitive matters such as religion, politics, and opinions
on some racial issues. In these applications, people may hesitate to give explicit answers to
these questions. However, it is easy to collect the answers that they have the same reply as
someone else. Besides, massive unlabeled data can be easily collected from websites.

In many real-world learning applications, the datasets are not linearly separable, and
directly using the linear model may ignore the non-linear structure of datasets which leads
to a bad performance on prediction. To sufficiently capture the nonlinear data structures,
the kernel method is one of the most common methods. Specifically, the kernel method
maintains the kernel matrix to map the data into higher dimensional spaces such that the
datasets become linearly separable. However, the kernel method often suffers from O(n2d)
computational complexity and O(n2) space complexity to maintain the kernel matrix, where
n denotes the total number of training sets and d denotes the data dimension. This makes
it hardly scalable for SU learning methods proposed in Bao et al. (2018) when introduced
the kernel method. Even worse, SUSL (Bao et al. 2018) needs to calculate the inverse of
the kernel matrix when calculating the analytical solution, which has the computational
complexity of O(n3) . Recently, Lu et al. (2019) have proposed a gradient-based algorithm
to solve the large-scale SU problem. It randomly samples two kinds of samples and then
calculates the gradient of the objective function to update the model. However, it still needs
the calculation of kernel function on the data batch, which makes the improvement of effi-
ciency is limited. We summarize existing SU algorithms in Table 1. Comparing with the
algorithms in Table 1, we can easily find that scaling up non-linear SU classification is still
an open challenge.

To scale up kernel-based algorithms, a large amount of methods has been proposed,
e.g., asynchronous parallel algorithms (Gu et al. 2016, 2018a), kernel approximation
(Rahimi and Recht 2008; Smola and Schölkopf 2000). Recently, doubly stochastic gra-
dient descent method (DSG) (Dai et al. 2014) has been successfully applied to many
machine learning problems, such as semi-supervised learning (Shi et al. 2019; Geng

Table 1   Existing SU classification algorithms

(D denotes the number of random features, n denotes the number of training samples, T denotes number of
iterations and b denotes the batch size)

Algorithm References Loss function Computational Com. Space Com.

SUSL Bao et al. (2018) Squared loss O(n3) O(n2)

SUDH Bao et al. (2018) Double hinge loss O(n3) O(n2)

CUU​ Lu et al. (2020) All O(ndbT) O(nb)
TSGSU Ours All O(DT2) O(T)

2007Machine Learning (2021) 110:2005–2033	

1 3

et al. 2019; Shi et al. 2020) and multiple kernels learning (Li et al. 2017). The standard
DSG method randomly samples a data point and its random features in each iteration
to calculate the functional gradient for model updating. However, the standard DSG
framework and its theoretical analysis can not be applied to solve the SU classification
problem. On the one hand, the SU problem contains two different data sources, i.e.,
similar pairs set and unlabeled dataset, while the standard DSG focuses on optimizing
the empirical risk on a single data source. On the other hand, the objective function of
the SU learning is non-convex if the Consistent Correction Function (Lu et al. 2020) is
added to avoid the negative risk. By using such a non-convex formulation, the previous
analysis for the convex problem cannot be straightforwardly applied.

To address these challenging problems, our method is to add another stochastic
layer of sampling into the standard DSG framework. Specifically, in each iteration, we
randomly sample an instance from the similar pairs set and another instance from the
unlabeled set to constitute a random data pair. Then the random features of this data
pair can be generated on the fly by using a random number generator. With these three
sources of randomness, i.e., the similar sample, the unlabeled sample, and their ran-
dom features, we can easily calculate the approximated stochastic functional gradient
to update the model function. Since our proposed method contains three sources of
randomness, we denote our method as Triply Stochastic Gradient descent for SU Clas-
sification (TSGSU). Theoretically, we give a new theoretically analysis based on the
framework in Geng et al. (2019), Dai et al. (2014) and prove that our method can con-
verge to the stationary point at the rate of O(1

√

T
) after T iterations. Our experiments

on various benchmark datasets and high-dimensional datasets not only demonstrate the
scalability but also show the efficiency of TSGSU compared with existing learning
algorithms while retaining similar generalization performance.

Contributions The main contributions of this paper are summarized as follows,

1.	 We propose an efficient algorithm to solve the large-scale kernel-based SU classifica-
tion problem. Specifically, our method randomly samples a similar point, an unlabeled,
and their random features to calculate the functional gradient and update the model.
Compared with other methods, our method highly reduces computational complexity
and space complexity.

2.	 In this paper, we established a new convergence analysis framework and prove that our
TSGSU can converge to the stationary point at the rate O(1∕

√

T) after T iterations for
the non-convex SU problem. The standard DSG needs the convexity assumption of the
objective function which is restrictive in real-world applications. On the contrary, our
convergence rate is more general, even if it is slower than that of convex problems.

We organize the rest of our paper as follows. We begin by reviewing several related
works in sect. 2. In sect. 3, we introduce the problem setting of SU classification and
give a brief review of random Fourier features. In sect. 4, we propose our TSGSU
algorithm. In sect. 5, we analyze the convergence rate of the proposed TSGSU. Experi-
mental results on various datasets are discussed in sect. 6. Detailed proofs of the con-
vergence rate are given in sect. 7. Finally, we make some conclusions in sect. 8.

2008	 Machine Learning (2021) 110:2005–2033

1 3

2 � Related works

In this section, we will briefly review several existing kernel approximation methods and
compare SU classification with other weakly supervised learning problems.

2.1 � Kernel approximation

Kernel approximation has been widely used to scale up kernel-based learning algorithms
and existing methods can be decomposed into two categories. The first category is data-
dependent methods, such as greedy basis selection techniques (Smola and Schölkopf
2000), incomplete Cholesky decomposition (Fine and Scheinberg 2001), Nyström method
(Drineas and Mahoney 2005), which compute a low-rank approximation of the kernel
matrix. However, this kind of method needs large amounts of samples to achieve a better
generalization performance. Another category called data-independent methods, e.g., ran-
dom Fourier feature (RFF) (Rahimi and Recht 2008), orthogonal random feature (Yu et al.
2016) and quadrature based random feature (Munkhoeva et al. 2018) , directly approxi-
mates the kernel function unbiasedly with some basis functions. Among the three kinds
of random feature methods, RFF is the most commonly used and easiest to generate since
orthogonal random feature and quadrature-based random feature need extra operations to
calculate the orthogonal matrix. However, RFF needs to keep large amounts of random
features in the memory to achieve a low approximation error. To further improve RFF, Dai
et al. (2014) proposed DSG algorithm. It uses pseudo-random number generators to gener-
ate the random features on the fly, which highly reduces the memory requirement of RFF.
Due to its superior performance, DSG has been successfully applied to scale up kernel-
based algorithms in many applications, such as (Gu et al. 2018b; Li et al. 2017; Rahimi
and Recht 2009; Le et al. 2013; Shi et al. 2019; Geng et al. 2019). The theoretical analysis
of Dai et al. (2014), Gu et al. (2018b), Li et al. (2017), Shi et al. (2019) are all based on
the assumption that the objective functions of these problems are convex. However, in SU
learning, we consider a more general formulation, which is non-convex. This makes the
standard theoretical analysis framework of DSG cannot be directly used in SU learning.

2.2 � Weakly supervised learning

In order to train a binary classifier with high predictive performance, a vast amount of labeled
data is needed. However, in many real-world applications, manually labeling the unlabeled
instances is time-consuming. To address this issue, weakly supervised learning problems have
been widely explored. Compared with existing weakly supervised problems, such as semi-
supervised classification, PU learning, and semi-supervised clustering, SU classification is a
brand new problem. In semi-supervised learning, positive, negative, and unlabeled instances
are available to train a binary classifier. The problem setting of semi-supervised classification
seems to be similar to that of SU classification since the similar pairs are drawn from positive
or negative instances. However, the real labels of instances in similar pairs set are unknown.
In PU learning, only positive and unlabeled instances are available. Compared with SU clas-
sification, the problem setting in SU is much more complex since it contains pairwise infor-
mation. Besides, the information available in SU classification is similar to semi-supervised
clustering (Calandriello et al. 2014). However, the goals of these two problems are different.
Specifically, the goal of SU classification is to minimize the risk function to train a classi-
fier, which can be used to predict the unseen data, while semi-supervised clustering is used to

2009Machine Learning (2021) 110:2005–2033	

1 3

partition the data at hand. Recently, Lu et al. (2019, 2020) pointed out that PU learning and
SU learning can be viewed as a special case of unlabeled-unlabeled (UU) learning and both
of them suffer from over-fitting caused by negative loss. Great attention has been attracted to
solve this problem in UU learning problem (Kiryo et al. 2017; Lu et al. 2020).

3 � Preliminaries

In this section, we first give a brief review of binary supervised classification. Then, we give a
brief review of SU classification and how to estimate the class-prior only use the similar unla-
beled data. Finally, we give a brief review of RFF and DSG.

3.1 � Supervised binary classification

Let xi ∈ ℝ
d be a d-dimensional data sample and yi ∈ {−1,+1} be the class label. Let the joint

probability distribution density of the data instance {xi, yi} be p(x, y). In supervised binary
classification problems, we need to minimize the following classification error to train a clas-
sifier f ∶ ℝ

d
↦ ℝ

where �(xi,yi)∼p(x,y)
[⋅] denotes the expectation over the joint distribution density p(x, y).

l(f (xi), yi) denotes the loss function which measures the difference between the prediction
value f (xi) and the real labels yi.

3.2 � Similar unlabeled learning

To improve the performance of supervised learning methods, an effective way is to collect
more labeled data. However, in real-world applications, labeling the data manually is time-
consuming. Therefore, it is more practicable to directly use a large number of unlabeled sam-
ples to train the classifier. Besides, we may collect some implicit information, such as two data
samples has the same label, but not the explicit labels. Bao et al. (2018) pointed out that we
can use the unlabeled data samples together with the smaples sharing the similar labels to train
the classifier, which is denoted as ‘similar-unlabeled learning’. We will give a brief introduc-
tion of it in this subsection. We first discuss the underlying distributions of similar data pairs
and unlabeled datasets based on Bao et al. (2018).

Similar Data Pairs Assume that any pair of instances {x, x̂} in the similar pairs set share
the same but unknown label y. Then, they can be viewed as drawn from the following joint
distribution density,

where �+ = p(y = 1) and �− = p(y = −1) denote the class prior and �+ + �− = 1 . Besides,
p+(x) = p(x|y = +1) and p−(x) = p(x|y = −1) denote the class conditional densities.
Equation (2) means that the two data points x and x̂ are drawn independently according

(1)R(f) = �(xi,yi)∼p(x,y)
[l(f (xi), yi)],

(2)

pS(x, x̂) = p(x, x̂|y = ŷ = 1 ∪ y = ŷ = −1)

=
𝜋2
+
p+(x)p+(x̂) + 𝜋2

−
p−(x)p−(x̂)

𝜋2
+ + 𝜋2

−

,

2010	 Machine Learning (2021) 110:2005–2033

1 3

to the joint distribution density p(x, y) and only the data pairs with the same labels will be
accepted.

Unlabeled Dataset: Assume that the unlabeled samples are drawn according to the
marginal density p(x), where p(x) = �+p+(x) + �−p−(x).

To directly use the similar data pairs and the unlabeled data samples to train a clas-
sifier f, Bao et al. (2018) pointed out that we can minimize the following objective
function,

where

and �S = �2
+
+ �2

−
.

However, the expectation risk (3) cannot be directly minimized since the distribu-
tion of similar pairs set and unlabeled set are unknown. In practice, a common way to
achieve the classifier is to use the empirical risk function to replace the expectation risk.
Assume that there exists a similar pairs dataset DS and an unlabeled dataset DU defined
as follows,

where nS and nU denote the number of similar pairs and unlabeled data points, respectively.
Then Equation (3) can be approximated by using the following empirical risk,

In order to reduce the complexity of optimizing the pairwise problem, we can marginalize
pS(x, x̂) with respect to x̂ to decompose Equation (4) into a point-wise problem Bao et al.
(2018). Assume that the similar pairs are independently drawn according to pS(x, x̂) , then
the marginalized distribution density of one of the data point x is:

This means that both x and x̂ are drawn from the distribution density p̃S . Thus, we can
rewrite the the expectation objective function (3) as follows,

(3)RSU(f) = 𝜋S�(xs
i
,x̂s
i
)∼pS(x,x̂)

[
LS(f (x

s
i
)) + LS(f (x̂

s
i
))

2
] + �xu

i
∼p(x)[LU(f (x

u
i
))],

LS(z) =
1

2�+ − 1
(l(z,+1) − l(z,−1)),

LU(z) = −
�−

2�+ − 1
l(z,+1) +

�+

2�+ − 1
l(z,−1).

DS = {(xs
i
, x̂s

i
)}

nS
i=1

i.i.d.
∼ pS(x, x̂),

DU = {xu
i
}
nU
i=1

i.i.d.
∼ p(x),

(4)R̂S(f) =
𝜋S

nS

nS
∑

i=1

LS(f (x
s
i
)) + LS(f (x̂

s
i
))

2
+

1

nU

nU
∑

i=1

LU(f (x
u
i
))

(5)

∫ pS(x, x̂)dx̂ =
𝜋+

𝜋S
p+(x)∫ p+(x̂)dx̂ +

𝜋−

𝜋S
p−(x)∫ p−(x̂)dx̂

=
𝜋+

𝜋S
p+(x)∫

p(x̂, y = +1)

p(y = +1)
dx̂ +

𝜋−

𝜋S
p−(x)∫

p(x̂, y = −1)

p(y = −1)
dx̂

=
𝜋+

𝜋S
p+(x) +

𝜋−

𝜋S
p−(x)

= p̃S.

2011Machine Learning (2021) 110:2005–2033	

1 3

Similarly, we can use the empirical risk function to approximate the above objective func-
tion as follows,

and the similar pairs dataset DS can be regarded as D̃S = {x̃i}
2nS
i=1

i.i.d.
∼ p̃S.

Recently, researchers pointed out that the SU problem is a special case in the unlabeled-
unlabeled (UU) learning problem Lu et al. (2019) and the empirical risk function (7) of UU
learning will go negative when using a complicated model leading to the model suffer from
severe over-fitting Lu et al. (2020). To overcome this problem, Lu et al. (2020) propose to use
the Consistent Correction Function �(t) to correct the empirical risk estimation, where �(t) is
Lipschitz continuous, non-negative and �(t) = t for all t ≥ 0 , such as absolute value function,
ReLU function and generalized Leaky ReLU function. Therefore, the corrected risk estima-
tion can be written as follows,

Note that the empirical risk function (7) could be convex if the loss function l(z, t) is con-
vex, twice differentiable in z almost everywhere (for every fixed t ∈ {±1} ), and satisfies the
condition

However, once we add the Consistent Correction Functions, the new empirical risk func-
tion (8) is non-convex.

Instead of directly optimizing Equation (8), in real-world applications, a regularization term
is added to restrict the solution space and penalize the complex solution. Then, we can mini-
mize the following risk to train a classifier f in Reproducing Kernel Hilbert Space (RKHS) H,

(6)

RSU(f) = 𝜋S�(xs
i
,x̂s
i
)∼pS(x,x̂)

[

LS(f (x
s
i
)) + LS(f (x̂

s
i
))

2

]

+ �xu
i
∼p(x)[LU(f (x

u
i
))]

= 𝜋S�(xs
i
,x̂s
i
)∼pS(x,x̂)

[

LS(f (x
s
i
))

2

]

+ 𝜋S�(xs
i
,x̂s
i
)∼pS(x,x̂)

[

LS(f (x̂
s
i
))

2

]

+ �xu
i
∼p(x)[LU(f (x

u
i
))]

= 𝜋S�xs
i
∼p̃S(x)

[

LS(f (x
s
i
))

2

]

+ 𝜋S�x̂s
i
∼p̃S(x̂)

[

LS(f (x̂
s
i
))

2

]

+ �xu
i
∼p(x)[LU(f (x

u
i
))]

= 𝜋S�xs
i
∼p̃S(x)

[LS(f (x
s
i
))] + �xu

i
∼p(x)[LU(f (x

u
i
))]

(7)R̂S(f) =
𝜋S

2nS

2nS
∑

i=1

LS(f (x̃
s
i
)) +

1

nU

nU
∑

i=1

LU(f (x
u
i
)),

(8)

R̂cs(f) =𝛿

(

𝜋S

2nS(2𝜋+ − 1)

2nS
∑

i=1

l(f (x̃s
i
), 1) −

𝜋−

nU(2𝜋+ − 1)

nU
∑

i=1

l(f (xu
i
), 1)

)

+ 𝛿

(

𝜋+

nU(2𝜋+ − 1)

nU
∑

i=1

l(f (xu
i
),−1) −

𝜋S

2nS(2𝜋+ − 1)

2nS
∑

i=1

l(f (x̃s
i
),−1)

)

.

l(z,+1) − l(z,−1) = −z.

(9)

J(f) =
𝜆

2
∥ f ∥2

H
+𝛿

(

𝜋S

2nS(2𝜋+ − 1)

2nS
∑

i=1

l(f (x̃s
i
), 1) −

𝜋−

nU(2𝜋+ − 1)

nU
∑

i=1

l(f (xu
i
), 1)

)

+ 𝛿

(

𝜋+

nU(2𝜋+ − 1)

nU
∑

i=1

l(f (xu
i
),−1) −

𝜋S

2nS(2𝜋+ − 1)
l(f (x̃s

i
),−1)

)

,

2012	 Machine Learning (2021) 110:2005–2033

1 3

where 𝜆 > 0 denotes the regularization parameter and ∥ ⋅ ∥H denotes the norm in RKHS.

3.3 � Class‑prior estimation

In the above subsection, we assume that the class prior is already known. However, in many
real-world applications, the positive class prior is not given. To solve this problem, Bao et al.
(2018) estimate the class prior from the similar-unlabeled data. Specifically, assume that we
have two samples x and x̂ independently drawn from the same dataset, such that have

where �D ∶= 2�+�− and

Then, we can obtain

and p̃D(x) ∶=
p+(x) + p−(x)

2
 . Since the similar data pairs and unlabeled samples are drawn

from p̃S(x) and p(x), we can use mixture proportion estimation methods (Scott 2015; Sakai
et al. 2017; Ramaswamy et al. 2016) to estimate �S . After estimating �S , we can calculate

�+ by using the equation �+ =

√

2�S − 1 + 1

2
 . (Note here we assume 𝜋+ > 𝜋−.)

3.4 � Random fourier features

In this subsection, we briefly introduce Random Fourier Features (RFF). According to the
Bonchner’ Theorem (Rakhlin et al. 2012), for any continuous, real-valued, symmetric and
shift-invariant kernel function k(x, x�) , (such as Gaussian kernel k(x, x�) = exp(−�‖x − x�‖2

2
) ,

Laplacian kernel k(x, x�) = exp(−�‖x − x�‖1) and Matérn kernel Smola and Schölkopf
1998) there exists a non-negative Fourier transform function, k(x, x�) = ∫

ℝd p(�)e
j�T (x−x�)d� .

If we regard p(w) as a density function, the kernel function k(x, x�) is equal to the expec-
tation of ej�T (x−x�) over p(w). Besides, the integrand ej�T (x−x�) can be replaced with
cos�T (x − x�) Rahimi and Recht (2008). Then we can obtain a real-valued feature map-
ping ��(x) = [cos(�Tx), sin(�Tx)]T , where � is a randomly sampled D-dimensional vector
according to the density function p(�) . Obviously, we have �[�T

�
(x)��(x

�)] = k(x, x�) which
means the feature mapping is an unbiased estimation of kernel function. In order to achieve a
low variance approximation of k(x, x�) , the feature mapping �w(x) can be written as follows,

With this feature mapping (13), the infinite-dimensional f (⋅) can be approximated by

(10)

p(x, x̂) =p(x)p(x̂)

=𝜋2
+
p+(x)p+(x̂) + 𝜋2

−
p−(x)p−(x̂) + 𝜋+𝜋−p+(x)p−(x̂) + 𝜋+𝜋−p+(x̂)p−(x)

=𝜋SpS(x, x̂) + 𝜋DpD(x, x̂)

(11)
pD(x, x̂) =p(x, x̂|(y = +1 ∧ ŷ = −1) ∨ (y = −1 ∧ ŷ = +1))

=
𝜋+𝜋−p+(x)p−(x̂) + 𝜋+𝜋−p−(x)p+(x̂)

2𝜋+𝜋−
.

(12)p(x) = 𝜋Sp̃S(x) + 𝜋Dp̃D(x)

(13)��(x) =
√

1∕D[cos(�T
1
x),⋯ , cos(�T

m
x), sin(�T

1
x),⋯ , sin(�T

m
x)]T .

2013Machine Learning (2021) 110:2005–2033	

1 3

where {�i}ni=1 denotes the weights assigned to each training instance.
Explicit random features for many other kernels have been derived (Dai et al. 2014), such

as polynomial kernels k(x, x�) = (a⟨x, x�⟩ + c)p Pham and Pagh (2013), additive/multiplicative
class of homogeneous kernels Vedaldi and Zisserman (2012) and Intersection kernel Yang
et al. (2014).

3.5 � Doubly stochastic gradient method

In this subsection, we give a brief review of Doubly Stochastic Gradient method (DSG). The
goal of DSG is to learn a classifier f ∈ H by minimizing

In each update iteration, DSG randomly sample a data point and its random features to cal-
culate the approximate functional gradient as follows,

Then, we can use this approximate functional gradient to update the model function. In
order to avoid keeping all the random features in memory, DSG saves a seed of the random
number generator to regenerate the random features on-the-fly. Dai et al. (2014) also prove
that DSG has a convergence rate of O(1/T). However, their convergence analysis is based
on the convexity assumptions of the objective function. These assumptions are restrictive
in real-world applications.

4 � Triply stochastic gradient method for similar‑unlabeled learning

In this section, we propose our TSGSU algorithm for large-scale SU classification problems
with kernels.

4.1 � Triply stochastic gradient method

A common method to optimize the objective function (9) is to use gradient descent
methods. Based on the definition of the function f ∈ H , we can easily obtain
∇f (x) = ∇⟨f , k(x, ⋅)⟩H = k(x, ⋅) , and ∇ ∥ f ∥2

H
= ∇⟨f , f ⟩H = 2f  . Thus, the full gradient of the

objective function (9) is

where l�(f (xi), ⋅)k(xi, ⋅) is the derivative of l(f (xi), ⋅) w.r.t f and �′ is the derivative of �(⋅).

(14)f (⋅) =

n
∑

i=1

�ik(xi, ⋅) =

n
∑

i=1

�i��(xi)��(⋅),

(15)R̃(f) = �(x,y)∼p(x,y)[l(f (x), y)] +
𝜆

2
‖f‖2

H
.

(16)� (⋅) =l�(f (xi), y)��(xi)��(⋅)

(17)

∇J(f) =𝜆f + 𝛿�
1
⋅

(

𝜋S

2nS(2𝜋+ − 1)

2nS
∑

i=1

l�(f (x̃i), 1)k(x̃i, ⋅) −
𝜋−

nU(2𝜋+ − 1)

nU
∑

i=1

l�(f (xi), 1)k(xi, ⋅)

)

+ 𝛿�
2
⋅

(

𝜋+

nU(2𝜋+ − 1)

nU
∑

i=1

l�(f (xi),−1)k(xi, ⋅) −
𝜋S

2nS(2𝜋+ − 1)

2nS
∑

i=1

l�(f (x̃i),−1)k(x̃i, ⋅)

)

,

2014	 Machine Learning (2021) 110:2005–2033

1 3

Stochastic Functional Gradient Directly calculating the full gradient (17) is time-con-
suming for large-scale problems. To reduce the computational complexity, we can update
the model function in a stochastic framework. Considering there exist two data sources
in SU classification, i.e., similar pairs dataset and unlabeled dataset, we introduce another
layer of random sampling into the standard DSG framework to obtain the stochastic func-
tional gradients. Specifically, we randomly sample two data points, i.e., x̃s

t
 and xu

t
 , where x̃s

t

is randomly sampled from the similar pairs dataset D̃S and xu
t
 is randomly sampled from the

unlabeled dataset DU in each iteration. Then the stochastic functional gradient of Equation
(8) can be easily obtained,

Random Feature Approximation To further reduce the complexity of explicitly calculat-
ing the kernel function k(x, ⋅) in gradient (18), we can apply random Fourier features to
further approximate the functional gradient. Then we can achieve the following functional
gradient,

Since we randomly sample three variables, i.e., x̃s
t
 , xu

t
 and w, we can call our functional gra-

dient (19) as triply stochastic functional gradient.

4.2 � Updating rules

Now we propose the update rules of our proposed TSGSU. We first present the unbiased
estimation of the full gradient (17) by using either �(⋅) or � (⋅) as follows,

For convenience, the function value is expressed as h(x) if updated by using gradient (20),
and is expressed as f(x) if updated by using gradient (21). Obviously, h(x) is always in the
RKHS H since it is updated by using real functional gradient while f(x) may be outside the
RKHS H.

Let h1(⋅) = f1(⋅) = 0 . Then, we present the update rules using the true stochastic func-
tional gradient �(⋅) at t-th iteration as follow,

(18)
𝜉(⋅) =𝛿�

1
⋅

(

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
), 1)k(x̃s

t
, ⋅) −

𝜋−

2𝜋+ − 1
l�(f (xu

t
), 1)k(xu

t
, ⋅)

)

+ 𝛿�
2
⋅

(

𝜋+

2𝜋+ − 1
l�(f (xu

t
),−1)k(xu

t
, ⋅) −

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
),−1)k(x̃s

t
, ⋅)

)

.

(19)

𝜁 (⋅) =𝛿�
1
⋅

(

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
), 1)𝜙𝜔(x̃

s
t
)𝜙𝜔(⋅) −

𝜋−

2𝜋+ − 1
l�(f (xu

t
), 1)𝜙𝜔(x

u
t
)𝜙𝜔(⋅)

)

+ 𝛿�
2
⋅

(

𝜋+

2𝜋+ − 1
l�(f (xu

t
),−1)𝜙𝜔(x

u
t
)𝜙𝜔(⋅) −

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
),−1)𝜙𝜔(x̃

s
t
)𝜙𝜔(⋅)

)

.

(20)∇J(h) = 𝜆h + �x̃s [�xu [𝜉(⋅)]],

(21)∇J(f) = 𝜆f + �x̃s [�xu [𝜁 (⋅)]].

(22)ht+1(⋅) = ht(⋅) − 𝜂t(𝜉t(⋅) + 𝜆ht(⋅)) =

t
∑

i=1

ai
t
𝜉i(⋅), ∀t > 1,

2015Machine Learning (2021) 110:2005–2033	

1 3

where ai
t
= −�i

∏t

j=i+1
(1 − �j�) , and �t denotes the step size. Since � (⋅) is an unbiased esti-

mation of �(⋅) , the update rule by using � (⋅) is similar to that by using �(⋅) . So the update
rule at t-th iteration by using � (⋅) is

However, using �t(⋅) and �t(⋅) to update data the model function, we still need to calcu-
late the infinite-dimensional feature map. To further speed up our algorithm, we introduce
a sequence of constantly-changing coefficients {�t}Tt=1 into the computation of the model
function. Then the update rules can be rewritten as follows,

4.3 � TSGSU algorithms

We present the overall algorithms in Algorithm 1 and 2. In order to achieve a good gener-
alization performance by using random features, large amounts of random features need to
be saved in the memory. So it is necessary to design an efficient method to generate random
features. Fortunately, according to Dai et al. (2014), we can use a pseudo-random number
generator with seed i to generate random features in each iteration, instead of saving all
the random features. With this seed i aligned between the training and prediction process,
we can guarantee that the random features generated during the training and prediction
process are the same. For faster implementation, TSGSU keeps updating the sequence of
coefficient �j , which represents the weights of the random features generated so far. In each
iteration of the training process, the following steps need to be executed:

(23)ft+1(⋅) = ft(⋅) − 𝜂t(𝜁t(⋅) + 𝜆ft(⋅)) =

t
∑

i=1

ai
t
𝜁i(⋅), ∀t > 1,

(24)ft =

t
∑

i=1

�i��(x),

(25)
𝛼t = − 𝜂t(𝛿

�
1
⋅

(

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
), 1)𝜙𝜔(x̃

s
t
) −

𝜋−

2𝜋+ − 1
l�(f (xu

t
), 1)𝜙𝜔(x

u
t
)

)

+ 𝛿�
2
⋅

(

𝜋+

2𝜋+ − 1
l�(f (xu

t
),−1)𝜙𝜔(x

u
t
) −

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
),−1)𝜙𝜔(x̃

s
t
)

)

),

(26)�j =(1 − �t�)�j, for j = 1,⋯ , t − 1.

2016	 Machine Learning (2021) 110:2005–2033

1 3

1.	 Select random data pairs. Construct data pairs by randomly sampling two instances from
the similar set D̃S and unlabeled set DU , respectively. Here a mini-batch can be used to
further improve our method.

2.	 Generate random features. Use a pseudo-random number generator with seed i to sam-
ple wi and calculate random features.

3.	 Compute the function value. Calculate the function value f(x) according to Equation
(20).

4.	 Update the constantly-changing coefficients. Compute the current t-th iteration coef-
ficients �t and then update the previous coefficients �j , j = 1,⋯ , t − 1 according update
rules.

5 � Convergence analysis

In this section, we will show the convergence rate of TSGSU. We first give several assump-
tions used in our analysis:

Assumption 1  (Bound of kernel function.) Let 𝜅 > 0 , such that k(x, x�) ≤ �.

Assumption 2  (Bound of random feature norm.) Let 𝜙 > 0 , such that |��(x)��(x
�)| ≤ �.

2017Machine Learning (2021) 110:2005–2033	

1 3

Assumption 3  (Bound of derivatives.) The derivative of l w.r.t the first term u is
bounded: |l�(u, v)| < M and the derivative of � is bounded: |𝛿′| < M𝛿.

Assumption 4  (Lipschitz continuous.) l(u, v) is L-Lipschitz continuous.

Assumption 5  (Lipschitz gradient.) The gradient function ∇J(f) is Lipschitz continuous
such that

Assumption 6  The objective function J(ht) is bounded below by a scalar Jinf

Let � denote the whole training set. Obviously, since the objective function could
be non-convex, our purpose of the convergence analysis is to bound �[‖∇J(f)‖2

2
]Geng

et al. (2019). However, since we use the approximate gradient to update f, f may be
outside the RKHS H . Therefore, instead of bound �[‖∇J(f)‖2

2
] , we first bound the gra-

dient of the objective function using the exact kernel function, i.e., �[‖∇J(h)‖2
2
] < 𝜖 .

Then we prove that f is close to h at the stationary point.
Here, we first give the error bound caused by random features in the following

Lemma.

Lemma 1  ∀x ∈ � , for a fixed step size 𝜂t = 𝜂̄ =
𝜃

√

T
 , 0 < 𝜃 ≤ 1 , we have that

where B2
1,T+1

∶= (
2�S + 1

2�+ − 1
)2M2

�
M2(

√

� +
√

�)2�2 and �x̃s ,xu,𝜔[⋅] denotes the expectation

over the similar dataset, unlabeled dataset and the random features.

Remark 1  According to Lemma 1, we have that for an appropriate step size, we can easily
bound the error caused by randomly sampled random features by a constant value.

Then, we bound gradient of the objective function updated by using the true func-
tional gradient.

Theorem 1  (Convergence in expectation) For a fixed step size 𝜂t = 𝜂̄ =
𝜃

√

T
 , 0 < T ≤ 1 ,

we have that

Remark 2  From Theorem 1, we can obtain that for any given data point x, our TSGSU can
convergence to the stationary point at the rate of O(1

√

T
) for an appropriate step size.

‖∇J(f) − ∇J(g)‖H ≤ Lj‖f − g‖H, ∀f , g ∈ H

�x̃s ,xu,𝜔

[

|fT+1(x) − hT+1(x)|
2
] ≤ B2

1,T+1
,

(27)

�

�

1

T

T
�

t=1

‖∇J(ht)‖
2
H

�

≤ J(h1) − Jinf

�
√

T
+ (1 + �)

�

2�S + 1

2�+ − 1

�3

M3
�
M2L�(

√

� +
√

�)
�2
√

T
+ 2Lj

�
√

T

�

�S + 1

2�+ − 1

�2

M2
�
M2�

2018	 Machine Learning (2021) 110:2005–2033

1 3

6 � Experiments

In this section, we conduct experiments on various datasets to verify the effectiveness and
efficiency of TSGSU.

6.1 � Experimental setups

We compare the running time and scalability of TSGSU with existing SU algorithms sum-
marized as follows,

1.	 SU-SL The method proposed in Bao et al. (2018) which directly optimize the objective
function (7) with squared loss l(u, v) = 1

4
(uv − 1)2 . When using this loss function, the

objective function (7) becomes convex and the optimal solution can be analytically
obtained. We use Python code from https://​github.​com/​level​four/​SU_​Class​ifica​tion as
the implementation of SU-SL.

2.	 SU-DH The method proposed in Bao et al. (2018) directly optimize the objective func-
tion (7) with doubly hinge loss l(u, v) = max{−uv, max{0,

1

2
−

1

2
uv}} . In this case,

objective function is convex, and the convex optimization methods can be used to solve
this problem, such as the the cvxopt Python package. We use Python code from https://​
github.​com/​level​four/​SU_​Class​ifica​tion as the implementation of SU-DH.

3.	 CUU​ The method proposed in Lu et al. (2020). It uses a stochastic gradient method to
solve the objective function (8). Specifically, in each iteration, it randomly samples a
batch of unlabeled data points and a batch of similar labeled data points and calculates
their kernel function. Then the gradient method can be used to update the model param-
eters. In our Python implementation, we use the squared loss l(u, v) = 1

4
(uv − 1)2 and

absolute value function to avoid the negative loss.
4.	 TSGSU Our proposed large-scale SU classification algorithm based on the doubly

stochastic gradient framework. Specifically, we first randomly sample a batch of unla-
beled data points and a batch of similar labeled data points. Instead of directly calculat-
ing the kernel function, we use the Random Fourier features to approximate the kernel.
Then, we can obatin the approximate functional gradient and use it to update the model
function.In our Python implementation, we use the squared loss l(u, v) = 1

4
(uv − 1)2 and

absolute value function to avoid the negative loss.

Note that all the experiments are run on a PC with 56 2.2Ghz cores and 80GB RAM. All
the experiments are ran for 10 trials. For all experiments, the positive class prior �+ is
given by the proportion of positive samples in the datasets. Besides, it can be estimated
from the SU data by using the method introduced in Section 3.3.

6.2 � Datasets

In order to demonstrate the superiority of our proposed method, we conduct the experi-
ments on several benchmark datasets and high dimensional datasets.

https://github.com/levelfour/SU_Classification
https://github.com/levelfour/SU_Classification
https://github.com/levelfour/SU_Classification

2019Machine Learning (2021) 110:2005–2033	

1 3

Benchmark datasets We choose six large-scale datasets collected from LIBSVM1 and
UCI2 repositories, which are summarized in Table 2. Originally, these datasets are used
for supervised multi-class classification. To conduct the experiments of SU classification,
we need to transfer these fully labeled datasets to partially labeled datasets and we choose
a single label to be positive and the rest labels to be negative. Besises, we double the size
of Acoustic and Combined by adding a random noise in the first dimension. Then, all these
datasets are decomposed into three parts, i.e., similar pairs set, unlabeled dataset and test
dataset. Specifically, we randomly sample 5000 similar pairs and nU = {10000, 100000}
instances as unlabeled by dropping their labels according to the class-prior. Then nU∕3 test
instances are randomly sampled from the rest data points.

High dimensional datasets Since high dimensional datasets widely exist in real-world
applications, we also conduct extensive experiments on high dimensional datasets, which
are summarized in Table 3. Originally, Mnist8m and Svhn have 10 classes. We need to
transfer them to binary versions. For Mnist8m, we choose a single label as positive and
regard the rest as negative in each time. For Svhn, we classify digits 0 to 4 versus 5 to 9. In
addition, We double the size of Sim and Svhn by adding a random noise in the first dimen-
sion. Then we can use the same way mentioned above to generate SU data.

For the benchmark datasets, we use the Gaussian kernel k(x, x�) = exp(−�‖x − x�‖2) to
build the non-linear model in SUSL, SUDH and TSGSU. Besides, in the CUU, we use the
basic function �(x) = exp(−�‖x − x�‖2) to build the non-linear model, where x′ denotes the
kernel center. Note that a common method to speed up the CUU is to randomly sample sev-
eral points as the kernel centers. Thus, in our experiments, we first randomly sample 2000
points as the centers in CUU and we denote it as CUU(2000). Then, we use all training data
as the kernel centers and we denote it as CUU(All). The hyper-parameters � and � are cho-
sen from 5-fold cross-validation from the range {(�, �)|2−7 ≤ � ≤ 27, 2−7 ≤ � ≤ 27} . Spe-
cifically, we divide the similar pairs set and unlabeled data evenly into 5 parts respectively.

Table 2   Benchmark datasets Dataset Features Samples Source

Acoustic 50 98,528 LIBSVM
Combined 100 98,528 LIBSVM
Poker 10 11,000,000 LIBSVM
Year 90 463,715 UCI
Covtype 54 581,012 UCI
Susy 18 5,000,000 UCI

Table 3   High dimensional
datasets

Dataset Features Samples Source

Mnist8m 784 8,100,000 LIBSVM
Sim 2000 72,309 LIBSVM
Svhn 3072 99,289 LIBSVM

1  https://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsv​mtools/​datas​ets/​binary/
2  http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets.​html

https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/binary/
http://archive.ics.uci.edu/ml/datasets.html

2020	 Machine Learning (2021) 110:2005–2033

1 3

Then we do a grid search to choose the best hyper-parameters. Besides, we adjust the initial
step size in TSGSU and CUU to achieve a better convergence performance. We fix the
batch size of similar labeled data and unlabeled data both at 1000 and the iteration number
at 100 for TSGSU and CUU to ensure that we can traverse all the training data at least one
time. The number of random features of our TSGSU is fixed in 1000.

We present all the results of SUSL, SUDH, CUU, and TSGSU with 10,000 unlabeled
samples in Table 4. We also present the results of SUSL and SUDH with the linear model
in Table 4. We can find that all the results of the non-linear model are higher than those
of the linear model. It highly demonstrates the superiority of the kernel method in dealing
with the data with non-linear structures. Besides, we can also find that CUU and TSGSU
have higher results in most cases than SUDH and SUSL when using the Gaussian kernel,
i.e., Acoustic, Combined, Covtype, Poker, and Year. This is because that when dealing with

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(a) Acoustic

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(b) Combined

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(c) Covtype

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(d) Poker

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(e) Susy

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(f) Year

Fig. 1   The training time versus test accuracy of SUSL(Linear), SUSL(Nonlinear), SUDH(Linear),
SUDH(Nonlinear), CUU(All), CUU(2000) and TSGSU against 10, 000 unlabeled samples on benchmark
datasets, where the sizes of similar pairs are fixed at 5000. The non-linear model is built by Gaussian ker-
nel. (The results of SUDH(Linear) and SUDH(Nonlinear) are not presented since the training time is larger
than 5000 seconds. Since SUSL is not a iterative method, the results of SUSL are presented as points)

2021Machine Learning (2021) 110:2005–2033	

1 3

the complex model, SUDH and SUSL will suffer from the negative loss and lead to over-
fitting. However, CUU and our TSGSU use the Correct Consistent Function to overcome
this negative loss. We also present the training time of each dataset with 10,000 unlabeled
samples in Fig. 1. We can find that the results of SUDH(Linear) and SUDH(Nonlinear) are
missing since they need more than 5,000 seconds. This is because SUDH needs to main-
tain the kernel matrix with O(n3) operations and the cvxopt package cannot efficiently deal
with it. Besides, since SUSL is not an iterative method, our method can generate the model
faster even if it has a smaller total training time. It is also obvious that CUU is faster than
our TSGSU in the small set. This is because, on such a small set, the number x′ in the ker-
nel function is not very large, and such that we can efficiently calculate the kernel function
of the batch data. However, for our method, the main computational complexity is located
in the iteration number since our method has O(DT2) computational complexity.

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(a) Acoustic

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(b) Combined

10-2 100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(c) Covtype

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(d) Poker

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(e) Susy

100 102

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(f) Year

Fig. 2   The training time versus test accuracy of SUSL(Linear), SUSL(Nonlinear), SUDH(Linear),
SUDH(Nonlinear), CUU(All), CUU(2000) and TSGSU against 100, 000 unlabeled samples on benchmark
datasets, where the sizes of similar pairs are fixed at 5000. The non-linear model is built by Gaussian ker-
nel. (The results of SUDH and SUSL are missing since they are out of memory)

2022	 Machine Learning (2021) 110:2005–2033

1 3

We also present the test accuracy versus training time for 100, 000 unlabeled data points
in Fig. 2. We can find that the results of SUSL and SUDH are all missing. This is because
that they need more than O(n2) space and it is easy to out of the memory when the total
number of the training sets is large enough. We can also find that our method has a faster
convergence rate than that of CUU(All) in these large-scale datasets. This is because our
method only needs to calculate the random features of the randomly sampled data in each
iteration while CUU(All) needs to calculate the corresponding kernel function. When
the number of x′ becomes very large, calculating the kernel function of a batch data still
needs a lot of time. Obviously, using 2000 points the kernel centers can highly speed up
the CUU method. However, we can find that our method can generate the model faster
than CUU(2000) and CUU(All). Besides, our method has a faster convergence rate than
CUU(2000) and CUU(All). This is because that for the first few iterations, the time com-
plexity of our method is much lower than that of of CUU. Besides, we can find that our
method has 1% higher accuracy than that of CUU(2000) in most cases. Considering the
convergence speed and accuracy together, our proposed method is superior to CUU(2000).

Besides, we compare the performance of our method using the absolute value function
and without the correct function on Combined and Covtype. The results are presented in
Fig. 3. We can that without using the absolution function, there is a reduction in the test
accuracy. This could be caused by the negative loss of the empirical risk function, and we
can use the absolution function to avoid this problem.

0 100 200 300 400
Training Time (Seconds)

0

0.2

0.4

0.6

0.8

1

T
es

t A
cc

ur
ac

y

TSGSU(With abs)
TSGSU(Without abs)

(a) Combined

0 100 200 300 400
Training Time (Seconds)

0

0.2

0.4

0.6

0.8

1

T
es

t A
cc

ur
ac

y

TSGSU(With abs)
TSGSU(Without abs)

(b) Covtype

Fig. 3   The training time versus test accuracy of TSGSU with the absolution value function and without the
absolution function

Table 4   The test accuracy ( % ) of SU-DH, SU-SL, CUU, and TSG on the high dimensional dataset with
5000 similar pairs and 10000 unlabeled data points. The non-linear model is built by the Gaussian kernel

The best results are shown in bold

Methods Acoustic Combined Covtype Poker Susy Year

SUSL(Linear) 79.61 ± 1.11 78.03 ± 0.98 80.63 ± 0.87 69.81 ± 0.63 79.61 ± 0.68 72.49 ± 0.83

SUSL(Nonlinear) 82.43 ± 0.85 83.83 ± 0.81 81.27 ± 0.57 70.05 ± 0.45 81.22 ± 0.67 73.46 ± 0.93

SUDH(Linear) 79.19 ± 0.93 78.91 ± 0.97 81.01 ± 0.63 69.97 ± 0.31 80.03 ± 0.38 73.05 ± 0.58

SUDH(Nonlinear) 81.91 ± 0.63 83.33 ± 0.92 81.35 ± 0.77 70.05 ± 0.45 ��.�� ± 0.44 73.67 ± 0.69

CUU(2000) 81.91 ± 1.61 82.16 ± 0.97 80.67 ± 1.04 70.01 ± 0.35 80.17 ± 1.03 73.23 ± 0.94

CUU(All) 82.57 ± 0.15 83.83 ± 0.38 81.33 ± 0.76 70.05 ± 0.41 81.21 ± 0.65 ��.�� ± 0.59

TSGSU ��.�� ± 0.69 ��.�� ± 0.88 ��.�� ± 0.79 ��.�� ± 0.39 81.23 ± 0.66 ��.�� ± 0.55

2023Machine Learning (2021) 110:2005–2033	

1 3

We also evaluate the performance of TSGSU, CUU, SUSL and SUDH in high-dimen-
sional datasets using the dot product k(x, x�) = (�1⟨x, x

�
⟩)�2 . Similar to the previous experi-

mental setups, we first evaluate the performance of the small subset of high-dimensional
datasets. The hyper-parameters of �1 and �2 are chosen from {1, 0.1, 0.01, 0.001} and
{1, 3, 5} by using the grid search. The test accuracy of TSGSU, CUU, SUSL, and SUDH of
the nonlinear model is presented in Table 5. Besides, we also give the test accuracy of SUSL
and SUDH with the linear model and the test accuracy of CUU with 2000 kernel centers
in Table 5. From Table 5, we can find that compared with SUSL and CUU with dot prod-
uct kernel, the results of our method are still the best in most cases. We also conduct our
experiments on the large subset and we present the results in Fig. 4. Comparing the results
in Fig. 4, we can find that with the increase of training size, SUSL and SUDH is out of the
memory for the huge space complexity. Besides, our method has a faster convergence rate
than that of CUU (All) since we only need to calculate random features instead of calculat-
ing the kernel function. This demonstrates that our method can be used in other kernel func-
tions and it is still time-consuming. Besides, we also use 2000 points as the kernel centers in
CUU. We can find it has a smaller training time than our method but a lower test accuracy.

Based on all these results, we can conclude that TSGSU is superior to other existing SU
classification algorithms with kernels in terms of efficiency and scalability while retaining
similar generalization performance.

7 � Detailed proofs of convergence rate

In this section, we give detailed proofs of Lemma 1 and Theorem 1.

7.1 � Proof of Lemma 1

Here we give the detailed proof of Lemma 1.

Proof  We denote Ai(x) = Ai(x;x̃
s
i
, xu

i
,𝜔i) ∶= ai

t
(𝜁i(x) − 𝜉i(x)) for the t-th iteration. Accord-

ing to the assumption in section 5, Ai(X) have a bound:

Table 5   The test accuracy of SU-DH, SU-SL, CUU, and TSG on the high dimensional dataset with 5000
similar pairs and 10000 unlabeled data points. The non-linear model is built by the dot product kernel

The best results are shown in bold

Methods Mnist 2 Mnist 4 Mnist 6 Mnist 8 Sim Svhn

SUSL(Linear) 89.23 ± 0.54 88.99 ± 0.62 88.41 ± 0.28 88.33 ± 0.25 61.23 ± 0.87 62.31 ± 0.98

SUSL(Kernel) 89.93 ± 1.26 89.72 ± 2.12 89.61 ± 0.81 88.82 ± 0.77 62.78 ± 1.81 62.61 ± 1.81

SUDH(Linear) 89.49 ± 1.25 88.54 ± 0.86 89.43 ± 0.45 89.32 ± 0.45 65.17 ± 0.28 63.84 ± 0.24

SUDH(Kernel) 90.09 ± 1.79 89.72 ± 1.79 89.60 ± 0.81 90.40 ± 0.15 66.07 ± 0.56 64.07 ± 0.56

CUU(2000) 90.02 ± 0.78 89.88 ± 0.43 89.79 ± 0.33 89.78 ± 0.92 67.39 ± 0.41 64.20 ± 0.42

CUU(All) 90.19 ± 0.49 90.19 ± 0.38 ��.�� ± 0.82 90.31 ± 1.05 68.02 ± 0.42 64.25 ± 0.75

TSGSU ��.�� ± 0.42 ��.�� ± 0.37 90.10 ± 0.67 ��.�� ± 0.97 ��.�� ± 0.49 ��.�� ± 0.75

2024	 Machine Learning (2021) 110:2005–2033

1 3

10-2 100 102 104

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(a) Mnist8m 2 vs rest

10-2 100 102 104

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(b) Mnist8m 4 vs rest

10-2 100 102 104

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(c) Mnist8m 6 vs rest

10-2 100 102 104

Training Time (Seconds)

0

0.5

1

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(d) Mnist8m 8 vs rest

10-2 100 102 104

Training Time (Seconds)

0

0.2

0.4

0.6

0.8

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(e) Sim

10-2 100 102 104

Training Time (Seconds)

0

0.2

0.4

0.6

0.8

T
es

t A
cc

ur
ac

y

TSGSU
CUU(2000)
CUU(All)
SUSL(Linear)
SUSL(Nonlinear)
SUDH(Linear)
SUDH(Nonlinear)

(f) Svhn

Fig. 4   The training time versus test accuracy of SUSL(Linear), SUSL(Nonlinear), SUDH(Linear),
SUDH(Nonlinear), CUU(All), CUU(2000) and TSGSU against 10, 000 unlabeled samples on high dimen-
sional datasets, where the sizes of similar pairs are fixed at 5000. The non-linear model is built by dot prod-
uct kernel. (The results of SUDH and SUSL are missing since they are out of memory)

2025Machine Learning (2021) 110:2005–2033	

1 3

Then, based on the definition of at
t
 and a fix stepsize 𝜂t = 𝜂̄ , we have at

t
≤ 𝜂̄ . In addition, for

any i we have �ai
t
� ≤ 𝜂̄

∏t

j=i+1
(1 − 𝜂̄𝜆) ≤ 𝜂̄ if 0 < 𝜂̄𝜆 ≤ 1 . Therefore, we have

∑t

i=1
�ai

t
�

2 ≤ t𝜂̄2 . Then, for the t-th iteration, we have

�x̃s ,xu,𝜔

�

�ft+1(x) − ht+1(x)�
2
� ≤ (

2𝜋S + 1

2𝜋+ − 1
)2M2

𝛿
M2(

√

𝜅 +
√

𝜙)2t𝜂̄2 . Taking the stepsize

𝜂̄ =
𝜃

√

T
 , we have

Thus, for the Tth iteration, we have

That completes the proof. 	� ◻

(28)

�Ai(x)� ≤�ait���𝜁i(x)� + �𝜉i(x)�
�

=�ai
t
�(�𝛿�

1
⋅

�

𝜋S

2𝜋+ − 1
l�(f (x̃s

i
), 1)k(x̃s

i
, x) −

𝜋−

2𝜋+ − 1
l�(f (xu

i
), 1)k(xu

i
, x)

�

+ 𝛿�
2
⋅

�

𝜋+

2𝜋+ − 1
l�(f (xu

i
),−1)k(xu

i
, x) −

𝜋S

2𝜋+ − 1
l�(f (x̃s

i
),−1)k(x̃s

i
, x)

�

�

+ �𝛿�
1
⋅

�

𝜋S

2𝜋+ − 1
l�(f (x̃s

i
), 1)𝜙𝜔(x̃

s
i
)𝜙𝜔(x) −

𝜋−

2𝜋+ − 1
l�(f (xu

i
), 1)𝜙𝜔(x

u
i
)𝜙𝜔(x)

�

+ 𝛿�
2
⋅

�

𝜋+

2𝜋+ − 1
l�(f (xu

i
),−1)𝜙𝜔(x

u
i
)𝜙𝜔(x) −

𝜋S

2𝜋+ − 1
l�(f (x̃s

i
),−1)𝜙𝜔(x̃

s
i
)𝜙𝜔(x)

�

�

≤�ai
t
�(�𝛿�

1
⋅

�

𝜋S

2𝜋+ − 1
l�(f (x̃s

i
), 1)k(x̃s

i
, x)

�

� + �𝛿�
1
⋅

�

𝜋−

2𝜋+ − 1
l�(f (xu

i
), 1)k(xu

i
, x)

�

�

+ �𝛿�
2
⋅

�

𝜋+

2𝜋+ − 1
l�(f (xu

i
),−1)k(xu

i
, x)

�

� + �𝛿�
2
⋅

�

𝜋S

2𝜋+ − 1
l�(f (x̃s

i
),−1)k(x̃s

i
, x)

�

�

+ �𝛿�
1
⋅

�

𝜋S

2𝜋+ − 1
l�(f (x̃s

i
), 1)𝜙𝜔(x̃

s
i
)𝜙𝜔(x)

�

� + �𝛿�
1
⋅

�

𝜋−

2𝜋+ − 1
l�(f (xu

i
), 1)𝜙𝜔(x

u
i
)𝜙𝜔(x)

�

�

+ �𝛿�
2
⋅

�

𝜋+

2𝜋+ − 1
l�(f (xu

i
),−1)𝜙𝜔(x

u
i
)𝜙𝜔(x)

�

� + �𝛿�
2
⋅

�

𝜋S

2𝜋+ − 1
l�(f (x̃s

i
),−1)𝜙𝜔(x̃

s
i
)𝜙𝜔(x)

�

�)

≤�ai
t
�

�

M𝛿

𝜋S

2𝜋+ − 1
M
√

𝜅 +M𝛿

𝜋−

2𝜋+ − 1
M
√

𝜅 +M𝛿

𝜋+

2𝜋+ − 1
M
√

𝜅 +M𝛿

𝜋S

2𝜋+ − 1
M
√

𝜅

�

+ �ai
t
�

�

M𝛿

𝜋S

2𝜋+ − 1
M
√

𝜙 +M𝛿

𝜋−

2𝜋+ − 1
M
√

𝜙 +M𝛿

𝜋+

2𝜋+ − 1
M
√

𝜙 +M𝛿

𝜋S

2𝜋+ − 1
M
√

𝜙

�

=
2𝜋S + 1

2𝜋+ − 1
M𝛿M(

√

𝜅 +
√

𝜙)�ai
t
�.

B2
1,t+1

∶=

�

2�S + 1

2�+ − 1

�2

M2
�
M2(

√

� +
√

�)2t
�2

T

≤
�

2�S + 1

2�+ − 1

�2

M2
�
M2(

√

� +
√

�)2T
�2

T

≤
�

2�S + 1

2�+ − 1

�2

M2
�
M2(

√

� +
√

�)2�2

�x̃s ,xu,𝜔

[

|fT+1(x) − hT+1(x)|
2
] ≤ B2

1,T+1
,

2026	 Machine Learning (2021) 110:2005–2033

1 3

7.2 � Proof of Theorem 1

In this subsection, we give the detailed proof of Theorem 1

Proof  For convenience, we denote the following three different gradient terms,

From our previous definition, we have ht+1 = ht − �tgt,∀t ≥ 1 . For t = 1,⋯ , T  , we have

Taking expectation on the both side, we can obtain

gt =𝜉t + 𝜆ht

=𝛿�
1
⋅

(

𝜋S

2𝜋+ − 1
l�(ft(x̃

s
t
), 1)k(x̃s

t
, ⋅) −

𝜋−

2𝜋+ − 1
l�(ft(x

u
t
), 1)k(xu

t
, ⋅)

)

+ 𝛿�
2
⋅

(

𝜋+

2𝜋+ − 1
l�(ft(x

u
t
),−1)k(xu

t
, ⋅) −

𝜋S

2𝜋+ − 1
l�(ft(x̃

s
t
),−1)k(x̃s

t
, ⋅)

)

+ 𝜆ht,

ĝt =𝜉t + 𝜆ht

=𝛿�
1
⋅

(

𝜋S

2𝜋+ − 1
l�(ht(x̃

s
t
), 1)k(x̃s

t
, ⋅) −

𝜋−

2𝜋+ − 1
l�(ht(x

u
t
), 1)k(xu

t
, ⋅)

)

+ 𝛿�
2
⋅

(

𝜋+

2𝜋+ − 1
l�(ht(x

u
t
),−1)k(xu

t
, ⋅) −

𝜋S

2𝜋+ − 1
l�(ht(x̃

s
t
),−1)k(x̃s

t
, ⋅)

)

+ 𝜆ht,

∇J(ht) =�x̃st
�xut

[ĝt]

=�x̃st
�xut

[𝛿�
1
⋅

(

𝜋S

2𝜋+ − 1
l�(ht(x̃

s
t
), 1)k(x̃s

t
, ⋅) −

𝜋−

2𝜋+ − 1
l�(ht(x

u
t
), 1)k(xu

t
, ⋅)

)

+ 𝛿�
2
⋅

(

𝜋+

2𝜋+ − 1
l�(ht(x

u
t
),−1)k(xu

t
, ⋅) −

𝜋S

2𝜋+ − 1
l�(ht(x̃

s
t
),−1)k(x̃s

t
, ⋅)

)

] + 𝜆ht.

J(ht+1)

≤ J(ht) + ⟨∇J(ht), ht+1 − ht⟩ +
Lj

2
‖ht+1 − ht‖

2
H

= J(ht) − 𝜂t⟨∇J(ht), gt⟩ +
Lj𝜂

2
t

2
‖gt‖

2
H

= J(ht) − 𝜂t⟨∇J(ht), gt − ĝt + ĝt − ∇J(ht) + ∇J(ht)⟩ +
Lj𝜂

2
t

2
‖gt‖

2
H

= J(ht) − 𝜂t‖∇J(ht)‖
2
H
+ 𝜂t⟨∇J(ht), ĝt − gt⟩ + 𝜂t⟨∇J(ht),∇J(ht) − ĝt⟩ +

Lj𝜂
2
t

2
‖gt‖

2
H
.

2027Machine Learning (2021) 110:2005–2033	

1 3

where J∗ denotes the optimal value of J(h) and �[⋅] = �x̃st ,x
u
t ,𝜔t

[⋅] . Let us denote
Ht =

�

‖∇J(ht)‖
2
H

 , Mt = ‖gt‖
2
H

 , Nt = ⟨∇J(ht),∇J(ht) − ĝt⟩ and Rt = ⟨∇J(ht), ĝt − gt⟩ .

For the fixed stepsize 𝜂t = 𝜂̄ =
𝜃

√

T
 , based on Lemma 2, we have

. Summing both sides of the inequality for t ∈ {1,⋯ , T} and recall the Assumption, we
have

Rearranging the above inequality and dividing by T, we have

That completes the proof. 	� ◻

𝜂t�[‖∇J(ht)‖
2
H
]

≤ �[J(ht)] − �[J(ht+1)] + 𝜂t�[⟨∇J(ht), ĝt − gt⟩] + 𝜂t�[⟨∇J(ht),∇J(ht) − ĝt⟩] +
Lj𝜂

2
t

2
�[‖gt‖

2
H
]

≤ �[J(ht)] − �[J(ht+1)] + 𝜂t�[⟨∇J(ht), ĝt − gt⟩] + 𝜂t�[⟨∇J(ht),∇J(ht) − ĝt⟩] +
Lj𝜂

2
t

2
�[‖gt‖

2
H
],

(29)

𝜂̄�[‖∇J(ht)‖
2

H
]

≤ �[J(ht)] − �[J(ht+1)] + 𝜂̄(1 + 𝜆)

�

2𝜋S + 1

2𝜋+ − 1

�2

M2

𝛿
ML𝜅B1,t + 2𝜂̄2Lj

�

𝜋S + 1

2𝜋+ − 1

�2

M2

𝛿
M2𝜅

≤ �[J(ht)] − �[J(ht+1)] + (1 + 𝜆)

�

2𝜋S + 1

2𝜋+ − 1

�3

M3

𝛿
M2L𝜅(

√

𝜅 +
√

𝜙)𝜃𝜂̄ + 2𝜂̄2L2
j

�

𝜋S + 1

2𝜋+ − 1

�2

M2

𝛿
M2𝜅

𝜂̄�

�

T
�

t=1

‖∇J(ht)‖
2
H

�

≤ J(h1) − Jinf + (1 + 𝜆)

�

2𝜋S + 1

2𝜋+ − 1

�3

M3
𝛿
M2L𝜅(

√

𝜅 +
√

𝜙)𝜃𝜂̄T + 2Lj𝜂̄
2

�

𝜋S + 1

2𝜋+ − 1

�2

M2
𝛿
M2𝜅T

�

�

1

T

T
�

t=1

‖∇J(ht)‖
2
H

�

≤ J(h1) − Jinf

𝜂̄T
+ (1 + 𝜆)

�

2𝜋S + 1

2𝜋+ − 1

�3

M3
𝛿
M2L𝜅(

√

𝜅 +
√

𝜙)𝜃𝜂̄ + 2Lj𝜂̄

�

𝜋S + 1

2𝜋+ − 1

�2

M2
𝛿
M2𝜅

=
J(h1) − Jinf

𝜃
√

T
+ (1 + 𝜆)

�

2𝜋S + 1

2𝜋+ − 1

�3

M3
𝛿
M2L𝜅(

√

𝜅 +
√

𝜙)
𝜃2
√

T
+ 2Lj

𝜃
√

T

�

𝜋S + 1

2𝜋+ − 1

�2

M2
𝛿
M2𝜅

2028	 Machine Learning (2021) 110:2005–2033

1 3

7.3 � Lemma 2

In this subsection, we give Lemma 2 and its detailed proof.

Lemma 2  Let us denote Ht =
�

‖∇J(ht)‖
2
H

 , Mt = ‖gt‖
2
H

 , Nt = ⟨∇J(ht),∇J(ht) − ĝt⟩
and Rt = ⟨∇J(ht), ĝt − gt⟩ . Ht , Mt , Nt and Rt are bounded as follows,

Proof  (1). First, we give the bound of Mt.

If we can give the bound of ‖�t‖H and ‖ht‖H , then we can obtain the bound of Mt.

For t = 1 , according to the definition of ht , we have h1 = 0 and ‖h1‖H = 0 . In addition,
assume that ‖ht‖H ≤ 2�S + 1

2�+ − 1
M�M�1∕2 for any t = 1,⋯ , T − 1 , we have

(30)Mt ≤4
(

�S + 1

2�+ − 1

)2

M2
�
M2�,

(31)�
2[Ht] ≤(1 + �)2

(

�S + 1

2�+ − 1

)2

M2
�
M2�,

(32)�[Nt] =0,

(33)�[Rt] ≤(1 + �)

(

2�S + 1

2�+ − 1

)2

M2
�
ML�B1,t.

(34)Mt = ‖gt‖
2
H
= ‖�t + �ht‖

2
H
≤ �

‖�t‖H + �‖ht‖H
�2

‖𝜉t‖H =‖𝛿�
1
⋅

�

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
), 1)k(x̃s

t
, ⋅) −

𝜋−

2𝜋+ − 1
l�(f (xu

t
), 1)k(xu

t
, ⋅)

�

+ 𝛿�
2
⋅

�

𝜋+

2𝜋+ − 1
l�(f (xu

t
),−1)k(xu

t
, ⋅) −

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
),−1)k(x̃s

t
, ⋅)

�

‖H

≤���
�

�

𝛿�
1
⋅

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
), 1)k(x̃s

t
, ⋅)

�

�

�

�

�H

+
�

�

�

�

�

𝛿�
1
⋅

𝜋−

2𝜋+ − 1
l�(f (xu

t
), 1)k(xu

t
, ⋅)

�

�

�

�

�H

+
�

�

�

�

�

𝛿�
2
⋅

𝜋+

2𝜋+ − 1
l�(f (xu

t
),−1)k(xu

t
, ⋅)

�

�

�

�

�H

+
�

�

�

�

�

𝛿�
2

𝜋S

2𝜋+ − 1
l�(f (x̃s

t
),−1)k(x̃s

t
, ⋅)

�

�

�

�

�H

≤M𝛿

𝜋S

2𝜋+ − 1
M𝜅1∕2 +M𝛿

𝜋−

2𝜋+ − 1
M𝜅1∕2 +M𝛿

𝜋+

2𝜋+ − 1
M𝜅1∕2 +M𝛿

𝜋S

2𝜋+ − 1
M𝜅1∕2

=
2𝜋S + 1

2𝜋+ − 1
M𝛿M𝜅1∕2

2029Machine Learning (2021) 110:2005–2033	

1 3

Thus, based on the above two inequalities, we have

(2). Then, we prove the bound of Ht.

According to the above results, we have ‖‖
‖

�x̃st ,x
u
t ,𝜔t

[𝜉t]
‖

‖

‖H
≤ 2𝜋S + 1

2𝜋+ − 1
M𝛿M𝜅1∕2 and

‖

‖

ht
‖

‖H
≤ 2�S + 1

2�+ − 1
M�M�1∕2 . Therefore, we have

(3). Here, we give the bound of Nt.

(4). Finally, we bound Rt.

‖ht+1‖H =‖(1 − �t)ht − �t�t(⋅)‖H

≤(1 − �t)‖ht‖H + �t‖�t(⋅)‖H

≤(1 − �t)
2�S + 1

2�+ − 1
M�M�1∕2 + �t

2�S + 1

2�+ − 1
M�M�1∕2

≤ 2�S + 1

2�+ − 1
M�M�1∕2

Mt ≤ 4

(

2�S + 1

2�+ − 1

)2

M2
�
M2�

�
2[Ht] =�

2
x̃st ,x

u
t ,𝜔t

[Ht]

=�x̃st ,x
u
t ,𝜔t

[‖∇J(ht)‖
2
H
]

=
�

�

�

�x̃st ,x
u
t ,𝜔t

[𝜉t] + 𝜆ht
�

�

�

2

H

≤���
�

�x̃st ,x
u
t ,𝜔t

[𝜉t]
�

�

�H
+ 𝜆�

�

ht
�

�H

�2

(35)�
2[Ht] ≤ (1 + �)2

(

2�S + 1

2�+ − 1

)2

M2
�
M2�

(36)

�[Nt] =�x̃st ,x
u
t ,𝜔t

[Nt]

=�x̃st ,x
u
t ,𝜔t

�

�x̃st ,x
u
t
[⟨∇J(ht),∇J(ht) − ĝt⟩�x̃

s
t−1

, xu
t−1

,𝜔t]
�

=�x̃st ,x
u
t ,𝜔t

�

⟨∇J(ht),�x̃st ,x
u
t
[∇J(ht) − ĝt⟩�x̃

s
t−1

, xu
t−1

,𝜔t]
�

=0

2030	 Machine Learning (2021) 110:2005–2033

1 3

That completes the proof. 	� ◻

(37)

�[Rt] =�x̃st ,x
u
t ,𝜔t

[Rt]

=�x̃st ,x
u
t ,𝜔t

�

⟨∇J(ht), gt − ĝt⟩
�

=�x̃st ,x
u
t ,𝜔t

[⟨∇J(ht), 𝛿
�
1

𝜋S

2𝜋+ − 1
k(x̃s

t
, ⋅)

�

l�(ft(x̃
s
t
), 1) − l�(ht(x̃

s
t
), 1)

�

− 𝛿�
1

𝜋−

2𝜋+ − 1
k(xu

t
, ⋅)

�

l�(ft(x
u
t
), 1) − l�(ht(x

u
t
), 1)

�

⟩]

+ �x̃st ,x
u
t ,𝜔t

[⟨∇J(ht), 𝛿
�
2

𝜋+

2𝜋+ − 1
k(xu

t
, ⋅)

�

l�(ft(x
u
t
),−1) − l�(ht(x

u
t
),−1)

�

− 𝛿�
1

𝜋S

2𝜋+ − 1
k(x̃s

t
, ⋅)

�

l�(ft(x̃
s
t
),−1) − l�(ht(x̃

s
t
),−1)

�

⟩]

≤�x̃st ,x
u
t ,𝜔t

[‖∇J(ht)‖H ⋅ ‖𝛿�
1

𝜋S

2𝜋+ − 1
k(x̃s

t
, ⋅)

�

l�(ft(x̃
s
t
), 1) − l�(ht(x̃

s
t
), 1)

�

− 𝛿�
1

𝜋−

2𝜋+ − 1
k(xu

t
, ⋅)

�

l�(ft(x
u
t
), 1) − l�(ht(x

u
t
), 1)

�

‖]

+ �x̃st ,x
u
t ,𝜔t

[‖∇J(ht)‖H ⋅ ‖𝛿�
2

𝜋+

2𝜋+ − 1
k(xu

t
, ⋅)

�

l�(ft(x
u
t
),−1) − l�(ht(x

u
t
),−1)

�

− 𝛿�
1

𝜋S

2𝜋+ − 1
k(x̃s

t
, ⋅)

�

l�(ft(x̃
s
t
),−1) − l�(ht(x̃

s
t
),−1)

�

‖]

≤ 𝜋S

2𝜋+ − 1
𝜅1∕2M𝛿L�x̃st ,x

u
t ,𝜔t

�

‖∇J(ht)‖H ⋅

�

�

�

�

ft(x̃
s
t
) − ht(x̃

s
t
)
�

�

�

�

�

+
𝜋−

2𝜋+ − 1
𝜅1∕2M𝛿L�x̃st ,x

u
t ,𝜔t

�

‖∇J(ht)‖H ⋅
�

�

ft(x
u
t
) − ht(x

u
t
)�
�

�

+
𝜋+

2𝜋+ − 1
𝜅1∕2M𝛿L�x̃st ,x

u
t ,𝜔t

�

‖∇J(ht)‖H ⋅
�

�

ft(x
u
t
) − ht(x

u
t
)�
�

�

+
𝜋S

2𝜋+ − 1
𝜅1∕2M𝛿L�x̃st ,x

u
t ,𝜔t

�

‖∇J(ht)‖H ⋅
�

�

ft(x̃
s
t
) − ht(x̃

s
t
)�
�

�

≤ 𝜋S

2𝜋+ − 1
𝜅1∕2M𝛿L

�

�x̃st ,x
u
t ,𝜔t

�

‖∇J(ht)‖
2
H

�

⋅

�

�x̃st ,x
u
t ,𝜔t

�

�

�

�

�

ft(x̃
s
t) − ht(x̃

s
t)
�

�

�

�

2
�

+
𝜋−

2𝜋+ − 1
𝜅1∕2M𝛿L

�

�x̃st ,x
u
t ,𝜔t

�

‖∇J(ht)‖
2
H

�

⋅

�

�x̃st ,x
u
t ,𝜔t

�

�

�

ft(x
u
t) − ht(x

u
t)
�

�

2
�

+
𝜋+

2𝜋+ − 1
𝜅1∕2M𝛿L

�

�x̃st ,x
u
t ,𝜔t

�

‖∇J(ht)‖
2
H

�

⋅

�

�x̃st ,x
u
t ,𝜔t

�

�

�

ft(x
u
t) − ht(x

u
t)
�

�

2
�

+
𝜋S

2𝜋+ − 1
𝜅1∕2M𝛿L

�

�x̃st ,x
u
t ,𝜔t

�

‖∇J(ht)‖
2
H

�

⋅

�

�x̃st ,x
u
t ,𝜔t

�

�

�

ft(x̃
s
t) − ht(x̃

s
t)
�

�

2
�

≤ 𝜋S

2𝜋+ − 1
𝜅1∕2M𝛿LB1,t

�

�x̃st ,x
u
t ,𝜔t

�

Ht

�

+
𝜋−

2𝜋+ − 1
𝜅1∕2M𝛿LB1,t

�

�x̃st ,x
u
t ,𝜔t

�

Ht

�

+
𝜋+

2𝜋+ − 1
𝜅1∕2M𝛿LB1,t

�

�x̃st ,x
u
t ,𝜔t

�

Ht

�

+
𝜋S

2𝜋+ − 1
𝜅1∕2M𝛿LB1,t

�

�x̃st ,x
u
t ,𝜔t

�

Ht

�

≤(1 + 𝜆)

�

2𝜋S + 1

2𝜋+ − 1

�2

M2
𝛿
ML𝜅B1,t

2031Machine Learning (2021) 110:2005–2033	

1 3

8 � Conclusion

In this paper, we propose a novel scalable kernel SU classification algorithm, TSGSU. To
update the model function in a stochastic optimization framework, we randomly sample an
instance from the similar pairs dataset, another instance from the unlabeled dataset, and
their random features to calculate the triply stochastic gradient. Then the model can be
updated by using this approximated gradient. Even though the SU problem is non-convex,
theoretically, we prove that TSGSU has a convergence rate of O(1∕

√

T) . The experimental
results on various datasets also demonstrate the superiority of the proposed TSGSU.

Acknowledgements  This work was supported by the Project Funded by the Priority Academic Program
Development (PAPD) of Jiangsu Higher Education Institutions, Six talent peaks project (No. XYDXX-042)
and the 333 Project (No. BRA2017455) in Jiangsu Province and the National Natural Science Foundation of
China (No:61573191).

References

Bao, H., Niu, G., & Sugiyama, M. (2018). Classification from pairwise similarity and unlabeled data. In:
International Conference on Machine Learning, (pp. 461–470).

Calandriello, D., Niu, G., & Sugiyama, M. (2014). Semi-supervised information-maximization clustering.
Neural Networks, 57, 103–111.

Chapelle, O., Scholkopf, B., & Zien, A. (2009). Semi-supervised learning (chapelle, o. et al., eds.; 2006)
[book reviews]. IEEE Transactions on Neural Networks,20(3), 542–542.

Dai, B., Xe, B., He, N., Liang, Y., Raj, A., Balcan, M. F., & Song, L. (2014). Scalable kernel methods via
doubly stochastic gradients. In: Advances in Neural Information Processing Systems, (pp. 3041–3049).

Drineas, P., & Mahoney, M. W. (2005). On the nyström method for approximating a gram matrix for
improved kernel-based learning. Journal of Machine Learning Research, 6(Dec), 2153–2175.

du Plessis MC, Niu G, & Sugiyama M (2014). Analysis of learning from positive and unlabeled data. In:
Advances in neural information processing systems, (pp. 703–711).

du Plessis, M. C, Niu, G., & Sugiyama, M. (2015a). Class-prior estimation for learning from positive and
unlabeled data. In: ACML, (pp. 221–236).

du Plessis, M. C., Niu, G., & Sugiyama, M. (2015b). Convex formulation for learning from positive and
unlabeled data. In: International Conference on Machine Learning, (pp. 1386–1394).

Fine, S., & Scheinberg, K. (2001). Efficient svm training using low-rank kernel representations. Journal of
Machine Learning Research, 2(Dec), 243–264.

Geng, X., Gu, B., Li, X., Shi, W., Zheng, G., & Huang, H. (2019). Scalable semi-supervised svm via triply
stochastic gradients. In: 28th International Joint Conference on Artificial Intelligence.

Gu, B., Huo, Z., & Huang, H. (2016). Asynchronous stochastic block coordinate descent with variance
reduction. arXiv preprint arXiv:1610.09447.

Gu, B., Xin, M., Huo, Z., & Huang, H. (2018a). Asynchronous doubly stochastic sparse kernel learning. In:
Thirty-Second AAAI Conference on Artificial Intelligence.

Gu, B., Xin, M., Huo, Z., & Huang, H. (2018b). Asynchronous doubly stochastic sparse kernel learning. In:
AAAI Conference on Artificial Intelligence.

Khan, S. S, & Madden, M. G. (2009). A survey of recent trends in one class classification. In: Irish confer-
ence on artificial intelligence and cognitive science, (pp. 188–197). Springer, Berlin

Kiryo, R., Niu, G., du Plessis M. C., & Sugiyama, M. (2017). Positive-unlabeled learning with non-negative
risk estimator. In: Advances in Neural Information Processing Systems, (pp. 1675–1685).

Le, Q., Sarlós, T., & Smola, A. (2013). Fastfood-computing hilbert space expansions in loglinear time. In:
International Conference on Machine Learning, (pp. 244–252).

Li, X., Gu, B., Ao, S., Wang, H., & Ling, C. X. (2017). Triply stochastic gradients on multiple kernel learn-
ing. Conference on Uncertainty in Artificial Intelligence.

Lu, N., Niu, G., Menon, A. K., & Sugiyama, M. (2019). On the minimal supervision for training any binary
classifier from only unlabeled data. In Proceedings of the 7th International Conference on Learning
Representations (ICLR’19),18 pages, New Orleans, Louisiana, USA, May 6–9,.

2032	 Machine Learning (2021) 110:2005–2033

1 3

Lu, N., Zhang, T., Niu, G., & Sugiyama, M., (2020). Mitigating overfitting in supervised classification from
two unlabeled datasets: A consistent risk correction approach. In: International Conference on Artifi-
cial Intelligence and Statistics, (pp. 1115–1125).

Munkhoeva, M., Kapushev, Y., Burnaev, E., & Oseledets, I. (2018). Quadrature-based features for kernel
approximation. arXiv preprint arXiv:1802.03832.

Pham, N., & Pagh, R. (2013). Fast and scalable polynomial kernels via explicit feature maps. In: Proceed-
ings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,
(pp. 239–247).

Rahimi, A., & Recht, B. (2008). Random features for large-scale kernel machines. In: Advances in neural
information processing systems, (pp. 1177–1184).

Rahimi, A., & Recht, B. (2009). Weighted sums of random kitchen sinks: Replacing minimization with
randomization in learning. In: Advances in neural information processing systems, (pp. 1313–1320).

Rakhlin, A., Shamir, O., & Sridharan, K. (2012). Making gradient descent optimal for strongly convex sto-
chastic optimization. In: International Coference on International Conference on Machine Learning,
(pp. 1571–1578).

Ramaswamy, H., Scott, C., & Tewari, A. (2016). Mixture proportion estimation via kernel embeddings of
distributions. In: International conference on machine learning, (pp. 2052–2060). PMLR.

Sakai, T., du Plessis, M. C., Niu, G., & Sugiyama, M. (2017). Semi-supervised classification based on clas-
sification from positive and unlabeled data. In: Proceedings of the 34th International Conference on
Machine Learning-Volume 70, (pp. 2998–3006). JMLR. org.

Sakai, T., Niu, G., & Sugiyama, M. (2018). Semi-supervised auc optimization based on positive-unlabeled
learning. Machine Learning, 107(4), 767–794.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the sup-
port of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471.

Scott, C. (2015). A rate of convergence for mixture proportion estimation, with application to learning from
noisy labels. In: Artificial Intelligence and Statistics, (pp. 838–846). PMLR.

Shi, W., Gu, B., Li, X., Geng, X., & Huang, H. (2019). Quadruply stochastic gradients for large scale
nonlinear semi-supervised auc optimization. In: 28th International Joint Conference on Artificial
Intelligence.

Shi ,W,. Gu, B., Li, X., & Huang, H. (2020). Quadruply stochastic gradient method for large scale nonlinear
semi-supervised ordinal regression auc optimization. In: AAAI Conference on Artificial Intelligence,
(pp. 5734–5741).

Smola, A. J, & Schölkopf, B. (1998). Learning with kernels, volume 4. Citeseer.
Smola, A. J., & Schölkopf, B. (2000). Sparse greedy matrix approximation for machine learning.
Vedaldi, A., & Zisserman, A. (2012). Efficient additive kernels via explicit feature maps. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 34(3), 480–492.
Yang, J., Sindhwani, V., Fan, Q., Avron, H., & Mahoney, M. W. (2014). Random laplace feature maps for

semigroup kernels on histograms. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 971–978.

Yu, F. X. X., Suresh, A. T., Choromanski, K. M., Holtmann-Rice, D. N., & Kumar, S., (2016). Orthogonal
random features. In: Advances in Neural Information Processing Systems, (pp. 1975–1983).

Yu, S., Gu, B., Ning, K., Chen, H., Pei, J., & Huang, H., (2019). Tackle balancing constraint for incremen-
tal semi-supervised support vector learning. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Wanli Shi1,2 · Bin Gu1,2,3 · Xiang Li4 · Cheng Deng5 · Heng Huang3,6

	 Wanli Shi
	 wanlishi@nuist.edu.cn

	 Xiang Li
	 lxiang2@uwo.ca

2033Machine Learning (2021) 110:2005–2033	

1 3

	 Cheng Deng
	 chdeng.xd@gmail.com

	 Heng Huang
	 henghuanghh@gmail.com

1	 Nanjing University of Information Science & Technology, Nanjing, China
2	 MBZUAI, Masdar City, United Arab Emirates
3	 JD Finance America Corporation, Silicon Valley, USA
4	 Computer Science Department, University of Western Ontario, London, ON, Canada
5	 School of Electronic Engineering, Xidian University, Xi’an, China
6	 Department of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, USA

	Triply stochastic gradient method for large-scale nonlinear similar unlabeled classification
	Abstract
	1 Introduction
	2 Related works
	2.1 Kernel approximation
	2.2 Weakly supervised learning

	3 Preliminaries
	3.1 Supervised binary classification
	3.2 Similar unlabeled learning
	3.3 Class-prior estimation
	3.4 Random fourier features
	3.5 Doubly stochastic gradient method

	4 Triply stochastic gradient method for similar-unlabeled learning
	4.1 Triply stochastic gradient method
	4.2 Updating rules
	4.3 TSGSU algorithms

	5 Convergence analysis
	6 Experiments
	6.1 Experimental setups
	6.2 Datasets

	7 Detailed proofs of convergence rate
	7.1 Proof of Lemma 1
	7.2 Proof of Theorem 1
	7.3 Lemma 2

	8 Conclusion
	Acknowledgements
	References

