
Vol.:(0123456789)

Machine Learning (2021) 110:1585–1607
https://doi.org/10.1007/s10994-021-05991-y

1 3

Learning subtree pattern importance for Weisfeiler‑Lehman 
based graph kernels

Dai Hai Nguyen1,2 · Canh Hao Nguyen2 · Hiroshi Mamitsuka2,3

Received: 22 November 2020 / Revised: 23 March 2021 / Accepted: 3 May 2021 /  
Published online: 13 June 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Graph is an usual representation of relational data, which are ubiquitous in many domains 
such as molecules, biological and social networks. A popular approach to learning with 
graph structured data is to make use of graph kernels, which measure the similarity 
between graphs and are plugged into a kernel machine such as a support vector machine. 
Weisfeiler-Lehman (WL) based graph kernels, which employ WL labeling scheme to 
extract subtree patterns and perform node embedding, are demonstrated to achieve great 
performance while being efficiently computable. However, one of the main drawbacks of a 
general kernel is the decoupling of kernel construction and learning process. For molecular 
graphs, usual kernels such as WL subtree, based on substructures of the molecules, con-
sider all available substructures having the same importance, which might not be suitable 
in practice. In this paper, we propose a method to learn the weights of subtree patterns in 
the framework of WWL kernels, the state of the art method for graph classification task 
(Togninalli et al., in: Advances in Neural Information Processing Systems, pp. 6439–6449, 
2019). To overcome the computational issue on large scale data sets, we present an effi-
cient learning algorithm and also derive a generalization gap bound to show its conver-
gence. Finally, through experiments on synthetic and real-world data sets, we demonstrate 
the effectiveness of our proposed method for learning the weights of subtree patterns.

Keywords  Graph kernel · Optimal transport · Weisfeiler Lehman scheme

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 *	 Dai Hai Nguyen 
	 hai@k.u-tokyo.ac.jp

	 Canh Hao Nguyen 
	 canhhao@kuicr.kyoto-u.ac.jp

	 Hiroshi Mamitsuka 
	 mami@kuicr.kyoto-u.ac.jp

1	 Graduate School of Frontier Sciences, The University of Tokyo, 5‑1‑5 Kashiwa‑no‑ha, Kashiwa, 
Chiba 277‑8561, Japan

2	 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611‑0011, Japan
3	 Department of Computer Science, Alato University, Espoo 02150, Finland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05991-y&domain=pdf


1586	 Machine Learning (2021) 110:1585–1607

1 3

1  Introduction

Graphs are natural data structures, which appear in various domains such as bioinformat-
ics (Sharan and Ideker 2006), cheminformatics (Trinajstic 2018), social network analy-
sis (Scott 2011) and so on, where nodes (vertices) represent objects and edges represent 
the relations between them. A popular approach to learning with graph structured data is 
to make use of graph kernels. Essentially, a graph kernel is a measure of the similarity 
between two graphs and must satisfy two fundamental requirements of being a valid ker-
nel: (1) symmetric and (2) positive semi-definite (PSD). Furthermore, the requirements of 
designing a graph kernel are: it should capture the semantic inherent in the graph structures 
(e.g. substructures of different levels), and it must be efficiently computable (Vishwanathan 
et al. 2010).

A number of graph kernels have been proposed in literature such as random walk 
(Kashima 2003), shortest path (Borgwardt and Kriegel 2005), Weisfeiler-Lehman (WL) 
subtree (Shervashidze and Borgwardt 2009) kernels, just to name a few. Most of them are 
based on R-Convolution framework (Haussler 1999), which decomposes two graphs into 
substructures and adds up the similarities between their substructures to compute kernel 
values. Different graph kernels are defined under different ways of decomposition (types 
of substructures). For instance, the substructures can be random walks (Kashima 2003), 
shortest paths (Borgwardt and Kriegel 2005) or subtree patterns (Vishwanathan et  al. 
2010). Among these, WL subtree kernels have been shown to achieve great prediction per-
formance while being efficiently computable. The key point is that it simply employs a WL 
based color refinement scheme to embed each node in a given graph into a vector of WL 
labels, which correspond to subtree patterns of the graphs. Then, the kernel between two 
graphs is defined as the sum of all pairwise similarities between any two node embeddings 
of the two graphs.

Following a different approach, WL based optimal assignment (WL-OA) kernel (Kriege 
et al. 2016) assigns one node embedding of one graph to one embedding of the other such 
that the total similarities between assigned node embeddings is maximized. This is also 
known as optimal assignment problem in combinatorial mathematics (Munkres 1957). In a 
similar vein, Wasserstein WL (WWL, Togninalli et al. 2019) uses optimal transport (OT), 
also known as Wasserstein distance (Villani 2008), for measuring the distance between two 
graphs based on their WL node embeddings. The distance is then converted into a simi-
larity matrix through Laplacian kernel. Furthermore, both of these similarity matrices are 
shown to be valid kernels due to the hierachy property of WL labels (see Kriege et al. 2016 
and Togninalli et al. 2019 for more details).

One of the main drawbacks of these kernels is that they are predefined feature extrac-
tion without learning the importance of substructures to the problem. This results in the 
decoupling of data representation and learning process. In these kernels, substructures 
are given the same weights. However, for the problems such as molecule classification, it 
is known that only subparts of the molecules are responsible for their properties. There-
fore, we wish to be able to give weights to their substructures to have higher classification 
performance and model interpretation. Based on this motivation, we propose a model to 
learn the weights of subtree patterns (extracted by WL labeling scheme). Our work extends 
WWL kernels (Togninalli et al. 2019) by formulating an OT based distance as a parametric 
function of subtree pattern weights before converting into kernels. We also propose an effi-
cient stochastic learning algorithm to estimate the weights and derive a generalization gap 
bound for the algorithm. Finally, through experiments on synthetic and four real-world data 



1587Machine Learning (2021) 110:1585–1607	

1 3

sets, we show that learning important subtree patterns by our proposed method can lead to 
more accurate predictive performance and extract important patterns which enhance the 
classification results.

The remainder of the paper is organized as follows: in Sect.  2, we review graph ker-
nels which are based on WL labeling scheme, including WL subtree, WL-OA and WWL 
kernels. In Sect.  3, we present our method that parameterizes the Wasserstein distance 
between two graphs with WL labeling scheme as a function of subtree patterns and pre-
sent the stochastic algorithm for learning parameters of the function. In Sect. 4, we derive 
a generalization bound for the learning algorithm. In Sect. 5, experimental results on the 
synthetic and real-world data sets are provided. Finally, we conclude by summarizing this 
work and discussing possible extensions in Sect. 6.

2 � Related work

In this paper, we consider the binary classification problem for graph structured data: 
given a collection of labeled graphs (gi, yi), i = 1, .., n (where n is the number of exam-
ples) drawn from an unknown joint distribution P over G × {−1, 1} , where G is a space of 
graphs. We wish to learn a classifier h ∶ G → {−1, 1} , which is based on a similarity func-
tion K ∶ G × G → [−1, 1] . If K is symmetric and positive semi-definite (PSD), it is called a 
valid kernel.

There are a number of proposed kernels on graphs, see (Kashima 2003; Borgwardt 
and Kriegel 2005; Shervashidze and Borgwardt 2009). In general, they are defined based 
on R-Convolution framework (Haussler 1999), that is, each graph g ∈ G is decomposed 
into substructures, and a kernel value K(g, g�) is defined as a sum of pairwise similarities 
between their substructures. In fact, many graph kernels can be considered as instances of 
the R-Convolution framework under different decomposition into substructures. The sub-
structures can be random walks (Kashima 2003), shortest paths (Borgwardt and Kriegel 
2005) or circle subtrees (Shervashidze and Borgwardt 2009). Among these, Weisfeiler-
Lehman (WL) subtree kernels (Shervashidze and Borgwardt 2009) and its variants have 
been shown to achieve great performance for the graph classification tasks. In this work, 
we focus on WL based kernels and will review them in the following subsections.

2.1 � Weisfeiler‑Lehman (WL) scheme for node embeddings

Weisfeiler-Lehman (WL) subtree kernels (Shervashidze and Borgwardt 2009) are based on 
an iterative colour refinement (also known as WL labeling scheme) and have been shown 
to achieve great performance for graph classification task. For each node of a given graph, 
the WL labeling scheme creates a sequence of ordered strings by the aggregation of the 
labels of the node and its neighbors; these strings are then hashed or indexed to produce 
compressed updated node labels or new indices. If the iteration of the scheme is increased, 
these obtained labels represent increasingly broader neighborhood of each node. More spe-
cifically, for a graph G = (V ,E) with initial labels �0(v) for v ∈ V  and let H be the number 
of WL iterations, we can define a sequence of refined labels (�0,�1, ...,�H) , where �h+1 is 
obtained from �h by the following procedure: �h+1(v) = hash(�h(v),Nh(v)) , where Nh(v) 
denotes a lexicographically sorted sequence of labels of v’s neighbors at iteration h and the 
hash function is to create a updated compressed node label for v. We use perfect hashing 



1588	 Machine Learning (2021) 110:1585–1607

1 3

for the hash function, as in Shervashidze and Borgwardt (2009), ensuring two nodes at 
iteration h + 1 have the same label if and only if their label and those of their neighbors at 
iteration h are the same. Throughout the rest of paper, we denote the set of WL labels at 
iteration h as Σh , for h = 1, ...,H , and the set of all WL labels as Σ = ∪H

h=1
Σh . The WL labe-

ling scheme is illustrated in Fig. 1a.
Based on WL labeling scheme, a WL node embedding scheme was proposed to gener-

ate node embeddings from node labels of the graphs (Shervashidze and Borgwardt 2009).

Definition 1  (WL based node embedding scheme, Shervashidze and Borgwardt 2009). Let 
G = (V ,E) and let H be the number of WL iterations. For every h ∈ {1, ...,H} , we define 
the node embedding xh(v) of a node v ∈ V  and graph embedding �h(G) of G at iteration h 
as follows:

Fig. 1   a Illustration of Weisfeiler-Lehman (WL) node embedding scheme with two iterations ( H = 2). b 
Illustration of different WL based graph kernels: WL Subtree kernel is computed by considering all pair-
wise similarities between node embeddings of two graphs; WL optimal assignment kernel takes the simi-
larities of only aligned node embeddings into account; For Wasserstein WL kernel, one node embedding of 
one graph can be coupled with multiple node embeddings of the other graph for computing the kernel



1589Machine Learning (2021) 110:1585–1607	

1 3

Then the graph embedding of G can be defined as:

where nV is the number of nodes in G. With the WL node embedding scheme above, we 
are ready to introduce some notations which will be used throughout the rest of paper.

Notations Let DHam
h

(f h(G), f h(G�)) be the Hamming distance matrix where each entry is 
the normalized Hamming distance between the corresponding node embeddings of G and 
G′ at iteration h, defined as:

where u and v denote two node embeddings, dHam
h

(u, v) denotes the normalized Hamming 
distance between u and v at iteration h and ddisc

i
(u, v) denotes the discrete distance between 

u and v at iteration i. Similarly, let DDisc
h

(�h(G),�h(G�)) be the discrete distance matrix 
where each entry is the discrete distance between the corresponding node embeddings of 
G and G′ at iteration h. It is easy to see that [DHam

h
]ij ∈ [0, 1] and [DDisc

h
]ij ∈ {0, 1} . We also 

define a base kernel which corresponds to the averaged number of feature shared by two 
node embeddings as:

It is easy to see that kh(u, v) = 1 − dHam
h

(u, v) . Thanks to WL node embedding scheme, a 
graph can be represented as a point cloud or a set of node embeddings. Measuring the 
similarity (or dissimilarity) between two graphs boils down to measuring the similarity (or 
dissimilarity) between two sets of embeddings. Each node embedding captures information 
about the neighborhood of the corresponding node (or a rooted subtree pattern). In the fol-
lowing subsections, we will review different WL based graph kernels derived from differ-
ent ways of comparing their sets of WL node embeddings.

2.2 � WL subtree kernels

WL subtree kernels (Shervashidze and Borgwardt 2009) simply employ the aforemen-
tioned WL labeling scheme to extract subtree patterns, which represent the neighbor-
hood of each node in the graph up to a given distance (or number of hops H). Essentially 
WL subtree kernel counts the number of common WL labels. In the context of WL node 
embedding scheme, it can be computed by summing all pairwise similarities between node 
embeddings of two graphs. More formally, for two graphs G and G′ with two sets of node 
embeddings f H(G) and f H(G�) , respectively, the WL subtree kernel value between them 
can be defined as:

(1)xh(v) = �
h(v), �h(G) = [xh(v1), ..., x

h(vnV )]
T

f H(G) ∶ G ↦ ΣnV×H

G ↦

[
�1(G)T , ...,�H(G)T

]T

(2)dHam
h

(u, v) =
1

h

h∑
i=1

ddisc
i

(u, v), ddisc
i

(u, v) =

{
0 if ui = vi
1 otherwise

(3)kh(u, v) =
1

h

h∑
i=1

�(ui = vi)

(4)�WL(G,G�) =
∑

�∈f H (G)

∑
�∈f H (G�)

kH(�, �)



1590	 Machine Learning (2021) 110:1585–1607

1 3

It is obvious that as the base kernel kH(�, �) (defined in Eq. (3)) is equal to the number of 
WL labels (subtree patterns) shared by two node embeddings, the kernel �WL(G,G�) is 
equal to the total number of WL subtree patterns shared by two graphs.

2.3 � WL‑based optimal assignment kernels

Optimal assignments are natural measures of similarity between two sets of points. In par-
ticular, for two sets of points, the goal is to assign one point of one set to another point 
of the other set (one-to-one correspondence) such that the sum of similarities between 
assigned points is maximized. Finding such an optimal alignment or bijection is also 
known as the well-studied assignment problem in combinatorial optimization (Munkres 
1957). However, a challenge is how to design a valid kernel based on optimal assignments.

Kriege et al. (2016) introduced a restricted class of kernels, called strong kernels, that 
guarantees the construction of valid optimal assignment based kernels. An important result 
is that the strong kernels give rise to hierarchies defined on the domain of kernels. Based 
on this, the authors proposed WL-based optimal assignment (WL-OA) kernels with the 
WL node embedding scheme. WL-OA kernels employ the base kernel, defined in Eq. (3), 
which satisfies the requirement of being a strong kernel as the sequence of refined WL 
labels (�0,�1, ...,�H) gives rise to a family of nested subsets, which can be represented by 
a hierarchy. Consequently, WL-OA kernels are valid. Formally, given two graphs G and 
G′ with two sets of node embeddings f H(G) and f H(G�) , respectively, the WL-OA kernel 
value between them is defined as:

where B(f H(G), f H(G�)) is the set of all bijections between two sets f H(G) and f H(G�) . To 
apply this kernel to graphs of different number of nodes, we can fill up the graph with 
smaller number of nodes, says f H(G�) , by new node embeddings z with k(�, �) = 0 for all 
� ∈ f H(G) without changing the result. It is worth noting that the WL-OA kernels take the 
similarities of aligned node embeddings into account, while the WL subtree kernels con-
sider all pairwise similarities.

2.4 � Wasserstein WL kernels

Optimal transport (OT), also known as Wasserstein distance function (Villani 2008), has 
gained much attraction in machine learning community as a powerful tool for the compar-
sion of two probability distributions. The naive computation of this distance between two 
discrete measures, e.g. point clouds, involves solving transport problem. Formally, let 
X = {�1, ..., �m} and Y = {�1, ..., �n} be two sets of points, where m and n denote the size of 
two sets X and Y, respectively; � ∈ ℝ

m and � ∈ ℝ
n are two discrete probability distribu-

tions over X and Y, respectively. We use dij to denote the distance between �i and �j , e.g. the 
squared Euclidean distance dij =

‖‖‖�i − �j
‖‖‖
2

2
 . The Wasserstein distance is formulated as a 

linear program over the transportation matrix (or joint probability) � ∈ ℝ
m×n:

(5)�OA(G,G�) = max
B∈B(f H (G),f H (G�))

∑
(x,y)∈B

kH(�, �)



1591Machine Learning (2021) 110:1585–1607	

1 3

With WL node embedding scheme to generate node embeddings for graphs, Togninalli 
et al. (2019) evaluated the pairwise Wasserstein distance between graphs with the normal-
ised Hamming (2) as the ground distance. Then, Wasserstein WL (WWL) kernel is defined 
as an instance of Laplacian kernels, see Eq. (7).

where � is a hyperparameter.
In general cases, it is not necessarily possible to derive a valid kernel from the Wasser-

stein distance. However, thanks to the special property of WL labels and normalized Ham-
ming distance (2), �WWL was shown to be conditionally negative definite (CND), resulting 
in the validity of �WWL , by proving the following lemma (see Togninalli et al. 2019 for its 
proof):

Lemma 1  If a transportation matrix PH is optimal solution of (6) with the ground distance 
dHam
H

 (2) between node embeddings at iteration H, then we have the two following claims: 

1.	 PH is also optimal solution of (6) with the discrete distance dDisc
H

 between H-iteration 
values.

2.	 PH is also optimal solution of (6) with the normalised Hamming distance dHam
H−1

 between 
node embeddings at iteration H − 1.

Let P∗ be the optimal solution of (6) for DHam
H

 . From the above lemma, it is also the opti-
mal solution for DDisc

h
 , h = 1, ..,H . The Wasserstein distance between two graphs G and G′ 

in (7) can be simplified as follows:

The Eq. (8) is a sum of OT distances with the discrete distances as ground metrics, which 
are CND. Therefore, the sum is also CND, leading to the validity of the similarity matrix 
�WWL.

(6)

W1(X, Y , d) =min
�ij

m∑
i=1

n∑
j=1

�ijdij

subject to

m∑
i=1

�ij = �j, ∀j ∈ [1, n]

n∑
j=1

�ij = �i, ∀i ∈ [1,m]

(7)
�WWL(G,G�) = W1(f

H(G), f H(G�), dHam
H

)

�WWL(G,G�) = e−��
WWL(G,G�)

(8)�WWL(G,G�) =
1

H

H∑
h=1

W1(�
h(G),�h(G�), dDisc

h
)



1592	 Machine Learning (2021) 110:1585–1607

1 3

3 � Incorporating subtree pattern importance into WL based graph 
kernels

One of the main limitations of kernels is the decoupling of data representation and learning 
process, that is, the kernel must be predefined prior to learning, leading to limited predic-
tive performance. Furthermore, in prediction tasks for molecular data, the output might be 
determined by the presence of a few important substructures, while these kernels contain 
all substructures with equal weights. Motivated by this drawback, in this paper we address 
the problem of incorporating subtree pattern weights for WWL kernel (Togninalli et  al. 
2019). To this end, we aim to learn new kernels from a parametric form of Wasserstein 
distance taking into account subtree pattern weights (8), and learn these weights from data 
optimally for the task.

3.1 � Parametric form of Wasserstein distance with subtree pattern weights

To derive a parametric form of the distance function (8), we rely on the following simple 
observation:

Lemma 2  Let S be a set of elements, X = {�1, ..., �m} and Y = {�1, ..., �n} ( X, Y ⊆ S ) be two 
multiset of S of m and n samples, respectively, the Wasserstein distance between them with 
the discrete distance as the ground metric is determined by:

where �X(v) denotes the mass density function of the multiset X with v ∈ S.

Applying this lemma to Eq. (8), we have:

Our idea is to give each substructure or WL label v a nonnegative weight wv ∈ ℝ≥0 for its 
importance to the problem, so the parametric form of Eq. (10) is defined as follows:

where �h , �h
(
G,G�

)
∈ ℝ

|Σh| are the vectors of entries wv and min(��h(G)
(v),��h(G

�)(v)) , 
respectively, for v ∈ Σh ; b is a constant to ensure that the value of parametric function is 
nonnegative. In vector form, this can be expressed as:

where 

⎧⎪⎨⎪⎩

�
�
G,G�

�
=

1

H

�
�1
�
G,G�

�T
, ..., �H

�
G,G�

�T�T

� =
�
�T

1
, ...,�T

H

�T

The parametric form (12) is a linear function with respect to the parameter vector 
� ∈ ℝ

d ( d = |Σ1| + ... + |ΣH| ) and �
(
G,G′

)
 is considered as a feature vector of a pair of 

(9)W1(X, Y) = 1 −
∑
v∈S

min(�X(v),�Y (v))

(10)�WWL(G,G�) = 1 −
1

H

H∑
h=1

∑
v∈Σh

min(��h(G)
(v),��h(G

�)(v))

(11)b −
1

H

H�
h=1

⟨�h, �h
�
G,G�

�⟩

(12)d�(G,G�) = b − ⟨�,�
�
G,G�

�⟩



1593Machine Learning (2021) 110:1585–1607	

1 3

graphs G and G′ . Once the parameters are estimated, we can derive a similarity matrix 
through the Laplacian kernel as in Eq. (7). More importantly, as � is nonnegative, it is 
easy to see that d� is a CND function, and thus the derived similarity matrix is valid.

3.2 � Formulation of learning subtree pattern weights �

We aim to learn the parameters W in Eq. (12) using the notions of metric learning (Kulis 
2012). That is two input graphs with the same labels are encouraged to be closer while the 
two with different labels become far away from each other. In other words, within class 
distances should be small, while between class distances should be large. For this purpose, 
as a loss function for a graph pair g and g′ , we can use the following two hinge loss func-
tion: max(0, �1 − d�(g, g�)) if g and g′ are with different labels and max(0, d�(g, g�) − �2) 
otherwise, for learning subtree pattern weights, where �1 and �2 are constants ( �1 ≥ �2 ). 
The former yields a penalty if g and g′ of different labels are closer than �1 while the latter 
yields a penalty when g and g′ of the same label are more distant than �2 . Instead of using 
these functions in the optimization problem, we use their smooth versions: V1 and V2 (see 
Fig. 2), which offer useful properties for deriving a generalization bound for the problem 
in Sect. 4. The derivation of these functions is based on the connection between the strong 
convexity of a function and Lipschitz continuous gradient of its Fenchel dual (see more 
details in Nesterov (2005)).

More concretely, let Dn = {z1 = (g1, y1), ..., zn = (gn, yn)} where gi ∈ G and 
yi ∈ Y = {−1, 1} , for i = 1, ..., n , we formulate a constrained minimization problem for 
learning subtree pattern weights as follows:

where C = {� ∈ ℝ
d ∶ � =

[
�T

1
, ...,�T

H

]T
, ||�h − �h||2 ≤ �h, 1 ≤ h ≤ H} ( �h and �h are 

constant vectors and scalars); � is a continuously differentiable function and defined as fol-

lows: �(�, zi, zj) =

{
V1(�, gi, gj) if yi ≠ yj
V2(�, gi, gj) otherwise

(13)
minimize

�

1

n2

n∑
i=1

n∑
j=1

�(�, zi, zj)

subject to � ∈ C

Fig. 2   Illustration of Hinge loss max(0, �1 − x) and max(0, x − �2) ; and their smooth versions: V1 (left) and 
V2 (right), respectively, with �1 = 3, �2 = 4 and � = 1.5



1594	 Machine Learning (2021) 110:1585–1607

1 3

and �1 , �2
(
�1 ≥ �2

)
 and � are constants; d�(gi, gj) is calculated from �

(
gi, gj

)
 as in Eq. 

(12). To reduce notation, we use �i,j rather than �
(
gi, gj

)
 in the rest of the paper.

Lemma 3  Let 𝛽 = max1≤i<j≤n
‖‖‖�ij

‖‖‖2 , L =
�2

�
 , and M = max(b −

�

2
− �2, �1 −

�

2
) , the loss 

function � defined in problem (13) is L-lipschitz, �-smooth and upper bounded by M.

Proof  First, it is obvious to see that as 0 ≤ d� ≤ b , we have the following bounds: 
0 ≤ V1 ≤ �1 −

�

2
 and 0 ≤ V2 ≤ b −

�

2
− �2 . Therefore, � is upper bounded by M.

We derive the first and second order derivatives of the smooth function V1 as follows:

In order to prove the function V1 is L-Lipschitz and �-smooth, it is sufficient to show that 
the norm of its derivative is always less than L: ‖‖‖∇V1(�, gi, gj)

‖‖‖2 ≤ L and the spectral 
norm (or the maximum eigen value) of its second order derivative is always less than � : 
||∇2V1(�, gi, gj)|| ≤ �, ∀gi, gj ∈ G . Indeed, from Eqs. (16) and (17), we have: 
‖‖‖V1(�, gi, gj)

‖‖‖2 ≤
‖‖‖�ij

‖‖‖2 and ‖‖‖∇2V1(�, gi, gj)
‖‖‖ ≤

1

�

‖‖‖�ij�
T
ij

‖‖‖ =
1

�

‖‖‖�ij
‖‖‖
2

2
 . Also, we can 

bound ‖‖‖�ij
‖‖‖2 by the inequality ‖‖‖�ij

‖‖‖2 ≤ � . Thus V1 is �-smooth and L-Lipschitz. Similarly, 
we can also show that V2 is �-smooth and L-Lipschitz. The lemma is proven.□

(14)

V1(�, gi, gj)

=

⎧
⎪⎨⎪⎩

0 if d�(gi, gj) ≥ 𝛼1
𝛼1 −

𝜎

2
− d�(gi, gj) if d�(gi, gj) ≤ 𝛼1 − 𝜎

1

2𝜎

�
d�(gi, gj) − 𝛼1

�2
if 𝛼1 − 𝜎 < d�(gi, gj) < 𝛼1

(15)

V2(�, gi, gj)

=

⎧
⎪⎨⎪⎩

0 if d�(gi, gj) ≤ 𝛼2
d�(gi, gj) − 𝛼2 −

𝜎

2
if d�(gi, gj) ≥ 𝛼2 + 𝜎

1

2𝜎

�
d�(gi, gj) − 𝛼2

�2
if 𝛼2 < d�(gi, gj) < 𝛼2 + 𝜎

(16)

∇V1(�, gi, gj)

=

⎧
⎪⎨⎪⎩

0 if d�(gi, gj) ≥ 𝛼1
�ij if d�(gi, gj) ≤ 𝛼1 − 𝜎
1

𝜎

�
𝛼1 − d�(gi, gj)

�
�ij if 𝛼1 − 𝜎 < d�(gi, gj) < 𝛼1

(17)

∇2V1(�, gi, gj)

=

⎧
⎪⎨⎪⎩

0 if d�(gi, gj) ≥ 𝛼1
0 if d�(gi, gj) ≤ 𝛼1 − 𝜎
1

𝜎
�ij�

T
ij

if 𝛼1 − 𝜎 < d�(gi, gj) < 𝛼1



1595Machine Learning (2021) 110:1585–1607	

1 3

3.3 � A stochastic learning algorithm for constrained optimization

The constrained optimization problem (13) is convex and thus guarantees to find its global 
optimum. Standard methods such as projected gradient descent can be used to solve the 
problem (13). However, for large scale data sets, solving the problem (13), involving n2 
terms with d parameters, might be computationally expensive. For instance, the data set 
PROTEIN (see Table  1) has n2 > 106 pairs of examples and the weight vector size of 
d > 105 with the number of WL iterations H = 5 . In this subsection, we present an efficient 
stochastic learning algorithm for dealing with this issue.

Let �(t) denote the weight at iteration t. The weight is initialized by a vector of ones: 
�(0) = �d , which is also the case of WWL kernel without learning subtree pattern impor-
tance. At each iteration t, we randomly pick up a pair of examples ( z = (g, y), z� = (g�, y�) ) 
from the training data set Dn and compute the gradient grad(t) corresponding to this pair. In 
fact this step can be done efficiently due to the sparsity of the feature vector �

(
g, g′

)
 in Eq. 

(12). Then, we update the current solution �(t) to �(t+1) by the following rule:

where projC[�]h =

{
�h if ||�h − �h||2 ≤ �h

�h

||�h−�h||2 (�h − �h) + �h otherwise  maps a point �h 

( 1 ≤ h ≤ H ) back to the bounded feasible region. The procedure is illustrated in 
Algorithm 1.

4 � Theoretical guarantees: a bound on generalization gap

In this section, we provide a bound on the generalization gap of the proposed stochastic 
learning algorithm for solving the problem (13). The gap is defined as the expected differ-
ence between the generalization error R(.) and empirical error RDn

(⋅) . In order to derive the 
generalization bound, we first provide basic setup and notations; then prove that our learn-
ing algorithm has a uniform stability, which is established in Theorem 5 using Lemma 3 

�(t+1) = projC[�
(t) − �grad(t)]



1596	 Machine Learning (2021) 110:1585–1607

1 3

and Lemma 4; finally derive our generalization bound, which is established in Theorem 9 
using the McDiarmid inequality (see Theorem 6).

4.1 � Basic setup and notations

Generalization Error. Let �n be the parameters of the parametric function (12) obtained 
by training on the data set Dn using Algorithm 1. Then the generalization error (or risk) 
R(�n) with a loss function � is defined as:

where �z,z� [𝓁(⋅, ⋅, ⋅)] denotes the expectation of function � when z and z′ are sampled 
according the distribution P.

Empirical Error. The empirical error RDn
(�n) is defined on the training data set Dn as :

Expected Generalization Gap. As Algorithm 1 is based on a randomized procedure, we use 
the definition of the expected generalization gap as follows:

where �SGD denotes the expectation taken over the inherent randomness of the stochastic 
algorithm.

4.2 � Uniform stability of the stochastic learning algorithm

Intuitively, a learning algorithm is said to have a uniform stability if its output is stable 
under a small modification of the training data set. For a randomized learning algorithm, 
the uniform stability property is defined as follows:

Definition 2  (Uniform Stability of the randomized algorithm) A randomized algorithm � 
is �n-uniformly stable with respect to a loss function � , if the following inequality holds:

where Dn,k is the new data set obtained from Dn by replacing zk ∈ Dn with a new example 
ẑk sampled from P ; �n and �n,k are the outputs of � trained on two data sets Dn and Dn,k , 
respectively.

In order to prove that Algorithm 1 has the uniform stability property, we need the fol-
lowing lemma (its proof is placed in the "appendix" section):

Lemma 4  Let the loss function � defined in the problem (13) be �-smooth and L-Lipschitz; 
�(T)

n
 and �(T)

n,k
 be the parameters of the parametric form (12) trained on Dn and Dn,k , 

respectively, using Algorithm 1 with the number of iterations T and learning rate � . Then, 
the expected difference in the model parameters is upper bounded by:

R(�n) = �z,z� [�(�n, z, z
�)]

RDn
(�n) =

1

n2

∑
zi∈Dn

∑
zj∈Dn

�(�n, zi, zj)

�n = �SGD[R(�n) − RDn
(�n)]

∀(Dn, k), sup
z,z�

|�SGD[�(�n, z, z
�)] − �SGD[�(�n,k, z, z

�)]| ≤ �n



1597Machine Learning (2021) 110:1585–1607	

1 3

Using Lemma 4 and L-Lipschitz property of function � (see Lemma 3), we can now 
prove the stability of Algorithm 1.

Theorem 5  [Uniform Stability of Algorithm 1] Let the loss function � defined in the prob-
lem (13) be �-smooth and L-Lipschitz. Then Algorithm 1 with the fixed learning rate � is kn
-uniformly stable where kn =

4

n
�TL2.

Proof  We have the following inequalities:

where the first and second inequalities are obtained by the L-Lipschitz property of � and 
Lemma 4, respectively. This completes the proof. � □

4.3 � Bound on generalization gap

Using the property of uniform stability in the previous subsection, we can derive the gener-
alization bound which is done by the McDiarmid inequality (McDiarmid 1989).

Theorem 6  [McDiarmid inequality (McDiarmid 1989)] Let X1,X2, ...,Xn be n independent 
random variables taking values in X  and let Z = f (X1, ...,Xn) . If, for each 1 ≤ i ≤ n , there 
exists a constant ci such that

supx1,...,xn,x�i
|f (x1, ..., xn) − f (x1, ..., x

�
i
, ..., xn)| ≤ ci, ∀1 ≤ i ≤ n,

then for any 𝜖 > 0 , Pr[�Z − �[Z]� ≥ �] ≤ 2exp
�

−2�2∑n

i=1
c2
i

�

To derive the bound on R(Wn) , we replace Z by Kn in Theorem 6 and bound �SGD

[
�n

]
 

and |�n − �n,k| which are established by the following lemmas (see their proofs in the 
"appendix’ section).

Lemma 7  For the loss function satisfying a uniform stability in kn , we have the following 
inequality:

Lemma 8  For the loss function satisfying a uniform stability in kn and upper bounded by 
M, we have the following inequality:

Now we can derive the generalization bound for R(�n) in the following theorem:

(18)�SGD

[‖‖‖�
(T)
n

−�
(T)

n,k

‖‖‖2
]
≤

4

n
�TL

(19)|�SGD[�(�n, z, z
�)] − �SGD[�(�n,k, z, z

�)]| ≤ L�SGD
‖‖�n −�n,k

‖‖2 ≤
4

n
�TL2

(20)�Dn
[�n] ≤ 2kn

(21)|�n − �n,k| ≤ 2kn +
2M

n



1598	 Machine Learning (2021) 110:1585–1607

1 3

Theorem 9  Let Dn be a training data set with n samples, �n be the solution obtained by 
minimizing the optimization problem (13) using Algorithm 1 with uniform stability kn . Then 
the following inequality holds for probability of at least 1 − � (0 ≤ � ≤ 1):

Proof  Applying McDiarmid’s concentration inequality (6) by replacing Z with �n , we 
have:

By fixing � = 2exp

(
−2�2

n
(
2kn+

2M

n

)2

)
 , we get � = (nkn +M)

√
2

n
log

1

�
 which completes the 

proof of Theorem 9. � □

The generalization bound is meaningful if the bound converge to 0 as n → ∞ . Our 
derived generalization bound converges to 0 as kn decays with O( 1

n
) . This confirms Algo-

rithm 1 converges.

5 � Experiments

In this section, we demonstrate the benefit of learning subtree pattern weights by experi-
ments on both synthetic and real-world data. We performed classification experiments using 
the C-SVM implementation LIBSVM (Chang and Lin 2011). The necessary parameters of 
SVM were selected by cross-validation on the training set. These are the regularization 
parameter C ∈ {10−3, 10−2, ..., 102, 103} and kernel parameter � ∈ {0.0001, 0.001, 0.01} . 
For learning the weights � of subtree patterns (or WL labels) in Algorithm 1, the learn-
ing rate � and maximum number of iterations T were set as 0.0001 and 500, respectively; 
�h ∈ {0.1, 0.5, 1.0} were selected by cross validation based on the training set and �h was 
fixed as a vector of ones, i.e. �h = �|Σh| for h = 1, ..,H ; the hyperparameters �1 , �2 and � 
were empirically determined as 1.0, 0.5 and 0.1, respectively. All kernels were imple-
mented in Python 3.0 and experiments were conducted on an Intel Core i9 at 2.3 Ghz with 
64GB of RAM using a single processor only. The source code can be accessed through 
https://​github.​com/​haidn​guyen​0909/​weigh​tedWWL.

5.1 � Synthetic data

We designed eight substructures, shown in Fig. 3, in which substructures indexed by 1, 2, 
5 and 6 are assumed to be indicative to positive class (+ 1) as they have a pattern ’1–0(− 
2)–0’ in common. The others are indicative to negative class (− 1). Our synthetic data set 
consists of eight groups of graphs, each corresponds to one of these eight substructures 
by randomly adding noisy nodes and edges. We used groups corresponding substructures 
1, 2, 3 and 4 as training data and the others as testing data. We constructed two kernels 
for graphs: WWL and the proposed method with number of WL iterations H = 2 , then 

(22)�SGD

[
R(�n) − RDn

(�n)
]
≤ 2kn + (nkn +M)

√
2

n
log

2

�

Pr(�n − �Dn

�
�n

�
≥ �) ≤ 2exp

⎛⎜⎜⎜⎝
−2�2

n
�
2kn +

2M

n

�2

⎞⎟⎟⎟⎠

https://github.com/haidnguyen0909/weightedWWL


1599Machine Learning (2021) 110:1585–1607	

1 3

used SVM for classification. We reported mean accuracy obtained by ten synthetic data 
sets generated in this way.

We observed that WWL obtained mean accuracies of 82.4%, while the proposed 
method achieved significantly higher accuracy of 95%. It is noted that the testing examples 
were confusing the classifier. For instance, the substructure 5 has the same similarity with 
substructures 2 (indicative to positive class) and 4 (indicative to negative class) accord-
ing to the WWL kernel, making it hard for the classifier to distinguish graphs containing 
the substructure 5. In contrast, this confusion can be alleviated by learning subtree pattern 
weights. In particular, the pattern ’1–0(− 2)–0’ present in the substructure 5 is assigned 
a high weight by the proposed method (see Fig. 4). Therefore, graphs generated from the 
substructure 5 are more likely to be classified as positive.

Fig. 3   Designed substructures 1–8: substructures 1, 2, 5 and 6 are indicative to positive class as they con-
tain pattern ’1–0(− 2)–0’ (emphasized in yellow). The rest are indicative to negative class. Graphs are gen-
erated from substructures by adding random nodes and noisy edges (20 examples for each substructure). 
Graphs generated from the substructures 1, 2, 3 and 4 are used for training. Graph generated from the sub-
structures 5, 6, 7 and 8 are used for testing

Fig. 4   Examples of selected subtree patterns of the first level h = 1 (left) and their weights learned by the 
proposed learning algorithm (right)



1600	 Machine Learning (2021) 110:1585–1607

1 3

5.2 � Real‑world data

In this subsection we present an experimental evaluation of the proposed method on real-
world data. We report experimental results on four benchmark bioinformatics data sets, 
involving node-labeled graphs, particularly, MUTAG, PTC-MR, PROTEIN and NCI1. 
The MUTAG dataset consists of graph structures of 188 chemical compounds which are 
either mutagenic aromatic or heteroromatic nitro compounds and nodes can have 7 dis-
crete labels. The PTC-MR dataset consists of 344 chemical compounds which are known 
to cause or not cause cancer in rats and mice, and nodes can have 19 discrete labels. The 
PROTEIN dataset consists of relations between secondary structure elements represented 
by nodes and neighborhood in the amino-acid sequence or in 3D space by edges, and nodes 
can have 3 discrete labels. The NCI1 dataset is a balanced subset of chemical compounds 
screened for their ability to inhibit the growth of a panel of human tumor cell lines, and 
nodes can have 37 discrete labels. Some statistics of these data sets are shown in Table 1.

We compared the proposed method to several state-of-the-art graph kernels. Due to the 
large number of graph kernels in the literature, we selected representatives of the major 
families of graph kernels. In particular, for the family of walk based kernels, we compared 
the proposed method to the fast random walk kernel (Kashima 2003) that essentially counts 
the common labeled walks. For the family of path based graph kernels, we compared to the 
shortest path kernel (Borgwardt and Kriegel 2005). For the family of WL based graph ker-
nels, we compared to WL subtree (Vishwanathan et al. 2010), WL-OA (Kriege et al. 2016) 
and WWL kernels (Togninalli et al. 2019). The WL based kernels have been shown to be 
superior to previous approaches.

We report mean predictive accuracies and standard deviations obtained by 10-fold 
cross-validation repeated 10 times with random fold assignments. Within each fold, the 
number of hops H ∈ {1, 2, ..., 6} was selected by cross validation based on the training 
set. The results evaluated by classification accuracy are summarised in Table 2. We used 
one-sided paired t-test to verify if the accuracy differences between two methods on data 
sets are statistically significant. We empirically observed that random walk and shortest 
path kernels were less competitive to WL-based kernels on four data sets. On three data-
sets MUTAG, PROTEIN and NCI1, the proposed method was comparable with WL-OA 
while it improved its unweighted version WWL by 1.4%, 1.5% and 0.8%, respectively 
(the calculated p values were 0.061, 0.0087 and 0.055, respectively, smaller than the sig-
nificance level of � = 0.1 ). On PTC-MR, the proposed method improved WWL by 0.6% 
while outperforming WL-OA by nearly 5% (the calculated p values were 0.0035 and < 
0.001, respectively). In all these data sets, random walk, shortest path and WL subtree ker-
nels were dominated by the rest in large margins. Furthermore, we also investigated some 
selected subtree patterns at the first and second levels ( h = 1, 2 ) along with their weights 
learned by the proposed algorithm from two data sets: MUTAG and PTC-MR (see Figs. 5 

Table 1   Statistics of datasets used in experiments

Datasets #Graphs #Classes Avg. card (V) Avg. card (E) #labels

MUTAG​ 188 2 (125 vs. 63) 17.9 39.6 7
PTC-MR 344 2 (192 vs. 152) 25.6 51.9 19
PROTEIN 1113 2 (663 vs. 450) 39.1 145.63 3
NCI1 4110 2 (2053 vs. 2057 ) N/A N/A N/A



1601Machine Learning (2021) 110:1585–1607	

1 3

and 6, respectively). Interestingly, the weights were found different over substructures, 
indicating their different degrees of importance in the prediction task. These experimen-
tal results confirmed the effectiveness of learning important subtree patterns for WWL 
kernels.

5.3 � Computational efficiency of the proposed stochastic algorithm

In this subsection, we evaluate the computational efficiency of the proposed Algorithm 1. 
We empirically compared two variants: batch and stochastic (Algorithm 1), for solving the 
minimization problem (13) in terms of running time. The first variant considers all pairs of 
graphs for every step of projected gradient descent. The second variant considers one pair 
of graphs at a time to take a single step.

First we assessed the running time of two variants on randomly generated graphs (as 
described in Subsect. 5.1) with respect to two parameters: number of graphs N and num-
ber of WL iterations H. We varied N in range {50, 100, 200, 400, 600, 800, 1000} and H 
in range {1, 2, 3, 4, 5, 6, 7} . For each individual experiment, we fixed one parameter at its 
default value and varied the other. The default values were 100 for N and 2 for H. We 
report CPU running times in seconds in Fig. 7. Empirically, we observed that the running 
time of full batch variant increased quickly when increasing the number of graphs N and 
the number of WL iterations H. In contrast, the stochastic variant scaled much better with 
much lower running times, indicating that Algorithm 1 has high scalability for large scale 
data sets. The computational efficiency of Algorithm 1 can be explained by the fact that 

Fig. 5   Examples of selected subtree patterns and their weights of the first level h = 1 a and the second level 
h = 2 b extracted from MUTAG by Algorithm 1



1602	 Machine Learning (2021) 110:1585–1607

1 3

Fig. 6   Examples of selected subtree patterns and their weights of the first level h = 1 a and the second level 
h = 2 b extracted from PTC-MR by Algorithm 1

Table 2   Classification accuracies and standard deviation on real-world graph data sets: MUTAG, PTC-MR, 
PROTEIN and NCI1

Best results are shown in bold

Kernels MUTAG​ PTC-MR PROTEIN NCI1

Random Walk (Kashima 2003) 85.06 ± 0.18 55.74 ± 3.64 71.11 ± 0.83 62.88 ± 0.22
Shortest path (Borgwardt and Kriegel 2005) 85.49 ± 0.59 53.29 ± 0.92 73.03 ± 1.13 61.36 ± 0.19
WL Subtree (Shervashidze and Borgwardt 

2009)
85.61 ± 0.85 61.89 ± 1.97 72.5 ± 0.32 85.61 ± 0.13

WL-OA (Kriege et al. 2016) 88.17 ± 1.98 60.49 ± 1.39 75.89 ± 0.41 86.17 ± 0.35
WWL (Togninalli et al. 2019) 86.95 ± 1.35 64.86 ± 1.57 74.25 ± 0.74 85.69 ± 0.28
Proposed 88.37 ± 1.82 65.44 ± 0.97 75.73 ± 0.57 86.45 ± 0.11



1603Machine Learning (2021) 110:1585–1607	

1 3

computing gradient of the loss function for a graph pair g and g′ involves a few substruc-
tures (or WL labels) v shared by g and g′ in Eq. (12), i.e., sparsity of the feature vector 
�
(
g, g′

)
.

Second we assessed the running time of two variants on real-world data sets: MUTAG, 
PTC-MR, PROTEIN and NCI1. We reported the running time of two variants to finish the 
entire classification tasks, including learning subtree pattern weights, computing kernels 
and doing classification, in Table 3. The running time were taken average by 10-fold cross 
validation. We empirically observed that the full batch variant was slow when running on 
even small data sets MUTAG and PTC-MR, taking in approximately 4 h and 9 h, respec-
tively. But the stochastic variant was much faster, taking only less than 4 min on the two 
data sets. We also observed that the stochastic variant could easily scale up to data sets 
with thousands of graphs. Particularly, on data sets PROTEIN and NCI1, the tasks were 
performed in nearly 1h 30’ and 5 h, respectively. However, it was impossible for the full 
batch variant to finish the tasks in less than 3 days. These evidence showed that the pro-
posed stochastic variant is highly scalable.

6 � Conclusion and discussion

In this work, we proposed to learn the weights of substructures of graphs, particularly, 
subtree patterns (extracted by WL labeling scheme), to overcome the limitations of cur-
rent graph kernels. We considered the problem of incorporating subtree pattern weights for 
WWL kernel (Togninalli et al. 2019) by formulating the parametric form of Wasserstein 

Fig. 7   Running time in seconds on synthetic data sets of two variants: full batch and stochastic algorithms, 
for learning the subtree pattern importance W (in the optimization problem (13)) (Default values: dataset 
size N = 100 , WL iteration H = 2)

Table 3   Running time in seconds of two variants: full batch and stochastic on real-world data sets: 
MUTAG, PTC-MR, PROTEIN and NCI1

Variants/data sets MUTAG​ PTC-MR PROTEIN NCI1

Full batch 1’ 32” 3’ 48” 1 h 20’40” 5 h 5’
Stochastic 4h 29’ 8h 50’ > 3 days > 1 week



1604	 Machine Learning (2021) 110:1585–1607

1 3

distance taking into account subtree pattern weights, and learning these weights from data 
optimally for the tasks.

Our proposed method has several advantages. First, it can learn the importance of sub-
tree patterns specifically for the tasks through their weights in the parametric distance func-
tion. Second, the kernels converted from the learned parametric function of subtree pattern 
weights are valid. Third, the efficient stochastic algorithm for learning the weights has high 
scalability for large scale data sets, and its theoretical guarantees are provided.

Although we considered WWL kernel for extracting important subtree patterns, an 
interesting and worthwhile extension of our work would be to apply this idea to other WL 
based graph kernels such as WL subtree and WL-OA kernels. The improvements of the 
optimization algorithm for learning subtree pattern weights in terms of both convergence 
and efficiency would also be our future work.

A Appendices

A.1 Proof of Lemma 4

.

Proof  We prove the lemma by following the notion of using the same randomness for two 
data set Dn and Dn,k as in Hardt et al. (2016). Particularly, we supply the sample sequences 
S = {p1 = (zi1 , zj1 ), ..., pT = (ziT , zjT )} to two identical learning algorithms except that for 
some t ( 1 ≤ t ≤ T  ), if pt contains zk ( pt = (zk, zjt ) or (zit , zk) ), we replace it with p̂t = (ẑk, zjt ) 
or (zit , ẑk) . So, there are two cases to consider:

Case 1: At step t, Algorithm 1 picks a pair of samples (z, z′ ) that contain no zk ( z ≠ zk 
and z′ ≠ zk ) and this case occurs with probability (1 − 1

n
)2 . Then, we have:

The second line is obtained by the fact that ��projC[�] − projC[�]
��2 ≤ ‖� − �‖2 for �, � in 

the domain. The last line is obtained by the �-smoothness of function � (see Lemma 3). So 
we have the following inequality (by selecting � ≤

2

�
):

Case 2: At step t, Algorithm 1 picks a pair of samples (z, z′ ) that contain zk ( z = zk and 
z� = zk ) and this case occurs with probability 1 − (1 −

1

n
)2 . Then we have:

‖‖‖�
(t+1)
n

−�
(t+1)

n,k

‖‖‖
2

2
=
‖‖‖‖projC

[
�(t)

n
− �∇�

(
�(t)

n
, z, z�

)]
− projC

[
�

(t)

n,k
− �∇�

(
�

(t)

n,k
, z, z�

)]‖‖‖‖
2

2

≤
‖‖‖‖�

(t)
n
− �∇�

(
�(t)

n
, z, z�

)
−�t

n,k
+ �∇�

(
�

(t)

n,k
, z, z�

)‖‖‖‖
2

2

=
‖‖‖�

(t)
n
−�

(t)

n,k

‖‖‖
2

2
− 2�

(
�(t)

n
−�

(t)

n,k

)(
∇�

(
�(t)

n
, z, z�

)
− ∇�

(
�

(t)

n,k
, z, z�

))

+ �2
‖‖‖‖∇�(�

(t)
n
, z, z�) − ∇�

(
�

(t)

n,k
, z, z�

)‖‖‖‖
2

2

≤
‖‖‖�

(t)
n
−�

(t)

n,k

‖‖‖
2

2
− �

(
2

�
− �

)‖‖‖‖∇�
(
�(t)

n
, z, z�

)
− ∇�

(
�

(t)

n,k
, z, z�

)‖‖‖‖
2

2

(23)
‖‖‖�

(t+1)
n

−�
(t+1)

n,k

‖‖‖2 ≤
‖‖‖�

(t)
n
−�

(t)

n,k

‖‖‖2



1605Machine Learning (2021) 110:1585–1607	

1 3

The above inequality holds as the norm of gradient of loss function � is upper bounded by 
L. From two inequalities (23) and (24), and considering the probabilities of two cases, we 
have the following inequality:

By the above recursive formula, we obtain the following:

which completes the proof. � □

A.2 Proof of Lemma 7

Proof  By the definition of �n as in (4.1), we have the following:

We first process the part (a) which is equivalent to the following:

(24)
‖‖‖�

(t+1)
n

−�
(t+1)

n,k

‖‖‖2 ≤
‖‖‖�

(t)
n
−�

(t)

n,k

‖‖‖2 + 2�L

(25)�SGD

[‖‖‖�
(t+1)
n

−�
(t+1)

n,k

‖‖‖2
]
≤

(
1 −

1

n

)2

�SGD

[‖‖‖�
(t)
n
−�

(t)

n,k

‖‖‖2
]

(26)+

(
1 −

(
1 −

1

n

)2
)(

�SGD

[‖‖‖�
(t)
n
−�

(t)

n,k

‖‖‖2
]
+ 2�L

)

(27)= �SGD

[‖‖‖�
(t)
n
−�

(t)

n,k

‖‖‖2
]
+ 2�L

(
1 −

(
1 −

1

n

)2
)

(28)�SGD

[‖‖‖�
(T)
n

−�
(T)

n,k

‖‖‖2
]
≤ 2

(
1 −

(
1 −

1

n

)2
)
�TL ≤

4

n
�TL

�Dn
[�n] = �Dn

�SGD[R(�n) − RDn
(�n)]

= �Dn
�SGD�z,z��(�n, z, z

�) − �Dn
�SGD

1

n2

n∑
i,j=1

�(�n, zi, zj)

= �Dn ,z,z
��SGD

[
1

n2

n∑
k=1

n∑
j=1

[
�(�n, z, z

�) − �(�n, zk, z
�) + �(�n, zk, z

�) − �(�n, zk, zj)
]]

= �Dn ,z,z
��SGD

[
1

n2

n∑
k=1

n∑
j=1

[
�(�n, z, z

�) − �(�n, zk, z
�) + �(�n, zk, z

�) − �(�n, zk, zj)
]]

= �Dn ,z,z
��SGD

[
1

n2

n∑
k=1

n∑
j=1

[
�(�n, z, z

�) − �(�n, zk, z
�)
]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(a)

+ �Dn,z,z
��SGD

[
1

n2

n∑
k=1

n∑
j=1

[
�(�n, zk, z

�) − �(�n, zk, zj)
]]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(b)



1606	 Machine Learning (2021) 110:1585–1607

1 3

Similarly, we also prove that ( b) ≤ kn which completes the proof. � □

A.3 Proof of Lemma 8

Proof  By the definition of �n as in (4.1), we have:

We bound the two terms (c) and (d) as follows:

The two above inequalities complete the proof. � □

Acknowledgements  D. H. N. has been supported in part by Otsuka Toshimi scholarship and JSPS Research 
Fellowship for Young Scientists (DC2) with KAKENHI [grant number 19J14714]. C. H. N. has been sup-
ported in part by MEXT KAKENHI [grant number 18K11434]. H. M. has been supported in part by JST 
ACCEL [grant number JPMJAC1503], MEXT KAKENHI [grant numbers 16H02868, 19H04169], FiDiPro 
by Tekes (currently Business Finland) and AIPSE program by Academy of Finland.

(a) =
1

n

n∑
k=1

�Dn ,z,z
��SGD

[
�(�n, z, z

�)
]
−

1

n

n∑
k=1

�Dn ,z,z
��SGD

[
�(�n, zk, z

�)
]

=
1

n

n∑
k=1

�Dn ,z,z
��SGD

[
�(�n, z, z

�)
]
−

1

n

n∑
k=1

�Dn ,ẑk ,z
��SGD

[
�(�n, zk, z

�)
]

=
1

n

n∑
k=1

�Dn ,z,z
��SGD

[
�(�n, z, z

�)
]
−

1

n

n∑
k=1

�Dn ,z,z
��SGD

[
�(�n,k, z, z

�)
]

≤
1

n

n∑
k=1

�Dn ,z,z
��SGD

[
�(�n, z, z

�) − �(�n,k, z, z
�)
]
≤ kn

|�n − �n,k| = |�SGD[R(�n) − RDn
(�n)] − �SGD[R(�n,k) − RDn,k

(�n,k)]|
≤ |�SGDR(�n) − �SGDR(�n,k)|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(c)

+ |�SGDRDn
(�n) − �SGDRDn,k

(�n,k)|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(d)

(c) = |�SGD�z,z� [�(�n, z, z
�) − �(�n,k, z, z

�)]|
≤ �z,z� |�SGD[�(�n, z, z

�) − �(�n,k, z, z
�)]| ≤ kn

(d) = |�SGD

1

n2

∑
zi∈Dn

∑
zj∈Dn

�(�n, zi, zj) − �SGD

1

n2

∑
zi∈Dn,k

∑
zj∈Dn,k

�(�n,k, zi, zj)|

= | 1
n2

∑
i≠k,j≠k

�SGD[�(�n, zi, zj) − �(�n,k, zi, zj)]

+
1

n2

∑
i≠k

�SGD[�(�n, zi, zk) − �(�n,k, zi, zk)]

+
1

n2

∑
j≠k

�SGD[�(�n, zk, zj) − �(�n,k, zk, zj)]

≤
(n − 1)2

n2
kn +

2(n − 1)

n2
Mkn +

2M

n



1607Machine Learning (2021) 110:1585–1607	

1 3

References

Borgwardt, K.M., & Kriegel, H.P. (2005). Shortest-path kernels on graphs. In: Fifth IEEE International 
Conference on Data Mining (ICDM’05), pp. 8–pp. IEEE

Chang, C. C., & Lin, C. J. (2011). Libsvm: A library for support vector machines. ACM Transactions on 
Intelligent Systems and Technology (TIST), 2(3), 1–27.

Hardt, M., Recht, B., & Singer, Y. (2016). Train faster, generalize better: Stability of stochastic gradient 
descent. In: International Conference on Machine Learning, pp. 1225–1234. PMLR

Haussler, D. (1999). Convolution kernels on discrete structures. Tech. rep., Technical report, Department of 
Computer Science, University of California.

Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels between labeled graphs. In: Proceed-
ings of the 20th International Conference on Machine Learning (ICML-03), pp. 321–328

Kriege, N.M., Giscard, P.L., Wilson, R. (2016). On valid optimal assignment kernels and applications to 
graph classification. In: Advances in Neural Information Processing Systems, pp. 1623–1631

Kulis, B., et  al. (2012). Metric learning: A survey. Foundations and Trends in Machine Learning, 5(4), 
287–364.

McDiarmid, C. (1989). On the method of bounded differences. Surveys in Combinatorics, 141(1), 148–188.
Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the Society for 

Industrial and Applied Mathematics, 5(1), 32–38.
Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical Programming, 103(1), 

127–152.
Scott, J. (2011). Social network analysis: Developments, advances, and prospects. Social Network Analysis 

and Mining, 1(1), 21–26.
Sharan, R., & Ideker, T. (2006). Modeling cellular machinery through biological network comparison. 

Nature Biotechnology, 24(4), 427–433.
Shervashidze, N., & Borgwardt, K. (2009). Fast subtree kernels on graphs. In: Advances in neural informa-

tion processing systems, pp. 1660–1668
Togninalli, M., Ghisu, E., Llinares-López, F., & Rieck, B. (2019). Borgwardt, K.: Wasserstein weisfeiler-

lehman graph kernels. In: Advances in Neural Information Processing Systems, pp. 6439–6449
Trinajstic, N. (2018). Chemical graph theory. London: Routledge.
Villani, C. (2008). Optimal transport: Old and new (Vol. 338). NewYork: Springer Science & Business 

Media.
Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., & Borgwardt, K. M. (2010). Graph kernels. The 

Journal of Machine Learning Research, 11, 1201–1242.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Learning subtree pattern importance for Weisfeiler-Lehman based graph kernels
	Abstract
	1 Introduction
	2 Related work
	2.1 Weisfeiler-Lehman (WL) scheme for node embeddings
	2.2 WL subtree kernels
	2.3 WL-based optimal assignment kernels
	2.4 Wasserstein WL kernels

	3 Incorporating subtree pattern importance into WL based graph kernels
	3.1 Parametric form of Wasserstein distance with subtree pattern weights
	3.2 Formulation of learning subtree pattern weights 
	3.3 A stochastic learning algorithm for constrained optimization

	4 Theoretical guarantees: a bound on generalization gap
	4.1 Basic setup and notations
	4.2 Uniform stability of the stochastic learning algorithm
	4.3 Bound on generalization gap

	5 Experiments
	5.1 Synthetic data
	5.2 Real-world data
	5.3 Computational efficiency of the proposed stochastic algorithm

	6 Conclusion and discussion
	Acknowledgements 
	References




