
Vol.:(0123456789)

Machine Learning (2023) 112:2975–3002
https://doi.org/10.1007/s10994-021-05996-7

1 3

Unified SVM algorithm based on LS‑DC loss

Shuisheng Zhou1  · Wendi Zhou2

Received: 2 September 2020 / Revised: 7 April 2021 / Accepted: 11 May 2021 /
Published online: 21 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Over the past two decades, support vector machines (SVMs) have become a popular super-
vised machine learning model, and plenty of distinct algorithms are designed separately
based on different KKT conditions of the SVM model for classification/regression with
different losses, including convex and or nonconvex loss. In this paper, we propose an algo-
rithm that can train different SVM models in a unified scheme. First, we introduce a defini-
tion of the least squares type of difference of convex loss (LS-DC) and show that the most
commonly used losses in the SVM community are LS-DC loss or can be approximated
by LS-DC loss. Based on the difference of convex algorithm (DCA), we then propose a
unified algorithm called UniSVM which can solve the SVM model with any convex or non-
convex LS-DC loss, wherein only a vector is computed by the specifically chosen loss.
UniSVM has a dominant advantage over all existing algorithms for training robust SVM
models with nonconvex losses because it has a closed-form solution per iteration, while the
existing algorithms always need to solve an L1SVM/L2SVM per iteration. Furthermore, by
the low-rank approximation of the kernel matrix, UniSVM can solve large-scale nonlinear
problems efficiently. To verify the efficacy and feasibility of the proposed algorithm, we
perform many experiments on small artificial problems and large benchmark tasks both
with and without outliers for classification and regression for comparison with state-of-the-
art algorithms. The experimental results demonstrate that UniSVM can achieve compara-
ble performance in less training time. The foremost advantage of UniSVM is that its core
code in Matlab is less than 10 lines; hence, it can be easily grasped by users or researchers.

Keywords  SVM (support vector machine) · DC programming · DCA (difference of convex
algorithm) · LS-DC loss · low-rank approximation

This work was supported by the National Natural Science Foundation of China under Grant No.
61772020.

Editors: Daniel Fremont, Mykel Kochenderfer, Alessio Lomuscio, Dragos Margineantu, Cheng Soon-
Ong.

 *	 Shuisheng Zhou
	 sszhou@mail.xidian.edu.cn

1	 School of Mathematics and Statistics, Xidian University, Xi’An, China 726100
2	 School of Computer Science, Beijing University of Posts and Telecommunications, Beijing,

China 100867

http://orcid.org/0000-0003-4764-9483
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05996-7&domain=pdf

2976	 Machine Learning (2023) 112:2975–3002

1 3

1  Introduction

Over the past two decades, support vector machines (SVMs) (Vapnik 1999, 2000),
which are based on structural risk minimization, have become a computationally pow-
erful machine learning method for supervised learning. They are widely used in clas-
sification and regression tasks (Vapnik 2000; Schölkopf and Smola 2002; Steinwart and
Christmann 2008), such as disease diagnosis, face recognition, and image classification,
etc.

Assuming that a training data set � = {(xi, yi)}
m
i=1

 is drawn independently and identi-
cally from a probability distribution on (X,Y) with X ⊂ ℝ

d and Y = {−1,+1} for clas-
sification or Y = ℝ for regression, the SVM model solves the following optimization
problem:

where ℍ is a reproducing kernel Hilbert space (RKHS) induced by a kernel function
�(x, z) = ⟨�(x),�(z)⟩ with a feature mapping � ∶ ℝ

d
↦ ℍ , 𝓁(⋅, ⋅) is a margin-based loss

with different choices, and � is the regularizer. The output prediction function f is param-
eterized by w as f (x) = ⟨w,�(x)⟩ . Herein, we take the form without offset for f as in previ-
ous papers (Steinwart 2003; Keerthi et al. 2006; Steinwart et al. 2011). The offset can also
be considered by adding an extra attribute 1 to every sample x or to its feature mapping
�(x).

For nonlinear problems, the model (1) cannot be solved efficiently because �(⋅) is
always a high-dimensional mapping and possibly infinite. By applying the representer
theorem (Schölkopf et al. 2001; Schölkopf and Smola 2002; Steinwart and Christmann
2008; Shalev-Shwartz and Ben-David 2014), there exists a vector �∗ ∈ ℝ

m such that the
solution of (1) admits w∗ =

∑m

i=1
�∗
i
�(xi). Hence, substituting w =

∑m

i=1
�i�(xi) in (1), we

have the following equivalent finite dimensional optimization problem,

where the kernel matrix K satisfies Ki,j = �(xi, xj) and Ki is the k-th row of K . The similar
model of (2) can also be derived by duality (Vapnik 2000; Boyd and Vandenberghe 2009),
where the coefficients � may be properly bounded (see (5), (6) and (9) for details).

Many scholars have studied different SVM models based on different loss func-
tions. The typical works (Vapnik 2000; Suykens and Vandewalle 1999a; Keerthi et al.
2006; Zhou et al. 2009; Steinwart et al. 2011; Zhou 2013; Zhou et al. 2013; Zhou 2016)
are focused on SVM models with convex loss, such as L1-SVM with the hinge loss,
L2-SVM with the squared hinge loss, LS-SVM with the least squares least loss, and the
support vector regression (SVR) with �-insensitive loss, etc. The state-of-the-art SVM
tool, LibSVM (including SVC and SVR) (Chang and Lin 2011), covers some cases with
convex losses and has numerous applications.

The algorithms based on convex losses are sensitive to outliers, where “outlier”
refers to the contaminated samples far away from the majority of instances with the
same labels (Hampel et al. 2011) that may emerge through mislabeling. This is because
the contaminated data have the largest weights (support values) to represent the output
function in this case.

(1)w∗ ∈ argmin
w∈ℍ

�

2
‖w‖2 + 1

m

m�

i=1

�(yi, ⟨w,�(xi)⟩),

(2)min
�∈ℝm

𝜆

2
�⊤K� +

1

m

m∑

i=1

�(yi,Ki�),

2977Machine Learning (2023) 112:2975–3002	

1 3

Many researchers have used nonconvex loss functions to weaken the influence of out-
liers. For example, Shen et al. (2003), Collobert et al. (2006), and Wu and Liu (2007)
study the robust SVM with the truncated hinge loss; Tao et al. (2018) study the robust
SVM with the truncated hinge loss and the truncated squared hinge loss. Based on dif-
ference of convex algorithm (DCA) procedure (Le Thi and Pham Dinh 2018; Yuille and
Rangarajan 2003), researchers have presented algorithms to iteratively solve L1SVM/
L2SVM to obtain the solutions of their proposed nonconvex models. By introducing
the smooth nonconvex losses, Feng et al. (2016) propose the robust SVM models which
solve a re-weighted L2SVM many times. See Subsect. 2.2.2 for the representative robust
SVMs.

All the robust SVM algorithms mentioned above have double-layer loops. The inner
loop is used to solve a convex problem with parameters adjustable by the outer loop, and
the outer loop adjusts those parameters to reach the solution of the nonconvex model.

However, the inner loop of these algorithms is computationally expensive. For exam-
ple, Collobert et al. (2006), Wu and Liu (2007), Feng et al. (2016), Tao et al. (2018) solve
a constrained quadratic programming (QP) defined by L1SVM, L2SVM or re-weighted
L2SVM, and all state-of-the-art methods for quadratic programming require substantial
numbers of iterations (such as SMO (Platt 1999; Keerthi et al. 2001; Chen et al. 2006) or
the tools quadprog in Matlab). In Tao et al. (2018), some efficient techniques based on
the coordinate descent are given to reduce the cost of the inner loop, but it remains neces-
sary to solve L1SVM/L2SVM, perhaps with smaller size.

There are three weaknesses to the existing algorithms of the robust SVM models. The
first is that the total computational complexity is high, resulting in long training time which
limits the algorithms in processing large-scale problems. The second is that most of the
existing algorithms are only suitable for classification problems and require complicated
modifications when applied for regression problems. The third is that all the existing algo-
rithms are designed separately based on the special kinds of losses, thus costing much
effort for the readers/users to learn the different algorithms or to change the losses before
making use of them.

Recently, Chen and Zhou (2018) proposed the robust LSSVM based on the truncated
least squares loss, which partly resolves the first two weaknesses by removing the inner
loop and solving classification/regression tasks similarly). To extend this benefit to all the
other losses, by defining an LS-DC loss, we propose a unified solution for different mod-
els with different losses, named as UniSVM, which overcomes all three aforementioned
weaknesses.

Here, we only focus on the positive kernel case, namely, where ℍ is an RKHS. For
the nonpositive kernel case, Ong et al. (2004) generalized this type of learning problem
to reproducing kernel Kreĭn spaces (RKKS) and verified that the representer theorem still
holds in RKKS even if its regularization part is nonconvex. Recently, Xu et al. (2017)
decomposed the regularization part as DC form and proposed an efficient learning algo-
rithm where the loss is chosen as only the squared hinge loss. Our results in this work can
be seamlessly generalized to the nonpositive case by the methods in Xu et al. (2017).

Our contributions in this work can be summarized as follows:

•	 We define a kind of loss with a DC decomposition, called LS-DC loss, and show that
all the commonly used losses are LS-DC loss or can be approximated by LS-DC loss.

•	 We propose a UniSVM algorithm which can deal with any LS-DC loss in a unified
scheme, including both convex and nonconvex losses and both classification and

2978	 Machine Learning (2023) 112:2975–3002

1 3

regression losses, in which only one vector is dominated by the specifically chosen loss.
Hence, it can train classification problems and regression problems in the same scheme.

•	 The proposed UniSVM has low computational complexity, even for nonconvex models,
because it solves a system of linear equations iteratively, which has a closed-form solu-
tion. Hence, the inner loop disappears.

•	 By the efficient low-rank approximation of the kernel matrix, UniSVM can solve large-
scale problems efficiently.

•	 In view of the theories of DCA, UniSVM converges to the globally optimal solution of
the convex model, or to a critical point of the nonconvex model.

•	 UniSVM can be easily grasped by users or researchers because its core code in Matlab
is less than 10 lines.

The notations in this paper are as follows. All the vectors and matrices are in bold style,
such as v, xi or K , and the set or space is noted as �,� , ℝm , etc. The scalar vi is the i-th ele-
ment of v , the row vector Ki is the i-th row of K , and K

�
 is the submatrix of K with all rows

in the index set � . The transpose of the vector v or matrix K is noted as v⊤ or K⊤ . I is an
identity matrix with proper dimensions, t+ ∶= max{t, 0} , and �a = 1 if the event a is true,
and otherwise 0.

The rest of the paper is organized as follows. In Sect. 2 we review the DCA procedure
and the related SVM models. In Sect. 3 we define an LS-DC loss which has a desirable
DC decomposition and reveal its properties. In Sect. 4 we propose a UniSVM algorithm
that can train the SVM model with any different LS-DC loss based on DCA. In Sect. 5 we
verify the effectiveness of UniSVM with numerous experiments, and Sect. 6 concludes the
paper.

2 � Reviews of related works

We review the DCA procedure and some SVM models with convex and nonconvex loss in
this section.

2.1 � DC programming and DCA

DCA is an efficient nonconvex optimization technique, first introduced in Pham Dinh and
El-Bernoussi (1986) and recently reviewed in Le Thi and Pham Dinh (2018), and has been
successfully applied in machine learning (Yuille and Rangarajan 2003; Neumann et al.
2004; Collobert et al. 2006; Le Thi et al. 2008, 2009; Ong and Le Thi 2013; Xu et al. 2017;
Tao et al. 2018; Chen and Zhou 2018). A function F(x) is called a difference of convex
(DC) function if F(x) = H(x) − G(x) , where H(x) and G(x) are convex functions. DC pro-
gramming is used to solve

where H(x) and G(x) are convex functions and X is a convex set.
DCA is a majorization-minimization algorithm (Naderi et al. 2019) which works

by optimizing a sequence of upper-bounded convex functions of F(x) . For the cur-
rent approximated solution xk , since G(x) ≥ G(xk) + ⟨x − xk, vk⟩ with vk ∈ �G(xk) ,

(3)min
x∈X

F(x) ∶= H(x) − G(x),

2979Machine Learning (2023) 112:2975–3002	

1 3

H(x) − ⟨vk, x − xk⟩ − G(xk) is an upper-bounded convex function of F(x) . Thus, to solve
the DC problem (3), DCA iteratively obtains a new solution xk+1 by solving the convex
programming as follows.

There is a convergence guarantee (Le Thi and Pham Dinh 2018). Particularly, if H(x) is
a quadratic function, the optimal problem (4) has a closed form solution. Thus, the DCA
procedure has no inner iterations. This motivates us to design a DC decomposition for the
losses of SVMs models to speed up the algorithm in Sect. 3.

2.2 � SVM models with convex losses and nonconvex losses

2.2.1 � SVM models with convex losses

If the hinge loss �(y, t) ∶= max{0, 1 − yt} is chosen in (1) for classification, then L1SVM
is obtained by duality through the following expression (Vapnik 2000, 1999; Keerthi et al.
2006; Steinwart et al. 2011; Zhou 2013):

where K̃i,j = yiyjKi,j and e = (1,⋯ , 1)⊤ ∈ ℝ
m . If the squared hinge loss

�(y, t) ∶=
1

2
max{0, 1 − yt}2 is chosen in (1), then L2SVM is obtained by duality through

the following expression (Vapnik 2000, 1999; Steinwart et al. 2011; Zhou 2013; Zhou et al.
2013, 2009):

where I is the identity matrix. With the solution �∗ , the unknown sample x is predicted as
sgn(f (x)) with f (x) = 1

�

∑m

i=1
yi�

∗
i
�(x, xi) for model (5) or (6).

If the least squares loss �(y, t) ∶= 1

2
(1 − yt)2 =

1

2
(y − t)2 is chosen in (1), the LSSVM

model obtained by duality (Suykens and Vandewalle 1999a, b; Suykens et al. 2002; Jiao
et al. 2007) is

with a unique nonsparse solution, where y = (y1,⋯ , ym)
⊤ . By choosing the least squares

loss in (1), Zhou (2016) recently proposed the primal LSSVM (PLSSVM) based on the
representer theorem1 as

(4)xk+1 ∈ argmin
x

H(x) − ⟨vk, x⟩.

(5)L1SVM: min
0≤�≤

1

m

1

2𝜆
�⊤�K� − e⊤�,

(6)L2SVM: min
0≤�

1

2𝜆
�⊤

(
�K + 𝜆mI

)
� − e⊤�,

(7)LSSVM: min
�

1

2𝜆
�⊤(K + 𝜆mI)� − y⊤�,

(8)PLSSVM: min
�

1

2𝜆
�⊤

(
m𝜆K + KK⊤

)
� − y⊤K�,

1  For consistency with the model induced by duality, we let w =
1

�

∑m

i=1
�
i
�(x

i
) here.

2980	 Machine Learning (2023) 112:2975–3002

1 3

which may have a sparse solution if K has low rank or can be approximated as a low rank
matrix. With the solution �∗ , the unknown sample x is predicted as sgn(f (x))(classification)
or f (x) (regression) with f (x) = 1

�

∑m

i=1
�∗
i
�(x, xi) for model (7) or (8).

If the �-insensitive loss ��(y, t) ∶= (|y − t| − �)+ is chosen in (1) for the regression prob-
lem, then SVR is obtained as

and with the solution (�∗, �̂
∗
) , the prediction of the new input x is

f (x) =
1

𝜆

∑m

i=1
(𝛽∗

i
− 𝛽∗

i
)𝜅(x, xi).

2.2.2 � Robust SVM models with nonconvex losses

To improve the robustness of the L1SVM model (5), in Collobert et al. (2006) the hinge loss
(1 − yt)+ in (1) is truncated as the ramp loss min{(1 − yt)+, a} with a > 0 and decomposed
into DC form (1 − yt)+ − (1 − yt − a)+ . The problem (1) is posed as a DC programming:

Then, based on the DC procedure and Lagrange duality, a robust L1SVM is proposed by
iteratively solving the following L1SVM problem at the (k + 1)− th iteration.

where vk satisfies vk
i
=

1

m
⋅ �

1−�Ki(�
k−vk)∕𝜆>a, i = 1,⋯ ,m . Similar analysis with a different

form appears in Wu and Liu (2007) and Tao et al. (2018).
To improve the robustness of L2SVM (6), Tao et al. (2018) truncated the squared

hinge loss (1 − yt)2
+
 as min{(1 − yt)2

+
, a} in (1) and decomposed into DC form

(1 − yt)2
+
−
(
(1 − yt)2

+
− a

)
+
 . Based on DCA, the robust solution of L2SVM is given by itera-

tively solving

where vk satisfies vk
i
=

1

m
(1 −

1

𝜆
�Ki(�

k − vk)) ⋅ �
1−�Ki(�

k−vk)∕𝜆>
√
a
, i = 1,⋯ ,m . However, the

analysis in Tao et al. (2018) pointed out that (11) is not a “satisfactory learning algorithm”
in this case. By deleting the current outliers, which satisfy 1 − yif (xi) >

√
a from the train-

ing set iteratively, Tao et al. (2018) proposed a multistage SVM (MS-SVM) to solve the
robust L2SVM. They first solve an original L2SVM (6) and then solve smaller L2SVMs
iteratively.

Although Tao et al. (2018) propose improved methods using coordinate descent and an
inexpensive scheme, all of the given algorithms still solve a constrained QP per iteration, and
possibly with smaller size.

In contrast, Feng et al. (2016) propose a robust SVM model, in which the following smooth
nonconvex loss

(9)SVR: min
0≤�,�̂≤

1

m

1

2𝜆
(� − �̂)⊤K(� − �̂) + 𝜀

m∑

i=1

(� + �̂) +

m∑

i=1

yi(� − �̂),

min
w∈ℍ

�

2
‖w‖2 + 1

m

m�

i=1

(1 − yi⟨w,�(xi)⟩)+ −
1

m

m�

i=1

(1 − yi⟨w,�(xi)⟩ − a)+.

(10)�k+1 ∈ arg min
0≤�≤

1

m

1

2𝜆
(� − vk)⊤�K(� − vk) − e⊤�,

(11)�k+1 ∈ argmin
�≥0

1

2𝜆
(� − vk)⊤�K(� − vk) +

m

2
�⊤� − e⊤�,

2981Machine Learning (2023) 112:2975–3002	

1 3

with a > 0 is chosen in (1). The loss (12) is approximated as the squared hinge loss
(1 − yt)2

+
 when a → +∞ and can be considered as a smooth approximation of the truncated

squared hinge loss min{(1 − yt)2
+
, a} . After analysis of the KKT conditions of the given

model, Feng et al. (2016) proposed the algorithm by solving the following re-weighted
L2SVM iteratively:

where Dk is a diagonal matrix satisfying Dk
i,i
=
(
� �((1 − K̃i�

k)2
+
)
)−1

 with

�(u) = a
(
1 − exp(−

1

a
u)
)
.

All of these algorithms for robust SVM models (Collobert et al. 2006; Wu and Liu
2007; Tao et al. 2018; Feng et al. 2016) must solve a constrained QP in the inner loops,
which results in a long training time.

Based on the decomposition of the truncated least squares loss min{(1 − yt)2, a} in (1)
or (2) as (1 − yt)2 − ((1 − yt)2 − a)+ and the representer theorem, the robust sparse LSSVM
(RSLSSVM) was studied in Chen and Zhou (2018) by solving

with vk as vk
i
= −(yi − Ki�

k)��1−yiKi�
k�>

√
a
.

The model (14) for solving the nonconvex SVM has three advantages. The first is that
it has a closed-form solution since it is an unconstrained QP. Second, it has a sparse solu-
tion if K has low rank or can be approximated by a low rank matrix (see (Zhou 2016) for
details). Thus, it can be solved efficiently. Furthermore, (14) can also be applied to regres-
sion problems directly.

To extend those benefits to all the other losses for classification tasks and regression
tasks simultaneously, we define LS-DC loss in Sect. 3 and propose a unified algorithm in
Sect. 4, which includes all SVM models (including the classification/regression SVM with
convex loss and nonconvex loss) in a unified scheme.

3 � LS‑DC loss function

Here, we first define a kind of loss called LS-DC loss, and then show that most popular
losses are in fact LS-DC loss or can be approximated by LS-DC loss.

For any margin-based loss �(y, t) of SVM, let �(u) satisfy �(1 − yt) ∶= �(y, t) for clas-
sification loss or �(y − t) ∶= �(y, t) for regression loss. To obtain a useful DC decomposi-
tion of the loss �(y, t) , we propose the following definition:

Definition 1  (LS-DC loss) We call �(y, t) a least squares type DC loss, abbreviated as
LS-DC loss, if there exists a constant A ( 0 < A < +∞ ) such that �(u) has the following DC
decomposition:

(12)�a(y, t) = a
(
1 − exp

(
−

1

a
(1 − yt)2

+

))

(13)�k+1 ∈ argmin
�≥0

1

2𝜆
�⊤

(
�K + m𝜆Dk

)
� − e⊤�

(14)�k+1 ∈ arg min
�∈ℝm

𝜆

2
�⊤K� +

1

2m

m�

i=1

(yi − Ki�)
2 −

1

m
⟨Kvk,�⟩,

2982	 Machine Learning (2023) 112:2975–3002

1 3

The essence of the definition demands that Au2 − �(u) be convex. The following theo-
rem is clear:

Theorem 1  If the loss �(u) is second-order derivable and � ��(u) ≤ M , then it is an LS-DC
loss with parameter A ≥

M

2
.

Not all losses are LS-DC losses, even the convex losses. We will show that the hinge
loss and the �-insensitive loss are not LS-DC losses. However, they can be approximated
by LS-DC losses.

Next, we will show that most losses used in the SVM community are LS-DC losses or
can be approximated by LS-DC loss. The proofs are listed in Appendix A.

Proposition 1  (LS-DC property of classification losses) The most commonly used classifi-
cation losses are cases of LS-DC loss or can be approximated by LS-DC losses. We enu-
merate them as follows.

(a)	 The least squares loss �(y, t) = (1 − yt)2 is an LS-DC loss with Au2 − �(u) vanished.
(b)	 The truncated least squares loss �(y, t) = min{(1 − yt)2, a} is an LS-DC loss with A ≥ 1

.
(c)	 The squared hinge loss �(y, t) = (1 − yt)2

+
 is an LS-DC loss with A ≥ 1.

(d)	 The truncated squared hinge loss �(y, t) = min{(1 − yt)2
+
, a} is an LS-DC loss with

A ≥ 1.
(e)	 The hinge loss �(y, t) = (1 − yt)+ is not an LS-DC loss. However, if it is approximated

as 1
p
log(1 + exp(p(1 − yt))) with a finite p, we obtain an LS-DC loss with A ≥ p∕8.

(f)	 The ramp loss �(y, t) = min{(1 − yt)+, a} is also not an LS-DC loss. However, we can
give two smoothed approximations of the ramp loss:

The first one has the same support set as the ramp loss, and the second one is deriv-
able with any order. The loss (16) is an LS-DC loss with A ≥ 2∕a and (17) is an
LS-DC loss with A ≥ p∕8.

(g)	 The nonconvex smooth loss (12) proposed in Feng et al. (2016) is an LS-DC loss with
A ≥ 1.

(h)	 Following the nonconvex smooth loss (12), we generalize it as

where a, b > 0, c ≥ 2 . The loss (18) is an LS-DC loss with the parameter
A ≥

1

2
M(a, b, c) , where

(15)�(u) = Au2 − (Au2 − �(u)).

(16)�a(y, t) =

{
2

a
(1 − yt)2

+
, 1 − yt ≤

a

2
,

a −
2

a
(a − (1 − yt))2

+
, 1 − yt >

a

2
.

(17)�(a,p)(y, t) =
1

p
log

(
1 + exp(p(1 − yt))

1 + exp(p(1 − yt − a))

)
.

(18)�(a,b,c)(y, t) = a
(
1 − exp

(
−

1

b
(1 − yt)c

+

))
,

2983Machine Learning (2023) 112:2975–3002	

1 3

with h(c) ∶=
�
3(c − 1) −

√
5c2 − 6c + 1

�
∕(2c).

Regarding the new proposed loss (18), we offer the following comments:

Remark 1  Two more parameters are introduced to the loss (18) to make it more flexible.
The parameter a, which is the limitation of the loss function if 1 − yt → ∞ , describes the
effective value (or saturated value) of the loss function for large inputs. The parameter b,
which characterizes the localization property of the loss functions, describes the rate of the
loss function saturated to its maximum and minimum. By uncoupling a and b, we improve
the flexibility of the robust loss. For example, the inflection point of (12) is yt = 1 −

√
a∕2 ,

which is directly controlled by the saturated value a, and the inflection point of (18) is
yt = 1 −

√
b∕2 if c = 2 , which is only controlled by the parameter b. In experiments, by

simply adjusting a, b, and c, we can obtain better performance.

The most commonly used losses for classification are summarized in Table 5 in
Appendix B. Some classification losses and their LS-DC decompositions are also plot-
ted in Fig. 1.

Proposition 2  (LS-DC property of regression losses) The commonly used regression losses
are LS-DC loss or can be approximated by LS-DC loss. We enumerate them as follows.

(1)	 The least squares loss and the truncated least squares loss are all LS-DC losses with
A ≥ 1.

(2)	 The �-insensitive loss ��(y, t) ∶= (|y − t| − �)+ , mostly used for SVR, is not an LS-DC
loss. However, we can smooth it as

which is LS-DC loss with A ≥ p∕4.
(3)	 The absolute loss �(y, t) = |y − t| is also not an LS-DC loss. However, it can be

smoothed by LS-DC losses. For instance, we can use the Huber loss

which approximates the absolute loss is an LS-DC loss with A ≥ 1∕(2�) ; Setting
� = 0 in (20), A ≥ p∕4.

(4)	 The truncated absolute loss �a(y, t) ∶= min{|y − t|, a} can be approximated by the
truncated Huber loss min{��(y, t), a} , which is an LS-DC loss with A ≥ 1∕(2�).

Some regression losses and their DC decompositions are plotted in Fig. 2.

(19)M(a, b, c) ∶=
ac

b2∕c

(
(c − 1)(h(c))1−2∕c − c(h(c))2−2∕c

)
e−h(c),

(20)�(�,p)(y, t) ∶=
1

p
log(1 + exp(−p(y − t + �))) +

1

p
log(1 + exp(p(y − t − �))),

�𝛿(y, t) =

{
1

2𝛿
(y − t)2, |y − t| ≤ 𝛿,

|y − t| − 𝛿

2
, |y − t| > 𝛿,

2984	 Machine Learning (2023) 112:2975–3002

1 3

4 � Unified algorithm for SVM models with LS‑DC losses

Let �(y, t) be any LS-DC loss discussed in Section 3, and let �(u) satisfying
�(1 − yt) = �(y, t) (for classification task) or �(y − t) = �(y, t) (for regression tasks)
have the DC decomposition (15) with parameter A > 0 . The SVM model (2) with any
loss can then be decomposed as

where ri = 1 − yiKi� (for classification) and ri = yi − Ki� (for regression).

(21)min
�∈ℝm

𝜆�⊤K� +
A

m
‖y − K�‖2 −

�
A

m
‖y − K�‖2 − 1

m

m�

i=1

𝜓
�
ri
�
�
,

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Truncated least squares
loss min{u2, 1}.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Squared hinge u2
+.

-1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Truncated squared hinge
loss min{u2

1, 1}.

-1 -0.5 0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Hinge loss and its approxi-
mation 1

8 log(1 + exp(8u)).

-1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Smoothed ramp loss (16)
with a = 1.

-1 -0.5 0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Smoothed ramp loss (17)
with a = 1, p = 8.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Smoothed nonconvex loss
(18) with a = b = 1, c = 2.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Smoothed nonconvex loss
(18) with a = 1, b = c = 2.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Smoothed nonconvex loss
(18) with a = 1, b = 2, c = 4

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 1   The plots of some LS-DC losses for classification and their DC decompositions: “Red curve =
Green curve-Blue curve”. In the plot, the Black curve (if it exists) is the plot of the original non-LS-
DC loss which is approximated by an LS-DC loss (Red curve), the Green curve is the function Aµ2 and
the Blue cruve is the convex function Aµ2-Ψ(u). The loss names in the legends are defined in Table 5 in
Appendix B. All of the LS-DC parameters A are chosen as the lower bounds in Table 5, and increasing the
value of A can make the Blue cruve “smoother”

2985Machine Learning (2023) 112:2975–3002	

1 3

Using the DCA procedure (4) with an initial point �0 , a stationary point of (21) can
be iteratively reached by solving

where �k = K�k and �k = (𝛾k
1
, 𝛾k

2
,⋯ , 𝛾k

m
)⊤ satisfies

where ��(u) indicates the subdifferential of the convex function �(u) . The related losses
and their derivatives or subdifferentials for updating �k in (23) are listed in Table 5 in
Appendix B.

The KKT conditions of (22) are

By solving (24), we propose a unified algorithm that can train SVM models with any
LS-DC loss. For different LS-DC losses (either classification loss or regression loss), we
just need to calculate the different � by (23). We refer to the algorithm as UniSVM, which
is summarized as Algorithm 1.

Algorithm 1 UniSVM(Unified SVM)
Input: Given a training set T = {(xi, yi)}mi=1 with xi ∈ Rd and yi ∈ {−1,+1} or yi ∈ R;

Kernel matrix K satisfying Ki,j = κ(xi,xj), or P satisfying PP� ≈ K satisfying
P BP

� = KB; Any LS-DC loss function ψ(u) with parameter A > 0; The regularizer λ.
Output: The prediction function f(x) =

∑m
i=1 αiκ(xi,x) with α = αk.

1: γ0 = 0, ξ0 = y; Set k := 0.
2: while not convergence do
3: Solving (24) with respect to (25), (26) or (28) to obtain αk+1, where the inversion is

only calculated in the first iteration;
4: Update ξk+1 = Kαk+1 or ξk+1 = PP�

B αk+1
B , γk+1 by (23); k := k + 1.

5: end while

The new algorithm possesses the following advantages:

•	 It is suitable for training any kind of SVM models with any LS-DC losses, including
convex loss and nonconvex loss. The training process for classification problems is also
the same as for regression problems. The proposed UniSVM is therefore a truly unified
algorithm.

•	 Unlike the existing algorithms for nonconvex loss (Collobert et al. 2006; Wu and Liu
2007; Tao et al. 2018; Feng et al. 2016) that must iteratively solve L1SVM/L2SVM
or reweighted L2SVM in the inner loops, UniSVM is free of the inner loop because it
solves a system of linear equations (24) with a closed-form solution per iteration.

•	 According to the studies on LSSVM in Zhou (2016), the problem (24) may have mul-
tiple solutions, including some sparse solutions, if K has low rank2. This is of vital
importance for training large-scale problems efficiently. Details will be discussed in
Subsect. 4.2.

(22)�k+1 ∈ arg min
�∈ℝm

𝜆�⊤K� +
A

m
‖y − K�‖2 +

�
2

m
K
�
A(y − �k)−�k

�
,�

�
,

(23)�k
i
∈

1

2
yi��(1 − yi�

k
i
)(classication) or �k

i
∈

1

2
��(yi − �k

i
)(regression),

(24)
(

𝜆m

A
K + KK⊤

)
� = K(�k −

1

A
�k).

2  K is always low rank in computing, for there are always many similar samples in the training set, causing
the corresponding columns of the kernel matrix to be (nearly) linearly dependent.

2986	 Machine Learning (2023) 112:2975–3002

1 3

•	 In experiments, we always set �0 = y and �0 = 0 instead of giving an �0 to begin the
algorithm. This is equivalent to starting the algorithm from the solution of LSSVM,
which is a moderate guess of the initial point, even for nonconvex loss.

In Subsect. 4.1, we present an easily grasped version of the proposed UniSVM in the case
that the full kernel K is available. In Subsect. 4.2, we propose an efficient method to solve
the KKT conditions (24) for UniSVM even if the full kernel matrix is unavailable. The
Matlab code is also given in Appendix C.

4.1 � Solving UniSVM with full kernel matrix available

If the full kernel matrix K is available and �m
A
I + K can be inverted cheaply, we note that

Q =
(

�m

A
I + K

)−1

 and can prove that

is one nonsparse solution of (24). It should be noted that Q is only calculated once. Hence,
after the first iteration, �k+1 will be reached within O(m2).

Furthermore, if K is low rank and can be factorized as K = PP⊤ with a full-column rank
P ∈ ℝ

m×r ( r < m ), the cost of the process can be reduced through two methods. One is
SMW identity (Golub and Loan 1996), which determines the cost O(mr2) to compute P⊤P ,
the cost O(r3) to obtain the inversion Q̂ =

(
𝜆m

A
I + P⊤P

)−1

∈ ℝ
r×r once, and the cost within

O(mr) to update the nonsparse �k+1 per iteration as

The other is the method employed in subsection 4.2 to obtain a sparse solution of (24).

(25)�k+1 = Q(�k −
1

A
�k)

(26)�k+1 =
A

𝜆m

(
I − PQ̂P⊤

)
(�k −

1

A
�k).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

Smoothed ε-insensitive loss

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Absolute and Hubber loss

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Truncated Hubber loss(a) (b) (c)

Fig. 2   The plots of some LS-DC losses for regression and their DC decompositions: “Red curve = Green
curve-Blue curve”. In the plot, the Black curve (if it exists) is the plot of the original non-LS-DC loss
which is approximated by an LS-DC loss (Red curve), the Green curve is the function Aµ2 and the Blue
curve is the convex function Aµ2-Ψ(u). The loss names in the legends are defined in Table 5 in Appendix B.
All of the LS-DC parameters A are chosen as the lower bounds in Table 5, and increasing the value of A can
make the Blue curve “smoother”

2987Machine Learning (2023) 112:2975–3002	

1 3

4.2 � Solving UniSVM for large‑scale training with a sparse solution

For large-scale problems, the full kernel matrix K is always unavailable because of the
limited memory and the computational complexity. Hence, we should obtain the sparse
solution of the model, since in this case K is always low rank or can be approximated by
a low-rank matrix.

To obtain the low-rank approximation of K , we can use the Nyström approximation
(Sun et al. 2015), which is a random sampling method, or the pivoted Cholesky factori-
zation method proposed in Zhou (2016) that has a guarantee to minimize the trace norm
of the approximation error greedily. The gaining approximation of K is PP⊤ , where
P = [P⊤

𝔹
P⊤
ℕ
]⊤ is a full column rank matrix with P

𝔹
∈ ℝ

r×r ( r ≪ m ) and � ⊂ {1, 2,⋯ ,m}
is the index set corresponding to the only visited r columns of K . Both algorithms sat-
isfy the condition that the total computational complexity is within O(mr2) , and K

�
—the

visited rows of K corresponding to set �—can be reproduced exactly as P
�
P⊤.

Replacing K with PP⊤ in (24), we have

which can be simplified as

This is because P is a full column rank matrix. By simple linear algebra, if we let
� = [�⊤

𝔹
�⊤
ℕ
]⊤ be a partition of � corresponding to the partition of P , then we can set

�
ℕ
= 0 to solve (27). Thus, (27) is equivalent to

We then have

where Q =
(
(
𝜆m

A
I + P⊤P)P⊤

�

)−1

 , �k = PP⊤
�
�k
�
 , and �k is updated by (23).

Notice that Q is only calculated in the first iteration with the cost O(r3) . The cost of
the algorithm is O(mr2) for the first iteration, and O(mr) for the following iterations.
Hence, UniSVM can be run very efficiently.

5 � Experimental studies

In this section, we present experimental results to illustrate the effectiveness of the
proposed unified model. All the experiments are run on a computer with an Intel Core
i5-6500 CPU @3.20GHz×4 and a maximum memory of 8GB for all processes; the com-
puter runs Windows 7 with Matlab R2016b. The comparators include L1SVM and SVR
solved by LibSVM, L2SVM and the robust SVM modes in Collobert et al. (2006), Tao
et al. (2018), Feng et al. (2016).

P(
𝜆m

A
I + P⊤P)P⊤� = P(P⊤(�k −

1

A
�k)),

(27)
(

𝜆m

A
I + P⊤P

)
P⊤� = P⊤(�k −

1

A
�k).

(
𝜆m

A
I + P⊤P

)
P⊤
�
�
�
= P⊤(�k −

1

A
�k).

(28)�k+1
�

= QP⊤(�k −
1

A
�k).

2988	 Machine Learning (2023) 112:2975–3002

1 3

5.1 � Intuitive comparison of UniSVM with other SVM models on small data sets

In this subsection, we first present experiments to show that the proposed UniSVM with
convex loss can obtain a comparable performance by solving L1SVM, L2SVM and SVR
on the small data sets. Second, we perform experiments to illustrate that UniSVM with
nonconvex loss more efficiently obtains comparable performance to the algorithms in Col-
lobert et al. (2006), Tao et al. (2018), and Feng et al. (2016) by solving robust SVMs with
nonconvex loss. We have implemented UniSVM in two cases; one is in (25) with the full
kernel matrix K available, called UniSVM-full, and the other obtains the sparse solution
of the model by (28), where K is approximated as PP⊤ with P ∈ ℝ

m×r(r ≪ m) , noted as
UniSVM-app. The latter has the potential to resolve large-scale tasks. L1SVM and SVR are
solved by the efficient tools LibSVM (Chang and Lin 2011), and the other related models
(L2SVM, the robust L1SVM and the robust L2SVM) are solved by the solver of quadratic
programming quadprog.m in Matlab.

5.1.1 � On convex loss cases

The first experiment is a hard classification task on the highly nonlinearly sepa-
rable “xor" dataset shown in Fig. 3, where the instances are generated by uniform
sampling with 400 training samples and 400 test samples. The kernel function is
�(x, z) = exp(−�‖x − z‖2) with � = 2−1 , � is set as 10−5 and r = 10 for UniSVM-app.
The experimental results are plotted in Fig. 3 and the detailed information of the
experiments is given as the captions and the subtitles of the figures.

From the experimental results in Fig. 3, we have the following findings:

•	 The proposed UniSVM for solving L1SVM or L2SVM can obtain similar performance
compared with the state-of-the-art algorithms (LibSVM/quadprog). Of course, in those
smaller cases, LibSVM is more efficient than UniSVM, since they are only designed for
SVM with convex losses.

•	 The low-rank approximation of the kernel matrix can significantly accelerate UniSVM,
and the acceleration rate is approximated as m

r
.

•	 The red curves in Fig. 3c and f reveal that UniSVM is the majorization-minimization
algorithm (Naderi et al. 2019). All cases of UniSVM reach the optimal value of L1SVM
or L2SVM from above. In this setting, if r > 15 , the difference of the objective values
between UniSVM-full and UniSVM-app will vanish.

Thus, the advantage of UniSVM lies in solving the large-scale tasks with low-rank
approximation.

The second set of experiments is based on a regression problem with an SVR model
(9) and �-insensitive loss, where 1,500 training samples and 1,014 test samples are gener-
ated by the Sinc function with Gaussian noise y = sin(x)

x
+ � with x ∈ [−4�, 4�] discretized

by the step of 0.01 and � ∼ N(0, 0.05) . Since the �-insensitive loss is not LS-DC loss, we
compare LibSVM with UniSVM with smoothed �-insensitive loss (20) for solving SVR
(9). Here, the kernel function �(x, z) = exp(−�‖x − z‖2) with � = 0.5 , � is set as 10−4 and
r = 50 for UniSVM-app. The experimental results are plotted in Fig. 4.

From the experimental results in Fig. 4, we have two findings. One is that the new
UniSVM can achieve better performance than LibSVM. This may be because the added

2989Machine Learning (2023) 112:2975–3002	

1 3

noise follows a Gaussian distribution while UniSVM is initialized as LSSVM. The other
finding is that the low-rank approximation of the kernel matrix is highly efficient here,
since UniSVM-app can obtain results similar to those of UniSVM-full; this is similar to
findings in Zhou (2016), Chen and Zhou (2018). The speedup rate here is less than m

r
 ,

which is because the number of iterations of UniSVM is only 3.

5.1.2 � On nonconvex loss cases

The first set of experiments was again performed on the “xor” dataset as shown in Fig. 4,
where some training samples (10%) are contaminated to simulate outliers by flipping labels
(the test samples are noise-free). The compared algorithms include robust L1SVM in Col-
lobert et al. (2006), MS-SVM of robust L2SVM in Tao et al. (2018), and the re-weighted
L2SVM in Feng et al. (2016). The results are presented in Fig. 5, in which the classifica-
tion results of L1SVM and L2SVM are listed as the references. In these experiments, only
UniSVM was implemented as UniSVM-app with r = 10 , shortened as UniSVM. The trun-
cated parameter a = 2 for nonconvex loss.

From the experimental results in Fig. 5, we observe that the models based on nonconvex
loss improve the classification results in cases with outliers. The algorithms in Fig. 5c–e,
which need to iteratively solve L1SVM or L2SVM many times, are also affected by the
outliers of the upper-right corner, where the outliers are dominated locally. However, the
proposed UniSVM based on the effective LS-DC loss can completely resolve this problem.
In particular, as highlighted by the results in Fig. 5d and g where the same SVM model

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Classification result by L1SVM with LibSVM
(Test Acc:98.25%; Training time:0.001s)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Classification result by L2SVM
(Test Acc:98.75%; Training time:0.036s)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Classification result by L1SVM with UniSVM-full
(Test Acc:99%; Training time:0.040s)

(Test ACC:99%; Train Time 0.009s for UniSVM-app)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Classification result by L2SVM with UniSVM-full
(Test Acc:99.25%; Training time:0.031s)

(Test Acc: 99.25%; Training time: 0.004s for UniSVM-app)

0 200 400 600 800
93

94

95

96

97

98

99

100

A
cc

ur
ac

y(
%

)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

O
bj

ec
tiv

e
of

 L
1S

V
M

Iterative accuracies and objective values of L1SVM by UniSVM

Acc. of UniSVM-full
Acc. of UniSVM-app
Acc. of LibSVM
Obj. of UniSVM-full
Obj. of UniSVM-app
Obj. of LibSVM

0 200 400 600 800
93

94

95

96

97

98

99

100

A
cc

ur
ac

y(
%

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

O
bj

ec
tiv

e
of

 L
2S

V
M

Iterative accuracies and objective values of L2SVM by UniSVM

Acc. of UniSVM-full
Acc. of UniSVM-app
Acc. of LibSVM
Obj. of UniSVM-full
Obj. of UniSVM-app
Obj. of L2SVM

(a)
(b)

(b)

(c)

(c)(d)

Fig. 3   Comparison of the related algorithms of SVM with convex losses. In (a), (b), (d) and (e), the clas-
sification results of the algorithms are plotted as red solid curves (since the differences between them are
slight, the classification curves of UniSVM-app are not plotted and its test accuracies and the training times
are correspondingly noted in (b) and (e)). In (c) and (f), the iterative processes of UniSVM are plotted. The
blue curves with respect to the left y-axis are the iterative test accuracies of UniSVM, and the red curves
with respect to the right y-axis are the iterative objective values of (2). The accuracies and the objective
values of L1SVM/L2SVM are plotted as the horizontal lines for reference

2990	 Machine Learning (2023) 112:2975–3002

1 3

with truncated squared hinge loss is solved by different algorithms, the proposed UniSVM
can solve the robust SVM with high performance. The comparison between the results of
Fig. 5e and h reveals a similar performance. The reason for this may be because the pro-
posed UniSVM can obtain a better local minimum with a good initial point (a sparse solu-
tion of LSSVM) based on the DC decomposition of the corresponding nonconvex loss.

The second set of experiments is performed to compare the effectiveness of the related
algorithms, also on the “xor" problem. The training samples are randomly generated with
varied sizes from 400 to 10,000, and the test samples are generated similarly with the same
sizes. The training data is contaminated by randomly flipping the labels of 10% of instances
to simulate outliers. We set r = 0.1m for all UniSVM algorithms to approximate the kernel
matrix, and the other parameters are set as in the former experiments. The corresponding
training time and test accuracies (averaged over ten trials) of the related robust SVM algo-
rithms are plotted in Fig. 6, where the results of LibSVM (with outliers and without outli-
ers) are also given as references.

From the experimental results in Fig. 6, we have the following findings:

•	 In Fig. 6a, it is clear that the performances of all the related robust SVM algorithms
based on nonconvex losses are better than that of the L1SVM with convex loss on the
contaminated training datasets and that all of them match the results of the noise-free
case. At the same time, we notice that the differences of the test accuracies between the
selected robust algorithms are very small.

•	 From Fig. 6b, we observe that the differences of the training time between the related
algorithms are large, especially for the larger training set. The training time of the pro-
posed UniSVM is significantly less, while the robust L1SVM (Collobert et al. 2006),
Robust L2SVM (Tao et al. 2018) and re-weighted L2SVM (Feng et al. 2016)—which
need to solve the constrained QP several times—have long training times. Even they
can be more efficiently implemented (such as SMO) than quadprog.m, but their
training time will be longer than that of LibSVM since all of them at least solve a QP
which is similar to the QP solved by LibSVM.

•	 In our setting, the outliers greatly affect the results of LibSVM, not only with respect to
test accuracies but also training time.

•	 All in all, the new proposed UniSVM with low rank kernel approximation is not only
robust to noise but also highly efficient with respect to the training process.

-10 -5 0 5 10
-0.5

0

0.5

1
Train data and the ground truth

Train data Ground truth

-10 -5 0 5 10
-0.5

0

0.5

1
Regression results on test data

-10 -5 0 5 10
-0.04

-0.02

0

0.02

0.04
Regression errors on test data

SVR by LibSVM
UniSVM with full kernel
UniSVM with approxated kernel

(a) (b) (c)

Fig. 4   The comparison of solving SVR by UniSVM with smooth �-insensitive loss and LibSVM on Sinc
regression problem. In (a), the training data and the ground truth are plotted; in (b), the regression results
of LibSVM, UniSVM-full and UniSVM-app are given, where the respective MSRs are 0.0027, 0.0025, and
0.0025, and the training times are 0.062s, 0.144s and 0.035s; in (c), the regression errors of three algo-
rithms are plotted. In (b) and (c), the difference between UniSVM-full and UniSVM-app can be neglected,
while the training time of the latter is less than one-fifth of that of the former

2991Machine Learning (2023) 112:2975–3002	

1 3

5.2 � Experiments on larger benchmark datasets

In this section, we perform experiments to show that UniSVM can quickly train the con-
vex and nonconvex SVM models with comparable performance using a unified scheme
on large data sets. We choose only the state-of-the-art SVM tool LibSVM (Chang and Lin
2011) (including SVC and SVR) as the comparator, rather than other robust SVM algo-
rithms in previous papers (Collobert et al. 2006; Wu and Liu 2007; Tao et al. 2018; Feng
et al. 2016), to conserve experimental time.

First, we select four classification tasks and three regression tasks from the UCI data-
base to illustrate the performance of the related algorithms. The detailed information of the
data sets and the hyper-parameters (training size, test size, dimension,
� , � ) is given as follows:

 Here, the classification tasks have the default splitting, and the regression tasks are split
randomly. The � (regularizer) and � (for Gaussian kernel �(x, z) = exp(−�‖x − z‖2) ) are
roughly chosen by the grid search. For the parameters of loss functions, we simply use the
default value (given next). Fine-tuning all parameters will certainly improve the perfor-
mance further.

����� ∶ (�����, �����, ���, ��−�, �−��), ����� ∶ (�����, �����, ��, ��−�, ��),

������� ∶ (�����, �����, �, ��−�, ��), ������� ∶ (�����, �����, ���, ��−�, �−�);

������ ∶ (�����, �����, �, ��−�, ��), �� − Spatial ∶ (������, ������, �, ��−�, ��),

����� ∶ (�����, �����, ���, ��−�, �−�).

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

L1SVM/L2SVM without outliers(dash-L1SVM; solid-L2SVM)
(Test Acc:98.25%-L1SVM; 98.75%-L2SVM)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

L1SVM/L2SVM with outliers(dash-L1SVM; solid-L2SVM)
(Test Acc:95.75%-L1SVM; 94%-L2SVM)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Robust L1SVM in Collobert et al. (2006)
(Test Acc:98%)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Robust L2SVM with MS-SVM in Tao et al. (2018)
(Test Acc:97.75%)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Re-wighted L2SVM in Feng et al. (2016)
(Test Acc:96.25%)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

UniSVM with smoothed ramp loss (16)
(Test Acc:99.25%)

Positive training samples

Negative training samples

Outliers

Classification curves

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

UniSVM with trucated squared hinge loss
(Test Acc:99.25%)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

UniSVM with smoothed non-convex loss (17)
(Test Acc:99%)

(a) (b) (c)

(f)(e)(d)

(g) (h)

Fig. 5   Comparison of the classification results of the related algorithms of SVM with convex and non-
convex losses. See the titles of the subfigures for details, where the loss (18) used in figure (h) with
a = b = c = 2 is the same as (12) used in figure (e). It is worth noting that the results of (d) and (g) are
based on the same model with the truncated squared hinge loss with the different algorithms, and (f) and
(i) are based on the same model with nonconvex smooth loss (12) but are solved with a different algorithm

2992	 Machine Learning (2023) 112:2975–3002

1 3

To implement the UniSVM for larger training data, we use the pivoted Cholesky
factorization method proposed in Zhou (2016) to approximate the kernel matrix K ,
and the low-rank approximation error is controlled by the first matched criterion
trace(K − K̃) < 0.001 ⋅ m or r ≤ 1000 , where m is the training size and r is the upper bound
of the rank.

The first set of experiments shows that the proposed UniSVM can train SVM models
with convex or nonconvex loss for classification problems. The chosen losses for UniSVM1
to UniSVM10 are listed as following:

The results in Table 1 are obtained based on the original data sets, and those of Table 2 are
based on the contaminated data sets, where 20% of the labels of training instances are ran-
domly flipped. Since the kernel approximation in Zhou (2016) undergoes random initiali-
zation, the training times recorded in Matlab are not very stable, and since random flipping
is observed for noise cases, all results are averaged over ten random trials.

From the results in Tables 1 and 2, we draw the following conclusions:

•	 UniSVMs with different losses work well using a unified scheme in all cases. They are
mostly faster than LibSVM and offer comparable performance in noise-free cases. The
training time of LibSVM in Table 2 is notably longer than its training time in Table 1
because the flipping process adds a large number of support vectors. However, owing to
the sparse solution of (28), this influence on UniSVMs is quite weak.

•	 Comparing the training time (including the time to obtain P for approximating the
kernel matrix K ) of UniSVM1 (least squares) with other methods, it is clear that the
proposed UniSVM requires a very low cost after the first iteration, as other UniSVMs
always run UniSVM1 in their first iteration.

UniSVM1 ∶ least squares loss, UniSVM2 ∶ smoothed hinge (p = 10),

UniSVM3 ∶ squared hinge loss, UniSVM4 ∶ truncated squared hinge (a = 2),

UniSVM5 ∶ truncated least squares (a = 2), UniSVM6 ∶ loss (16)(a = 2),

UniSVM7 ∶ loss (17)(p = 10), UniSVM8 ∶ loss (18)(a = b = c = 2),

UniSVM9 ∶ loss (18)(a = b = 2, c = 4), UniSVM10 ∶ loss (18s)(a = 2, b = 3, c = 4).

00001000500020001004
Training size

10-3

10-2

10-1

100

101

102

103

Tr
ai

ni
ng

 ti
m

e(
s)

Training time

LibSVM without outliers
Robust L1SVM in Collobert et al. (2006)
Robust L2SVM with MS-SVM in Tao et al. (2018)
Re-wighted L2SVM in Feng et al. (2016)
UniSVM with smoothed ramp loss (16)
UniSVM with trucated squared hinge loss
UniSVM with smoothed non-convex loss (18)
LibSVM with outliers

00001000500020001004
Training size

90

91

92

93

94

95

96

97

98

99

100

Te
st

 a
cc

ur
ac

y(
%

)

Test accuracies with standard deviations

LibSVM without outliers

Robust L1SVM in Collobert et al. (2006)

Robust L2SVM with MS-SVM in Tao et al. (2018)

Re-wighted L2SVM in Feng et al. (2016)

UniSVM with smoothed ramp loss (16)

UniSVM with trucated squared hinge loss

UniSVM with smoothed non-convex loss (18)

LibSVM with outliers

(a) (b)

Fig. 6   The comparisons of the training time and test accuracies (averaged over ten trials) of the related
algorithms on the contaminated “xor" datasets with different training sizes

2993Machine Learning (2023) 112:2975–3002	

1 3

•	 All the UniSVMs with nonconvex losses are working as efficiently as those with
convex losses. Particularly, the UniSVMs with nonconvex losses maintain high per-
formance on the contaminated data sets. The new proposed loss (18) with two more
parameters always achieves the highest performance.

The second set of experiments examined the performance of the UniSVM for solving
regression tasks with convex and nonconvex losses. The experimental results are listed in
Table 3. The chosen losses for UniSVM1 to UniSVM6 are listed as follows:

From the results in Table 3, it is again observed that UniSVMs with different losses
work well for a unified scheme. All of them are more efficient than LibSVM with compa-
rable performance. For example, LibSVM requires a very long training time on the second
3D-Spatial task because of excessive training samples, and LibSVM cannot finish the task
on the last Slice data set, possibly because of an excessive number of support vectors. In
two cases, all UniSVMs function well and exhibit comparable performance, which is pri-
marily attributed to the efficient low-rank approximation of the kernel matrix. It is also
noted that the UniSVMs with nonconvex losses function as efficiently as those with convex
loss.

In the third set of experiments, we challenge UniSVM with two classification tasks on
very large data sets (up to millions of samples) on the same computer. The selected data
sets are:

•	 Covtype: a binary class problem with 581,012 samples, where each example has 54
features. We randomly split it into 381,012 training samples and 200,000 test samples.
The parameters used are � = 2−2 and � = 10−8.

•	 Checkerboard3M: based on the noise-free version of the 2-dimensional Checker-
board data set ( 4 × 4-grid XOR problem), which was widely used to show the effective-
ness of nonlinear kernel methods. The dataset was sampled by uniformly discretizing
the regions [0, 1] × [0, 1] to 20002 = 4000000 points and labeling two classes by the
4 × 4-grid XOR problem, and was then split randomly into 3,000,000 training samples
and 1,000,000 test samples. The parameters used are � = 24 and � = 10−7.

Those datasets are also used in Zhou (2016). Because of the limited memory of our com-
puter, the kernel matrix on Covtype is approximated as PP⊤ with P ∈ ℝ

m×1000 , and the
kernel matrix on Checkerboard3M is approximated as PP⊤ with P ∈ ℝ

m×300 , where m
is the training size. The experimental results are given in Table 4, where LibSVM cannot
accomplish the tasks because of its long training time. The losses used in the algorithms
are the same as those in Table 1.

From the results in Table 4, we observe that the UniSVM works well on very large
data sets. We also reach conclusions which are consistent with the results in Tables 1 and
2 . For example, UniSVMs with different losses work well using a unified scheme and
offer comparable performance, and all of the UniSVMs with nonconvex losses function as
efficiently as those with convex losses. Particularly, the UniSVMs with nonconvex losses

UniSVM1 ∶ least squares loss, UniSVM2 ∶ smoothed � − insensitive loss (20)(p = 100),

UniSVM3 ∶ Huber loss (� = 0.1), UniSVM4 ∶ smoothed absolute loss (p = 100),

UniSVM5 ∶ truncated least squares (a = 2), UniSVM6 ∶ truncated Huber loss (� = 0.1, a = 2).

2994	 Machine Learning (2023) 112:2975–3002

1 3

maintain high performance because many contaminated samples may exist in very large
training cases.

6 � Conclusion and future work

In this work, we first define a kind of LS-DC loss with an effective DC decomposition.
Based on the DCA procedure, we then propose a unified algorithm (UniSVM) for train-
ing SVM models with different losses for both classification problems and regression

Table 1   Classification tasks I–Test accuracies and the training times of the related algorithms on the bench-
mark data sets. All results are averaged over ten trials with the standard deviations in brackets; the first four
lines are based on convex losses and the others are based on nonconvex losses

Test accuracy (%) Training time (CPU seconds)

Algorithm Adult Ijcnn Shuttle Vechile Adult Ijcnn Shuttle Vechile

LibSVM 84.65(0.00) 98.40(0.00) 99.81(0.00) 84.40(0.00) 51.49(0.07) 23.02(0.63) 4.75(0.16) 1091(175)
UniSVM1 84.56(0.02) 94.65(0.07) 98.80(0.04) 85.24(0.01) 0.44(0.02) 18.24(0.15) 0.34(0.02) 34.77(0.44)
UniSVM2 84.68(0.04) 97.07(0.05) 99.81(0.01) 84.42(0.00) 0.98(0.04) 38.51(0.32) 2.44(0.10) 36.66(0.62)
UniSVM3 85.13(0.02) 98.22(0.03) 99.82(0.00) 85.23(0.01) 0.62(0.03) 35.40(0.28) 2.03(0.06) 35.34(0.39)
UniSVM4 84.75(0.04) 98.25(0.04) 99.82(0.00) 84.72(0.00) 1.13(0.04) 38.56(0.53) 2.47(0.06) 37.20(0.42)
UniSVM5 83.32(0.05) 94.59(0.08) 98.81(0.04) 84.71(0.00) 0.58(0.03) 19.18(0.35) 0.38(0.02) 36.81(0.52)
UniSVM6 84.82(0.02) 98.20(0.03) 99.82(0.00) 84.70(0.00) 1.08(0.03) 40.11(0.44) 2.72(0.10) 36.65(0.34)
UniSVM7 84.20(0.02) 97.13(0.05) 99.82(0.00) 84.43(0.00) 1.38(0.04) 40.40(0.51) 2.71(0.06) 37.61(0.35)
UniSVM8 84.75(0.02) 97.84(0.04) 99.82(0.00) 84.53(0.00) 0.97(0.04) 38.13(0.26) 2.40(0.11) 36.10(0.45)
UniSVM9 85.09(0.02) 98.46(0.04) 99.83(0.00) 85.34(0.00) 1.15(0.05) 36.95(0.29) 3.30(0.11) 36.69(0.44)
UniSVM10 85.16(0.03) 98.36(0.03) 99.82(0.00) 85.49(0.00) 0.84(0.03) 33.92(0.22) 2.90(0.15) 36.47(0.55)

Table 2   Classification tasks II–Test accuracies and the training times of the related algorithms on the
benchmark data sets with flipping 20% of training data labels. All results are averaged over ten trials with
the standard deviations in brackets; the first four lines are based on convex losses and the others are based
on nonconvex losses

Test accuracy (%) Training time (CPU seconds)

Algorithm Adult Ijcnn Shuttle Vechile Adult Ijcnn Shuttle Vechile

LibSVM 78.25(0.00) 93.80(0.00) 98.89(0.00) 84.28(0.04) 104.0(0.8) 191.7(1.2) 82.28(1.52) 1772(123)
UniSVM1 84.55(0.02) 93.90(0.08) 98.71(0.04) 85.19(0.00) 0.44(0.06) 18.34(0.33) 0.35(0.02) 34.76(0.43)
UniSVM2 82.27(0.06) 93.72(0.04) 99.01(0.10) 84.25(0.00) 0.65(0.07) 20.56(0.39) 0.60(0.04) 36.99(0.43)
UniSVM3 84.55(0.02) 93.95(0.08) 98.72(0.04) 85.19(0.00) 0.45(0.06) 18.74(0.34) 0.38(0.02) 34.94(0.44)
UniSVM4 84.26(0.03) 97.36(0.05) 99.81(0.00) 84.37(0.00) 1.23(0.09) 40.23(2.85) 2.52(0.09) 37.53(0.46)
UniSVM5 82.62(0.03) 93.96(0.03) 98.81(0.02) 84.34(0.00) 0.60(0.05) 20.25(0.48) 0.39(0.02) 37.50(0.48)
UniSVM6 84.25(0.02) 97.59(0.04) 99.81(0.00) 84.46(0.00) 1.14(0.08) 48.74(2.55) 2.72(0.14) 37.19(0.42)
UniSVM7 83.80(0.04) 96.05(0.04) 99.67(0.06) 84.28(0.00) 1.52(0.08) 46.14(1.77) 2.67(0.11) 38.14(0.44)
UniSVM8 84.38(0.04) 94.76(0.05) 99.25(0.10) 84.39(0.00) 0.76(0.07) 23.32(0.48) 0.99(0.05) 36.53(0.44)
UniSVM9 85.09(0.02) 97.68(0.04) 99.80(0.00) 85.31(0.00) 1.06(0.07) 44.67(2.99) 4.29(0.22) 36.55(0.48)
UniSVM10 84.83(0.02) 95.77(0.09) 99.44(0.05) 85.46(0.00) 0.56(0.06) 21.26(0.47) 0.81(0.04) 35.69(0.46)

2995Machine Learning (2023) 112:2975–3002	

1 3

problems. Particularly, for training robust SVM models with nonconvex losses, UniSVM
has a dominant advantage over all the existing algorithms because it always has a closed-
form solution per iteration, while the existing ones must solve a constraint programming
per iteration. Furthermore, UniSVM can solve large-scale nonlinear problems efficiently
after the kernel matrix has the low-rank matrix approximation.

Several experimental results verify the efficacy and feasibility of the proposed algo-
rithm. The most prominent advantage of the proposed algorithm is that it can be easily
grasped by users or researchers since its core code in Matlab is less than 10 lines (See
Appendix C).

In this work, we mainly discussed the methods to deal with the (convex or nonconvex)
loss of the regularized loss minimization (Shalev-Shwartz and Ben-David 2014) by DCA
to enhance the sparseness of the samples or robustness of the learner. However, there are
also some works which handle the nonconvex regularizer part of the regularized loss mini-
mization by DCA, which can strengthen the sparseness of the features and serve as a highly
efficient tool for feature selection. For example, in Neumann et al. (2004), Le Thi et al.
(2008, 2009), Ong and Le Thi (2013), some smooth approximations of the nonconvex “ �0
norm” are decomposed as DC forms, then DCA is used to perform feature selection and
many satisfactory results are produced. We will intensively study whether or not our new
LS-DC decomposition can improve those kinds of learning problems.

Appendix

Appendix A: The proof of propositions

The proof of propositions 1

Proof  We illustrate them one by one.

Table 3   Regression task–Test RMSE (root-mean-square-error) and the training time of the related algo-
rithms on the benchmark data sets. All results are averaged over ten trials with the standard deviations in
brackets; The first four lines are based on convex losses and the rest are based on the truncated nonconvex
losses

Test RMSE Training time (CPU seconds)

Algorithm Cadata 3D-Spatial Slice Cadata 3D-Spatial Slice

LibSVM 0.314(0.000) 0.464(0.000) — 3.38(0.04) 4165(2166) > 3hr

UniSVM1 0.314(0.000) 0.455(0.000) 6.725(0.101) 1.06(0.06) 96.3(5.0) 25.40(0.08)
UniSVM2 0.307(0.000) 0.459(0.000) 6.753(0.100) 1.38(0.07) 118.9(4.2) 44.75(1.05)
UniSVM3 0.310(0.000) 0.463(0.000) 6.870(0.103) 1.31(0.09) 112.8(3.8) 60.82(1.70)
UniSVM4 0.308(0.000) 0.464(0.000) 6.765(0.100) 1.44(0.08) 123.3(4.3) 50.89(1.25)
UniSVM5 0.315(0.000) 0.454(0.000) 6.868(0.116) 1.10(0.06) 99.6(4.1) 83.75(13.30)
UniSVM6 0.312(0.000) 0.465(0.000) 6.775(0.105) 1.32(0.07) 121.5(4.9) 75.72(4.45)

2996	 Machine Learning (2023) 112:2975–3002

1 3

(a)	 It is clear.
(b)	 It is because u2 −min{u2, a} = (u2 − a)+ is a convex function.
(c)	 It is because Au2 − u2

+
 with A ≥ 1 is a convex function.

(d)	 It is because Au2 −min{u2
+
, a} = Au2 − u2

+
+ (u2

+
− a)+ with A ≥ 1 is convex.

(e)	 First we show that the hinge loss �(y, t) = (1 − yt)+ is not an LS-DC loss. If let
g(u) = Au2 − u+ , we have g�

−
(0) = 0 > g�

+
(0) = −1 . Hence by Theorem 24.1 in Rock-

afellar (1972), we conclude that g(u) is not convex for all A ( 0 < A < +∞).
	  N o t i c e t h a t (1 − yt)+ = limp→+∞

1

p
log(1 + exp(p(1 − yt)))  . L e t

�(u) =
1

p
log(1 + exp(pu)) , and we have � ��(u) =

p exp(pu)

(1+exp(pu))2
≤

p

4
 . By Theorem 1, we

know that �p(y, t) =
1

p
log(1 + exp(p(1 − yt))) is an LS-DC loss with A ≥ p∕8 . In exper-

iments, letting 1 ≤ p ≤ 100 , �p(y, t) is a good approximation of the hinge loss.
(f)	 The reason that the ramp loss is not an LS-DC loss is the same as that of the hinge loss.

Its two smoothed approximations (16) and (17) are LS-DC loss. The proof of the first
is similar to that of the squared hinge loss and the proof of the second is similar to that
of the approximation of the hinge loss.

(g)	 Let g(u) = Au2 − a
(
1 − exp(−

1

a
u2
+
)
)

 . Then g(u) is a convex function because
g�(u) = 2Au − 2u+ exp(−

1

a
u2
+
)) is monotonically increasing if A ≥ 1.

(h)	 Let �(u) = a(1 − e
−
1

b
uc
+) . If c = 2 , set A ≥

a

b
=

1

2
M(a, b, 2) and let g(u) = Au2 − �(u) .

Hence g(u) is convex because g�(u) = 2Au −
2a

b
u+e

−
1

b
u2
+ is monotonically increasing.

	  For c > 2 , �(u) is second-order derivable, and according to Theorem 1 we only need
to obtain the upper bound of � ��(u) . If u ≤ 0 , we have � ��(u) = 0 . If u > 0 , then
� ��(u) =

ac

b

(
(c − 1)uc−2 −

c

b
u2c−2

)
e
−

1

b
uc and

 Letting � ���(u) = 0 , we get the roots u∗
1
 and u∗

2
 ( 0 < u∗

1
< u∗

2
 ), where

� ���(u) =
ac

b
uc−3e

−
1

b
uc
(

c2

b2
u2c −

3c(c−1)

b
uc + (c − 1)(c − 2)

)
.

Table 4   Classification III–Test accuracies and training times of the related algorithms on two very large
data sets, Covtype and Checkerboard3M, where all results are averaged over five with the standard
deviations in brackets. The first three lines are based on convex losses and the others are based on noncon-
vex losses

Test accuracy (%) Training time (CPU seconds)

Algorithm Covtype Checkerboard3M Covtype Checkerboard3M

UniSVM1 81.11(0.02) 98.04(0.08) 183.68(11.80) 37.94(2.68)
UniSVM2 80.80(0.03) 98.05(0.18) 205.92(12.77) 77.28(2.73)
UniSVM3 81.14(0.02) 98.07(0.08) 188.40(12.17) 40.72(2.67)
UniSVM4 83.15(0.12) 99.94(0.01) 540.00(84.54) 634.54(45.18)
UniSVM5 81.46(0.04) 97.99(0.07) 224.34(15.00) 42.53(2.87)
UniSVM6 83.25(0.14) 99.94(0.01) 449.73(42.14) 574.43(4.22)
UniSVM7 82.90(0.10) 99.83(0.03) 405.50(11.54) 545.35(3.81)
UniSVM8 82.19(0.09) 99.90(0.01) 282.55(16.65) 580.34(3.76)
UniSVM9 83.40(0.05) 99.95(0.01) 409.71(44.09) 693.48(4.30)
UniSVM10 81.89(0.03) 99.94(0.02) 269.06(10.15) 777.14(8.63)

2997Machine Learning (2023) 112:2975–3002	

1 3

 with h(c) = (3(c − 1) −
√
5c2 − 6c + 1)∕(2c) , which is a local maximum of � ��(u) .

Noting that limu→0 �
��(u) = limu→∞ � ��(u) = 0 , we have that the global maximum of

� ��(u) reaches at u∗
1
 . Putting u∗

1
 in � ��(u) , we prove that � ��(u) ≤ � ��(u∗

1
) =∶ M(a, b, c)

for any u, where M(a, b, c) =
ac

b2∕c

(
(c − 1)(h(c))1−2∕c − c(h(c))2−2∕c

)
e−h(c).

	  For example, M(2, 2, 2) = 2 , M(2, 2, 4) ≈ 4.5707 < 5 , M(2, 3, 4) ≈ 3.7319 < 4 . Thus,
the parameter A =

1

2
M(a, b, c) is not very large.

	� ◻

The proof of propositions 2

Proof  We illustrate them one by one.

(1)	 It is clear.
(2)	 The �-insensitive loss ��(y, t) ∶= (|y − t| − �)+ is not an LS-DC loss. The reason is

similar to that of the hinge loss in item (e). However, its smoothed approximation (20)
i s a n L S - D C l o s s w i t h A ≥ p∕4   . L e t
�(u) =

1

p
log(1 + exp(−p(u + �))) +

1

p
log(1 + exp(p(u − �))) . We have

(3)	 The absolute loss �(y, t) = |y − t| is also not an LS-DC loss. Clearly, the Huber loss
��(y, t) which approximates the absolute loss, is an LS-DC loss with A ≥ 1∕(2�) ; set-
ting � = 0 in (20) we obtain another smoothed absolute loss, which is an LS-DC loss
with A ≥ p∕4.

(4)	 It is clear.

	� ◻

Appendix B: The lists of some related losses and their subdifferentials

The most related losses and their subdifferentials for updating �k by (23) are listed in
Table 5. The LS-DC parameters of the LS-DC losses are also given in the last column. In
experiments, we always use the lower-bound of the parameter.

u∗
1
= (b ⋅ h(c))

1

c

� ��(u) =
p exp(−p(u + �))

(1 + exp(−p(u + �)))2
+

p exp(p(u − �))

(1 + exp(p(u − �)))2
≤

p

2
.

2998	 Machine Learning (2023) 112:2975–3002

1 3

Ta
bl

e 
5  

T
he

 li
st

of
 th

e
lo

ss
es

 a
nd

 th
ei

r s
ub

di
ffe

re
nt

ia
ls

Lo
ss

 n
am

e
C

la
ss

ifi
ca

tio
n

lo
ss

es
: �

(y
,
t)
=
�
(1

−
yt
) a

nd
 � �
t
�
(y
,
t)
=
−
y�
�
(1

−
yt
) .

�
(u
)

�
�
(u
)

A

Le
as

t s
qu

ar
es

 lo
ss

�
(1
) (
u
)
∶
=
u
2

�
�
(u
)
∶
=
2
u

≥
1

Tr
un

ca
te

d
Le

as
t s

qu
ar

es
 lo

ss
�

(2
)

a
(u
)
∶
=
m
in
{
u
2
,a
}

𝜕
𝜓
a
(u
)
∶
=

�
2
u
,
�u
�<

√
a
,

0
,

�u
�≥

√
a
,

Sq
ua

re
d

hi
ng

e
lo

ss
�

(3
) (
u
)
∶
=
u
2 +

�
�
(u
)
∶
=
2
u
+

≥
1

Tr
un

ca
te

d
sq

ua
re

d
hi

ng
e

lo
ss

�
(4
)

a
(u
)
∶
=
m
in
{
u
2 +
,a
}

𝜕
𝜓
a
(u
)
∶
=

�
2
u
,
0
<
u
<
√
a
,

0
,

o
th
er
s,

H
in

ge
 lo

ss
�

(5
) (
u
)
∶
=
u
+
 , N

O
T

LS
-D

C
 lo

ss
, s

m
oo

th
ed

 b
y
�

(6
) .

Sm
oo

th
 H

in
ge

 lo
ss

�
(6
)

p
(u
)
∶
=
u
+
+

lo
g
(1
+
e−

p
|u
|)

p
�
�
p
(u
)
∶
=

m
in
{
1
,e
p
u
}

(1
+
e−

p
|u
|)

≥
p 8

R
am

p
lo

ss
�

(7
)

a
(u
)
∶
=
m
in
{
u
+
,a
}  ,

 N
O

T
LS

-D
C

 lo
ss

, s
m

oo
th

ed
 b

y
�

(8
) a

nd
 �

(9
) .

Sm
oo

th
ed

 ra
m

p
lo

ss
 1

𝜓
(8
)

a
(u
)
∶
=

{
2 a
u
2 +
,

u
≤

a 2
,

a
−

2 a
(a

−
u
)2 +
,
u
>

a 2
,

𝜕
𝜓
a
(u
)
∶
=

{
4 a
u
+
,

u
≤

a 2
,

4 a
(a

−
u
) +
,
u
>

a 2
,

Sm
oo

th
ed

 ra
m

p
lo

ss
 2

�
(9
)

(a
,p
)(
u
)
∶
=

1 p
lo
g
(

1
+
ep

u

1
+
ep

(u
−
a
)

)
�
�
(a
,p
)(
u
)
∶
=

e−
p
(u
−
a
) −

e−
p
u

(1
+
e−

p
(u
−
a
))
(1
+
e−

p
u
)

≥
p 8

Sm
oo

th
ed

 n
on

co
nv

ex
 lo

ss
(1

8)
�

(1
0
)

(a
,b
,c
)(
u
)
∶
=
a

(
1
−
e−

1 b
u
c +

)
�
�
(a
,b
,c
)(
u
)
∶
=

a
c b
u
c−

1
+

e−
1 b
u
c +

≥
1 2
M
(a
,b
,c
)

Se
e

(1
9)

R
eg

re
ss

io
n

lo
ss

es
: �

(y
,t
)
=
𝜓
(y
−
t)

 a
nd

 𝜕 𝜕
t
�
(y
,t
)
=
−
𝜕
𝜓
(y
−
t)

.
Le

as
t s

qu
ar

es
 lo

ss
𝜓

(1
) (
u
)
∶
=
u
2

𝜕
𝜓
(u
)
∶
=
2
u

≥
1

Tr
un

ca
te

d
le

as
t s

qu
ar

es
 lo

ss
𝜓

(2
)

a
(u
)
∶
=
m
in
{
u
2
,a
}

𝜕
𝜓
a
(u
)
∶
=

�
2
u
,
�u
�<

√
a
,

0
,

�u
�≥

√
a
,

≥
1

� -
in

se
ns

iti
ve

 lo
ss

𝜓
(3
)

𝜀
(u
)
∶
=
(|u

|−
𝜀
) +

 , N
O

T
LS

-D
C

 lo
ss

, s
m

oo
th

ed
 b

y
𝜓

(4
) .

Sm
oo

th
ed

 �
-in

se
ns

iti
ve

 lo
ss

𝜓
(4
)

(p
,𝜀
)(
u
)
∶
=

lo
g
((
1
+
e−

p
(u
+
𝜀
))
(1
+
ep

(u
−
𝜀
))
)

p
𝜕
𝜓
(p
,𝜀
)(
u
)
∶
=

1

1
+
ep

(u
−
𝜀
)
−

1

1
+
e−

p
(𝜀
+
u
)

≥
p 4

A
bs

ol
ut

e
lo

ss
𝜓

(5
) (
u
)
∶
=
|u
| ,

N
O

T
LS

-D
C

 lo
ss

, s
m

oo
th

ed
 b

y
𝜓

(6
) a

nd
 𝜓

(7
) .

2999Machine Learning (2023) 112:2975–3002	

1 3

Ta
bl

e 
5  

(c
on

tin
ue

d)

Lo
ss

 n
am

e
C

la
ss

ifi
ca

tio
n

lo
ss

es
: �

(y
,
t)
=
�
(1

−
yt
) a

nd
 � �
t
�
(y
,
t)
=
−
y�
�
(1

−
yt
) .

�
(u
)

�
�
(u
)

A

H
ub

er
 lo

ss
𝜓

(6
)

𝛿
(u
)
∶
=

{
1 2
𝛿
u
2
,

|u
|<

𝛿
,

| u
|−

𝛿 2
,
|u
|≥

𝛿
,

𝜕
𝜓
𝛿
(u
)
∶
=

{
1 2
𝛿
u
,

|u
|<

𝛿
,

sg
n
(u
),

|u
|≥

𝛿
,

≥
1 2
�

Sm
oo

th
ed

 A
bs

ol
ut

e
lo

ss
𝜓

(7
)

p
(u
)
∶
=

1 p
lo
g
((
1
+
e−

p
u
)(
1
+
ep

u
))

𝜕
𝜓
p
(u
)
∶
=

m
in
{
1
,e
p
u
}
−
m
in
{
1
,e
−
p
u
}

1
+
e−

p
|u
|

≥
p 4

Tr
un

ca
te

d
H

ub
be

r l
os

s
𝜓

(8
)

(𝛿
,a
)(
u
)
∶
=
m
in
{
𝜓

(6
)

𝛿
(u
),
a
}

𝜕
𝜓
𝛿
(u
)
∶
=

⎧ ⎪ ⎨ ⎪ ⎩

1 2
𝛿
u
,

�u
�<

𝛿
,

sg
n
(u
),

𝛿
≤
�u
�≤

a
,

0
,

�u
�>

a
.

≥
1 2
�

3000	 Machine Learning (2023) 112:2975–3002

1 3

Appendix C: Matlab code for UniSVM

Matlab code for solving UniSVM with the full kernel matrix available in Subsect. 4.1 is
listed as follows; please see the notes for other cases. The demo codes can also be found at
https://​github.​com/​stayo​nes/​code-​UNiSVM.

0: function [alpha] = UniSVM_small(K, y, lambda, A, dloss, eps0)
1: %K-kernel matrix; y-targets; lambda-regularizer;

%A-parameter of the LS-DC loss; dloss-the derivative function of the LS-DC loss.
2: m = length(y); v_old = zeros(m,1);
3: Q = inv(K + lambda * m / A * eye(m));alpha = Q*y; %This is the LS-SVM solution.
4: while 1
5: Ka = K * alpha;
6: v= - y .* dloss(1-y .* Ka); %for CLASSIFICATION task;

% v= - dloss(y - Ka); %for REGRESSION task;
7: if norm(v_old - v) < eps0, break; end
8: alpha = Q * (Ka - v *(0.5/A)) ; v_old = v;%
9: end

return

Note:
1) With squared hinge loss, dloss(u)=2*max(u,0);

With truncated squared hinge loss, dloss(u)=2*max(u,0).*(u<=sqrt(a));
With truncated least squares loss, dloss(u)=2*(u).*(abs(u)<=sqrt(a));
With other losses, dloss(u) given in the Table 5 in Appendix B.

2) For large training problem, the input K is taken place as P and B with K=P*P’,
then make the following revisions:
Line 3 --> Q=inv((lambda*m/A*eye(length(B)) + P’*P)*P(B,:)’);alpha = Q*(P’*y);
Line 5 --> Ka = P*(P(B,:)’*alpha);
Line 8 --> alpha = Q*(P’*(Ka - v *(0.5/A))); v_old = v.

Acknowledgements  We would like to acknowledge support for this project from the National Natural Sci-
ence Foundation of China under Grant No. 61772020. We also thank the anonymous reviewers for their use-
ful comments that greatly improved the presentation.

Declarations 

conflict of interest  The authors declare that they have no conflict of interest.

References

Boyd, S. P., & Vandenberghe, L. (2009). Convex optimization (7th ed.). Cambridge University Press.
Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on

Intelligent Systems and Technology, 2, 1–27.
Chen, L., & Zhou, S. (2018). Sparse algorithm for robust lssvm in primal space. Neurocomputing, 257(31),

2880–2891. https://​doi.​org/​10.​1016/j.​neucom.​2017.​10.​011.
Chen, P. H., Fan, R. E., & Lin, C. J. (2006). A study on SMO-type decomposition methods for support vec-

tor machines. IEEE Transactions on Neural Networks, 17(4), 893–908.
Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Trading convexity for scalability. In: Proceedings of

the 23rd international conference on Machine learning - ICML’06, ACM Press, pp 201–208.
Feng, Y., Yang, Y., & Huang, X. (2016). Robust support vector machines for classification with nonconvex

and smooth losses. Neural Computation, 28(6), 1217–1247.
Golub, G. H., & Loan, C. F. V. (1996). Matrix Computations. The John Hopkins University Press.

https://github.com/stayones/code-UNiSVM
https://doi.org/10.1016/j.neucom.2017.10.011

3001Machine Learning (2023) 112:2975–3002	

1 3

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Robuststatistics: The approach
based on influence functions. Wiley.

Jiao, L., Bo, L., & Wang, L. (2007). Fast sparse approximation for least squares support vector machines.
IEEE Transactions on Neural Networks, 18(3), 685–697.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improvements to Platt’s SMO
algorithm for SVM classifier design. Neural Computation, 13, 637–649.

Keerthi, S. S., Chapelle, O., & Decoste, D. (2006). Building support vector machines with reduced classifier
complexity. Journal of Machine Learning Research, 7, 1493–1515.

Le Thi, H. A., Le Hoai, M., Nguyen, V. V., & Pham Dinh, T. (2008). A DC programming approach for
feature selection in support vector machines learning. Journal of Advances in Data Analysis and Clas-
sification, 2(3), 259–278.

Le Thi, H. A., Nguyen, V. V., & Ouchani, S. (2009). Gene selection for cancer classification using DCA.
Journal of Frontiers of Computer Science and Technology, 3(6), 612–620.

Le Thi, H. A., & Pham, Dinh T. (2018). DC programming and DCA: Thirty years of developments. Math-
ematical Programming, 169(1), 5–68.

Neumann, J., Schnrr, C., & Steidl, G. (2004). SVM-based feature selection by direct objective minimization.
In: Lecture Notes in Computer Science (Vol. 3175, pp. 212–219) Springer.

Naderi, S., He, K., Aghajani, R., Sclaroff, S., & Felzenszwalb, P. (2019). Generalized majorization-minimi-
zation. In: Proceedings of the 36-th International Conference on Machine Learning, Long Beach, CA,
USA.

Ong, C. S., & Le Thi, H. A. (2013). Learning sparse classifiers with difference of convex functions algo-
rithms. Optimization Methods and Software, 28(4), 830–854.

Ong, C.S., Mary, X., Canu, S., & Smola, A.J. (2004). Learning with non-positive kernels. In: Twenty-first
International Conference on Machine learning - ICML’04, ACM Press.

Pham Dinh, T., & El-Bernoussi, S. (1986). Algorithms for solving a class of nonconvex optimization
problems. methods of subgradients. In: Fermat Days 85: Mathematics for Optimization, Elsevier, pp
249–271.

Platt, J. C. (1999). Fast training of support vector machines using sequential minimal optimization. In C. J.
Burges & A. J. Smola (Eds.), Advances in Kernel method-support vector learning (pp. 185–208). MIT
Press.

Rockafellar, R. T. (1972). Convex analysis (2nd ed.) Princeton University Press.
Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels-support vector machines, regularization, opti-

mization and beyond. The MIT Press.
Schölkopf, B., Herbrich, R., & Smola, A.J. (2001). A generalized representer theorem. In: Proceedings of

the Annual Conference on Computational Learning Theory, Springer, pp 416–426.
Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms.

Cambridge University Press.
Shen, X., Tseng, G. C., Zhang, X., & Wong, W. H. (2003). On �-learning. Journal of the American Statisti-

cal Association, 98(463), 724–734.
Steinwart, I. (2003). Sparseness of support vector machines. Journal of Machine Learning Research, 4,

1071–1105.
Steinwart, I., & Christmann, A. (2008). Support vector machines. Springer-Verlag.
Steinwart, I., Hush, D., & Scovel, C. (2011). Training SVMs without offset. Journal of Machine Learning

Research, 12, 141–202.
Sun, S., Zhao, J., & Zhu, J. (2015). A review of nyström methods for large-scale machine learning. Informa-

tion Fusion, 26, 36–48.
Suykens, J. A. K., & Vandewalle, J. (1999a). Least square spport vector machine classifiers. Neural Process-

ing Letters, 9(3), 293–300.
Suykens, J. A. K., & Vandewalle, J. (1999b). Least squares support vector machine classifiers. Neural Pro-

cessing Letters, 9(3), 293–300.
Suykens, J. A. K., Gestel, T. V., Brabanter, J. D., Moor, B. D., & Vandewalle, J. (2002). Least squares Sup-

port Vector Machines. World Scientific.
Tao, Q., Wu, G., & Chu, D. (2018). Improving sparsity and scalability in regularized nonconvex trun-

cated-loss learning problems. IEEE Transactions on Neural Networks and Learning Systems, 29(7),
2782–2793.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Network,
10(5), 988–999.

Vapnik, V. N. (2000). The nature of dtatistical learning theory. Springer-Verlag.
Wu, Y., & Liu, Y. (2007). Robust truncated hinge loss support vector machines. Publications of the Ameri-

can Statistical Association, 102(479), 974–983.

3002	 Machine Learning (2023) 112:2975–3002

1 3

Xu, H.M., Xue, H., Chen, X.H., & Wang, Y.Y. (2017). Solving indefinite kernel support vector machine
with difference of convex functions programming. In: Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence, AAAI Press, AAAI’17, pp 2782–2788.

Yuille, A. L., & Rangarajan, A. (2003). The concave-convex procedure. Neural Computation, 15(4),
915–936.

Zhou, S. (2013). Which is better? regularization in RKHS vs ℜm on reduced SVMs. Statistics, Optimization
and Information Computing, 1(1), 82–106.

Zhou, S. (2016). Sparse LSSVM in primal using Cholesky factorization for large-scale problems. IEEE
Transactions on Neural Networks and Learning Systems, 27(4), 783–795.

Zhou, S., Liu, H., Ye, F., & Zhou, L. (2009). A new iterative algorithm training SVM. Optimization Meth-
ods and Software, 24(6), 913–932.

Zhou, S., Cui, J., Ye, F., Liu, H., & Zhu, Q. (2013). New smoothing SVM algorithm with tight error bound
and efficient reduced techniques. Computational Optimization and Applications, 56(3), 599–618.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Unified SVM algorithm based on LS-DC loss
	Abstract
	1 Introduction
	2 Reviews of related works
	2.1 DC programming and DCA
	2.2 SVM models with convex losses and nonconvex losses
	2.2.1 SVM models with convex losses
	2.2.2 Robust SVM models with nonconvex losses

	3 LS-DC loss function
	4 Unified algorithm for SVM models with LS-DC losses
	4.1 Solving UniSVM with full kernel matrix available
	4.2 Solving UniSVM for large-scale training with a sparse solution

	5 Experimental studies
	5.1 Intuitive comparison of UniSVM with other SVM models on small data sets
	5.1.1 On convex loss cases
	5.1.2 On nonconvex loss cases

	5.2 Experiments on larger benchmark datasets

	6 Conclusion and future work
	Appendix
	Appendix A: The proof of propositions
	The proof of propositions 1
	The proof of propositions 2

	Appendix B: The lists of some related losses and their subdifferentials
	Appendix C: Matlab code for UniSVM
	Acknowledgements
	References

