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Abstract
Graphs are versatile tools for representing structured data. As a result, a variety of machine 
learning methods have been studied for graph data analysis. Although many such learn-
ing methods depend on the measurement of differences between input graphs, defining an 
appropriate distance metric for graphs remains a controversial issue. Hence, we propose 
a supervised distance metric learning method for the graph classification problem. Our 
method, named interpretable graph metric learning (IGML), learns discriminative met-
rics in a subgraph-based feature space, which has a strong graph representation capabil-
ity. By introducing a sparsity-inducing penalty on the weight of each subgraph, IGML can 
identify a small number of important subgraphs that can provide insight into the given 
classification task. Because our formulation has a large number of optimization variables, 
an efficient algorithm that uses pruning techniques based on safe screening and working 
set selection methods is also proposed. An important property of IGML is that solution 
optimality is guaranteed because the problem is formulated as a convex problem and our 
pruning strategies only discard unnecessary subgraphs. Furthermore, we show that IGML 
is also applicable to other structured data such as itemset and sequence data, and that it can 
incorporate vertex-label similarity by using a transportation-based subgraph feature. We 
empirically evaluate the computational efficiency and classification performance of IGML 
on several benchmark datasets and provide some illustrative examples of how IGML iden-
tifies important subgraphs from a given graph dataset.

Keywords  Metric learning · Structured data · Graph mining · Convex optimization · 
Interpretability

1  Introduction

Because of the growing diversity of data science applications, machine learning methods 
must adapt to a variety of complicated structured data, from which it is often difficult to 
obtain typical numerical vector representations of input objects. A standard approach to 
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modeling structured data is to employ graphs. For example, graph-based representations 
are prevalent in domains such as chemo- and bio- informatics. In this study, we particularly 
focus on the case in which a data instance is represented as a pair of a graph and its associ-
ated class label.

Although numerous machine learning methods explicitly or implicitly depend on how 
to measure differences between input objects, defining an appropriate distance metric on 
graphs remains a controversial issue in the field. A widely accepted approach is the graph 
kernel (Gärtner et  al. 2003; Vishwanathan et  al. 2010), which enables to apply machine 
learning methods to graph data without requiring explicit vector representations. Another 
popular approach would be to use neural networks (Atwood and Towsley 2016; Naray-
anan et al. 2017), from which a suitable representation can be learned while avoiding to 
explicitly define a metric. However, in these approaches, it is difficult to create a metric 
that explicitly extracts significant sub-structures, i.e., subgraphs. Identifying discriminative 
subgraphs in an interpretable manner can be insightful for many graph classification tasks. 
In particular, graph representation is prevalent in scientific data analysis. For example, 
chemical compounds are often represented by graphs; thus, finding subgraphs that have 
a strong effect on a target label (e.g., toxicity) is informative. Other examples of graph 
representations are protein 3D structures and crystalline substances (e.g., Brinda and Vish-
veshwara 2005; Xie and Grossman 2018), where the automatic identification of important 
sub-structures is expected to provide an insight behind correlation between structures and 
target labels. Further details of the previous studies are discussed in Sect. 2.

We propose a supervised method that obtains a metric for graphs, thereby achieving 
both high predictive performance and interpretability. Our method, named interpretable 
graph metric learning (IGML), combines the concept of metric learning (e.g., Weinberger 
and Saul 2009; Davis et al. 2007) with a subgraph representation, where each graph is rep-
resented by a set of its subgraphs. IGML optimizes a metric that assigns a weight mi(H) ≥ 0 
to each subgraph H contained in a given graph G. Let �H(G) be a feature of the graph G 
that is monotonically non-decreasing with respect to the frequency of subgraph H of G.

Note that we assume that subgraphs are counted without overlapped vertices and edges 
throughout the study. We consider the following squared distance between two graphs G 
and G′:

where G is the set of all connected graphs. Although it is known that the subgraph approach 
has strong graph representation capability (e.g. Gärtner et  al. 2003), naïve calculation is 
obviously infeasible unless the weight parameters have some special structure.

We formulate IGML as a supervised learning problem of the distance function (1) 
using a pairwise loss function of metric learning (Davis et  al. 2007) with a sparse pen-
alty on mi(H) . The resulting optimization problem is computationally infeasible at a glance, 
because the number of weight parameters is equal to the number of possible subgraphs, 
which is usually intractable. We overcome this difficulty by introducing safe screening 
(Ghaoui et al. 2010) and working set selection (Fan et al. 2008) approaches. Both of these 
approaches can significantly reduce the number of variables, and further, they can be com-
bined with a pruning strategy on the tree traverse of graph mining. These optimization 
tricks are inspired by two recent studies (Nakagawa et  al. 2016) and (Morvan and Vert 
2018), which developed safe screening- and working set- based pruning for a linear pre-
diction model with the LASSO penalty, respectively. By combining these two techniques, 

(1)dm(G,G
�) ∶=

∑

H∈G

mi(H)

(
�H(G) − �H(G

�)
)2
,
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we constructed a path-wise optimization method that can obtain a sparse solution of the 
weight parameter mi(H) without directly enumerating all possible subgraphs.

To the best of our knowledge, no previous studies can provide an interpretable sub-
graph-based metric learned in a supervised manner. The advantages of IGML can be sum-
marized as follows:

•	 Because IGML is formulated as a convex optimization problem, the global optimal can 
be found by the standard gradient-based optimization.

•	 The safe screening- and working set-based optimization algorithms make our problem 
practically tractable without sacrificing optimality.

•	 We can identify a small number of important subgraphs that discriminate different 
classes.This implies that the resulting metric is easy to compute and highly interpret-
able, making it useful for a variety of subsequent data analyses.For example, applying 
the nearest neighbor classification or decision tree on the learned space would be effec-
tive.

Moreover, we propose three extensions of IGML. First, we show that IGML is directly 
applicable to other structured data, such as itemset and sequence data. Second, its applica-
tion to a triplet based loss function is discussed. Third, we extend IGML to allow similar-
ity information of vertex-labels to be incorporated. We empirically verify the superior or 
comparable prediction performance of IGML to other existing graph classification methods 
(most of which are not interpretable). We also show some examples of extracted subgraphs 
and data analyses on the learned metric space.

The reminder of this paper is organized as follows. In Sect. 2, we review previous stud-
ies on graph data analysis. In Sect. 3, we introduce a formulation of our proposed IGML. 
Section 4 discusses strategies to reduce the size of the IGML optimization problem. The 
detailed computational procedure of IGML is described in Sect.  5. Three extensions of 
IGML are presented in Sect. 6. Section 7 reports our empirical evaluation of the effective-
ness of IGML on several benchmark datasets.

Note that this paper is an extended version of a preliminary conference paper (Yoshida 
et  al. 2019a). The source code of the program used in our experiments is available at 
https://​github.​com/​takeu​chi-​lab/​Learn​ing-​Inter​preta​ble-​Metric-​betwe​en-​Graphs.

2 � Related work

Kernel-based approaches have been widely studied for graph data analysis, and they 
can provide a metric of graph data in a reproducing kernel Hilbert space. In particu-
lar, subgraph-based graph kernels are closely related to our study. The graphlet kernel 
(Shervashidze et al. 2009) creates a kernel through small subgraphs with only about 3–5 
vertices, which are called graphlets. The neighborhood subgraph pairwise distance kernel 
(Costa and Grave 2010) selects pairs of subgraphs from a graph and counts the number of 
pairs identical to those in another graph. The subgraph matching kernel (Kriege and Mutzel 
2012) identifies common subgraphs based on cliques in the product graph of two graphs. 
The feature space created by these subgraph-based kernels is easy to interpret. However, 
because the above approaches are unsupervised, it is fundamentally impossible to elimi-
nate subgraphs that are unnecessary for a specific target classification task. Therefore, for 
example, to create the entire kernel matrix of training data, all the candidate subgraphs in 

https://github.com/takeuchi-lab/Learning-Interpretable-Metric-between-Graphs


1768	 Machine Learning (2021) 110:1765–1811

1 3

the data must be enumerated once, which becomes intractable even for small-sized sub-
graphs. In contrast, we consider dynamically “pruning” unnecessary subgraphs through a 
supervised formulation of metric learning. As we will demonstrate in our later experimen-
tal results, this significantly reduces the enumeration cost, allowing our proposed algorithm 
to deal with the larger size of subgraphs than the simple subgraph based kernels.

There are many other kernels including the shortest path (Borgwardt and Kriegel 
2005)-, random walk (Vishwanathan et  al. 2010; Sugiyama and Borgwardt 2015; Zhang 
et al. 2018b)-, and spectrum-based (Kondor and Borgwardt 2008; Kondor et al. 2009; Kon-
dor and Pan 2016; Verma and Zhang 2017) approaches. The Weisfeiler–Lehman (WL) 
kernel (Shervashidze and Borgwardt 2009; Shervashidze et al. 2011), which is based on 
the graph isomorphism test, is a popular and empirically successful kernel that has been 
employed in many studies (Yanardag and Vishwanathan 2015; Niepert et al. 2016; Naray-
anan et al. 2017; Zhang et al. 2018a). Again, all such approaches are unsupervised, and it 
is difficult to interpret results from the perspective of sub-structures of a graph. Although 
several kernels deal with continuous attributes on vertices (Feragen et al. 2013; Orsini et al. 
2015; Su et al. 2016; Morris et al. 2016), we only focus on the cases where vertex-labels 
are discrete due to the associated interpretability.

Because obtaining a good metric is an essential task in data analysis, metric learning 
has been extensively studied to date, as reviewed in (Li and Tian 2018). However, due to its 
computational difficulty, metric learning for graph data has not been widely studied. A few 
studies have considered the edit distance approaches. For example, Bellet et al. (2012) pre-
sented a method for learning a similarity function through an edit distance in a supervised 
manner. Another approach probabilistically formulates the editing process of the graph and 
estimates the parameters using labeled data Neuhaus and Bunke (2007). However, these 
approaches cannot provide any clear interpretation of the resulting metric in term of the 
subgraphs.

Likewise, the deep neural network (DNN) is a standard approach to graph data analysis. 
The deep graph kernel (Yanardag and Vishwanathan 2015) incorporates neural language 
modeling, where decomposed sub-structures of a graph are regarded as sentences. The 
PATCHY-SAN (Niepert et al. 2016) and DGCNN (Zhang et al. 2018a) convert a graph to a 
tensor by using the WL-Kernel and convolute it. Several other studies also have combined 
popular convolution techniques with graph data (Tixier et al. 2018; Atwood and Towsley 
2016; Simonovsky and Komodakis 2017). These approaches are supervised, but the inter-
pretability of these DNNs is obviously relatively low. Attention enhances the interpretabil-
ity of deep learning, but extracting important subgraphs is difficult because attention algo-
rithms for graphs (Lee et al. 2018) only provides the significance of vertex transition on a 
graph. Another related DNN approach is representation learning. For example, sub2vec 
(Adhikari et al. 2018) and graph2vec (Narayanan et al. 2017) can embed graph data into a 
continuous space, but they are unsupervised, and it is difficult to extract substructures that 
characterize different classes. There are other fingerprint learning methods for graphs by 
neural networks (e.g. Duvenaud et al. 2015) where the contribution from each node can be 
evaluated for each dimension of the fingerprint. Although it is possible to highlight sub-
structures for the given input graph, this does not produce important common subgraphs 
for prediction.

Supervised pattern mining (Cheng et al. 2008; Novak et al. 2009; Thoma et al. 2010) 
can be used for identifying important subgraphs by enumerating patterns with some dis-
criminative score. However, these approaches usually 1) employ a greedy strategy to add 
a pattern for which global optimality cannot be guaranteed, and 2) do not optimize a met-
ric or representation. A few other studies (Saigo et al. 2009; Nakagawa et al. 2016) have 
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considered optimizing a linear model on the subgraph features with the LASSO penalty 
using graph mining. A common idea of these two methods is to traverse a graph min-
ing tree with pruning strategies derived from optimality conditions. Saigo et  al. (2009) 
employed a boosting-based approach, which adds a subgraph that violates the optimal-
ity condition most severely at every iteration. It was shown that the maximum violation 
condition can be efficiently identified by pruning the tree without losing the final solution 
optimality. Nakagawa et al. (2016) derived a pruning criterion by extending safe screening 
(Ghaoui et al. 2010), which can safely eliminate unnecessary features before solving the 
optimization problem. This approach can also avoid enumerating the entire tree while guar-
anteeing the optimality, and its efficiency compared with the boosting-based approach was 
demonstrated empirically, mainly because it requires much fewer tree traversals. Further, 
Morvan and Vert (2018) proposed a similar pruning extension of working set selection for 
optimizing a higher-order interaction model. Although this paper was not for the graph 
data, the technique is applicable to the same subgraph-based linear model as in (Saigo et al. 
2009) and (Nakagawa et al. 2016). Working set selection is a heuristic feature subset selec-
tion strategy that has been widely used in machine learning algorithms, such as support 
vector machines (e.g., Hsu and Lin 2002). Unlike safe screening, this heuristic selection 
may eliminate necessary features in the middle of the optimization, but the optimality of 
the final solution can be guaranteed by iterating subset selection repeatedly until the solu-
tion converges. However, these methods can only optimize a linear prediction model. In 
this study, we focus on metric learning of graphs. Therefore, unlike the above mentioned 
pruning based learning methods, our aim is to learn a “distance function”. In metric learn-
ing, a distance function is typically learned from a loss function defined over a relative rela-
tion between samples (usually, pairs or triplets), by which a discriminative feature space 
that is generally effective for subsequent tasks, such as classification and similarity-based 
retrieval, is obtained. Inspired by (Nakagawa et  al. 2016) and (Morvan and Vert 2018), 
we derive screening and pruning rules for this setting , and further, we combine them to 
develop an efficient algorithm.

3 � Formulation of interpretable graph metric learning

3.1 � Optimization problem

Suppose that the training dataset {(Gi, yi)}i∈[n] consists of n pairs of a graph Gi and a class 
label yi , where [n] ∶= {1,… , n} . Let G be the set of all connected subgraphs of {Gi}i∈[n] . In 
each graph, vertices and edges can be labeled. If H ∈ G is a connected subgraph of G ∈ G , 
we write H ⊑ G . Further, let #(H ⊑ G) be the frequency of the subgraph H in G. Note that 
we adopt a definition of frequency that does not allow any vertices or edges among the 
counted subgraphs to overlap. As a representation of a graph G, we consider the following 
subgraph-based feature representation:

where g is some monotonically non-decreasing and non-negative function, such as the 
identity function g(x) = x or indicator function g(x) = 1x>0 , which takes the value 1 if 
x > 0 , and 0 otherwise. It is widely known that subgraph-based features can effectively 
represent graphs. For example, g(x) = x allows all non-isomorphic graphs to be distin-
guished. A similar idea was shown in (Gärtner et  al. 2003) for a frequency that allows 

(2)𝜙H(G) = g
(
#(H ⊑ G)

)
, for H ∈ G,
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overlaps. However, this feature space is practically infeasible because the possible number 
of subgraphs is prohibitively large.

We focus on how to measure the distance between two graphs, which is essential for a 
variety of machine learning problems. We consider the following weighted squared dis-
tance between two graphs:

where i(H) is the index of the subgraph H for a weight parameter mi(H) ≥ 0 . To obtain an 
effective and computable distance metric, we adaptively estimate mi(H) such that only a 
small number of important subgraphs have non-zero mi(H) values.

Let xi ∈ ℝ
p be the feature vector defined by concatenating �H(Gi) for all H ∈ G 

included in the training dataset. Then, we have

where m ∈ ℝ
p

+ is a vector of mi(H) , and cij ∈ ℝ
p is defined as cij ∶= (xi − xj)◦(xi − xj) with 

the element-wise product ◦.
Let Si ⊆ [n] and Di ⊆ [n] be the subsets of indices that are in the same and different 

classes to xi , respectively. For each of these sets, we select the K most similar inputs to 
xi by using some default metric, such as the graph kernel (further details are presented in 
Sect. 3.2). As a loss function for xi , we consider

where L,U ∈ ℝ+ are constant parameters satisfying U ≤ L , and �t(x) = [t − x]2
+
 is the 

standard squared hinge loss function with threshold t ∈ ℝ . This loss function is a variant of 
the pairwise loss functions used in metric learning (Davis et al. 2007). The first term in the 
loss function yields a penalty if xi and xl are closer than L for l ∈ Di , and the second term 
yields a penalty if xi and xj are more distant than U for j ∈ Si.

Let R(m) = ‖m‖1 +
𝜂

2
‖m‖2

2
= m⊤1 +

𝜂

2
‖m‖2

2
 be an elastic-net type sparsity-inducing 

penalty, where � ≥ 0 is a non-negative parameter. We define our proposed IGML (inter-
pretable graph metric learning) as the following regularized loss minimization problem:

where 𝜆 > 0 is the regularization parameter. The solution of this problem can provide not 
only a discriminative metric but also insight into important subgraphs because the sparse 
penalty is expected to select only a small number of non-zero parameters.

Let � ∈ ℝ
2nK
+

 be the vector of dual variables where �il and �ij for i ∈ [n], l ∈ Di , and 
j ∈ Si are concatenated. The dual problem of (4) is written as follows (see Appendix A for 
derivation):

where

dm(G,G
�) ∶=

∑

H∈G

mi(H)

(
�H(G) − �H(G

�)
)2
,

dm(xi, xj) = (xi − xj)
⊤diag(m)(xi − xj) = m⊤cij,

(3)�i(m;L,U) ∶=
∑

l∈Di

�L(m
⊤cil) +

∑

j∈Si

�−U(−m
⊤cij),

(4)min
m≥0

P�(m) ∶=
∑

i∈[n]

�i(m;L,U) + �R(m),

(5)max
�≥0

D𝜆(�) ∶= −
1

4
‖�‖2

2
+ t⊤� −

𝜆𝜂

2
‖m𝜆(�)‖22,
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t ∶= [L,… , L,−U,… ,−U]⊤ ∈ ℝ
2nK and C ∶= [… , cil,… , −cij,…] ∈ ℝ

p×2nK . Then, from 
the optimality condition, we obtain the following relationship between the primal and dual 
variables:

where ��
t
(x) = −2[t − x]+ is the derivative of �t . When the regularization parameter � is 

larger than certain �max , the optimal solution is m = 0 . Then, the optimal dual variables 
are �il = −��

L
(0) = 2L and �ij = −��

−U
(0) = 0 . By substituting these equations into (6), we 

obtain �max as

3.2 � Selection of S
i
 and D

i

For K = |Si| = |Di| , in the experiments reported later, we employed the small number 
K = 10 and used a graph kernel to select samples in Si and Di . Although we simply used 
a pre-determined kernel, selecting the kernel (or its parameter) through cross-validation 
beforehand is also possible. Using only a small number of neighbors is a common setting 
in metric learning. For example, Davis et al. (2007), which is a seminal work on the pair-
wise approach, only used 20c2 pairs in total, where c is the number of classes. A small K 
setting has two aims. First, particularly Si , adding pairs that are too far apart can be avoided 
under this setting. Even for a pair of samples with the same labels, enforcing such distant 
pairs to be close may cause over-fitting (e.g., when the sample is an outlier). Second, a 
small K reduces the computational cost. Because the number of pairs is O(n2) , adding all 
of them into the loss term requires a large computational cost. In fact, these two issues 
are not only for the pairwise formulation but also for other relative loss functions such 
as the standard triplet loss, for which there exist O(n3) triplets. One potential difficulty in 
selecting Di and Si is the discrepancy between the initial and the optimal metric. The loss 
function is defined through Di and Si , which are selected based on the neighbors in the 
initial metric, but the optimization of the metric may change the nearest neighbors of each 
sample. A possible remedy for this problem is to adaptively change Di and Si in accordance 
with the updated metric (Takeuchi and Sugiyama 2011), though the resulting optimality of 
this approach is still not known. To the best of our knowledge, this is still an open problem 
in metric learning, which we consider beyond the scope of this paper. In the experiments 
(Sect. 7), we show that a nearest-neighbor classifier in the learned metric with this heuris-
tics selection of Di and Si shows better or comparable performance to standard graph clas-
sification methods, such as a graph neural network.

4 � Creating a tractable sub‑problem

Because the problems of (4) and (5) are convex, the local solution is equivalent to the 
global optimal. However, naïvely solving these problems is computationally intractable 
because of the high dimensionality of m . In this section, we introduce several useful rules 

(6)m�(�) ∶=
1

��
[C� − �1]+,

(7)𝛼il = −��
L
(m⊤cil), 𝛼ij = −��

−U
(−m⊤cij),

(8)�max = max
k

Ck,∶�.
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for restricting candidate subgraphs while maintaining the optimality of the final solution. 
Note that the proofs for all the lemmas and theorems are provided in the appendix.

To make the optimization problem tractable, we work with only a small subset of fea-
tures during the optimization process. Let F ⊆ [p] be a subset of features. By fixing mi = 0 
for i ∉ F  , we define sub-problems of the original primal P� and dual D� problems as 
follows:

where mF  , cijF  , and m�(�)F  are sub-vectors specified by F  . If the size of F  is moder-
ate, these sub-problems are significantly computationally easier to solve than the original 
problems.

We introduce several criteria that determine whether the feature k should be included 
in F  using the techniques of safe screening (Ghaoui et al. 2010) and working set selection 
(Fan et al. 2008). A general form of our criteria can be written as

where q ∈ ℝ
2nK
+

 , r ≥ 0 , and T ∈ ℝ are constants that assume different values for each crite-
rion. If this inequality holds for k, we exclude the k-th feature from F  . An important prop-
erty is that although our algorithm only solves these small sub-problems, we can guarantee 
the optimality of the final solution, as shown later.

However, selecting F  itself is computationally expensive because the evaluation of (11) 
requires O(n) computations for each k. Thus, we exploit a tree structure of graphs for deter-
mining F  . Figure 1 shows an example of such a tree, which can be constructed by a graph 
mining algorithm, such as gSpan (Yan and Han 2002). Suppose that the k-th node cor-
responds to the k-th dimension of x (note that the node index here is not the order of the 
visit). If a graph corresponding to the k-th node is a subgraph of the k′-th node, the node k′ 
is a descendant of k, which is denoted as k′ ⊇ k . Then, the following monotonic relation is 
immediately derived from the monotonicity of �H:

Because any parent node is a subgraph of its children in the gSpan tree Fig.  1, 
the non-overlapped frequency #(H ⊑ G) of subgraph H in G is monotonically 

(9)min
mF≥0

PF

𝜆
(mF) ∶=

∑

i∈[n]

[
∑

l∈Di

�L(m
⊤
F
cilF) +

∑

j∈Si

�−U(−m
⊤
F
cijF)

]
+ 𝜆R(mF),

(10)max
�≥0

DF

𝜆
(�) ∶= −

1

4
‖�‖2

2
+ t⊤� −

𝜆𝜂

2
‖m𝜆(�)F‖22,

(11)Ck,∶q + r‖Ck,∶‖2 ≤ T ,

(12)xi,k′ ≤ xi,k if k
′ ⊇ k.

Fig. 1   Schematic illustration of a 
tree and features

(a) Tree &
node index

(b) Features
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non-increasing while descending the tree node. Then, the condition (12) is obviously sat-
isfied because for a sequence of H ⊑ H′ ⊑ H′′ ⊑ ⋯ in the descending path of the tree, 
xi,k(H) = 𝜙H(Gi) = g(#(H ⊑ G)) is monotonically non-increasing, where xi,k(H) is a feature 
corresponding to H in Gi . Based on this property, the following lemma enables us to prune 
a node during the tree traversal.

Lemma 1  Let

be a pruning criterion. Then, if the inequality

holds, for any descendant node k′ ⊇ k , the following inequality holds:

where q ∈ ℝ
2nK
+

 and r ≥ 0 are an arbitrary constant vector and scalar variable, 
respectively.

This lemma indicates that if the condition (14) is satisfied, we can say that none of the 
descendant nodes are included in F  . Assuming that the indicator function g(x) = 1x>0 is 
used in (2), a tighter bound can be obtained through the following lemma.

Lemma 2  If g(x) = 1x>0 is set in (2), the pruning criterion (13) can be replaced with

By comparing the first terms of Lemmas 1 and 2, we see that Lemma 2 is tighter when 
g(x) = 1x>0 as follows:

(13)

Prune(k|q, r) ∶=
∑

i∈[n]

∑

l∈Di

qil max{xi,k, xl,k}
2

+ r

√√√√∑

i∈[n]

[
∑

l∈Di

max{xi,k, xl,k}
4 +

∑

j∈Si

max{xi,k, xj,k}
4

]

(14)Prune(k|q, r) ≤ T

Ck�,∶q + r‖Ck� ,;‖2 ≤ T ,

Prune(k|q, r) ∶=
∑

i∈[n]

max

{
∑

l∈Di

qilxl,k, xi,k

[
∑

l∈Di

qil −
∑

j∈Si

qij(1 − xj,k)

]}

+ r

√√√√∑

i∈[n]

[
∑

l∈Di

max{xi,k, xl,k} +
∑

j∈Si

max{xi,k, xj,k}

]
.
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A schematic illustration of the optimization algorithm for IGML is shown in Fig. 2 (for 
further details, see Sect. 5). To generate a subset of features F  , we first traverse the graph 
mining tree during which the safe screening/working set selection procedure and their 
pruning extensions are performed (Step1). Next, we solve the sub-problem (9) with the 
generated F  using a standard gradient-based algorithm (Step2). Safe screening is also per-
formed during the optimization iteration in Step2, which is referred to as dynamic screen-
ing. This further reduces the size of F .

Before moving onto detailed formulations, we summarize our rules to determine F  in 
Table 1. The columns represent the different approaches to evaluating the necessity of fea-
tures, i.e., safe and working set approaches. For the safe approaches, there are further ‘sin-
gle � ’ (described in Sect. 4.1.2) and ‘range of � ’ (described in Sect. 4.1.3) approaches. The 
single � approach considers safe rules for a specific � , while the range of � approach con-
siders safe rules that can eliminate features for a range of � (not just a specific value). Both 
the single and range approaches are based on the bounds of the region in which the optimal 
solution exists, for which details are given in Sect. 4.1.1. The rows of Table 1 indicate the 
variation of rules to remove one specific feature and rules to prune all features in a subtree.

4.1 � Safe screening

Safe screening (Ghaoui et al. 2010) was first proposed to identify unnecessary features in 
LASSO-type problems. Typically, this approach considers a bounded region of dual var-
iables in which the optimal solution must exist. Then, we can eliminate dual inequality 

∑

i∈[n]

max

{
∑

l∈Di

qilxl,k, xi,k

[
∑

l∈Di

qil −
∑

j∈Si

qij(1 − xj,k)

]}

≤
∑

i∈[n]

max

{
∑

l∈Di

qilxl,k, xi,k

∑

l∈Di

qil

}

=
∑

i∈[n]

max

{
∑

l∈Di

qilxl,k,
∑

l∈Di

qilxi,k

}

≤
∑

i∈[n]

∑

l∈Di

max{qilxl,k, qilxi,k}

=
∑

i∈[n]

∑

l∈Di

qil max{xl,k, xi,k}.

Fig. 2   Schematic illustration of the optimization algorithm for IGML



1775Machine Learning (2021) 110:1765–1811	

1 3

constraints that are never violated given that the solution exists in that region. The well-
known Karush-Kuhn-Tucker (KKT) conditions show that this is equivalent to the elimina-
tion of primal variables that take value 0 at the optimal solution. In Sect. 4.1.1, we first 
derive a spherical bound for our optimal solution, and then in Sect. 4.1.2, a rule for safe 
screening is shown. Section 4.1.3 extends rules that are specifically useful for the regulari-
zation path calculation.

4.1.1 � Sphere bound for optimal solution

The following theorem provides a hyper-sphere containing the optimal dual variable �⋆.

Theorem 1  (DGB) For any pair of m ≥ 0 and � ≥ 0 , the optimal dual variable �⋆ must 
satisfy

This bound is called the duality gap bound (DGB), and the parameters m and � used to 
construct the bound are referred to as the reference solution. This inequality reveals that 
the optimal �⋆ should be in the inside of the sphere whose center is the reference solution 
� and radius is 2

√
P�(m) − D�(�) , i.e., twice the square root of the duality gap. Therefore, 

if the quality of the reference solution m and � is better, a tighter bound can be obtained. 
When the duality gap is zero, meaning that m and � are optimal, the radius is shrunk to 
zero.

If the optimal solution for �0 is available as a reference solution to construct the bound 
for �1 , the following bound, called regularization path bound (RPB), can be obtained.

Theorem 2  (RPB) Let �⋆
0
 be the optimal solution for �0 and �⋆

1
 be the optimal solution for 

�1 . Then,

This inequality indicates that the optimal dual solution for �1 ( �⋆
1
 ) should be in the 

sphere whose center is 𝜆0+𝜆1
2𝜆0

�⋆
0
 and radius is ‖‖‖

𝜆0−𝜆1

2𝜆0
�⋆
0

‖‖‖2 . However, RPB requires the exact 
solution, which is difficult to obtain in practice due to numerical errors. The relaxed RPB 
(RRPB) extends RPB to incorporate the approximate solution as a reference solution.

‖� − �⋆‖2
2
≤ 4(P𝜆(m) − D𝜆(�)).

‖‖‖‖
�⋆
1
−

𝜆0 + 𝜆1

2𝜆0
�⋆
0

‖‖‖‖

2

2

≤
‖‖‖‖
𝜆0 − 𝜆1

2𝜆0
�⋆
0

‖‖‖‖

2

2

.

Table 1   Strategies to determine F

Safe approaches based on the bounds in Sect. 4.1.1 Working set 
approaches

Single � (Sect. 4.1.2) Range of � (Sect. 4.1.3) (Sect. 4.2.1)

For removing a single 
feature

Safe screening (SS) rule Range-based safe screening 
(RSS)

Working set 
selection (WS)

For pruning a subtree Safe pruning (SP) rule Range-based safe pruning 
(RSP)

Working set 
pruning (WP)
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Theorem 3  (RRPB) Assuming that �0 satisfies ‖�0 − �⋆
0
‖2 ≤ 𝜖 , the optimal solution �⋆

1
 for 

�1 must satisfy

In Theorem 1, the reference �0 is only assumed to be close to �⋆
0
 within the radius � 

instead of assuming that �⋆
0
 is available. For example, � can be obtained using the DGB 

(Theorem 1).
Similar bounds to those derived here were previously considered for the triplet screen-

ing of metric learning on usual numerical data (Yoshida et  al. 2018, 2019b). Here, we 
extend a similar idea to derive subgraph screening.

4.1.2 � Safe screening and safe pruning rules

Theorems 1 and 3 identify the regions where the optimal solution exists using a current 
feasible solution � . Further, from (6), when Ck,∶�

⋆ ≤ 𝜆 , we have m⋆
k
= 0 . This indicates 

that

where B is a region containing the optimal solution �⋆ , i.e., �⋆ ∈ B . As we derived in 
Sect. 4.1.1, the sphere-shaped B can be constructed using feasible primal and dual solu-
tions. By solving this maximization problem, we obtain the following safe screening (SS) 
rule.

Theorem  4  (SS Rule) If the optimal solution �⋆ exists in the bound 
B = {� ∣ ‖� − q‖2

2
≤ r2} , the following rule holds

Theorem 4 indicates that we can eliminate unnecessary features by evaluating the con-
dition shown in (16). Here, the theorem is written in a general form, and in practice, q 
and r can be defined by the center and a radius of one of the sphere bounds, respectively. 
An important property of this rule is that it guarantees optimality, meaning that the sub-
problems (9) and (10) have the exact same optimal solution to the original problem if F  
is defined through this rule. However, it is still necessary to evaluate the rule for all p fea-
tures, which is currently intractable. To avoid this problem, we derive a pruning strategy on 
the graph mining tree, which we call the safe pruning (SP) rule.

Theorem  5  (SP Rule) If the optimal solution �⋆ is in the bound 
B = {� ∣ ‖� − q‖2

2
≤ r2, q ≥ 0} , the following rule holds

This theorem is a direct consequence of Lemma 1. If this condition holds for a node k 
during the tree traversal, a subtree below that node can be pruned. This means that we can 
safely eliminate unnecessary subgraphs even without enumerating them. In this theorem, 
note that B has an additional non-negative constraint q ≥ 0 , but this is satisfied by all the 
bounds in Sect. 4.1.1 because of the non-negative constraint in the dual problem.

‖‖‖‖
�⋆
1
−

𝜆0 + 𝜆1

2𝜆0
�0

‖‖‖‖2
≤
‖‖‖‖
𝜆0 − 𝜆1

2𝜆0
�0

‖‖‖‖2
+
(𝜆0 + 𝜆1

2𝜆0
+

|𝜆0 − 𝜆1|
2𝜆0

)
𝜖.

(15)max
�∈B

Ck,∶� ≤ 𝜆 ⇒ m⋆
k
= 0,

(16)Ck,∶q + r‖Ck,∶‖2 ≤ 𝜆 ⇒ m⋆
k
= 0.

(17)Prune(k|q, r) ≤ 𝜆 ⇒ m⋆
k�
= 0. for ∀k� ⊇ k.
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4.1.3 � Range‑based safe screening and safe pruning

The SS and SP rules apply to a fixed � . The range-based extension identifies an interval of 
� for which the satisfaction of SS/SP is guaranteed. This is particularly useful for the path-
wise optimization or regularization path calculation, where the problem must be solved 
with a sequence of � . We assume that the sequence is sorted in descending order, as opti-
mization algorithms typically start from the trivial solution m = 0 . Let � = �1 ≤ �0 . By 
combining RRPB with the rule (16), we obtain the following theorem.

Theorem 6  (Range-based Safe Screening (RSS)) For any k, the following rule holds

where

This rule indicates that we can safely ignore mk for � ∈ [�a, �0] , while if 𝜆a > 𝜆0 , the 
weight mk cannot be removed by this rule. For SP, the range-based rule can also be derived 
from (17).

Theorem 7  (Range-based Safe Pruning (RSP)) For any k′ ⊇ k , the following pruning rule 
holds:

where

This theorem indicates that, while � ∈ [��
a
, �0] , we can safely remove the entire subtree 

of k. Analogously, if the feature vector is generated from g(x) = 1x>0 (i.e., binary), the fol-
lowing theorem holds.

Theorem 8  (Range-Based Safe Pruning (RSP) for binary feature) Assuming g(x) = 1x>0 in 
(2), a and b in Theorem 7 can be replaced with

(18)𝜆a ≤ 𝜆 ≤ 𝜆0 ⇒ m⋆
k
= 0,

�a ∶=
�0(2�‖Ck,∶‖2 + ‖�0‖2‖Ck,∶‖2 + Ck,∶�0)

2�0 + ‖�0‖2‖Ck,∶‖2 − Ck,∶�0

.

(19)𝜆�
a
∶=

𝜆0(2𝜖b + ‖�0‖2b + a)

2𝜆0 + ‖�0‖2b − a
≤ 𝜆 ≤ 𝜆0 ⇒ m⋆

k�
= 0,

a ∶=
∑

i∈[n]

∑

l∈Di

�0il max{xl,k, xi,k}
2,

b ∶=

√√√√∑

i∈[n]

[
∑

l∈Di

max{xi,k, xl,k}
4 +

∑

j∈Si

max{xi,k, xj,k}
4

]
.

a ∶=
∑

i∈[n]

max

{
∑

l∈Di

�0ilxl,k, xi,k

[
∑

l∈Di

�0il −
∑

j∈Si

�0ij(1 − xj,k)

]}
,

b ∶=

√√√√∑

i∈[n]

[
∑

l∈Di

max{xi,k, xl,k} +
∑

j∈Si

max{xi,k, xj,k}

]
.
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Because these constants a and b are derived from the tighter bound in Lemma 2, the 
obtained range becomes wider than the range in Theorem 7.

Once we calculate �a and �′
a
 of (18) and (19) for some � , they are stored at each node of 

the tree. Subsequently, such �a and �′
a
 can be used for the next tree traversal with different 

�′ . If the conditions of (18) or (19) are satisfied, the node can be skipped (RSS) or pruned 
(RSP). Otherwise, we update �a and �′

a
 by using the current reference solution.

4.2 � Working set method

Safe rules are strong rules in the sense that they can completely remove features; thus, they 
are sometimes too conservative to fully accelerate the optimization. In contrast, the work-
ing set selection is a widely accepted heuristic approach to selecting a subset of features.

4.2.1 � Working set selection and working set pruning

The working set (WS) method optimizes the problem with respect to only selected working 
set features. Then, if the optimality condition for the original problem is not satisfied, the 
working set is reselected and the optimization on the new working set restarts. This process 
iterates until optimality on the original problem is achieved.

Besides the safe rules, we use the following WS selection criterion, which is obtained 
directly from the KKT conditions:

If this inequality is satisfied, the k-th dimension is predicted as m⋆
k
= 0 . Hence, the working 

set is defined by

Although m⋆
i
= 0 for i ∉ W is not guaranteed, the final convergence of the procedure is 

guaranteed by the following theorem.

Theorem 9  (Convergence of WS) Assume that there is a solver for the sub-problem (9) (or 
equivalently (10)) that returns the optimal solution for given F  . The working set method, 
which iterates optimizating the sub-problem with F = W and updating W alternately, 
returns the optimal solution of the original problem in finite steps.

However, here again, the inequality (20) needs to be evaluated for all features, which is 
computationally intractable.

The same pruning strategy as for SS/SP can be incorporated into working set selection. 
The criterion (20) is also a special case of (11), and Lemma 1 indicates that if the following 
inequality

holds, then no k′ ⊇ k is included in the working set. We refer to this criterion as working 
set pruning (WP).

(20)Ck,∶� ≤ �.

W ∶= {k ∣ Ck,∶� > 𝜆}.

PruneWP(k) ∶= Prune(k|�, 0) ≤ �,
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4.2.2 � Relation with safe rules

Note that for the working set method, we may need to update W multiple times, unlike in 
the safe screening approaches, as shown by Theorem 9. Instead, the working set method 
can usually exclude a larger number of features compared with safe screening approaches. 
In fact, when the condition of the SS rule (16) is satisfied, the WS criterion (20) must like-
wise be satisfied. Because all the spheres (DGB, RPB and RRPB) contain the reference 
solution � , which is usually the current solution, the inequality

holds, where B is a sphere created by DGB, RPB or RRPB. This indicates that when the SS 
rule excludes the k-th feature, the WS also excludes the k-th feature. However, to guarantee 
convergence, WS needs to be fixed until the sub-problem (9)–(10) is solved (Theorem 9). 
In contrast, the SS rule is applicable anytime during the optimization procedure without 
affecting the final optimality. This enables us to apply the SS rule even to the sub-problem 
(9)–(10), where F  is defined by WS as shown in Step 2 of Fig. 2 (dynamic screening).

For the pruning rules, we first confirm the following two properties:

where q ∈ ℝ
2nK
+

 is the center of the sphere, r ≥ 0 is the radius, and C ∈ ℝ is a constant. 
In the case of DGB, the center of the sphere is the reference solution � itself, i.e., q = � . 
Then, the following relation holds between the SP criterion Prune(k|q, r) and WP criterion 
PruneWP(k):

This once more indicates that when the SP rule is satisfied, the WP rule must be satisfied 
as well. When the RPB or RRPB sphere is used, the center of the sphere is q =

�0+�1

2�0
�0 . 

Assuming that the solution for �0 is used as the reference solution, i.e., � = �0 , we obtain

Using this inequality, we obtain

From this inequality, if 𝜆1 > 𝜆0 , then Prune(k|q, r) > PruneWP(k) (note that PruneWP(k) ≥ 0 
because � ≥ 0 ), indicating that the pruning of WS is always tighter than that of the safe 
rule. However, in our algorithm presented in Sect. 5, 𝜆1 < 𝜆0 holds because we start from 

(21)Ck,∶� ≤ max
��∈B

Ck,∶�
�

Prune(k|q, r) ≥ Prune(k|q, 0),
Prune(k|Cq, 0) = C Prune(k|q, 0),

Prune(k|q, r) = Prune(k|�0, r) ≥ Prune(k|�0, 0) = PruneWP(k).

Prune(k|q, r) = Prune

(
k|
�0 + �1

2�0
�, r

)

≥ Prune

(
k|
�0 + �1

2�0
�, 0

)

=
�0 + �1

2�0
Prune(k|�, 0)

=
�0 + �1

2�0
PruneWP(k).

Prune(k|q, r) − PruneWP(k) ≥
�1 − �0

2�0
PruneWP(k).
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a larger value of � and gradually decrease it. Then, this inequality does not hold, and 
Prune(k|q, r) < PruneWP(k) becomes a possibility.

When the WS and WP rules are strictly tighter than the SS and SP rules, respectively, 
using both of WS/WP and SS/SP rules is equivalent to using WS/WP only (except for 
dynamic screening). Even in this case, the range-based safe approaches (the RSS and RSP 
rules) can still be effective. When the range-based rules are evaluated, we obtain the range 
of � such that the SS or SP rule is satisfied. Thus, as long as � is in that range, we do not 
need to evaluate any safe or working set rules.

5 � Algorithm and computations

5.1 � Training with path‑wise optimization

We employ path-wise optimization (Friedman et al. 2007), where the optimization starts 
from � = �max , which gradually decreases � while optimizing m . As can be seen from (8), 
�max is defined by the maximum of the inner product Ck,∶� . This value can also be found 
by a tree search with pruning. Suppose that we calculate Ck,∶� while traversing the tree and 
𝜆̂max is the current maximum value during the traversal. Using Lemma 1, we can derive the 
pruning rule

If this condition holds, the descendant nodes of k cannot be maximal, and thus we can 
identify �max without calculating Ck,∶� for all candidate features.

Algorithm  1 shows the outer loop of our path-wise optimization. The TRAVERSE 
and SOLVE functions in Algorithm  1 are shown in Algorithm  2 and  3, respectively. 
Algorithm 1 first calculates �max which is the minimum � at which the optimal solution 
is m⋆ = 0 (line 3). The outer loop in lines 5-14 is the process of decreasing � with the 
decreasing rate R. The TRAVERSE function in line 7 determines the subset of features F  
by traversing tree with SS and WS. The inner loop (line 9-13) alternately solves the optimi-
zation problem with the current F  and updates F  until the duality gap becomes less than 
the given threshold eps.

Algorithm  2 shows the TRAVERSE function, which recursively visits tree nodes to 
determine F  . The variable node.pruning contains �′

a
 of RSP, and if the RSP condition 

(19) is satisfied (line 3), the function returns the current F  (the node is pruned). The varia-
ble node.screening contains �a of RSS, and if the RSS condition (18) is satisfied (line 
5), this node can be skipped, and the function proceeds to the next node. If these two con-
ditions are not satisfied, the function 1) updates node.pruning and node.screen-
ing if update is true, and 2) evaluates the conditions of RSP and WP (line 10), and RSS 
and WS (line 14). In lines 17-18, gSpan expands the children of the current node, and for 
each child node, the TRAVERSE function is called recursively.

Algorithm  3 shows a solver for the primal problem with the subset of features F  . 
Although we employ a simple projected gradient algorithm, any optimization algorithm 
can be used in this process. In lines 7-10, the SS rule is evaluated at every after freq itera-
tions. Note that this SS is only for the sub-problems (9) and (10) created by the current F  
(not for the original problems). 

Prune(k|�, 0) ≤ 𝜆̂max.
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Algorithm 1: Path-wise Optimization
1 function PathwiseOptimization(R, T, freq,MaxIter, eps)
2 m0 = 0,α0 = [2L, . . . , 2L, 0, . . . , 0], ε = 0
3 λ0 = λmax = maxk Ck,:α0 � compute λmax
4 Initialize root node as root.children = empty, root.screening = ∞, and

root.pruning = ∞
5 for t ∈ {1, 2, . . . , T} do
6 λt = Rλt−1
7 F = Traverse(λt−1, λt,αt−1, ε, root, true) � get working set & update

range of λ
8 mt = mt−1
9 repeat

10 mt,αt, P = Solve(λt,mt,F , freq,MaxIter, eps)
11 F = Traverse(null, λt,αt, null, root, false) � update working set

12 gap = P −DF
λt

(αt)
13 until gap

P
≤ eps � check optimality

14 ε = 2
√
gap

15 return {mt}t=T
t=0

Algorithm 2: Traverse gSpan with RSSP+WSP
1 function Traverse(λ0, λ,α0, ε, node, update)
2 F = {}, k = node.feature
3 if node.pruning ≤ λ then � RSP rule
4 return F
5 else if node.screening ≤ λ then � RSS rule
6 do nothing
7 else � update the range of λ if update = true
8 if update = true then
9 node.pruning = λ0(2εb+‖α0‖2b+a)

2λ0+‖α0‖2b−a
� eq.(19)

10 if node.pruning ≤ λ or PruneWP(k) ≤ λ then
11 return F
12 if update = true then

13 node.screening = λ0(2ε‖Ck,:‖2+‖α0‖2‖Ck,:‖2+Ck,:α0)
2λ0+‖α0‖2‖Ck,:‖2−Ck,:α0

� eq.(18)

14 if node.screening > λ and Ck,:α0 > λ then
15 F = F ∪ {k}

16 createChildren(node)
17 for child ∈ node.children do
18 F = F ∪ Traverse(λ0, λ,α0, ε, child, update)

19 return F
20 function createChildren(node)
21 if node.children = empty then
22 Set node.children by gSpan
23 for child = node.children do
24 child.children = empty
25 child.screening = ∞, child.pruning = ∞
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Algorithm 3: Gradient descent with dynamic screening
1 function Solve(λ,m,F , freq,MaxIter, eps) � solve primal problem PF

λ , which is
considered only for feature set F

2 for iter ∈ {0, 1, . . . ,MaxIter} do
3 Compute α by (7)
4 gap = PF

λ (m)−DF
λ (α)

5 if gap
PF
λ (m)

≤ eps then � convergence

6 return m,α, PF
λ (m)

7 if mod(iter, freq) = 0 then
8 for k ∈ F do � perform dynamic screening
9 if Ck,:α+ 2

√
gap‖Ck,:‖2 ≤ λ then � SS by DGB

10 F = F − {k}

11 m = [m− γ∇PF
λ (m)]+ � update m (γ: step-size)

12 return m,α, PF
λ (m)

5.2 � Enumerating subgraphs for test data

To obtain a feature vector for test data, we only need to enumerate subgraphs with mk ≠ 0 . 
When gSpan is used as a mining algorithm, a unique code, called minimum DFS code, is 
assigned to each node. If a DFS code for a node is (a1, a2,… , an) , a child node is repre-
sented by (a1, a2,… , an, an+1) . This enables us to prune nodes that does not generate sub-
graphs with mk ≠ 0 . Suppose that a subgraph (a1, a2, a3) = (x, y, z) must be enumerated, 
and that we are currently at node (a1) = (x) . Then, a child with (a1, a2) = (x, y) should be 
traversed, but a child with (a1, a2) = (x,w) cannot generate (x, y, z), and consequently we 
can stop the traversal of this node.

5.3 � Post‑processing

5.3.1 � Learning mahalanobis distance for selected subgraphs

Instead of m , the following Mahalanobis distance can be considered

where M is a positive definite matrix. Directly optimizing M requires O(p2) primal vari-
ables and semi-definite constraint, making the problem computationally expensive, even 
for relatively small p. Thus, as optional post-processing, we consider optimizing the 
Mahalanobis distance (22) for a small number of subgraphs selected by the optimized m . 
Let H ⊆ G be a set of subgraphs mi(H) > 0 for H ∈ H and zi be a h ∶= |H| dimensional 
feature vector consisting of �H(Gi) for H ∈ H . For M ∈ ℝ

h×h , we consider the following 
metric learning problem:

(22)dM(xi, xj) = (xi − xj)
⊤M(xi − xj),



1783Machine Learning (2021) 110:1765–1811	

1 3

Above, R ∶ ℝ
h×h

→ ℝ is a regularization term for M , where a typical setting is 
R(M) = trM +

�

2
‖M‖2

F
 with tr representing the trace of a matrix. This metric can be more 

discriminative, because it is optimized to the training data with a higher degree of freedom.

5.3.2 � Vector representation of a graph

An explicit vector representation of an input graph can be obtained using optimized m as 
follows:

Unlike the original xi , the new representation x′
i
 is computationally tractable because of the 

sparsity of m , and simultaneously, this space should be highly discriminative. This prop-
erty is beneficial for further analysis of the graph data. We show an example of applying 
the decision tree to the learned space later in the paper.

In the case of the general Mahalanobis distance given in Sect. 5.3.1, we can obtain fur-
ther transformation. Let M = V�V⊤ be the eigenvalue decomposition of the learned M . 
By employing the regularization term R(M) = trM +

�

2
‖M‖2

F
 , some of the eigenvalues of 

M can be shrunk to 0 because trM is equal to the sum of the eigenvalues. If M has h′ < h 
non-zero eigenvalues, � can be written as a h� × h� diagonal matrix, and V is a h × h� matrix 
such that each column is the eigenvector of a non-zero eigenvalue. Then, a representation 
of the graph is

This can be considered as a supervised dimensionality reduction from h- to h′-dimensional 
space. Although each dimension no longer corresponds to a subgraph in this representa-
tion, the interpretation remains clear because each dimension of the transformed vector is 
simply a linear combination of zi.

6 � Extensions

In this section, we consider three extensions of IGML: applications to other data types, 
employing a triplet loss function, and introducing vertex-label similarity.

6.1 � Application to other structured data

In addition to graph data, the proposed method can be applied to itemset/sequence data . 
For an itemset, the Jaccard index, defined as the size of the intersection of two sets divided 
by the size of the union, is the most popular similarity measure. Although a few studies 
have considered kernels for an itemset (Zhang et al. 2007), to the best of our knowledge, 
it remains difficult to adapt a metric on a given labeled dataset in an interpretable man-
ner. In contrast, there are many kernel approaches for sequence data. The spectrum kernel 
(Leslie et al. 2001) creates a kernel matrix by enumerating all k-length subsequences in the 

min
M⪰O

∑

i∈[n]

[
∑

l∈Di

�L(dM(zi, zl)) +
∑

j∈Si

�−U(−dM(zi, zj))

]
+ �R(M).

(23)x�
i
=
√
m◦xi

(24)
√
�V⊤zi.
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given sequence. The mismatch kernel (Leslie et al. 2004) enumerates subsequences allow-
ing m discrepancies in a pattern of length k. The gappy kernel (Leslie and Kuang 2004; 
Kuksa et al. 2008) counts the number of k-mers (subsequences) with a certain number of 
gaps g that appear in the sequence. The above kernels require the value of hyperparam-
eter k, although various lengths may in fact be related. The motif kernel (Zhang and Zaki 
2006; Pissis et al. 2013; Pissis 2014) counts the number of “motifs” appearing in the input 
sequences, the “motif” must be decided by the user. Because these approaches are based on 
the idea of the ‘kernel’, they are unsupervised, unlike our approach.

By employing a similar approach to the graph input, we can construct a feature repre-
sentation �H(Xi) for both itemset and sequence data. For the itemset data, the i-th input is 
a set of items Xi ⊆ I  , where I  is a set of all items, e.g., X1 = {a, b},X2 = {b, c, e},… with 
the candidate items I = {a, b, c, d, e} . The feature �H(Xi) is defined by 1H⊆Xi

 for ∀H ⊆ I  . 
This feature �H(Xi) also has monotonicity �H� (Xi) ≤ �H(Xi) for H′ ⊇ H . In sequence data, 
the i-th input Xi is a sequence of items. Thus, the feature �H(Xi) is defined from the fre-
quency of a sub-sequence H in the given Xi . For example, if we have Xi = ⟨b, b, a, b, a, c, d⟩ 
and H = ⟨b, a⟩ , then H occurs twice in Xi . For sequence data, the monotonicity property is 
again guaranteed because �H� (Xi) ≤ �H(Xi) , where H is a sub-sequence of H′ . Because of 
these monotonicity properties, we can apply the same pruning procedures to both of item-
set and sequence data. Figure 3 shows examples of trees that can be constructed by itemset 
and sequence mining algorithms (Agrawal et al. 1994; Pei et al. 2001).

6.2 � Triplet loss

We formulate the loss function of IGML as the pair-wise loss (3). Triplet loss functions are 
also widely used in metric learning (e.g., Weinberger and Saul 2009):

where T  is an index set of triplets consisting of (i, j, l) satisfying yi = yj, yi ≠ yl . This loss 
incurs a penalty when the distance between samples in the same class is larger than the 
distance between samples in different classes. Because the loss is defined by a ‘triplet’ of 
samples, this approach can be more time-consuming than the pairwise approach. In con-
trast, the relative evaluation such as dm(xi, xj) < dm(xi, xl) (the j-th sample must be closer to 
the i-th sample than the l-th sample) can capture the higher-order relations between input 
objects rather than penalizing the pair-wise distance.

A pruning rule can be derived even for the case of triplet loss. By defining 
cijl ∶= cil − cij , the loss function can be written as

Because this has the same form as pairwise loss with L = 1 and U = 0 , the optimization 
problem is reduced to the same form as the pairwise case. We require a slight modification 
of Lemma 1 because of the change of the constant coefficients (i.e., from cij to cijl ). The 
equation (13) is changed to

∑

(i,j,l)∈T

�1(m
⊤cil −m⊤cij),

∑

(i,j,l)∈T

�1(m
⊤cijl).
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This is easily proven using

which is an immediate consequence of the monotonicity inequality (12).

6.3 � Considering vertex‑label similarity

Because IGML is based on the exact matching of subgraphs to create the feature �H(G) , 
it is difficult to provide a prediction for a graph that does not exactly match many of the 
selected subgraphs. Typically, this happens when the test dataset has a different distribu-
tion of vertex-labels. For example, in the case of the prediction on a chemical compound 
group whose atomic compositions are largely different from those in the training dataset, 
the exact match may not be expected as in the case of the training dataset. Therefore, we 
consider incorporating similarity/dissimilarity information of graph vertex-labels to relax 
this exact matching constraint. A toy example of vertex-label dissimilarity is shown in 
Fig. 4. In this case, the ‘red’ vertex is similar to the ‘green’ vertex, while it is dissimilar 
to the ‘yellow’ vertex. For example, we can create this type of table by using prior domain 
knowledge (e.g., chemical properties of atoms). Even when no prior information is avail-
able, a similarity matrix can be inferred using any embedding method (e.g., Huang et al. 
2017).

Because it is difficult to directly incorporate similarity information into our subgraph 
isomorphism-based feature �H(G) , we first introduce a relaxed evaluation of inclusion of 
a graph P in a given graph G. We assume that P is obtained from the gSpan tree of the 
training data. Our approach is based on the idea of ‘re-labeling’ graph vertex-labels in the 
Weisfeiler-Lehman (WL) kernel (Shervashidze et al. 2011), which is a well-known graph 
kernel with an approximate graph isomorphism test. Figure 5a shows an example of the re-
labeling procedure, which is performed in a fixed number of recursive steps. The number 
of steps is denoted as T ( T = 3 in the figure) and is assumed to be pre-specified. In step h, 
each graph vertex v has a level h hierarchical label LG(v, h) ∶= (F(h), S(h) = [S

(h)

1
,… , S(h)

n
]) , 

where F(h) is recursively defined by the level h − 1 hierarchical label of the same ver-
tex, i.e., F(h) = LG(v, h − 1) , and S(h) is a multiset created by the level h − 1 hierarchical 
labels LG(v�, h − 1) from all neighboring vertices v′ connected to v. Note that a multiset, 
denoted by ‘[, ]’, is a set where duplicate elements are allowed. For example, in the graph 
G shown on the right side of Fig. 5a, the hierarchical label of the vertex v1 on level h = 3 is 

(25)Prune(k|q, r) ∶=
∑

(i,j,l)∈T

qijl max{xi,k, xl,k}
2 + r

√∑

ijl

max{xi,k, xl,k}
4.

cijl,k� = (xi,k� − xl,k� )
2 − (xi,k� − xj,k� )

2 ≤ max{xi,k, xl,k}
2,∀k� ⊇ k,

Fig. 3   Schematic illustrations of trees and features for (A) itemset and (B) sequence data
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LG(v1, 3) = ((A, [B]), [(B, [A,C])]) . In this case, F(3) = (A, [B]) , which is equal to LG(v1, 2) , 
and S(3)

1
= (B, [A,C]) , which is equal to LG(v2, 2) . The original label A can also be regarded 

as a hierarchical label (A, [ ]) on the level h = 1 , but it is shown as ‘A’ for simplicity.
We define a relation of the inclusion ‘ ⊑ ’ between two hierarchical labels 

LP(u, h) = (F(h), S(h) = [S
(h)

1
,… , S(h)

m
]) and LG(v, h) = (F�(h), S�(h) = [S

�(h)

1
,… , S�(h)

n
]) , which 

originate from the two vertices u and v in graphs P and G, respectively. We say that LP(v, h) 
is included in LG(u, h) and denote it by

when the following recursive condition is satisfied: 

 where � ∶ [m] → [n] is an injection from [m] to [n] (i.e., �(i) ≠ �(j) when i ≠ j ), and 
∃𝜎(∧i∈[m]S

(h)

i
⊑ S

�(h)

𝜎(i)
) indicates that there exists an injection � that satisfies S(h)

i
⊑ S

�(h)

𝜎(i)
 for 

∀i ∈ [m] . The first condition (27a) is for the case of S(h) = S�(h) = [ ] , which occurs at the 
first level h = 1 , and in this case, it simply evaluates whether the two hierarchical labels are 
equal, i.e., F(h) = F�(h) . Note that when h = 1 , the hierarchical label is simply (X, []), where 
X is one of the original vertex-labels. In the other case (27b), both of the two conditions 
F(h) ⊑ F�(h) and ∃𝜎(∧i∈[m]S

(h)

i
⊑ S

�(h)

𝜎(i)
) are recursively defined. Suppose that we already eval-

uated the level h − 1 relation LP(u, h − 1) ⊑ LG(v, h − 1) for all pairs ∀(u, v) from P and G. 
Because F(h) = LP(u, h − 1) and F�(h) = LG(v, h − 1) , the condition F(h) ⊑ F�(h) is equivalent 
to LP(u, h − 1) ⊑ LG(v, h − 1) , which is assumed to be already obtained on the level h − 1 
computation. Because S(h)

i
 and S�(h)

i
 are also from hierarchical labels on level h − 1 , the con-

dition ∃𝜎(∧i∈[m]S
(h)

i
⊑ S

�(h)

𝜎(i)
) is also recursive. From the result of the level h − 1 evaluations, 

we can determine whether S(h)
i

⊑ S
�(h)

j
 holds for ∀(i, j) . Then, the evaluation of the condition 

∃𝜎(∧i∈[n]S
(h)

i
⊑ S

�(h)

𝜎(i)
) is reduced to a matching problem from i ∈ [m] to j ∈ [n] . This prob-

lem can be simply transformed into a maximum bipartite matching problem for a pair of 
{S

(h)

1
,… , S(h)

n
} and {S�(h)

1
,… , S�(h)

m
} , where edges exist on a set of pairs {(i, j) ∣ S(h)

i
⊑ S

�(h)

j
} . 

When the maximum number of matchings is equal to m, this means that there exists an 
injection �(i) satisfying ∧i∈[m]S

(h)

i
⊑ S

�(h)

𝜎(i)
 . It is well known that the maximum bipartite 

matching can be reduced to the maximum flow problem, which can be solved in the polyno-
mial time (Goldberg and Tarjan 1988). An example of the inclusion relationship is shown 
in Fig. 5b.

Let |P| and |G| be the numbers of vertices in P and G, respectively. Then, 
multisets of the level T hierarchical labels of all the vertices in P and G 
are written as [LP(ui, T)]i∈[|P|] ∶= [LP(u1, T), LP(u2, T),… , LP(u|P|, T)] and 
[LG(vi, T)]i∈[|G|] ∶= [LG(v1, T), LG(v2, T),… , LG(v|G|, T)] , respectively. For a feature of a 

(26)LP(v, h) ⊑ LG(u, h)

(27)

Fig. 4   Dissimilarity matrix 
among vertex-labels
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given input graph G, we define the approximate subgraph isomorphism feature (ASIF) as 
follows:

This feature approximately evaluates the existence of a subgraph P in G using the level T 
hierarchical labels. ASIF satisfies the monotone decreasing property (12), i.e., xP′⊑G ≤ xP⊑G 
if P′ ⊒ P , because the number of conditions in (27) only increases when P grows.

To incorporate label dissimilarity information (as shown in Fig. 4) into ASIF, we first 
extend the label inclusion relation (26) by using the concept of optimal transportation cost. 
As a label similarity-based relaxed evaluation of LP(v, h) ⊑ LG(u, h) , we define an asym-
metric cost between LP(u, h) and LG(v, h) as follows 

 where the second term of (29b) is

which we refer to as the label transportation cost (LTC) representing the optimal trans-
portation from the multiset S(h) to another multiset S�(h) among the set of all injections 
I ∶= {∀� ∶ [m] → [n] ∣ �(i) ≠ �(j) for i ≠ j} . The equation (29) has a recursive struc-
ture similar to that of (26). The first case (29a) occurs when S(h) = S�(h) = [ ] , which 
is at the first level h = 1 . In this case, cost1 is defined by dissimilarity(F(1),F�(1)) , which 
is directly obtained as a dissimilarity between original labels since F(1) and F�(1) stem 
from the original vertex-labels. In the other case (29b), the cost is recursively defined 
as the sum of the cost from F(h) to F�(h) and the optimal-transport cost from S(h) to S�(h) . 
Although this definition is recursive, as in the case of ASIF, the evaluation can be per-
formed by computing sequentially from h = 1 to h = T  . Because F(h) = LP(v, h − 1) and 

(28)xP⊑G ∶=

{
1, if ∃𝜎(∧i∈[|P|]LP(ui, T) ⊑ LG(v𝜎(i), T)),

0, otherwise.

(29)

(30)LTC(S(h) → S�(h), costh−1) ∶= min
�∈I

∑

i∈[m]

costh−1(S
(h)

i
→ S

�(h)

�(i)
),

 

(a) 

(b) 

Fig. 5   Re-labeling and inclusion relationship. (X, [ ]) is abbreviated as X, where X ∈ {A,B,C} . a In each 
step, all vertices are re-labeled by combining a vertex-label and neighboring labels at the previous step. b 
Example of inclusion relationship, defined by (26) and (27). The relation LP(u2, 3) ⊑ LG(v2, 3) is satisfied 
between u2 and v2 at Step3
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F�(h) = LG(u, h − 1) , the first term costh−1(F(h)
→ F�(h)) represents the cost between hier-

archical labels on the level h − 1 , which is assumed to already have been obtained. The 
second term LTC(S(h) → S�(h), costh−1) evaluates the best match between [S(h)

1
,… , S(h)

m
] and 

[S
�(h)

1
,… , S�(h)

n
] , as defined in (30). This matching problem can be seen as an optimal trans-

portation problem, which minimizes the cost of the transportation of m items to n ware-
houses under the given cost matrix specified by costh−1 . The values of costh−1 for all the 
pairs in [m] and [n] are also available from the computation at the level h − 1 . For the given 
cost values, the problem of LTC(S(h) → S�(h), costh−1) can be reduced to a minimum-cost-
flow problem on a bipartite graph with a weight costh−1(S

(h)

i
→ S

�(h)

j
, costh−1) between S(h)

i
 

and S�(h)
j

 , which can be solved in polynomial time (Goldberg and Tarjan 1988).
We define an asymmetric transport cost for two graphs P and G, which we call the graph 

transportation cost (GTC), as LTC from all level T hierarchical labels of P to those of G:

Then, as a feature of the input graph G, we define the following sim-ASIF:

where 𝜌 > 0 is a hyperparameter. This sim-ASIF can be regarded as a generalization of 
(28) based on the vertex-label similarity. When dissimilarity(F(1),F�(1)) ∶= ∞ × 1F(1)≠F�(1) , 
the feature (31) is equivalent to (28). Similarly to ASIF, GTC(P → G) satisfies the monoto-
nicity property

because the number of vertices to transport increases as P grows. Therefore, sim-ASIF (31) 
satisfies the monotonicity property, i.e., xP′→G ≤ xP→G if P′ ⊒ P.

From the definition (31), sim-ASIF always has a positive value xP→G > 0 except when 
GTC(P → G) = ∞ , which may not be suitable for identifying a small number of important 
subgraphs. Further, in sim-ASIF, the bipartite graph in the minimum-cost-flow calculation 
LTC(S → S�, costh−1) is always a complete bipartite graph, where all vertices in S are con-
nected to all vertices in S′ . Because the efficiency of most of standard minimum-cost-flow 
algorithms depends on the number of edges, this may entail a large computational cost. 
As an extension to mitigate these issues, a threshold can be introduced into sim-ASIF as 
follows:

where t > 0 is a threshold parameter. In this definition, x = 0 when 
exp{−�GTC(P → G)} ≤ t , i.e., GTC(P → G) ≥ −(log t)∕� . This indicates that if a cost is 
larger than −(log t)∕� , we can regard the cost as ∞ . Therefore, at any h, if the cost between 
S
(h)

i
 and S�(h)

j
 is larger than −(log t)∕� , the edge between S(h)

i
 and S�(h)

j
 is not necessary. Then, 

the number of matching pairs can be less than m in LTC(⋅) because of the lack of edges, 
and in this case, the cost is regarded as ∞ . Furthermore, if costh(F(h)

→ F�(h)) is larger than 
−(log t)∕� in (29b), the computation of LTC(S(h) → S�(h), costh−1) is not required because 
x = 0 is determined.

Note that transportation-based graph metrics have been studied (e.g., Titouan et  al. 
2019), but the purpose of such studies was to evaluate the similarity between two graphs 
(not inclusion). Our (sim-)ASIF provides a feature with the monotonicity property as a 

GTC(P → G) ∶= LTC([LP(ui, T)]i∈[|P|] → [LG(vi, T)]i∈[|G|], costT ).

(31)xP→G ∶= exp{−�GTC(P → G)},

GTC(P → G) ≤ GTC(P�
→ G) for P� ⊒ P

(32)x ∶=

{
exp{−𝜌GTC(P → G)}, exp{−𝜌GTC(P → G)} > t

0, exp{−𝜌GTC(P → G)} ≤ t
,
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natural relaxation of subgraph isomorphism, by which the optimality of our pruning strat-
egy can be guaranteed. In contrast, there have been many studies on inexact graph match-
ing (Yan et al. 2016) such as eigenvector- (Leordeanu et al. 2012; Kang et al. 2013), edit 
distance- (Gao et  al. 2010), and random walk-based (Gori et  al. 2005; Cho et  al. 2010) 
methods. Some of these methods provide a score for the matching, which can be seen as a 
similarity score between a searched graph pattern and a matched graph. However, they do 
not guarantee the monotonicity of the similarity score for pattern growth. If the similarity 
score satisfies monotonicity, it can be combined with IGML. Although we only consider 
vertex-labels, edge-labels can also be incorporated into (sim-)ASIF. A simple approach is 
to transform a labeled-edge into a labeled-node with two unlabeled edges, such that (sim-)
ASIF is directly applicable.

7 � Experiments

We evaluate the performance of IGML using the benchmark datasets shown in Table 3. 
These datasets are available from Kersting et  al. (2016). We did not use edge labels 
because the implementations of compared methods cannot deal with them, and the maxi-
mum connected graph is used if the graph is not connected. Note that IGML currently can-
not directly deal with continuous attributes, so we did not use them. A possible approach 
would be to perform discretization or quantization before the optimization, such as tak-
ing grid points or applying clustering in the attribute space. Building a more elaborated 
approach, such as dynamically determining discretization, is a possible future directions. 
The #maxvertices column in the table indicates the size (number of vertices) of the maxi-
mum subgraph considered in IGML. To fully identify important subgraphs, a large value 
of #maxvertices is preferred, but this can cause a correspondingly large memory require-
ment to store the gSpan tree. For each dataset, we set the largest value for which IGML 
could finish with a tractable amount memory. The sets Si and Di were selected as the ten 
nearest neighborhoods of xi ( K = |Si| = |Di| = 10 ) by using the WL-Kernel. A sequence 
of the regularization coefficients was created by equally spacing 100 grid points on a log-
arithmic scale between �max and 0.01�max . We set the minimum support in gSpan as 0, 
meaning that all the subgraphs in a given dataset were enumerated for as far as the graph 
satisfies the #maxvertices constraint. The gSpan tree is mainly traversed when the begin-
ning of each � as shown in Algorithm 1 (in the case of WS-based approaches, the tree is 
also traversed at every working set update). Note that the tree is dynamically constructed 
during this traversal without constructing the entire tree beforehand. In the working-set 
method, after convergence, it is necessary to traverse the tree again in order to confirm the 
overall optimality. If the termination condition is not satisfied, optimization with a new 
working set must be performed. The termination condition for the optimization is that the 
relative duality gap is less than 10−6 . In the experiment, we used g(x) = 1x>0 in �H(G) with 
Lemma 2 unless otherwise noted. The dataset was randomly divided in such a way that the 
ratio of partitioning was train ∶ validation ∶ test = 0.6 ∶ 0.2 ∶ 0.2 , and our experimental 
results were averaged over 10 runs.

7.1 � Evaluating computational efficiency

In this section, we confirm the effect of the proposed pruning methods. We evaluated four 
settings: Safe Screening and Pruning: “SSP”, Range based Safe Screening and Pruning: 
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“RSSP”, Working set Selection and Pruning: “WSP”, and the combination of WSP and 
RSSP: “WSP+RSSP”. Each method performed dynamic screening with DGB at every 
update of m . We here used the AIDS dataset, where #maxvertices=30. In this dataset, 
when we fully traversed the gSpan tree without safe screening/working set selection, the 
number of tree nodes was more than 9.126 × 107 , at which point our implementation with 
gSpan stopped because we ran out of memory.

Figure 6a shows the size of F  after the first traverse at each � , and the number of non-
zero mk after the optimization is also shown as a baseline. We first observe that both 
approaches significantly reduced the number of features. Even for the largest case, where 
approximately 200 of features were finally selected by mk , only less than 1000 features 
remained. We observe that WSP exhibited significantly smaller values than SSP. Instead, 
WSP may need to perform the entire tree search again because it cannot guarantee the suf-
ficiency of the current F  , while SSP does not need to search the tree again because it guar-
antees that F  must contain all mk ≠ 0.

The number of visited nodes in the first traversal at each � is shown in Fig. 6b. Here, 
we added RSSP and WSP+RSSP, which are not shown in Fig. 6a. Note that the #remain-
ing dimensions is same for SSP and RSSP, and for WSP and WSP+RSSP. Because RSSP 
is derived from SSP, it does not change the number of screened features. As we discussed 
in Sect. 4.2.2, WSP removes more features than RSSP, though it is not safe. We observed 
that the #visited nodes of SSP was the largest, but it was less than approximately 27000 
( 27000∕9.126 × 107 ≈ 0.0003 ). Comparing SSP and WSP, we see that WSP pruned a 
larger number of nodes. In contrast, the #visited nodes of RSSP was less than 6000. The 
difference between SSP and RSSP indicates that a larger number of nodes can be skipped 
by the range-based method. Therefore, by combining the node skip by RSSP with the 
stronger pruning of WSP, the #visited nodes was further reduced. RSSP and WSP+RSSP 
had larger values at �0 than the subsequent �i . This is because of the effect of range-based 
screening and pruning. At �0 , every visited node in the tree calculates the ranges in which 
the screening and pruning rules are satisfied (i.e., RSS and RSP rules), and as a result, 
some nodes can be skipped during that �i is in those ranges. At every �i for i > 0 , the 
ranges are updated only in the (non-skipped) visited nodes, and thus, the range-based rules 
take the effect except for �0.

The total time of the path-wise optimization is shown in Table 2. RSSP and WSP+RSSP 
were fast with regard to the traversing time, and WSP and WSP+RSSP were fast with 
regard to the solving time. Note that because the tree is dynamically constructed during 
the traverse, the ‘Traverse’ time includes the time spent on the tree construction. In total, 
WSP+RSSP was the fastest. These results indicate that our method only took approxi-
mately 1 minute to solve the optimization problem with more than 9.126 × 107 variables. 
We also show the computational cost evaluation for other datasets in the Appendix I.

Although we have confirmed that IGML works efficiently on several benchmark data-
sets, completely elucidating general complexity of IGML is remains as future work. The 
practical complexity at least depends on the graph size in the training data, #maxvertices, 
#samples, and the pruning rate. In terms of the graph size, traversing a large graph dataset 
using gSpan can be intractable because it requires all matched subgraphs to be maintained 
at each tree node. Therefore, applying IGML to large graphs, e.g., graphs with more than 
thousands of nodes, would be difficult. Meanwhile, the scalability of IGML depends not 
only on the sizes of graphs but also strongly on the performance of the pruning. How-
ever, we still do not have any general analytic complexity evaluation for the rate of the 
pruning that avoids exponential worst-case computations. In fact, we observed that there 
exist datasets in which efficiency of the pruning is not sufficient. For example, on the 
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IMDB-BINARY and IMDB-MULTI datasets, which are also from (Kersting et al. 2016), 
a large number of small subgraphs are shared across all the different classes and instances 
(i.e., xi,k = 1 for ∀i ). Our upper bound in the pruning is based on the fact that xi,k′ ≤ xi,k for 
descendant node k′ in the mining tree. This bound becomes tighter when xi,k = 0 for many 
i because 0 is the lower bound of xi,k . In contrast, when many instances have xi,k = 1 , the 
bound can be loose, making traversal intractable. This is an important open problems com-
mon in predictive mining methods (Nakagawa et al. 2016; Morvan and Vert 2018).

7.2 � Predictive accuracy comparison

In this section, we compare the prediction accuracy of IGML with those of the Graphlet-
Kernel (GK)(Shervashidze et  al. 2009), Shortest-Path Kernel (SPK)(Borgwardt and 
Kriegel 2005), Random-Walk Kernel (RW)(Vishwanathan et al. 2010), Weisfeiler-Lehman 
Kernel (WL)(Shervashidze et  al. 2011), and Deep Graph Convolutional Neural Network 
(DGCNN)(Zhang et al. 2018a). We used the implementations available at the URLs in the 
footnote1. Note that we mainly compared methods for obtaining a metric between graphs. 
The graph kernel approach is one of most important existing approaches to defining a met-
ric space of non-vector structured data. Although kernel functions are constructed in an 
un-supervised manner, their high prediction performance has been widely shown. In par-
ticular, the WL kernel is known for its comparable classification performance to recent 
graph neural networks (e.g., Niepert et al. 2016; Morris et al. 2019). Meanwhile, DGCNN 
can provide a vector representation of an input graph by using the outputs of some middle 
layer, which can be interpreted that a metric space is obtained through a supervised learn-
ing. We did not compare with (Saigo et al. 2009; Nakagawa et al. 2016; Morvan and Vert 
2018) as they only focused on specific linear prediction models rather than building a gen-
eral discriminative space. We employed the k-nearest neighbors (k-nn) classifier to directly 
evaluate the discriminative ability of feature spaces constructed by IGML and each kernel 
function. We here employed the k-nn classifier for directly evaluating discriminative ability 
of feature spaces constructed by IGML and each kernel function. A graph kernel can be 

(a) (b)

Fig. 6   a Size of F  , and b number of visited nodes. Both were evaluated at the first traversal of each � , 
where the index is shown on the horizontal axis. The dataset employed here was AIDS

1  https://​github.​com/​ysig/​GraKeL for GK, http://​mlcb.​is.​tuebi​ngen.​mpg.​de/​Mitar​beiter/​Nino/​Graph​kerne​ls/ 
for the other graph kernel, and https://​github.​com/​muhan​zhang/​pytor​ch_​DGCNN for DGCNN.

https://github.com/ysig/GraKeL
http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/Graphkernels/
https://github.com/muhanzhang/pytorch_DGCNN
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seen as an inner-product k(Gi,Gj) = ⟨�(Gj),�(Gj)⟩ , where � is a projection from a graph 
to reproducing kernel Hilbert space. Then, the distance can be written as 
‖�(Gj) − �(Gj)‖ =

�
k(Gi,Gi) − 2K(Gi,Gj) + k(Gj,Gj) . The values of k for the k-nn were 

k = 1, 3, 5, 7, ..., 49 and hyperparameters of each method were selected using the validation 
data, and the prediction accuracy was evaluated on the test data. The graphlet size for GK 
was set up to 6. The parameter �RW for RW was set to the recommended 
𝜆RW = maxi∈ℤ∶10i<1∕d2 10

i , where d denotes the maximum degree. The loop parameter h of 
WL was selected from 0, 1, 2, ..., 10 by using the validation data. For DGCNN, the number 
of hidden units and their sort-pooling were also selected using the validation data, each 
ranging from 64, 128, 256 and from 40%, 60%, 80% , respectively.

The micro-F1 score for each dataset is shown in Table  3. “IGML (Diag)” indicates 
IGML with the weighted squared distance (1), and “IGML (Diag→Full)” indicates that 
with post-processing using the Mahalanobis distance (22). “IGML (Diag)” yielded the 
best or comparable to the best score on seven out of nine datasets. This result is impres-
sive because IGML uses a much simpler metric than the other methods. Among the seven 
datasets, “IGML (Diag→Full)” slightly improved the mean accuracy on four datasets, but 
the difference was not significant. This may suggest that the diagonal weighting can have 
enough performance in many practical settings. WL kernel also exhibited superior per-
formance, showing the best or comparable to the best accuracy on six datasets. DGCNN 
showed high accuracy with on the DBLP_v1 dataset, which has a large number of samples, 
while its accuracy was low for the other datasets.

7.3 � Illustrative examples of selected subgraphs

Figure 7 shows an illustrative example of IGML on the Mutagenicity dataset, where muta-
genicity was predicted from a graph representation of molecules. Figure 7a is a graphical 
representation of subgraphs, each of which has a weight shown in (b). For example, we can 
clearly see that subgraph #2 is estimated as an important sub-structure to discriminate dif-
ferent classes. Figure 7c shows a heatmap of the transformation matrix 

√
�V⊤ optimized 

for the thirteen features, containing three non-zero eigenvalues. For example, we see that 
the subgraphs of #10 and #12 have similar columns in the heatmap. This indicates that 
these two similar subgraphs (#10 contains #12) are shrunk to almost same representation 
by the regularization term R(M).

As another example of graph data analysis on the learned representation, we applied the 
decision tree algorithm to the obtained feature (23) on the Mutagenicity dataset. Although 
there has been a study constructing a decision tree directly for graph data (Nguyen et al. 
2006), it requires a severe restriction on the patterns to be considered for computational 
feasibility. In contrast, because (23) is a simple vector representation with a reasonable 
dimension, it is quite easy to apply the decision tree algorithm. We selected two paths from 

Table 2   Total time in path-wise 
optimization (sec) on AIDS 
dataset

Method ∖ Process Traverse Solve Total

SSP 25.9 ± 4.0 86.7 ± 14.1 112.7 ± 16.5
RSSP 7.7 ± 1.6 94.4 ± 15.1
WSP 39.1 ± 3.7 55.0 ± 12.1 94.1 ± 11.6
WSP+RSSP 7.4 ± 1.1 62.5 ± 12.3
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the obtained decision tree as shown in Fig. 8. For example, in the path (a), if a given graph 
contains “ O = N ”, and does not contain “ H − O − C − C = C − C −H ”, and contains 
“ N − C = C − C = C <

C

C
 ”, the given graph is predicted as y = 0 with probability 

140/146. Both rules clearly separate the two classes, which is highly insightful as we can 
trace the process of the decision based on the subgraphs.

7.4 � Experiments for three extensions

In this section, we evaluate the performance of the three extensions of IGML described in 
Sect. 6.

First, we evaluated the performance of IGML on itemset and sequence data using the 
benchmark datasets shown in the first two rows of Tables 4 and 5. These datasets can be 
obtained from (Dua and Graff 2017) and (Chang and Lin 2011), respectively. We set the 
maximum-pattern size considered by IGML as 30. Table  4 lists the micro-F1 scores on 
the itemset datasets. We used k-nn with the Jaccard similarity as a baseline, where k was 
selected using the validation set, as described in Sect. 7.2. The scores of both of IGML 
(Diag) and (Diag→Full) were superior to those of the Jaccard similarity on all datasets. 
Table  5 lists the micro-F1 scores on the sequence dataset. Although IGML (Diag) did 
not outperform the mismatch kernel (Leslie et al. 2004) for the promoters dataset, IGML 
(Diag→Full) achieved a higher F1-score than the kernel on all datasets. Figure  9 shows 
an illustrative example of sequences identified by IGML on the promoters dataset, where 
the task was to predict whether an input DNA sequence stems from a promoter region. 
Figure 9a is a graphical representation of the sequence, and the corresponding weights are 
shown in (b). For example, the sub-sequence #1 in (a) can be considered as an important 
sub-sequence to discriminate different classes.

Second, we show the results of the triplet formulation described in Sect. 6.2. To cre-
ate the triplet set T  , we followed the approach in Shen et  al. (2014), where k neighbor-
hoods in the same class xj and k neighborhoods in different classes xl were sampled for 
each xi ( k = 4 ). Here, IGML with the pairwise loss is referred to as ‘IGML (Pairwise)’, 
and IGML with the triplet loss is referred to as ‘IGML (Triplet)’. Table 6 compares the 
micro-F1 scores of IGML (Pairwise) and IGML (Triplet). IGML (Triplet) showed higher 
F1-scores than IGML (Pairwise) on three of nine datasets, but it was not computable on the 
two datasets due to running out of memory (OOM). This is because the pruning rule in the 
triplet case (25) was looser than in the pair-wise case.

Finally, we evaluated the sim-ASIF (32). We set the scaling factor of the exponential 
function as � = 1 , the threshold of the feature as t = 0.7 , and the number of re-labeling 
steps as T = 3 . We employed a simple heuristic approach to create a dissimilarity matrix 
among vertex-labels using labeled graphs in the given dataset. Suppose that the set of pos-
sible vertex-labels is L , and f (�,��) is the frequency that � ∈ L and �� ∈ L are adjacent 
in all graphs of the dataset. By concatenating f (�,��) for all �� ∈ L , we obtained a vector 
representation of a label � . We normalized this vector representation such that the vector 
had the unit L2 norm. By calculating the Euclidean distance of this normalized representa-
tions, we obtained the dissimilarity matrix of vertex-labels. We are particularly interested 
in the case where the distribution of the vertex-label frequency is largely different between 
the training and test datasets, because in this case the exact matching of IGML may not 
be suitable to provide a prediction. We synthetically emulated this setting by splitting the 
training and test datasets using a clustering algorithm. Each input graph was transformed 
into a vector created by the frequencies of each vertex-label � ∈ L contained in that graph. 
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Subsequently, we applied the k-means clustering to split the dataset into two clusters, for 
which C1 and C2 denote sets of assigned data points, respectively. We used C1 for the train-
ing and validation datasets and C2 is used as the test dataset, where |C1| ≥ |C2| . Following 
the same partitioning policy as in the above experiments, the size of the validation data was 

 

   

(a) (b)

(c)

Fig. 7   Examples of selected subgraphs. a: Illustrations of subgraphs. b: Learned weights of subgraphs. c: 
Transformation matrix heatmap (24)

(a)

(b)

Fig. 8   Examples of paths on decision tree constructed by selected subgraphs. #samples indicates the num-
ber of samples satisfying all preceding conditions
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set as the same size of C2 , resulting from which the size of the training set was |C1| − |C2| . 
Table 7 lists the comparison of the micro-F1 scores on the AIDS, Mutagenicity, and NCI1 
datasets. We did not consider other datasets as their training set sizes created from the 
above procedure were too small. We fixed the #maxvertices of sim-ASIF to 8, which was 
less than the value in our original IGML evaluation Table 3, because sim-ASIF takes more 
time than the feature without vertex-label similarity. For the original IGML, we show the 
result for the setting in Table 3 and the results with #maxvertices 8. IGML with sim-ASIF 
was superior to the original IGML for the both #maxvertices settings on the AIDS and 
NCI1 datasets, although it has smaller #maxvertices settings, as shown in Table 7. On the 
Mutagenicity dataset, sim-ASIF was inferior to the original IGML reported in Table 3, but 
in the comparison under the same #maxvertices value, their performances were compara-
ble. These results suggest that when the exact matching of the subgraph is not appropriate, 
sim-ASIF can improve the prediction performance of IGML.

7.5 � Performance on frequency feature

In this section, we evaluate IGML with g(x) = log(1 + x) instead of g(x) = 1x>0 . Note that 
because computing the frequency without overlapping #(H ⊑ G) is NP-complete (Schreiber 
and Schwöbbermeyer 2005), in addition to the exact count, we evaluated the feature defined 

Table 4   Micro-F1 scores on 
itemset datasets

Method ∖ Dataset dna car nursery

#samples 2000 1728 12960
Jaccard Similarity 0.860 ± 0.017 0.888 ± 0.020 0.961 ± 0.006
IGML (Diag) 0.908 ± 0.014 0.936 ± 0.011 0.982 ± 0.005
IGML (Diag→Full) 0.931 ± 0.009 0.948 ± 0.014 0.993 ± 0.002

Table 5   Micro-F1 scores on 
sequence datasets

Method ∖ Dataset promoters splice

#samples 106 3190
Mismatch Kernel 0.832 ±0.081 0.596 ± 0.017
IGML (Diag) 0.800 ± 0.104 0.651 ± 0.015
IGML (Diag→Full) 0.886 ± 0.068 0.694 ± 0.017

(a) (b)

Fig. 9   Examples of a selected sequences and b their weights for the promoters dataset
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by an upper bound of #(H ⊑ G) (see Appendix J for details). We employed log because the 
scale of the frequency x is highly diversified. Based on the results in Sect. 7.1, we used 
WSP+RSSP in this section. The #maxvertices for each dataset followed those in Table 3.

The comparison of micro-F1 scores for the exact #(H ⊑ G) and approximation of 
#(H ⊑ G) is shown in Table 8. The exact #(H ⊑ G) did not complete five datasets mainly 
due to the computational difficulty of the frequency counting. In contrast, the approximate 
#(H ⊑ G) completed on all datasets. Overall, for both the exact and approximate frequency 
features, the micro-F1 scores were comparable with the case of g(x) = 1x>0 shown in 
Table 3.

Table 9 lists the total times for the path-wise optimization for the exact #(H ⊑ G) and 
the approximation of #(H ⊑ G) . On the AIDS dataset, the exact #(H ⊑ G) did not complete 
within a day, while the traversal time using approximate #(H ⊑ G) was only 8.6 sec. On the 
BZR dataset, the traversal time using the exact #(H ⊑ G) was seven times that using the 
approximate #(H ⊑ G) . The solving time for the approximation was lower because |F| after 
traversing of the approximation was significantly less than that of the exact #(H ⊑ G) in 
this case. Because the approximate #(H ⊑ G) is an upper bound of the exact #(H ⊑ G) , the 
variation of the values of the exact #(H ⊑ G) was smaller than the approximate #(H ⊑ G) . 
This resulted in higher correlations among features created by the exact #(H ⊑ G) . It is 
known that the elastic-net regularization tends to select correlated features simultaneously 
(Zou and Hastie 2005), and therefore, |F| in the case of the exact #(H ⊑ G) becomes larger 
than in the approximate case.

Figure 10 shows the number of visited nodes, size of the feature subset |F| after tra-
versal, and the number of selected features on the AIDS dataset with the approximate 
#(H ⊑ G) . This indicates that IGML keeps the number of subgraphs tractable even if 
g(x) = log(1 + x) is used as the feature. The #visited nodes was less than 3500, and |F| after 
traversal was sufficiently close to |{k ∣ m̂k > 0}| . We see that #visited nodes at �0 is larger 
than many subsequent �i s, and this is the effect of range-based rules, as shown in the case 
of Fig. 6b.

8 � Conclusions

In this paper, we proposed an interpretable metric learning method for graph data, named 
interpretable graph metric learning (IGML). To avoid computational difficulty, we built 
an optimization algorithm that combines safe screening, working set selection, and their 
pruning extensions. We also discussed the three extensions of IGML: (a) applications to 
other structured data, (b) triplet loss-based formulation, and (c) incorporating vertex-label 
similarity into the feature. We empirically evaluated the performance of IGML compared 
with existing graph classification methods. Although IGML was the only method with 
clear interpretability, it showed superior or comparable prediction performance compared 
to other state-of-the-art methods. The practicality of IGML was further demonstrated 
through some illustrative examples of identified subgraphs. Although IGML optimized the 
metric within tractable time in the experiments, the subgraphs were restricted to moderate 
sizes (up to 30), and a current major bottleneck for extracting larger-sized subgraphs is the 
memory requirement of the gSpan tree. Therefore, mitigating this memory consumption is 
an important future directions to apply IGML to a wider class of problems.
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Appendix

A. Dual Problem

The primal problem (4) can be re-written as

The Lagrange function L is

where � ∈ ℝ
2nK and � ∈ ℝ

p

+ are Lagrange multipliers. The dual function D� is then

By the definition of the dual function in (33), to minimize L with respect to m , by partially 
differentiating L , we obtain

The convex conjugate function of �t is

which can be written as

min
m,z

∑

i∈[n]

[
∑

l∈Di

�L(zil) +
∑

j∈Si

�−U(zij)

]
+ 𝜆R(m)

s.t. m ≥ 0, zil = m⊤cil, zij = −m⊤cij.

L(m, z,�, �) ∶=
∑

i∈[n]

[
∑

l∈Di

�L(zil) +
∑

j∈Si

�−U(zij)

]
+ 𝜆R(m)

+
∑

i∈[n]

[
∑

l∈Di

𝛼il(zil −m⊤cil) +
∑

j∈Si

𝛼ij(zij +m⊤cij)

]

− �⊤m,

(33)D�(�, �) ∶= inf
m,z

L(m, z,�, �).

(34)∇mL = �(1 + �m) +
∑

i∈[n]

[
−
∑

l∈Di

�ilcil +
∑

j∈Si

�ijcij

]
− � = 0.

(35)�
∗
t
(−�ij) = sup

zij

{(−�ij)zij − �t(zij)},

Table 7   Evaluation of sim-ASIF with micro-F1 score

The training and test sets of these datasets were split using a clustering algorithm such that the distribution 
of vertex-labels can be largely different

#maxvertices Feature∖ Dataset AIDS Mutagenicity NCI1

According to Table 3 Normal 0.574 ± 0.039 0.720 ± 0.014 0.735 ± 0.025
8 Normal 0.572 ± 0.038 0.705 ± 0.017 0.726 ± 0.019
8 sim-ASIF (32) 0.663 ± 0.033 0.702 ± 0.016 0.755 ± 0.017
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From (34), (35), and (36), the dual function can be written as

where

Therefore, although the dual problem can be written as

by maximizing D(�, �) with respect to � , we obtain a more straightforward dual problem 
(5).

We obtain �ij = −��
t
(zij) , used in (7), from the derivative of L with respect to zij.

(36)�
∗
t
(x∗) =

1

4
x2
∗
+ tx∗, (x∗ ≤ 0).

D𝜆(�, �)

= −
�

i∈[n]

�
�

l∈Di

�
∗
L
(−𝛼il) +

�

j∈Si

�
∗
−U

(−𝛼ij)

�
−

𝜆𝜂

2
‖m𝜆(�, �)‖22

= −
1

4
‖�‖2

2
+ t⊤� −

𝜆𝜂

2
‖m𝜆(�, �)‖22.

m�(�, �) ∶=
1

��

[
� +

∑

i∈[n]

(
∑

l∈Di

�ilcil −
∑

j∈Si

�ijcij) − �1

]

=
1

��
[� + C� − �1].

max
�≥0,�≥0

D(�, �),

Table 9   Total time of path-wise optimization (sec) for g(x) = log(1 + x)

Dataset AIDS BZR

Method ∖ Process Traverse Solve Total Traverse Solve Total

exact #(H ⊑ G) > a day 1662.2 ± 93.0 93.0 ± 19.4 1755.2 ± 213.5
approximation of 
#(H ⊑ G)

8.6 ± 1.4 14.5 ± 1.4 23.1 ± 1.9 236.0 ± 26.1 13.0 ± 3.1 249.0 ± 28.9

Fig. 10   Results of IGML with 
g(x) = log(1 + x) on AIDS 
dataset
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B. Proof of Lemma 1

From (12), the value of (xi,k� − xj,k� )
2 is bounded as follows:

Using this inequality, the inner product Ck�,∶q is likewise bounded:

Similarly, the norm ‖Ck�,∶‖2 is bounded:

Therefore, Ck�,∶q + r‖Ck� ,;‖2 is bounded by Prune(k|q, r).

C. Proof of Lemma 2

First, we consider the first term of Ck�,∶q + r‖Ck� ,∶‖2:

Now, xi,k� ∈ {0, 1} is assumed. Then, if xi,k� = 0 , we obtain

Meanwhile, if xi,k� = 1 , we have xi,k = 1 from the monotonicity, and subsequently

 By using “ max ”, we can unify these two upper bounds into

 Employing a similar concept, the norm of Ck�,∶ can also be bounded by

(xi,k� − xj,k� )
2 ≤ max

0≤xi,k�≤xi,k ,0≤xj,k�≤xj,k

(xi,k� − xj,k� )
2

= max{xi,k, xj,k}
2.

Ck� ,∶q =
∑

i∈[n]

[∑

l∈Di

qil(xi,k� − xl,k� )
2 −

∑

j∈Si

qij(xi,k� − xj,k� )
2
]

≤
∑

i∈[n]

∑

l∈Di

qil max{xi,k, xl,k}
2.

‖Ck� ,∶‖2 =

�����

i∈[n]

�
�

l∈Di

(xi,k� − xl,k� )
4 +

�

j∈Si

(xi,k� − xj,k� )
4

�

≤

�����

i∈[n]

�
�

l∈Di

max{xi,k, xl,k}
4 +

�

j∈Si

max{xi,k, xj,k}
4

�
.

Ck� ,∶q =
∑

i∈[n]

[∑

l∈Di

qil(xi,k� − xl,k� )
2 −

∑

j∈Si

qij(xi,k� − xj,k� )
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=diff

]
.

diff =
∑

l∈Di

qilxl,k� −
∑

j∈Si

qijxj,k� ≤
∑

l∈Di

qilxl,k.

diff =
∑

l∈Di

qil(1 − xl,k� ) −
∑

j∈Si

qij(1 − xj,k� ) ≤
∑

l∈Di

qil −
∑

j∈Si

qij(1 − xj,k).

Ck� ,∶q ≤
∑

i∈[n]

max
{∑

l∈Di

qilxl,k , xi,k

[∑

l∈Di

qil −
∑

j∈Si

qij(1 − xj,k)
]}

.
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 Thus, we obtain

D. Proof of Theorem 1 (DGB)

From the 1/2-strong convexity of −D�(�) , for any � ≥ 0 and �⋆ ≥ 0 , we obtain

Applying weak duality P𝜆(m) ≥ D𝜆(�
⋆) and the optimality condition of the dual problem 

∇D𝜆(�
⋆)⊤(� − �⋆) ≤ 0 to (37), we obtain DGB.

E. Proof of Theorem 2 (RPB)

From the optimality condition of the dual problem (5),

Here, the gradient vector for the optimal solution is

Thus, by substituting this equation into (38) and (39), we get

‖Ck� ,∶‖2 =

�����

i∈[n]

�
�

l∈Di

(xi,k� − xl,k� )
4 +

�

j∈Si

(xi,k� − xj,k� )
4

�

≤

�����

i∈[n]

�
�

l∈Di

max{xi,k, xl,k} +
�

j∈Si

max{xi,k, xj,k}

�
.

Prune(k) ∶=
∑

i∈[n]

max

{
∑

l∈Di

qilxl,k, xi,k

[
∑

l∈Di

qil −
∑

j∈Si

qij(1 − xj,k)

]}

+ r

√√√√∑

i∈[n]

[
∑

l∈Di

max{xi,k, xl,k} +
∑

j∈Si

max{xi,k, xj,k}

]
.

(37)D𝜆(�) ≤ D𝜆(�
⋆) + ∇D𝜆(�

⋆)⊤(� − �⋆) −
1

4
‖� − �⋆‖2

2
.

(38)∇�D𝜆0
(�⋆

0
)⊤
(
𝜆0

𝜆1
�⋆
1
− �⋆

0

)
≤ 0,

(39)∇�D𝜆1
(�⋆

1
)⊤
(
𝜆1

𝜆0
�⋆
0
− �⋆

1

)
≤ 0.

∇D𝜆i
(�⋆

i
) = −

1

2
�⋆
i
+ t − C⊤m𝜆i

(�⋆
i
)

= −
1

2
�⋆
i
+ t − C⊤m⋆

i
.

(40)
(
−
1

2
�⋆
0
+ t − C⊤m⋆

0

)⊤
(
𝜆0

𝜆1
�⋆
1
− �⋆

0

)
≤ 0,
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From �1× (40)+�0× (41),

From (34),

By substituting equation (43) into equation (42), we get

Transforming this inequality by completing the square with the complementary conditions 
m⋆

i

⊤
�⋆
i
= 0 and m⋆

1

⊤
�⋆
0
,m⋆

0

⊤
�⋆
1
≥ 0 , we obtain

Applying ‖m⋆
0
−m⋆

1
‖2
2
≥ 0 to this inequality, we obtain RPB.

F. Proof of Theorem 3 (RRPB)

Considering a hypersphere that expands the RPB radius by �0+�1
2�0

� and replaces the RPB 
center with �0+�1

2�0
�0 , we obtain

Because � is defined by ‖�⋆
0
− �0‖2 ≤ 𝜖 , this sphere covers any RPB made by �⋆

0
 which 

satisfies ‖�⋆
0
− �0‖2 ≤ 𝜖 . Using the reverse triangle inequality

the following is obtained.

By rearranging this, RRPB is obtained.

G. Proof for Theorems 6 (RSS), 7 (RSP) and 8 (RSP for binary feature)

Here, we address only Theorems 6 and 7 because Theorem 8 can be derived in almost the 
same way as Theorem 7. When �1 = � is set in RRPB, the center and the radius of the 
bound B = {� ∣ ‖� − q‖2

2
≤ r2} are q =

�0+�

2�0
�0 and r = ‖‖‖

�0−�

2�0
�0

‖‖‖2 +
(

�0+�

2�0
+

|�0−�|
2�0

)
� , 

(41)
(
−
1

2
�⋆
1
+ t − C⊤m⋆

1

)⊤
(
𝜆1

𝜆0
�⋆
0
− �⋆

1

)
≤ 0.

(42)
(
−
1

2
[�⋆

0
− �⋆

1
] − C⊤[m⋆

0
−m⋆

1
]
)⊤(

𝜆0�
⋆
1
− 𝜆1�

⋆
0

)
≤ 0.

(43)C�i = �i�mi + �i1 − � i.

−
1

2
[�⋆

0
− �⋆

1
]⊤(𝜆0�

⋆
1
− 𝜆1�

⋆
0
) − [m⋆

0
−m⋆

1
]⊤(𝜆0𝜆1𝜂[m1 −m0] − 𝜆0�

⋆
1
+ 𝜆1�

⋆
0
) ≤ 0.

����
�⋆
1
−

𝜆0 + 𝜆1

2𝜆0
�⋆
0

����

2

2

+ 2𝜆1𝜂‖m⋆
0
−m⋆

1
‖2
2
≤
����
𝜆0 − 𝜆1

2𝜆0
�⋆
0

����

2

2

.

‖‖‖‖
�⋆
1
−

𝜆0 + 𝜆1

2𝜆0
�0

‖‖‖‖2
≤

|𝜆0 − 𝜆1|
2𝜆0

‖‖�⋆
0
‖‖2 +

𝜆0 + 𝜆1

2𝜆0
𝜖.

‖�⋆
0
‖2 − ‖�0‖2 ≤ ‖�⋆

0
− �0‖2 ≤ 𝜖,

‖‖‖‖
�⋆
1
−

𝜆0 + 𝜆1

2𝜆0
�0

‖‖‖‖2
≤

|𝜆0 − 𝜆1|
2𝜆0

(‖‖�0
‖‖2 + 𝜖) +

𝜆0 + 𝜆1

2𝜆0
𝜖.
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respectively. Substituting these q and r into (16) and (17), respectively, and rearranging 
them, we can obtain the range in which the screening and pruning conditions hold.

H. Proof of Theorem 9 (Convergence of WS)

By introducing a new variable s , the dual problem (5) can be written as

We demonstrate the convergence of the WS method on a more general convex problem as 
follows:

where f (x) is a �-strong convex function ( 𝛾 > 0 ). Here, as shown in Algorithm 4, the work-
ing set is defined by Wt = {j ∣ hj(xt−1) ≥ 0} at every iteration. Then, the updated working 
set includes all the violated constraints and the constraints on the boundary. We show that 
Algorithm 4 finishes with finite T-steps and returns the optimal solution xT = x⋆.

Proof  Because f is �-strong convex from the assumption, the following inequality holds:

At step t, the problem can be written using only the active constraint at the optimal solution 
xt as follows:

From the definition of Wt , the working set Wt+1 must contain all active constraints 
{j ∈ Wt ∣ hj(xt) = 0} at the step t and can contain other constraints that are not included in 
Wt . This means that xt+1 must be in the feasible region of the optimization problem at the 
step t (46):

Therefore, from the optimality condition of the optimization problem (46),

From the inequalities (45) and (47), we obtain

If xt is not optimal, there exists at least one violated constraint hj� (xt) > 0 for some j′ 
because otherwise xt is optimal. Then, we see xt+1 ≠ xt because xt+1 should satisfy the con-
straint hj� (xt+1) ≤ 0 . If xt ≠ xt+1 , from ‖xt+1 − xt‖2 > 0,

max
�≥0,s≥0

−
1

4
‖�‖2 + t⊤� −

1

2𝜆𝜂
‖s‖2

s.t. C� − 𝜆1 − s ≤ 0.

(44)x⋆ ∶= argmin
x∈D

f (x) s.t. hi(x) ≤ 0,∀i ∈ [n],

(45)f (xt+1) ≥ f (xt) + ∇f (xt)
⊤(xt+1 − xt) +

𝛾

2
‖xt+1 − xt‖2.

(46)
xt = argmin

x∈D
f (x) s.t. hi(x) ≤ 0,∀i ∈ Wt

= argmin
x∈D

f (x) s.t. hi(x) ≤ 0,∀i ∈ {j ∈ Wt ∣ hj(xt) = 0}

F ∶=
{
x ∈ D ∣ hi(x) ≤ 0,∀i ∈ {j ∈ Wt ∣ hj(xt) = 0}

}

(47)∇f (xt)
⊤(xt+1 − xt) ≥ 0, xt+1 ∈ F.

f (xt+1) ≥ f (xt) +
�

2
‖xt+1 − xt‖2.
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Thus, the objective function always strictly increases ( f (xt) < f (xt+1) ). This indicates that 
the algorithm never encounters the same working set Wt as the set of other iterations t′ ≠ t . 
For any step t, the optimal value f (xt) with a subset of the original constraints Wt must 
be smaller than or equal to the optimal value f (x⋆) of original problem (44) with all con-
straints. Therefore, f (xt) ≤ f (x⋆) is satisfied, and we obtain f (xT ) = f (x⋆) at some finite 
step T. 	�  ◻

I. CPU Time for Other Datasets

Table 10 lists the computational times on the BZR, DD, and FRANKENSTEIN datasets. 
We first note that RSSP was approximately 2–4 times faster in terms of the traversal time 
compared with SSP. Next, comparing RSSP and WSP, we see that RSSP was faster for 
Traverse, and WSP was faster for Solve, as we observed in Table 2. Thus, the combination 
of WS&SP and RSSP was the fastest for all three datasets in total.

J. Approximating Frequency Without Overlap

Let FG(H) be “frequency without overlap” that is the frequency of a subgraph of a given 
graph where any shared vertices and edges are disallowed for counting. This FG(H) is non-
increasing with respect to the growth of H, but computing it is computationally compli-
cated. Assuming that we know where all the subgraphs H appear in graph G, calculat-
ing FG(H) is equivalent to the problem of finding the maximum independent set, which 
is NP-complete (Schreiber and Schwöbbermeyer 2005). In this section, using information 
obtained in the process of generating the gSpan tree, we approximate the frequency with-
out overlap by its upper bound. This upper bound is also a lower bound of the frequency 
with overlap.

Figure 11 shows the process of generating the gSpan tree and frequency. In the figure, 
we consider the frequency of the subgraph H ( A - A - B  ) contained in the graph G. The 
graph H is obtained as a pattern extension of graph A - A  (green frame) by A - B  (red 
frame). gSpan stores the number of these pattern extensions at each traverse node. We 
define the count by this extension as Fmax

G
(H) (e.g., Fmax

G
(H) = 5 for A - A - B  ). Note that 

Fmax
G

(H) is the frequency of H allowing overlap and duplicately counting matches that are 
equivalent except for the index of nodes (e.g., Fmax

G
(H) for A - A - B - A - A  is two in the 

figure). Suppose that H currently has e(> 1) edges (for example, e = 2 in A - A - B  ). We 
recursively go back the traverse tree (a tree in the right of Fig. 11) until we reach e = 1 , i.e., 
the starting edge that generates H (in the case of A - A - B  , the starting edge is A - A  ). 
We use the number of unique matches of this starting edges (the number of green frames), 
which we define as Fapprox

G
(H) , as an approximation of FG(H) . Obviously, Fapprox

G
(H) is less 

than or equal to Fmax
G

(H) . In the example, the number of green frames must be less than 
or equal to the number of red frames . Further, because only overlaps on the starting edge 
e = 1 are considered instead of overlaps in entire H, Fapprox

G
(H) is greater than or equals 

to FG(H) . Therefore, overall, we have FG(H) ≤ F
approx

G
(H) ≤ Fmax

G
(H) . Unfortunately, from 

the definition, Fapprox

G
(H) gives the same value whenever H has the same starting edge. 

f (xt+1) ≥ f (xt) +
𝛾

2
‖xt+1 − xt‖2 > f (xt).
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However, this means that Fapprox

G
(H) satisfies the monotonicity constraint for our pruning. 

Because the subgraph counting is a difficult problem and is not the main focus of our study, 
we employ Fapprox

G
(H) as a simple approximation. For our framework, any approximation is 

applicable given that it satisfies the monotonicity constraint.
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Table 10   Total times for the path-wise optimization (sec)

The bold face in the table indicate the mean best values

Dataset BZR DD FRANKENSTEIN

Method ∖ Process Traverse Solve Total Traverse Solve Total Traverse Solve Total

SSP 1397.1 4281.9 4292.9 13961.3 249.1 5013.0
±91.7 2884.8 ±964.1 ±388.3 9668.4 ±1580.6 ±9.3 4763.9 ±442.4

RSSP 539.2539.2539.2 ±934.5 3424.0 1132.2 ±1267.5 10800.6 189.7189.7189.7 ±441.5 4953.6
±47.2 ±956.9 ±118.0 ±1354.9 ±8.4 ±439.1

WSP 2448.5 2724.3 5888.3 7652.8 380.1 938.3
±170.8 275.8275.8275.8 ±184.9 ±465.6 1764.51764.51764.5 ±622.6 ±12.4 558.2558.2558.2 ±57.5

WSP+ 565.5 ±68.5 841.3841.3841.3 946.1946.1946.1 ±195.6 2710.62710.62710.6 233.0 ±56.5 791.1791.1791.1

RSSP ±49.7 ±97.3 ±83.1 ±258.6 ±11.7 ±55.7

Fig. 11   Approximation of #(H ⊑ G)

https://github.com/takeuchi-lab/Learning-Interpretable-Metric-between-Graphs
https://github.com/takeuchi-lab/Learning-Interpretable-Metric-between-Graphs
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