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Abstract
This paper studies the addition of linear constraints to the Support Vector Regression when 
the kernel is linear. Adding those constraints into the problem allows to add prior knowl-
edge on the estimator obtained, such as finding positive vector, probability vector or mono-
tone data. We prove that the related optimization problem stays a semi-definite quadratic 
problem. We also propose a generalization of the Sequential Minimal Optimization algo-
rithm for solving the optimization problem with linear constraints and prove its conver-
gence. We show that an efficient generalization of this iterative algorithm with closed-form 
updates can be used to obtain the solution of the underlying optimization problem. Then, 
practical performances of this estimator are shown on simulated and real datasets with dif-
ferent settings: non negative regression, regression onto the simplex for biomedical data 
and isotonic regression for weather forecast. These experiments show the usefulness of this 
estimator in comparison to more classical approaches.

Keywords  Support vector machine · Support vector regression · Sequential minimal 
optimization · Coordinate descent · Constrained linear regression

1  Introduction

Regression analysis seeks to find a relation between explanatory variables and an outcome 
variable. The most known linear regression estimator is the Ordinary Least Squares (OLS) 
which is the best linear unbiased estimator if the noise is i.i.d and Gaussian. Additional 
constraints on the OLS estimator can be added to ensure that it follows specific properties. 
For example, penalized regression such as the Ridge regression improves the efficiency 
of the estimation by introducing a bias and reducing the variance of the estimator in pres-
ence of collinearity (Hoerl and Kennard 1970). Another family of constrained regression is 
defined by the addition of hard constraints on the estimator, such as positivity constraints 
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(Lawson and Hanson 1995) which can improve the estimation performance. Some applica-
tions in biology where the goal is to estimate cell proportions inside a tumor or the estima-
tion of temperature in weather forecast justify the use of hard constraints on the estimator. 
The constrained OLS has been well studied, but the literature around the Support Vector 
Regression with additional constraints is scarcer.

Support Vector Machine. The Support Vector Machine (SVM) (Boser et al. 1992) is a 
class of supervised learning algorithms that have been widely used in the past 20 years for 
classification tasks and regression. These algorithms rely on two main ideas: the first one is 
the maximum margin hyperplane which consists in finding the hyperplane that maximises 
the distance between the vectors that are to be classified and the hyperplane. The second 
idea is the kernel method that allows the SVM to be used to solve non-linear problems. 
The technique is to map the vectors in a higher dimensional space which is done by using 
a positive definite kernel, then a maximum margin hyperplane is computed in this space 
which gives a linear classifier in the high dimensional space. In general, it leads to a non-
linear classifier in the original input space.

From SVM to Support Vector Regression. Different implementations of the algorithms 
haven been proposed such as C-SVM, �-SVM (Schölkopf et  al. 1999), Least-Squares 
SVM (Suykens and Vandewalle 1999), Linear Programming SVM (Friel and Harrison 
1998) among others. Each of these versions have their strenghs and weaknesses depend-
ing on which application they are used. They differ in terms of constraints considered for 
the hyperplane (C-SVM and Least-Squares SVM), in terms of norm considered on the 
parameters (C-SVM and Linear Programming SVM) and in terms of optimization prob-
lem formulation (C-SVM and �-SVM). Overall, these algorithms are a great tool for clas-
sification tasks and they have been used in many different applications like facial recog-
nition (Jia and Martinez 2009), image classification (Chapelle et  al. 1999), cancer type 
classification (Haussler et  al. 2000), text categorization (Joachims 1998) to only cite a 
few examples. Even though, SVM was first developped for classification, an adaptation 
for regression estimation was proposed in Drucker et al. (1997) under the name Support 
Vector Regression (SVR). In this case, the idea of maximum margin hyperplane is slightly 
changed into finding a tube around the regressors. The size of the tube is controlled by a 
hyperparameter chosen by the user: � . This is equivalent to using an �-insensitive loss func-
tion, |y − f (x)|� = max{0, |y − f (x)| − �} which only penalizes the error above the chosen 
� level. As for the classification version of the algorithm, a �-SVR method exists. In this 
version, the hyperparameter � is computed automatically but a new hyperparameter � has 
to be chosen by the user which controls asymptotically the proportions of support vectors 
(Schölkopf et al. 1999). SVR has proven to be a great tool in the field of function estima-
tion for many different applications: predicting times series in stock trades (Van Gestel 
et al. 2001), travel-time prediction (Chun-Hsin et al. 2004) and for estimating the amount 
of cells present inside a tumor (Newman et al. 2015).

Incorporating priors. In this last example of application, the authors used SVR to 
estimate a vector of proportions, however the classical SVR estimator does not take into 
account the information known about the space in which the estimator lives. Adding this 
prior information on the estimator may lead to better estimation performance. Incorpo-
rating information in the estimation process is a wide field of studies in statistical learn-
ing (we refer to Fig. 2 in Lauer and Bloch (2008) for a quick overview in the context of 
SVM). A growing interest in prior knowledge incorporated as regularization terms has 
emerged in the last decades. Lasso (Tibshirani 1996), Ridge (Hoerl and Kennard 1970), 
elastic-net (Zou and Hastie 2005) regression are examples of regularized problem where 
a prior information is used to fix an ill-posed problem or an overdetermined problem. The 
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�1 regularization of the Lasso will force the estimator to be sparse and bring statistical 
guarantees of the Lasso estimator in high dimensional settings. Another common way to 
add prior knowledge on the estimator is to add constraints known a-priori on this estimator. 
The most common examples are the ones that constrain the estimator to live in a subspace 
such as Non Negative Least Squares Regression (NNLS) (Lawson and Hanson 1995), iso-
tonic regression (Barlow and Brunk 1972). These examples belong to a more general type 
of constraints: linear constraints. Other types of constraints exist like constraints on the 
derivative of the function that is to be estimated, smoothness of the function for example. 
Adding those constraints on the Least Squares estimator has been widely studied (Barlow 
and Brunk 1972; Liew 1976; Bro and De Jong 1997) and similar work has been done for 
the Lasso estimator (Gaines et al. 2018). Concerning the SVR, inequality and equality con-
straints added as prior knowledge were studied in Lauer and Bloch (2008). In this paper, 
the authors described a method for adding linear constraints on the Linear Programming 
SVR (Friel and Harrison 1998). This implementation of the algorithm considers the �1 
norm of the parameters in the optimization problem instead of the classical �2 norm which 
leads to a linear programming optimization problem to solve instead of a quadratic pro-
gramming problem. They also described a method for using information about the deriva-
tive of the function that is estimated.

Sequential Minimal Optimization. One of the main challenges of adding these con-
straints is that it often increases the difficulty of solving the optimization problem related 
to the estimator. For example, the Least Squares optimization problem has a closed-form 
solution whereas the NNLS uses sophisticated algorithms (Bro and De Jong 1997) to 
approach the solution. SVM and SVR algorithms were extensively studied and used in 
practise because very efficient algorithms were developed to solve the underlying optimiza-
tion problems. One of them is called Sequential Minimal Optimization (SMO) (Platt 1998) 
and is based on a well known optimization technique called coordinate descent. The idea 
of the coordinate descent is to break the optimization problem into sub-problems selecting 
a subset of coordinates at each step and minimizing the function only via this chosen sub-
set. The development of parallel algorithms have increased the interest in these coordinate 
descent methods which show to be very efficient for large scale problems. One of the key 
settings for the coordinate descent is the choice of the coordinate at each step, the choice’s 
strategy will affect the efficiency of the algorithm. There exists three families of strate-
gies for coordinate descent: cyclic (Tseng 2001), random (Nesterov 2012) and greedy. The 
SMO algorithm is a variant of a greedy coordinate descent (Wright 2015) and is the algo-
rithm implemented in LibSVM (Chang and Lin 2011). It is very efficient to solve SVM/
SVR optimization problems. In the context of linear kernel, other algorithm are used such 
as dual coordinate descent (Hsieh et al. 2008) or trust region newton methods (Lin et al. 
2007).

Priors and SMO. In one of the application of SVR cited above, information a-priori 
about the estimator is not used in the estimation process and is only used in a post-
processing step. This application comes from the cancer research field, where regression 
algorithms have been used to estimate the proportions of cell populations that are pre-
sent inside a tumor (see Mohammadi et al. (2017) for a survey). Several estimators have 
been proposed in the biostatistics literature, most of them based on constrained least 
squares (Abbas et al. 2009; Qiao et al. 2012; Gong et al. 2011) but the gold standard is 
the estimator based on the Support Vector Regression (Newman et al. 2015). Our work 
is motivated by incorporating the fact that the estimator for this application belongs to 
the simplex: S = {x ∈ ℝ

n ∶
∑n

i=1
xi = 1, xi ≥ 0} in the SVR problem. We believe that 

for this application, it will lead to better estimation performance. From an optimization 
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point of view, our motivation is to find an efficient algorithm that is able to solve the 
SVR optimization problem where generic linear constraints are added to the problem as 
prior knowledge, including simplex prior as described. This work follows the one from 
Lauer and Bloch (2008) except that in our case, we keep the �2 norm on the parameters 
in the optimization problem which is the most common version of the SVR optimization 
problem and we only focus on inequality and equality constraints as prior knowledge.

Contributions. In this paper, we study a linear SVR with linear constraints optimiza-
tion problem. We show that the dual of this new problem shares similar properties with 
the classical �-SVR optimization problem (Proposition  2). We also prove that adding 
linear constraints to the SVR optimization problem does not change the nature of its 
dual problem, in the fact that the problem stays a semi-definite positive quadratic func-
tion subject to linear constraints. We propose a generalized SMO algorithm that allows 
the resolution of the new optimization problem. We show that the updates in the SMO 
algorithm keep a closed-form (Definition 5) and prove the convergence of the algorithm 
to a solution of the problem (Theorem 1). We illustrate on synthetic and real datasets 
the usefulness of our new regression estimator under different regression settings: non-
negative regression, simplex regression and isotonic regression.

Outline. The article proceeds as follows: we introduce the optimization problem 
coming from the classical SVR and describe the modifications brought by adding linear 
constraints in Sect. 2. We then present the SMO algorithm, its generalization for solving 
constrained SVR and present our result on the convergence of the algorithm in Sect. 3. 
In Sect. 4, we use synthetic and real datasets on different regression settings to illustrate 
the practical performance of the new estimator.

Notations. We write ||.|| (resp. ⟨., .⟩ ) for the euclidean norm (resp. inner product) on 
vectors. We use the notation X∶i (resp. Xi∶ ) to denote the vector corresponding the the ith 
column of the matrix X (resp. ith row of the matrix X). Throughout this paper, the design 
matrix will be X ∈ ℝ

n×p and y ∈ ℝ
n will be the response vector. XT will be used for the 

transposed matrix of X. The vector e denotes the vector with only ones on each of its 
coordinates and ej denotes the canonical vector with a one at the jth coordinate. ∇xi

f  is 
the partial derivative �f

�xi
.

2 � Constrained support vector regression

We study the underlying optimization problem that arises when adding linear con-
straints to the SVR estimator. One way to solve the optimization problem is to perform 
coordinate descent algorithms variants in its dual. In this section, we derive the dual 
optimization problem of the constrained SVR in order to apply coordinate descent vari-
ants to solve the constrained version, as it will be shown in Sect.  3. We describe the 
similarities and the differences between the classical problem and the constrained one.

2.1 � Previous work : �‑support vector regression

The �-SVR estimator (Schölkopf et al. 1999) is obtained solving the following quadratic 
optimization problem:
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By solving Problem (SVR-P), we seek a linear function f (x) = �Tx + �0 where � ∈ ℝ
p and 

�0 ∈ ℝ , that is at most � deviating from the response vector coefficient yi . This function 
does not always exist which is why slack variables � ∈ ℝ

n and �∗ ∈ ℝ
n are introduced in 

the optimization problem to allow some observations to break the condition given before. 
C and � are two hyperparameters. C ∈ ℝ controls the tolerated error and � ∈ [0, 1] con-
trols the number of observations that will lay inside the tube of size 2� given by the two 
first constraints in (SVR-P). It can be seen as an �-insensitive loss function where a linear 
penalization is put on the observations that lay outside the tube and the observations that 
lay inside the tube are not penalized (see Smola and Schölkopf (2004) for more details).

The different algorithms proposed to solve the primal Problem (SVR-P) often use its 
dual problem like in Platt (1998) and Hsieh et al. (2008). The dual problem is also a quad-
ratic optimization problem with linear constraints but its structure allows an efficient reso-
lution as we will see in more details in Sect. 3. The dual problem of (SVR-P) is the follow-
ing optimization problem:

where Q = XXT ∈ ℝ
n×n . The equation link between (SVR-P) and (SVR-D) is given by the 

following formula: � = −
∑n

i=1
(�i − �∗

i
)Xi∶.

2.2 � The constrained optimization problem

We propose a constrained version of Problem (SVR-P) that allows the addition of prior 
knowledge on the linear function f that we seek to estimate. The constrained estimator is 
obtained solving the optimization problem:

(SVR-P)

min
�,�0,�i,�

∗
i
,�

1

2
||�||2 + C

(
�� +

1

n

n∑
i=1

(�i + �∗
i
)

)

subject to yi − �TXi∶ − �0 ≤ � + �i

�TXi∶ + �0 − yi ≤ � + �∗
i

�i, �
∗
i
≥ 0, � ≥ 0.

(SVR-D)

min
�,�∗

1

2
(� − �∗)TQ(� − �∗) + yT (� − �∗)

subject to 0 ≤ �i, �
∗
i
≤

C

n

�
T (� + �∗) ≤ C�

�
T (� − �∗) = 0,



1944	 Machine Learning (2021) 110:1939–1974

1 3

where A ∈ ℝ
k1×p , � ∈ ℝ

k2×p , � ∈ ℝ
p , � , �∗ ∈ ℝ

n and �0 , � , ∈ ℝ.
The algorithm that we propose in Sect.  3 also uses the structure of the dual prob-

lem of (LSVR-P). The next proposition introduces the dual problem and some of its 
properties.

Proposition 1  If the set {� ∈ ℝ
n,A� ≤ b,�� = d} is not empty then, 

1.	 Strong duality holds for (LSVR-P).
2.	 The dual problem of (LSVR-P) is

3.	 The equation link between primal and dual is

(LSVR-P)

min
�,�0,�i,�

∗
i
,�

1

2
||�||2 + C

(
�� +

1

n

n∑
i=1

(�i + �∗
i
)

)

subject to �TXi∶ + �0 − yi ≤ � + �i

yi − �TXi∶ − �0 ≤ � + �∗
i

�i, �
∗
i
≥ 0, � ≥ 0

A� ≤ b

�� = d,

(LSVR-D)

min
�,�∗,� ,�

1

2

[
(� − �∗)TQ(� − �∗) + �TAAT�

+�T�� T� + 2

n∑
i=1

(�i − �∗
i
)�TAXi∶

−2

n∑
i=1

(�i − �∗
i
)�T�Xi∶ − 2�TA� T�

]

+yT (� − �∗) + �Tb − �Td

subject to 0 ≤ �
(∗)

i
≤

C

n

�
T (� + �∗) ≤ C�

�
T (� − �∗) = 0

�j ≥ 0,

� = −

n∑
i=1

(�i − �∗
i
)Xi∶ − AT� + � T�.
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The proof of the first statement of the proposition is given in the discussion below 
whereas the proofs for the two other statements come from a straightforward derivation 
of the Lagragian dual of (LSVR-P). We have that � , �∗ ∈ ℝ

n , � ∈ ℝ
k1 are the vector of 

Lagrange multipliers associated the the inequality constraint A� ≤ b which explains 
the non-negative constraints on its coefficients. � ∈ ℝ

k2 are the Lagrange multipliers 
associated to the equality constraint �� = d which also explains that there are no con-
straints in the dual problem on � . The objective function f which we will write in the 
stacked form as:

where

is a square matrix of size 2n + k1 + k2.
An important observation is that this objective function is always convex. The 

matrix Q̄ is the product of the matrix 

⎡⎢⎢⎢⎣

X

−X

A

−�

⎤⎥⎥⎥⎦
 and its transpose matrix. It means that Q̄ is 

a Gramian matrix and it is positive semi-definite which implies that f is convex. The 
problem (LSVR-D) is then a quadratic programming optimization problem which 
meets Slater’s condition if there exists a � that belongs to the feasible domain which 
we will denote by F  . If there is such a � we have strong duality holding between prob-
lem (LSVR-P) and (LSVR-D). The only condition we need to have on A and �  is that 
they define a non-empty polyhedron in order to be able to solve the optimization 
problem.

Our second observation on problem (LSVR-D) is that the inequality constraints 
�
T (� + �∗) ≤ C� is replaced by an equality constraint in the same way that it was sug-

gested in Chang and Lin (2002) for the classical problem (SVR-D).

Proposition 2  If � is strictly positive, all optimal solutions of (LSVR-D) satisfy

1.	 �i�
∗
i
= 0 , ∀i ≤ n,

2.	 �
T (� + �∗) = C�.

The proof is given in Appendix A. This observation will be important for the algo-
rithm that we propose in Sect. 3.

f (𝜃) = 𝜃TQ̄𝜃 + lT𝜃,

𝜃 =

⎡
⎢⎢⎢⎣

𝛼

𝛼∗

𝛾

𝜇

⎤
⎥⎥⎥⎦
, l =

⎡
⎢⎢⎢⎣

y

−y

b

−d

⎤
⎥⎥⎥⎦
∈ ℝ

2n+k1+k2 ,

Q̄ =

⎡
⎢⎢⎢⎣

Q −Q XAT −X𝛤 T

−Q Q −XAT X𝛤 T

AXT −AXT AAT −A𝛤 T

−𝛤XT 𝛤XT −𝛤AT 𝛤𝛤 T

⎤⎥⎥⎥⎦
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3 � Generalized sequential minimal optimization

In this section we propose a generalization of the SMO algorithm (Platt 1998) to solve 
problem (LSVR-D) and present our main result on the convergence of the proposed algo-
rithm to the solution of (LSVR-D). The SMO algorithm is a variant of greedy coordinate 
descent taking into consideration non-separable constraints, which in our case are the two 
equality constraints. We start by describing the previous algorithm that solve (SVR-D).

3.1 � Previous work: sequential minimal optimization

In this subsection, we define

and we note ∇f ∈ ℝ
2n its gradient. From Keerthi and Gilbert (2002), we rewrite the 

Karush-Kuhn-Tucker (KKT) conditions in the following way:

where Iup(𝛼) = {i ∈ {1,… , n} ∶ 𝛼i <
C

n
} and Ilow(𝛼) = {i ∈ {1,… , n} ∶ 𝛼i > 0}.

The same condition is written for the �∗ variables replacing �i by �∗
i
 above. These condi-

tions leads to an important definition for the rest of this paper.

Definition 1  We will say that (i, j) is a violating pair of variables if one of these two condi-
tions is satisfied:

Because the algorithm SMO does not provide in general an exact solution in a finite 
number of steps there is a need to relax the optimality conditions which gives a new 
definition.

Definition 2  We will say that (i, j) is a �-violating pair of variables if one of these two con-
ditions is satisfied:

The SMO algorithm will then choose at each iteration a pair of violating variables in 
the � block or in the �∗ block. Once the choice is done, a subproblem of size two is solved, 
considering that only the two selected variables are to be minimized in problem (SVR-D). 
The outline of the algorithm is presented in Algorithm 1.

The choice of the violating pair of variables presented in Keerthi et al. (2001) was to 
always work with the most violating pairs of variables, which means the variables that 
leads to the largest gap compared to the optimality conditions given in (1). This choice is 
what makes a link with greedy coordinate descent, however greedy here is related to the 

f (�, �∗) =
1

2
(� − �∗)TQ(� − �∗) + yT (� − �∗)

(1)min
i∈Iup

∇�i
f ≥ max

j∈Ilow
∇�j

f ,

i ∈ Iup(𝛼), j ∈ Ilow(𝛼) and ∇𝛼i
f < ∇𝛼j

f ,

i ∈ Ilow(𝛼), j ∈ Iup(𝛼) and ∇𝛼i
f > ∇𝛼j

f .

i ∈ Iup(𝛼), j ∈ Ilow(𝛼) and ∇𝛼i
f < ∇𝛼j

f − 𝜏,

i ∈ Ilow(𝛼), j ∈ Iup(𝛼) and ∇𝛼i
f > ∇𝛼j

f + 𝜏.
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largest gap with the optimality score and is not related to the largest decrease in the objec-
tive function.

The resolution of the subproblem of size two has a closed-form. The idea is to use the 
two equality constraints to go from a problem of size two to a problem of size one. Then, 
the goal is to minimize a quadratic function of one variable under box constraints which is 
done easily. We will give more details of the resolution of these subproblems in Sect. 3.3 
for our proposed algorithm.

The proof of convergence of SMO algorithm was given in Keerthi and Gilbert (2002) 
without convergence rate. The proof relies on showing that the sequence defined by the 
algorithm f (�k, (�∗)k) is a decreasing sequence and that there cannot be the same violating 
pair of variables infinitely many times. The linear convergence rate was proved later by She 
(2017) as well as the identification of the support vectors in finite time.

3.2 � Optimality conditions for the constrained SVR

In this subsection we define f as the objective function of Problem (LSVR-D) and 
∇f ∈ ℝ

2n+k1+k2 its gradient. We will now give the KKT conditions of (LSVR-D) for the dif-
ferent blocks. The results derive from classical Lagragian calculation.

The � block   Case 1- �i = 0 then �i = 0 and �i ≥ 0 , we have that

Case 2- �i =
C

n
 then �i = 0 and �i ≥ 0 , we have that

Case 3- 0 < 𝛼i <
C

n
 then �i = 0 , we have that

∇�i
f − � − � ≥ 0.

∇�i
f − � − � ≤ 0.
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We then consider the sets of indices:

The optimality conditions are satisfied if and only if

The �∗ block    In this block, the conditions are very similar to the ones given for the block 
� , the only difference here is that we will have two new sets of indices:

which gives the following optimality condition:

The � block

We will consider different possiblities of value for �j.
Case 1- �j = 0 then ∇�j

f ≥ 0.
Case 2- 𝛾j > 0 then ∇�j

f = 0.

Definition 3  We will say that j is a �-violating variable for the block � if ∇𝛾j
f + 𝜏 < 0.

The � block

Definition 4  We will say that j is a �-violating variable for the block � if |∇𝜇j
f | > 𝜏.

From these conditions on each block, we build an optimization strategy that follows the 
idea of the SMO described in Sect. 3.1. For each block of variables, we compute what we 
call a violating optimality score based on the optimality conditions given above. Once the 
scores are computed for each block, we select the block which has the largest score and 
solve an optimization subproblem in the block selected. If the block � or the block �∗ is 
selected, we will update a pair of variables by solving a minization problem of size two. 
However if the block � or the block � is selected, we will update only one variable at a 
time. This is justified by the fact that the variables � and �∗ have non-separable equality 

∇�i
f − � − � = 0.

Iup(𝛼) =
{
i ∈ {1,… , n} ∶ 𝛼i <

C

n

}
,

Ilow(𝛼) = {i ∈ {1,… , n} ∶ 𝛼i > 0}.

min
i∈Iup

∇�i
f ≥ max

j∈Ilow
∇�j

f .

I∗
up
(𝛼∗) =

{
i ∈ {1,… , n} ∶ 𝛼∗

i
<

C

n

}
,

I∗
low

(𝛼) = {i ∈ {1,… , n} ∶ 𝛼∗
i
> 0}.

min
i∈I∗

up

∇�∗
i
f ≥ max

j∈I∗
low

∇�∗
j
f .

∇�j
L = ∇�j

f − �j = 0

�j�j = 0

�j ≥ 0.

∇�j
L = ∇�j

f = 0.
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constraints linking them together. The rest of this section will be dedicated to the presenta-
tion of our algorithm and to giving some interesting properties such as a closed-form for 
updates on each of the blocks and a convergence theorem.

3.3 � Updates rules and convergence

The first definition describes the closed-form updates for the different blocks of variables.

Definition 5  The update between iterate k and iterate k + 1 of the generalized SMO algo-
rithm has the following form: 

1.	 if the block � is selected and (i, j) is the most violating pair of variable then the update 
will be as follows: 

where t∗ = min(max(I1,−
(∇�i

f−∇�j
f )

(Qii−2Qij+Qjj)
), I2) with I1 = max(−�k

i
, �k

j
−

C

n
) and 

I2 = min(�k
j
,
C

n
− �k

i
).

�k+1
i

= �k
i
+ t∗,

�k+1
j

= �k
j
− t∗,
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2.	 if the block �∗ is selected and (i∗, j∗) is the most violating pair of variable then the update 
will be as follows: 

 where t∗ = min(max(I1,−
(∇�∗

i
f−∇�∗

j
f )

(Qii−2Qij+Qjj)
), I2) with I1 = max(−(�∗

i
)k, (�∗

j
)k −

C

n
) and 

I2 = min((�∗
j
)k,

C

n
− (�∗

i
))k.

3.	 if the block � is selected and i is the index of the most violating variable in this block 
then the update will be as follows: 

4.	 if the block � is selected and i is the index of the most violating variable in this block 
then the update will be as follows: 

This choice of updates comes from solving the optimization problem (LSVR-D) con-
sidering that only one or two variables are updated at each step. One of the key elements 
of the algorithm is to make sure that at each step the iterate belongs to F  . Let us sup-
pose that the block � is selected as the block in which the update will happen and let 
(i, j) be the most violating pair of variables. The update is the resolution of a subprob-
lem of size 2, considering that only �i and �j are the variables, the rest remains constant. 
The two equality constraints in (LSVR-D), 

∑n

i=1
�i − �∗

i
= 0 and 

∑n

i=1
�i + �∗

i
= C� , lead 

to the two following equalities: �k+1
i

+ �k+1
j

= �k
i
+ �k

j
 . The later yields to using a param-

eter t for the update of the variables leading to �k+1
i

= �k
i
+ t and �k+1

j
= �k

j
− t.

Updating the variable in the block � this way will force the iterates of Algorithm 1 
to meet the two equalities constraints at each step. We find t by solving the dual prob-
lem (LSVR-D) considering that we minimize only over t. Let the vector u ∈ ℝ

2n+p+k1+k2 
which contains only zeros except at the ith coordinate where it is equal to t and at jth 
coordinate where it is equal to −t . Therefore, we find t by minimizing the following 
optimization problem:

First we minimize the objective function without the constraints and since it is a quadratic 
function of one variable we just clip the solution of unconstrained problem to have the 
solution of the constrained problem. We will use the term “clipped update” or “clipping” 
when the update is projected unto the constraints space and is not the result of the uncon-
strainted optimization problem. As we only consider size one problem for the updates, it 
will mean that the update will be a bound of an interval. We will use the notation K as a 
term containing the terms that do not depend on t. We write that

(�∗
i
)k+1 = (�∗

i
)k + t∗,

(�∗
j
)k+1 = (�∗

j
)k − t∗,

�k+1
i

= max

(
−

∇�i
f

(AAT )ii
+ �k

i
, 0

)
.

�k+1
i

= −
∇�i f

(�� T )ii
+ �k

i
.

min
t∈ℝ

𝜓(t) =
1

2

[
(𝜃k + u)TQ̄(𝜃k + u)

]
+ lT (𝜃k + u)

subject to 0 ≤ 𝛼k+1
i

, 𝛼k+1
j

≤
C

n
.
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It follows that the unconstrained minimum of �(t) is tq =
−(∇𝛼i

f (𝜃k)−∇𝛼j
f (𝜃k))

(Q̄ii+Q̄jj−2Q̄ij)
.

Taking the constraints into account we have that 0 ≤ �k
i
+ t ≤

C

n
 and 

0 ≤ �k
j
− t ≤

C

n
 , which yields to t∗ = min(max(I1, tq), I2) with I1 = max(−�i, �j −

C

n
) and 

I2 = min(�j,
C

n
− �i) . The definition of the updates for the block �∗ relies on the same 

discussion.
Let us now make an observation that will explain the definition of the updates for the 

blocks � and � . Let i be the index of the variable that will be updated. Solving the prob-
lem; 𝜃k+1

i
= argmin

𝜃i

1

2
𝜃TQ̄𝜃 + lT𝜃, leads to the following solution 𝜃k+1

i
=

−∇i f (𝜃
k)

Q̄ii

+ 𝜃k
i
.

Let us recall that the update for the block � has to keep the coefficient of � posi-
tive to stay in F  hence we have to perform the following clipped update with 
i ∈ {2n + p + 1,… , 2n + p + k1}:

Then noticing that Q̄ii = AAT
ii
 for this block, we obtain the update for the block �.

There are no constraints on the variables in the blok � , so the update comes from the 
fact that Q̄ii = 𝛤𝛤 T

ii
 for i ∈ {2n + p + k1 + 1,… , 2n + p + k1 + k2} which corresponds to 

the indices of the block �.
From these updates we have to make sure that

let us recall that Qij = ⟨Xi∶,Xj∶⟩ which means that

This quantity is zero only when Xi∶ = Xj∶ coordinate wise. It would mean that the same 
row appears two times in the design matrix which does not bring any new information for 
the regression and can be avoided easily. (AAT )ii = ⟨Ai∶,Ai∶⟩ is zero if and only if Ai∶ = 0 
which means that a row of the matrix A is zero, so there is no constraint on any variable of 
the optimization problem which will never happen. It is the same discussion for (�� T )ii.

The next proposition makes sure that once a variable (resp. pair of variables) is 
updated, it cannot be a violating variable (resp. pair of variables) at the next step. This 
proposition makes sure, for the two blocks � and �∗ , that the update t∗ cannot be 0.

Proposition 3  If (i, j) (resp.i) was the pair of most violating variable (resp. the most violat-
ing variable) in the block � or �∗ (resp. block � or �) at iteration k then at iteration k + 1 , 
(i, j) (resp. i) cannot be violating the optimality conditions.

𝜓(t) =
1

2
uTQ̄u + uTQ̄𝜃k + lTu + K

=
1

2
t2(Q̄ii + Q̄jj − 2Q̄ij) + uT∇f (𝜃k) + K

=
1

2
t2(Q̄ii + Q̄jj − 2Q̄ij) + t(∇𝛼i

f (𝜃k)

− ∇𝛼j
f (𝜃k)) + K.

𝜃k+1
i

= max

(
−∇𝛾i

f (𝜃k)

Q̄ii

+ 𝜃k
i
, 0

)
.

Qii + Qjj − 2Qij ≠ 0,

Qii + Qjj − 2Qij = ||Xi∶ − Xj∶||2.
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The proof of this proposition is left in the Appendix B.
Finally, we show that the algorithm converges to a solution of (LSVR-D) and since 

strong duality holds it allows us to have a solution of (LSVR-P).

Theorem 1  For any given 𝜏 > 0 the sequence of iterates {�k} , defined by the generalized 
SMO algorithm, converges to an optimal solution of the optimization problem (LSVR-D)

The proof of this theorem relies on the same idea as the one proposed in Lopez and 
Dorronsoro (2012) for the classical SMO algorithm and is given in Appendix C. We show 
that it can be extended to our algorithm with some new observations. The general idea 
of the proof is to see that the distance between the primal vector generated by the SMO-
algorithm and the optimal solution of the primal is controled by the following expression 
1

2
||�k − �opt|| ≤ f (�k) − f (�opt) , where �k is the kth primal iterate obtained via the relation-

ship primal-dual and �k and where �opt is a solution of (LSVR-P). From this observation, 
we show that we can find a subsequence of the SMO-algorithm �kj that converges to some 
𝜃̄ , solution of the dual problem. Using the continuity of the objective function of the dual 
problem, we have that f (𝜃kj ) → f (𝜃̄) . Finally, we show that the sequence {f (�k)} is decreas-
ing and bounded which implies its convergence and from the convergence monotone the-
orem we know that to f (�k) converges to f (𝜃̄) since one of its subsequences converges. 
This proves that ||�k − �opt|| → 0 and finishes the proof. The convergence rate for the SMO 
algorithm is difficult to obtain considering the greedy choice of the blocks and the greedy 
choice inside the blocks. A proof for the classical SMO exists but with uniformly at ran-
dom choice of the block (She 2017). Convergence rate for greedy algorithms in optimiza-
tion can be found in Nutini et al. (2015) for example but the assumption that the constraints 
must be separable is a major issue for our case. The study of this convergence rate is out of 
scope of this paper.

4 � Numerical experiments

The code for the different regression settings is available on a GitHub repository1, each set-
ting is wrapped up in a package and is fully compatible with scikit learn (Pedregosa et al. 
2011) BaseEstimator class.

In order to compare the estimators, we worked with the Mean Absolute Error; 
MAE =

1

p

∑p

i=1
�𝛽∗

i
− 𝛽i� and the Root Mean Squared Error; RMSE =

√
1

p
||𝛽∗ − 𝛽||2 , 

where �∗ are the ground truth coefficients and 𝛽  are the estimated coefficients. We also 
used the Signal-To-Noise Ratio (SNR) to control the level noise simulated in the data 
defined as SNR = 10 log 10(

�(X�(X�)T )

Var (�)
).

4.1 � Non negative regression

First, the constraints are set to force the coefficient of � to be positive and we compare our 
constrained-SVR estimator with the NNLS (Lawson and Hanson 1995) estimator which is 
the result of the following optimization problem

1  https://​github.​com/​Klopfe/​LSVR

https://github.com/Klopfe/LSVR
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In this special case of non-negative regression, A = −Ip , b = 0 , � = 0 , d = 0 , the con-
strained-SVR optimization problem which we will call Non-Negative SVR (NNSVR) then 
becomes

Synthetic data. We generated the design matrix X from a Gaussian distribution N(0, 1) with 
500 samples and 50 features. The true coefficients to be found �∗ were gererated taking the 
exponential of a Gaussian distribution N(0, 2) in order to have positive coefficients. Y was 
simply computed as the product between X and �∗ . We wanted to test the robustness of our 
estimator compared to NNLS and variant of SVR estimators. To do so, we simulated noise 
in the data using different types of distributions, we tested Gaussian noise and Laplacian 
noise under different levels of noise. For this experiment, the noise distributions were gen-
erated to have an SNR equals to 10 and 20, for each type of noise we performed 50 repeti-
tions. The noise was only added in the matrix Y, the design matrix X was left noiseless. The 
choice of the two hyperparameters C and � was done using 5-folds cross validation on a 
grid of possible pairs. The values of C were taken evenly spaced in the log10 base between 
[−3, 3] , we considered 10 different values. The values of � were taken evenly spaced in the 
linear space between [0.05, 1.0] and we also considered 10 possible values.

We compared different estimators: NNLS, NNSVR, the Projected-SVR (P-SVR) which 
is simply the projection of the classical SVR estimator unto the positive orthant and also 
the classical SVR estimator without constraints. The results of this experiment are in 
Table 1. We see that for a low Gaussian noise level ( SNR = 20 ) the NNLS has a lower 
RMSE and lower MAE. However, we see that the differences between the four compared 
methods are small. When the level of noise increases ( SNR = 10 ), the NNSVR estimator 
is the one with the lowest RMSE and MAE. The NNLS estimator performs poorly in the 
presence of high level of noise in comparison to the SVR based estimator. When a Lapla-
cian noise is added to the data, the NNSVR is the estimator that has the lowest RMSE and 
MAE for low level of noise SNR = 20 and high level of noise SNR = 10.

4.2 � Regression unto the simplex

In this subsection, we study the performance of our proposed estimator on simplex con-
straints Simplex Support Vector Regression (SSVR). In this case, A = −Ip , b = 0 , � = � 
and d = 1 . The optimization problem that we seek to solve is:

(NNLS)
min
�

1

2
||y − X�||

subject to �i ≥ 0.

(NNSVR)

min
�,�0,�i,�

∗
i
,�

1

2
||�||2 + C

(
�� +

1

n

n∑
i=1

(�i + �∗
i
)

)

subject to �TXi∶ + �0 − yi ≤ � + �i

yi − �TXi∶ − �0 ≤ � + �∗
i

�i, �
∗
i
≥ 0, � ≥ 0

�i ≥ 0.
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Synthetic data. We first tested on simulated data generated by the function make_
regression of scikit-learn. Once the design matrix X and the response vector y were 
generated using this function, we had access to the ground truth that we will write �∗ . This 
function was not designed to generate data with a �∗ that belongs to the simplex so we first 
projected �∗ unto the simplex and then recomputed y multiplying the design matrix by the 
new projected �∗

S
 . We added a centered Gaussian noise in the data with the standard devia-

tion chosen such as the signal-to-noise ratio (SNR) was equal to a defined number, we used 
the following formula for a given SNR � =

√
Var (y)

10SNR∕10
 , where � is the standard deviation 

used to simulate the noise in the data. The choice of the two hyperparameters C and � was 
done using 5-folds cross validation on a grid of possible pairs. The values of C were taken 

(SSVR)

min
�,�0,�i,�

∗
i
,�

1

2
�����2 + C

�
�� +

1

n

n�
i=1

(�i + �∗
i
)

�

subject to �TXi∶ + �0 − yi ≤ � + �i

yi − �TXi∶ − �0 ≤ � + �∗
i

�i, �
∗
i
≥ 0, � ≥ 0

�i ≥ 0

∑
i �i = 1.

Table 1   Results for the support 
vector regression (SVR), 
projected support regression 
(P-SVR), non-negative support 
vector regression (NNSVR) 
and non-negative least squares 
(NNLS) for simulated data with 
n = 500 and p = 50

The mean (standard deviation) of the root mean squared error (RMSE) 
and the mean absolute error (MAE) over 50 repetitions are reported. 
Different noise distribution (Gaussian and Laplacian) and different 
Signal to Noise Ratio (SNR) values were tested

Distribution Estimator RMSE MAE

Gaussian noise SVR 2.238 (0.081) 29.288 (2.452)
P-SVR 2.178 (0.087) 27.248 (2.545)

SNR = 20 NNSVR 2.174 (0.089) 27.224 (2.480)
(� = 773.1) NNLS 2.120 (0.114) 25.226 (2.699)
Gaussian noise SVR 2.732 (0.099) 44.764 (4.230)

P-SVR 2.584 (0.154) 39.687 (5.963)
SNR = 10 NNSVR 2.536 (0.105) 37.740 (3.866)
(� = 2444.9) NNLS 3.478 (0.208) 60.553 (7.923)
Laplacian noise SVR 2.086 (0.109) 25.538 (3.181)

P-SVR 2.039 (0.109) 23.978 (3.059)
SNR = 20 NNSVR 2.035 (0.115) 23.827 (3.146)
(b = 546.7) NNLS 2.115 (0.103) 25.028 (2.571)
Laplacian noise SVR 2.665 (0.148) 42.245 (5.777)

P-SVR 2.526 (0.198) 37.745 (7.271)
SNR = 10 NNSVR 2.480 (0.157) 35.786 (5.761)
(b = 1728.8) NNLS 3.463 (0.230) 63.940 (8.375)
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evenly spaced in the log10 base between [−3, 3] , we considered 10 different values. The 
values of � were taken evenly spaced in the linear space between [0.05, 1.0] and we also 
considered 10 possible values. We tested different size for the matrix X ∈ ℝ

n×p to check the 
potential effects of the dimensions on the quality of the estimation and we did 50 repeti-
tions for each point of the curves. The measure that was used to compare the different esti-
mators is the RMSE between the true � and the estimated 𝛽 .

We compared the RMSE of our estimator to the Simplex Ordinary Least Squares 
(SOLS) which is the result of the following optimization problem:

and to the estimator proposed in the biostatics litterature that is called Cibersort. This esti-
mator is simply the result of using the classical SVR and project the obtained estimator 
unto the simplex. The RMSE curves as a function of the SNR are presented in Fig. 1. We 
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��y − X���2

subject to �i ≥ 0,
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Fig. 1   The root mean squared error (RMSE) as a function of the signal to noise ration (SNR) is presented. 
Different dimensions for the design matrix X and the response vector y were considered. n represents the 
number of rows of X and p the number of columns. For each plot, the blue line represents the RMSE for 
the Linear Simplex SVR (LSSVR) estimator, the green one the Simplex Ordinary Least Squares (SOLS) 
estimator and the orange on the Cibersort estimator. Each point of the curve is the mean RMSE of 50 rep-
etitions. The noise in the data has a Gaussian distribution
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observe that the SSVR is generally the estimator with the lowest RMSE, this observation 
becomes clearer as the level of noise increases in the data. We notice that when there is 
a low level of noise and when n is not too large in comparison to p, the three compared 
estimator perform equally. However, there is a setting when n is large in comparison to p 
(in this experiment for n = 250 or 500 and p = 5 ) where the SSVR estimator has a higher 
RMSE than the Cibersort and SOLS estimator untill a certain level of noise ( SNR < 15 ). 
Overall, this simulation shows that there is a significant improvement in the estimation per-
formance of the SSVR mainly when there is noise in the data.

Real dataset. In the cancer research field, regression algorithms have been used to esti-
mate the proportions of cell populations that are present inside a tumor. Indeed, a tumor 
is composed of different types of cells such as cancer cells, immune cells, healthy cells 
among others. Having access to the information of the proportions of these cells could be 
a key to understanding the interactions between the cells and the cancer treatment called 
immunotherapy (Couzin-Frankel 2013). The modelization done is that the RNA extracted 
from the tumor is seen as a mixed signal composed of different pure signals coming from 
the different types of cells. This signal can be unmixed knowing the different pure RNA 
signal of the different types of cells. In other words, y will be the RNA signal coming from 
a tumor and X will be the design matrix composed of the RNA signal from the isolated 
cells. The number of rows represent the number of genes that we have access to and the 
number of columns of X is the number of cell populations that we would like to quantify. 
The hypothesis is that there is a linear relationship between X and y. As said above, we 
want to estimate proportions which means that the estimator has to belong to the probabil-
ity simplex S = {x ∶ xi ≥ 0 ,

∑
i xi = 1}.

Several estimators have been proposed in the biostatistics litterature most of them based 
on constrained least squares (Qiao et al. 2012; Gong et al. 2011; Abbas et al. 2009) but the 
gold standard is the estimator based on the SVR.

We compared the three same estimators on a real biological dataset where the real quan-
tities of cells to obtain were known. The dataset can be found on the GEO website under 
the accession code GSE111032. For this example n = 584 and p = 4 and we have access 
to 12 different samples that are our repetitions. Following the same idea than previous 
benchmark performed in this field of application, we increased the level of noise in the 
data and compared the RMSE of the different estimators. Gaussian and Laplacian distri-
butions of noise were added to the data. The choice of the two hyperparameters C and � 
was done using 5-folds cross validation on a grid of possible pairs. The values of C were 
taken evenly spaced in the log10 base between [−5,−3] , we considered 10 different values. 
The interval of C is different than the simulated data because of the difference in the range 
value of the dataset. The values of � were taken evenly spaced in the linear space between 
[0.05, 1.0] and we also considered 10 possible values.

We see that when there is no noise in the data ( SNR = ∞ ) both Cibersort and SSVR 
estimator perform equally. The SOLS estimator already has a higher RMSE than the two 
others estimator probably due to the noise already present in the data. As the level of noise 
increases, the SSVR estimator remains the estimator with the lowest RMSE in both Gauss-
ian and Laplacian noise settings (Fig. 2).

2  The dataset can be downloaded from the https://​www.​ncbi.​nlm.​nih.​gov/​geo/Gene Expression Omnibus 
website under the accession code GSE11103.

https://www.ncbi.nlm.nih.gov/geo/
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4.3 � Isotonic regression

In this subsection, we will consider constraints that impose an order on the variables. This 
type of regression is usually called isotonic regression. Such constraints appear when prior 
knowledge are known on a certain order on the variables. This partial order on the vari-
ables can also be seen as an acyclic directed graph. More formally, we note G = (V ,E) 
a directed acyclic graph where V is the set of vertices and E is the set of nodes. On this 
graph, we define a partial order on the vertices. We will say for u, v ∈ V  that u ≤ v if and 
only if there is a path joining u and v in G. This type of constraints seems natural in differ-
ent applications such as biology, medicine, and weather forecast.

The most simple example of this type of constraints might be the monotonic regres-
sion where we force the variables to be in a increasing or decreasing order. It means that 
with our former notations that we would impose that �1 ≤ �2 ≤ … ≤ �p on the estimator. 
This type of constraints can be coded in a finite difference matrix (or more generally any 
incidence matrix of a graph) where A = (ai,j) ∈ ℝ

(p−1)×p defined by ai,i = 1 , ai,i+1 = −1 , 
ai,j = 0 otherwise, and � = 0 , b = 0 , d = 0 forming linear constraints as in the scope of 
this paper. The Isotonic Support Vector Regression (ISVR) optimization problem is written 
as follows:

We compare our proposed ISVR estimator with the classical least squares isotonic regres-
sion (IR) (Barlow and Brunk 1972) which is the solution of the following problem:

(ISVR)
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)
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�i, �
∗
i
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Fig. 2   The Root Mean Squared Error (RMSE) as a function of the Signal to Noise Ration (SNR) is pre-
sented on a real dataset where noise was manually added. Two different noise distribution were tested: 
Gaussian and laplacian. Each point of the curve is the mean RMSE of 12 different response vectors and 
we repeated the process four times for each level of noise. This would be equivalent to having 48 different 
repetitions
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Synthetic dataset. We first generated data from a Gaussian distribution ( � = 0 , � = 1 ) that 
we sorted and then added noise in the data following the same process as described in 
Sect. 4.2 with different SNR values (10 and 20). We tested Gaussian noise and Laplacian 
noise. We compared the estimation quality of both methods using MAE and RMSE. In this 
experiment, the design matrix X is the identity matrix. We performed grid search selec-
tion via cross validation for the hyperparameters C and � . C had 5 different possible values 
taken on the logscale from 0 to 3, and � had 5 different values taken between 0.05 and 1 on 
the linear scale. The dimension of the generated Gaussian vector was 50 and we did 50 rep-
etitions. We present in Table 2 the results of the experiment, the value inside a cell is the 
mean RMSE or MAE over the 50 repetitions and the value between brackets is the standard 
deviation over the repetitions. Under a low level of Gaussian noise or Laplacian noise, both 
methods are close in term of RMSE and MAE with a little advantage for the classical iso-
tonic regression estimator. When the level of noise is important ( SNR = 10 ), our proposed 
ISVR has the lowest RMSE and MAE for the two noise distribution tested.

Real dataset. Isotonic types of constraints can be found in different applica-
tions such as biology, ranking and weather forecast for example. Focusing on global 
warming type of data, researchers have studied the anomaly of the average tempera-
ture over a year in comparison to the years 1961-1990. These temperature anomalies 
have a monotenous trend and keep increasing since 1850 until 2015. Isotonic regres-
sion estimator was used on this dataset3 in Gaines et al. (2018) and we compared our 
proposed ISVR estimator for anomaly prediction. The hyperparameter for the ISVR 
were set manually for this simulation. Figure 3 shows the result for the two estimators. 
The classical isotonic regression estimator perform better than our proposed estima-
tor globally which is confirmed by the RMSE and MAE values of RMSE IR = 0.0067 

(IR)
min
�

1

2
||� − y||2

subject to �1 ≤ �2 ≤ … ≤ �n.

Table 2   Results for the isotonic 
support vector regression 
(ISVR), and the isotonic 
regression (IR) for simulated data 
with p = 50

The mean (standard deviation) of the root mean squared error (RMSE) 
and the mean absolute error (MAE) over 50 repetitions are reported. 
Different noise distribution (Gaussian and Laplacian) and different 
signal to noise ratio (SNR) values were tested

Distribution Estimator RMSE MAE

Gaussian noise ISVR 0.212 (0.02) 0.254 (0.06)
SNR = 20 IR 0.203 (0.02) 0.229 (0.04)
Gaussian noise ISVR 0.284 (0.04) 0.446 (0.12)
SNR = 10 IR 0.311 (0.04) 0.534 (0.12)
Laplacian noise ISVR 0.202 (0.03) 0.223 (0.05)
SNR = 20 IR 0.203 (0.02) 0.221 (0.04)
Laplacian noise ISVR 0.276 (0.05) 0.414 (0.11)
SNR = 10 IR 0.312 (0.05) 0.513 (0.13)

3  This dataset can be downloaded from the Carbon Dioxide Information Analysis Center https://​cdiac.​ess-​
dive.​lbl.​gov/​trends/​temp/​jones​cru/​jones.​html at the Oak Ridge National Laboratory.

https://cdiac.ess-dive.lbl.gov/trends/temp/jonescru/jones.html
https://cdiac.ess-dive.lbl.gov/trends/temp/jonescru/jones.html
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against RMSE ISVR = 0.083 and MAE IR = 0.083 against MAE ISVR = 0.116 . However, 
we notice that in the portions where there is a significant change like between 1910-
1940 and 1980-2005, the IR estimation looks like a step function whereas the ISVR 
estimation follows an increasing trend without these piecewise constant portions. The 
bias induced by the use of constraints can be overcome with refitting methods such as 
Deledalle et al. (2017).

Fig. 3   Global warming dataset. 
Annual temperature anomalies 
relative to 1961–1990 average, 
with estimated trend using Iso-
tonic Support Vector Regression 
(ISVR) and the classical Isotonic 
Regression (IR) estimator

Fig. 4   Plots of 50 trajectories of the dual objective function value (first column) and the optimality score 
(second column) in function of the number of iterations for the classical SMO algorithm in blue and the 
proposed generalized SMO in red. Two settings were used, one without noise and another one with additive 
Gaussian noise
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4.4 � Performance of the GSMO versus SMO

We compared the efficiency of the SMO algorithm to solve the classical SVR optimiza-
tion problem and the SSVR optimization problem in Fig. 4. To do so, we used the same 
data simulation process described earlier in this subsection and set the number of rows 
of the matrix X, n = 200 and the number of columns p = 25 . Two different settings were 
considered here, one without any noise in the data and another one with Gaussian noise 
added such that the SNR would be equal to 30. The transparent trajectories represent 
the decrease of the objective function or the optimality score � for the classical SMO in 
blue and for the generalized SMO in red for the 50 repetitions considered. The average 
trajectory is represented in dense color. The first row of figures are the results for the 
noiseless setting and the second row for the setting with noise. When there is not noise 
in the data, the generalized SMO decreases faster than the classical SMO. It is impor-
tant to remind that the true vector here belongs to the simplex so without any noise it 
is not surprising that our proposed algorithm goes faster than the classical SMO. How-
ever, when noise is adding to the data, it takes more iterations for the generalized SMO 
to find the solution of the optimization problem. Figure  4 illustrates the convergence 
towards a minimum the GSMO algorithm as stated in Theorem 1.

5 � Conclusion

In this paper, we studied the optimization problem related to SVR with linear con-
straints. We showed that for this optimization problem, strong duality holds and that 
the dual problem is convex. We presented a generalized SMO algorithm that solve the 
dual problem and we proved its convergence to a solution. This algorithm uses a coor-
dinate descent strategy where a closed-form of the updates were defined. The proposed 
algorithm is easy to implement and shows good performance in practise. We demon-
strated the good performance of our proposed estimator on different regression settings. 
In presence of high level of noise, our estimator has shown to be robust and has better 
estimation performance in comparison to Least Squares based estimators or projected 
SVR estimators.

This work leaves several open questions for future works. The question of the con-
vergence rate of the algorithm is very natural and will have to be address in the future. 
Another natural question rises about the possibility to extend our method on non-linear 
function estimation with linear constraints. From our point of view, it is a very challenging 
question because the dual optimization problem of the linearly constrained SVR loses its 
only dependence on the inner product between the columns of X, crossed terms appear in 
the objective function which makes it difficult to use the kernel trick as it would naturally 
be used for classical SVR.

Appendix A proof of Proposition 2

Proof  To prove part 1., let’s recall that �i , �∗
i
 are the lagrange multipliers associated to the 

optimization problem (LSVR-P) constraints:
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The complementary optimality conditions leads to

Let us now suppose that 𝛼i > 0 and 𝛼∗
i
> 0 which implies that

It follows that −2� = �i + �∗
i
 and �i, �∗i ≥ 0 which implies �i = �∗

i
= � = 0 . This goes 

against our condition 𝜖 > 0.
To prove part 2., we need to remind the optimality conditions deriving from (LSVR-P); 

(C� −
∑l

i=1
�i + �∗

i
)� = 0 . Thus, if 𝜖 > 0 we have that 

∑n

i=1
�i + �∗

i
= C� . 	�  ◻

Appendix B proof of Proposition 3

We start by giving a lemma that will be usefull to prove the proposition for the blocks � 
and �∗.

Lemma 1  If the update between iteration k and k + 1 happens in the block � (or �∗) and 
that (i, j) is the most violating pair of variables then

Proof  Let us recall that the update in the block � (or �∗ ) has the following form ; 
�k+1
i

= �k
i
+ t∗ and �k+1

j
= �k

j
− t∗ , with t∗ as defined in Definition 5. In a stacked form we 

have that

	�  ◻

This lemma is helpful for the proof the blocks � and �.

(2)
�TXi∶ + �0 − yi ≤ � + �i

yi − �TXi∶ − �0 ≤ � + �∗
i
.

�i(�
TXi∶ + �0 − yi − � − �i) = 0

�∗
i
(yi − �TXi∶ − �0 − � − �∗

i
) = 0.

�TXi∶ + �0 − yi − � − �i = 0

yi − �TXi∶ − �0 − � − �∗
i
= 0.

(3)
∇�i

f (�k+1) − ∇�j
f (�k+1) = ∇�i

f (�k) − ∇�j
f (�k)

+ t∗(Qii + Qjj − 2Qij)

∇�i
f (�k+1) − ∇�j

f (�k+1) = (Q�k+1)i + li − (Q�k+1)j − lj

=

2n+k1+k2∑
s=1

Qis�
k+1
s

+ li −

2n+k1+k2∑
s=1

Qjs�
k+1
s

− lj

= ∇�i
f (�k) − ∇�j

f (�k) + t∗(Qii − Qij) + t∗(Qjj − Qij)

= ∇�i
f (�k) − ∇�j

f (�k) + t∗(Qii + Qjj − 2Qij).
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Lemma 2  If �i is the updated variable at iteration k, then it holds that: 
∇if (𝜃

k+1) = Q̄ii(𝜃
k+1
i

− 𝜃k
i
) + ∇if (𝜃

k).

Proof  The proof is straightforward,

	�  ◻

Let us now give the proof of Proposition 3.

Proof  Let us consider that the update between iteration k and k + 1 takes place in the block 
� . We will define (i, j) as the most violating pair of variables as defined in Sect. 3. From the 
discussion in Sect. 3.3, we know that minimizing the objective function of (LSVR-D) con-
sidering that only the parameter t is a variable leads to minimizing the following function:

We recall that t is the parameter that will be used for the update of �i and �j and K is a con-
stant term. We also have the following result from Lemma 1:

The minimization update takes place in the square S = [0,
C

n
] × [0,

C

n
] illustrated in Fig. 5.

∇if (𝜃
k+1) = (Q̄𝜃k+1

i
)i + li

=

2n+k1+k2∑
s=1

Q̄is𝜃
k+1
s

+ li

=

2n+k1+k2∑
s≠i

Q̄is𝜃
k+1
s

+ li + Q̄ii𝜃
k+1
i

= ∇if (𝜃k) + Q̄ii𝜃
k+1
i

− Q̄ii𝜃
k
i

= Q̄ii(𝜃
k+1
i

− 𝜃k
i
) + ∇if (𝜃

k).

(4)𝜓(t) =
1

2
t2(Q̄ii + Q̄jj − 2Q̄ij) + t(∇𝛼i

f (𝜃k) − ∇𝛼j
f (𝜃k)) + K

(5)
∇𝛼i

f (𝜃k+1) − ∇𝛼j
f (𝜃k+1) = ∇𝛼i

f (𝜃k) − ∇𝛼j
f (𝜃k)

+ (Q̄ii + Q̄jj − 2Q̄ij)t
∗

Fig. 5   Possible updates for the 
block � or �∗
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At points B and C of the square S, (i, j) cannot be a �-violating pair of variables because 
they belong to the same set of indices Iup (or Ilow ). Everywhere else, violation can take 
place.

•	 On ]CA], �i = 0 and 𝛼j > 0 so i ∈ Iup and j ∈ Ilow which means that by definition of �
-violating pair of variable 

 which means tq =
−(∇𝛼i

f (𝜃k)−∇𝛼j
f (𝜃k))

(Q̄ii+Q̄jj−2Q̄ij)
> 0 . Let us remind that : 

 It means that on ]CA], (6) becomes : 0 ≤ t∗ ≤ �j There are then two possibilities:

–	 if tq ≥ �j , it implies because of the constraints on t∗ , that t∗ = �j . The update 
becomes then �k+1

i
= �k

i
+ �k

j
 and �k+1

j
= 0 . Then j belongs to the set of indices Iup 

and i belongs to Ilow . We deduce that ∇�i
f (�k+1) − ∇�j

f (�k+1) ≤ 0 which proves 
that (i, j) is not a violating pair of variable anymore and that �k+1 ≠ �k

–	 Second possibility is that tq ≤ �j then t∗ = tq , then (�k+1
i

, �k+1
j

) belongs to int(S) . 
We deduce that ∇�i

f (�k+1) − ∇�j
f (�k+1) = 0 , (i, j) is not a �-violating pair of vari-

ables anymore and �k+1 ≠ �k.

The same reasoning can be done on each segment of the edge of the square and also for 
points that are inside it. Moreover, it stays true for the block �∗ and the proof is similar.

Let us now prove that when the update takes place at index i in the block � then i is not 
violating variable at iteration k + 1 . Then we need to show that ∇�i

f (�k+1) ≥ 0 . Let us start 
with the case where the update 𝛾k+1

i
=

∇𝛾i
f (𝜃k)

Q̄ii

− 𝛾k
i
 . Using (), we have that ∇�i

f (�k+1) = 0 . 

The second possible case is �k+1
i

= 0 because −
∇𝛾i

f (𝜃k)

Q̄ii

+ 𝛾k
i
≤ 0 . If �k+1

i
= 0 then 

∇𝛾i
f (𝜃k+1) = −Q̄ii𝛾

k
i
+ ∇𝛾i

f (𝜃k) . Q̄ii is positive because it is a diagonal element of a Gram 
matrix (ATA) thus we get that ∇�i

f (�k+1) ≥ 0 , which proves that i is not a violating variable 
anymore.

The proof for the block � relies on the same idea except that it is simpler because there 
is no clipped updates possible so ∇�i

f (�k+1) = 0 if the updates takes place at �i which also 
proves that i is not a violating variable for this block of variables anymore. 	� ◻

Appendix C proof of Theorem 1

We begin the proof of the theorem by giving several preliminary results that will be 
hepful for giving the final proof. The first result gives a bound for controlling the dis-
tance of the primal iterates generated by the algorithm and the solution of (LSVR-P).

Lemma 3  For any SMO-LSSVR iterate

∇𝛼i
f (𝜃k) − ∇𝛼j

f (𝜃k) < −𝜏 < 0

(6)max
(
−�i, �j −

C

n

)
≤ t∗ ≤ min

(
C

n
− �i, �j

)
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�opt a solution of (LSVR-P) and �opt a solution of (LSVR-D), it holds that 
1

2
||�k − �opt|| ≤ f (�k) − f (�opt).

Proof  A first observation is that the relationship between the primal optimization problem 
and the dual leads to this equality

Replacing �k by −
∑n

i=1
(�k

i
− (�∗

i
)k)Xi∶ − AT�k + � T�k leads to (7). We have already seen 

that there is strong duality between both problems so the dual gap is zero at the solutions. 
Thus it means that for any primal optimal solution (�opt, �opt

0
, �opt, �opt, �opt) and any dual 

solution �opt , it holds true that

Using the equation link between primal and dual yields to

Since 
∑n

i=1
(�i − �∗

i
) = 0 , we have that

Moreover, using the constraints of (LSVR-P) and the fact that � ≥ 0 and �∗ ≥ 0 it holds 
that:

�k = −

n∑
i=1

(�k
i
− (�∗

i
)k)Xi∶ − AT�k + � T�k,

(7)f (�k) =
1

2
||�k||2 + lT�k.

(8)

1

2
||�opt||2 + C

(
��opt +

1

n

n∑
i=1

�
opt

i
+ �

opt

i

)
= −f (�opt)

= −
1

2
||�opt||2 − lT�opt.

⟨�, �opt⟩ =
�
−

n�
i=1

(�i − �∗
i
)Xi∶ − AT� + � T�, �opt

�

= −⟨AT� , �opt⟩ −
n�
i=1

(�i − �∗
i
)⟨Xi∶, �

opt⟩

+ ⟨� T�, �opt⟩.

⟨�, �opt⟩ = −⟨AT� , �opt⟩ −
n�
i=1

(�i − �∗
i
)⟨Xi∶, �

opt⟩

+ ⟨� T�, �opt⟩ − �
opt

0

n�
i=1

(�i − �∗
i
)

= −⟨AT� , �opt⟩ −
n�
i=1

�i(⟨Xi∶, �
opt⟩ + �

opt

0
)

+

n�
i=1

�∗
i
(⟨Xi∶, �

opt⟩ + �
opt

0
) + ⟨� T�, �opt⟩.
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Finally we have

Since �opt statisfies the constraints of the primal optimization problem, it holds that 
⟨� T�, �opt⟩ = �Td and since � ≥ 0 we have ⟨AT� , �opt⟩ ≤ �Tb , thus

The linear term that we wrote l in the objective function of (LSVR-D) defines 
lT� =

∑n

i=1
(�i − �∗

i
)Xi∶ + �Tb − �Td which in combination with the equality (7) gives

Each �k
i
 , (�∗

i
)k is bounded by C

n
 which yields to

⟨�, �opt⟩ ≥ −⟨AT� , �opt⟩ +
n�
i=1

�i(−yi − �opt − �
opt

i
)

+

n�
i=1

�∗
i
(yi − �opt − (�∗

i
)opt) + ⟨� T�, �opt⟩

= −⟨AT� , �opt⟩ −
n�
i=1

(�i − �∗
i
)yi − �optC�

−

n�
i=1

�i�
opt

i
+ �∗

i
(�∗

i
)opt + ⟨� T�, �opt⟩.

1

2
���k − �opt��2 = 1

2
���k��2 − ⟨�k, �opt⟩ + 1

2
���opt��2

≤
1

2
���k��2 + ⟨AT�k, �opt⟩ + �optC�

+

n�
i=1

(�k
i
− (�∗

i
)k)yi +

n�
i=1

�k
i
�
opt

i

+ (�∗
i
)k(�∗

i
)opt − ⟨� T�k, �opt⟩ + 1

2
���opt��2

1

2
||�k − �opt||2 ≤ 1

2
||�k||2 + �Tb +

n∑
i=1

(�k
i
− (�∗

i
)k)yi

+ �optC� +

n∑
i=1

�k
i
�
opt

i

+ (�∗
i
)k(�∗

i
)opt − �Td +

1

2
||�opt||2.

1

2
||�k − �opt||2 ≤ 1

2
f (�k) + �optC�

+

n∑
i=1

�k
i
�
opt

i
+ (�∗

i
)k(�∗

i
)opt +

1

2
||�opt||2.

1

2
||�k − �opt||2 ≤ f (�k) + �optC�

+
C

n

n∑
i=1

�
opt

i
+ (�∗

i
)opt +

1

2
||�opt||2.
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We recognize the objective function of the primal optimization problem and using that 
there is no dual gap at the optimum it follows that

which finishes the proof. 	�  ◻

Before the next statement, we need to give a definition that we will use in the next 
proofs.

Definition 6  Let (i,  j) ( i ∈ Ilow and j ∈ Iup ) be the most violating pair of variables in the 
block � , (i∗, j∗) ( i∗ ∈ I∗

low
 and j∗ ∈ I∗

up
 ) for the block �∗ . Let s1 be the index of the most vio-

lating variable in the block � and s2 in the block � . We will call “optimality score” at itera-
tion k the quantity �k = max(�k

1
,�k

2
,�k

3
,�k

4
), where �k

1
= max(∇�j

f (�k) − ∇�i
f (�k), 0) , 

�k
2
= max(∇�j∗

f (�k) − ∇�i∗
f (�k), 0) , �k

3
= max(−∇�s1

f (�k), 0) and �k
4
= max(|∇�s2

f (�k)|, 0).

The next result states that the sequence {f (�k)} is a decreasing sequence. This result 
already states the convergence to a certain value f̄  because we know that the sequence is 
bounded by the existing global minimum of the function since f is convex.

Lemma 4  The sequence generated by the Generalized SMO algorithm {f (�k)} is a decreas-
ing sequence. This sequence converges to a value f̄ .

Proof  We first prove that f (�k) − f (�k+1) ≥ 0 when minimization takes place in the block 
� . Let (i, j) be the indices of the variables selected to be optimized and let u ∈ ℝ

2n+k1+k2 be 
the vector with only zeros except at the ith coordinate where it is equal to t∗ as defined in 
Sect.  5 and at the jth coordinate where it is equal to −t∗ . We will also define 
tq =

−(∇�i
f (�k)−∇�j

f (�k))

Qii+Qjj−2Qij

 , the unconstrained minimum for the update in � block. Let us 
compute

�optC� +
C

n

n∑
i=1

�
opt

i
+ (�∗

i
)opt +

1

2
||�opt||2 = −f (�opt),

f (𝜃k) − f (𝜃k+1) =
1

2
(𝜃k)TQ̄𝜃k + lT𝜃k

−
1

2
(𝜃k+1)TQ̄𝜃k+1 + lT𝜃k+1

=
1

2
(𝜃k)TQ̄𝜃k + lT𝜃k

−
1

2
(𝜃k + U)TQ̄(𝜃k + u)

+ lT (𝜃k + u)

= −
1

2
uTQ̄u − uT (Q𝜃k + l)

= −
1

2
uTQ̄u − uT (∇f (𝜃k))

= −
(t∗)2

2
(Qii + Qjj − 2Qij)

− t∗(∇𝛼i
f (𝜃k) − ∇𝛼j

f (𝜃k)).
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We first study the case when there is no clipping which means that t∗ = tq
1. No clipping. Replacing t∗ by its expression leads to the following result:

2. Clipping takes place because tq ≤ t∗ = max(−�i, �j −
C

n
)

We notice that tq ≤ max(−�i, �j −
C

n
) ≤ 0 which implies that i ∈ Ilow and j ∈ Iup . In that 

case �k
1
= ∇�i

f (�k) − ∇�j
f (�k) . Replacing tq by its expression leads to

Thus we have that if t∗ = −�i , f (�k) − f (�k+1) ≥
1

2
�k
1
�i ≥ 0 and that if 

t∗ = �j −
C

n
 , f (�k) − f (�k+1) ≥

1

2
�k
1
(
C

n
− �j) ≥ 0. 3. Clipping takes place because  

tq ≥ t∗ = min(
C

n
− �i, �j).

This time tq ≥ min(
C

n
− �i, �j) ≥ 0 which also implies that i ∈ Iup and j ∈ Ilow and that 

�k
1
= ∇�j

f (�k) − ∇�i
f (�k) . The only difference here is that multiplying by −t∗ will imply a 

change in the inequality.

Thus we have that if t∗ = C

n
− �i

and if t∗ = �j,

f (�k) − f (�k+1) =
(�k

1
)2

2(Qii + Qjj − 2Qij)

=
(�k

1
)2

2||Xi∶ − Xj∶||2
≥ 0.

−(∇�i
f (�k) − ∇�j

f (�k)) ≤ t∗(Qii + Qjj − 2Qij)

�k
1
t∗

2
≤

−(t∗)2

2
(Qii + Qjj − 2Qij)

�k
1
t∗

2
− t∗�k

1
≤

−(t∗)2

2
(Qii + Qjj − 2Qij)

− t∗(∇�i
f (�k) − ∇�j

f (�k))

−
1

2
�k
1
t∗ ≤

−(t∗)2

2
(Qii + Qjj − 2Qij)

− t∗(∇�i
f (�k) − ∇�j

f (�k))

−(∇if (�
k) − ∇jf (�

k)) ≥ t∗(Qii + Qjj − 2Qij)

−�k
1
t∗

2
≤

−(t∗)2

2
(Qii + Qjj − 2Qij)

−�k
1
t∗

2
+ t∗�k

1
≤

−(t∗)2

2
(Qii + Qjj − 2Qij)

− t∗(∇if (�
k) − ∇jf (�

k))

1

2
�k
1
t∗ ≤

−(t∗)2

2
(Qii + Qjj − 2Qij)

− t∗(∇if (�
k) − ∇jf (�

k))

f (�k) − f (�k+1) ≥
1

2
�k
1

(
C

n
− �i

)
≥ 0,
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To prove that f (�k) − f (�k+1) ≥ 0 when the update takes place in the block � and � we first 
need to observe that when only one variable is updated between iteration k and k + 1 it fol-
lows that

Therefore, we now prove the result for the block � . If the update is not a clipped update and 
i is the index of the updated variable, it holds that �k

i
− �k+1

i
=

∇�i
f (�k)

(AAT )ii
 , which gives the fol-

lowing bound

Moreover, if a clipped update takes place in this block, we know that it happens when 
0 ≤ �k

i
≤

∇�i
f (�k)

(AAT )ii
 . It yields to the following bound

The result for the block � is obtained using the same arguments except that there is no 
clipped updates. 	�  ◻

Lemma 5  There exists a subsequence {�kj} of iterations generated by the generalized SMO 
where clipping does not take place.

Proof  Let us suppose the contrary, which means that there exists an iteration K such that 
for all k ≥ K we only perform clipped updates. The number of variables Nk

B
 that belong to 

the boundary of its contraints (0 or C
n
 for the blocks � or �∗ and 0 for the block � ) is non-

decreasing for all k ≥ K and it is bounded thus it must converge to another integer N∗.
This convergence implies that there exists k∗ such that for all k ≥ k∗ , Nk

B
= N∗ since 

Nk
B
 and N∗ are integers. This observation allows us to conclude that for all k ≥ k∗ clipped 

updates only take place in the blocks � or �∗ since the updates in the block � are made on 
only one variable and that the number of clipped variables has reached its maximum value. 
An update in the block � would strictly increase the number of clipped variables which is 
not possible for all k ≥ k∗ or the update would not change the value of � and we showed 
before that this situation is not possible (Propostion 3).

For all k ≥ k∗ , we have that updates in the block � (resp. �∗ ) have this necessary scheme: 
�k
i
 or �k

j
 is equal to 0 or C

n
 thus after the update, one of them will leave the boundary and the 

other one goes to it in order to keep the number of clipped variables equals to N∗ . The dif-
ferent possibilities are then the following:

–	 if �k
i
= 0 and 0 < 𝛼k

j
≤

C

l
 the only possible update following the Definition 5 is 

–	 if �k
j
=

C

l
 and 0 ≤ 𝛼k

i
<

C

l
 the only possible update following the Definition 5 is 

f (�k) − f (�k+1) ≥
1

2
�k
1
�j ≥ 0.

f (𝜃k) − f (𝜃k+1) =
1

2
Q̄ii(𝜃

k
i
− 𝜃k+1

i
)2.

(9)f (�k) − f (�k+1) =
1

2(AAT )ii
(∇�i

f (�k))2 ≥ 0.

f (�k) − f (�k+1) =
1

2
(AAT )ii(�

k
i
)2 ≥ 0.

�k+1
i

= �k
i
+ �k

j
= �k

j

�k+1
j

= �k
j
− �k

j
= 0.
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It stays true for the block �∗ and the discussion is similar. It is clear that from the descrip-
tion of the updates made above that there is only a finite number of ways to shuffle the val-
ues which means that there exists k1, k2 ≥ k∗ such as �k1 = �k2 and with k1 < k2 . Therefore 
f (�k1 ) = f (�k2 ) which contradicts the decrease of the sequence f (�k) (Lemma 4). 	�  ◻

Lemma 6  Let {�kj} be a subsequence generated by the Generalized SMO algorithm where 
clipping does not take place. We then have that �kj → 0.

Proof  We have that

where D = max
p,q

||Xp∶ − Xq∶|| when the update happens in the blocks � or �∗ . When it hap-
pens in the block � with no clipping we have the following inequality

When the update takes place in the block � , we have that

We then define a sequence

The sequence {ukj} → 0 because of the bound given above and the fact that 
f (�kj ) − f (�kj+1) → 0 too (Lemma 4). This implies that �kj → 0 as well. 	�  ◻

A consequence of the lemma above is that �kj

1
→ 0 , �kj

2
→ 0 , �kj

3
→ 0 and �kj

4
→ 0 because 

�kj is defined as the maximum of those four positive values.

Lemma 7  Let {�kj} be a subsequence generated by the generalized SMO algorithm where 
clipping does not take place. This subsequence is bounded.

Proof  To prove the statement, we will show that ||�kj − �opt||2 is bounded where �opt 
belongs to the set of solution of (LSVR-D). Since each �i and �∗

i
 is belongs to [0, C

n
] , we 

have that

�k+1
i

= �k
i
+
(
C

l
− �k

i

)
=

C

l

�k+1
j

= �k
j
−
(
C

l
− �k

i

)
= �k

i
.

f (�kj ) − f (�kj+1) ≥
(∇�i

f (�kj ) − ∇�j
f (�kj ))2

2D2
=

(�kj )2

2D2

f (�kj ) − f (�kj+1) ≥
(∇�i

f (�kj ))2

2
=

(−�kj )2

2
=

(�kj )2

2
.

f (�kj ) − f (�kj+1) ≥
(∇�i

f (�kj ))2

2
) =

(�kj )2

2
.

ukj =

{
1

2D2
(�kj )2 update in the blocks � or �∗.

1

2
(�kj )2 update in the blocks � or �.
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We will work on the bound for the quantity ||�kj+1 − �opt||2 first. If the update happens in 
the block � at coordinate �j , we have the following

We then have that

From 6, we have that �kj

4
→ 0 then it can be bounded by a constant M0 . We know from (9) 

that

From Lemma 4, we know that f (�kj ) − f (�kj+1) → 0 then it can be bounded by a constant 
M1 . Overall we have that

||�kj+1 − �opt||2 = ||�kj+1 − �opt||2 + ||(�∗)kj+1 − (�∗)opt||2
+ ||�kj+1 − �opt||2 + ||�kj+1 − �opt||2

≤
2C2

n
+ ||�kj+1 − �opt||2 + ||�kj+1 − �opt||2.

||�kj+1 − �opt||2 = ||�kj − ej

∇�j
f (�kj )

(�� T )jj
− �opt||2

= ||�kj − �opt||2 − 2

⟨
�kj − �opt, ej

∇�j
f (�kj )

(�� T )jj

⟩

+

||||||

||||||
ej

∇�j
f (�kj )

(�� T )jj

||||||

||||||

2

= ||�kj − �opt||2 +
∇�j

f (�kj )2

(�� T )2
jj

− 2
∇�j

f (�kj )

(�� T )jj
(�

kj

j
− �

opt

j
).

−2
∇�j

f (�kj )

(�� T )jj
(�

kj

j
− �

opt

j
) = 2(�

kj+1

j
− �

kj

j
)(�

kj

j
− �

opt

j
)

= 2⟨�kj+1 − �kj ,�kj − �opt⟩
≤ 2���kj+1 − �kj �� ⋅ ���kj − �opt��

≤ 2
�∇�j

f (�kj )�
(�� T )jj

���kj − �opt��

≤ 2
�
kj

4

(�� T )jj
���kj − �opt��

∇�j
f (�kj )2

(�� T )2
jj

=
2

(�� T )jj
(f (�kj ) − f (�kj+1)).
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By recursion we have

Since there is no clipped update on the subsequence {�kj} , the proof for the block � is simi-
lar which proves that ||�kj − �opt|| is bounded. 	�  ◻

Lemma 8  Let {�kj} be a subsequence generated by the generalized SMO algorithm where 
clipping does not take place. There exists a sub-subsequence that converges to 𝜃̄ , with 𝜃̄ 
being a solution of (LSVR-D).

Proof  From Lemma  7, we have that {�kj} is a bounded sequence, it means that we can 
extract a converging subsequence that we will write {�kj} not to complicate the notations. 
Since F  is closed, 𝜃̄ meets the constraints of the dual optimization problem and belongs to 
F  . We now want to prove that it belongs to the set of solution of (LSVR-D) by showing 
that 𝛥1(𝜃̄) ≤ 0 , 𝛥2(𝜃̄) ≤ 0 , 𝛥3(𝜃̄) ≤ 0 and 𝛥4(𝜃̄) ≤ 0 . Let us make two observations that will 
be used for the following proof. The first one comes from the continuity of the gradient 
which implies that for all � there exists K1 such that for all kj ≥ K1 , |∇if (𝜃

kj ) − ∇if (𝜃̄)| < 𝜖 
for all i. The second observation is that it is possible too chose an � small enough such that 
there exists K2 such that for all kj ≥ K2 : if 𝛼i > 0 , we have 𝛼kj

i
> 0 and if 𝛼i <

C

n
 we have 

𝛼
kj

i
<

C

n
 . In other words, we say that all the indices in the set Ilow(𝛼̄)(resp. Iup) are also in 

Ilow(�kj )(resp. Iup) . The same argument holds for indices in the block �∗.
Let us assume that 𝛥1 > 0 , it means that there exists at least one violating pair of vari-

ables that we will note (ī, j̄) at 𝜃̄ . From the discussion above, we know that ī ∈ Ilow for all 
kj ≥ K2 and that j̄ ∈ Iup for all kj ≥ K2 . We then have that for all 𝜖 > 0 , there exists K1 such 
as for all kj ≥ max(K1,K2),

We choose 𝜖 = 𝛥1

2
− 𝜖� where 0 < 𝜖′ <

𝛥1

2
 which leads to

This inequality is true for all kj ≥ max(K1,K2) which contradicts the fact that �kj

1
→ 0 . The 

proof is similar to show that 𝛥2 ≤ 0.

||�kj+1 − �opt||2 ≤ ||�kj − �opt||2 + 2
M0

(�� T )jj
||�kj − �opt||

+
2

(�� T )jj
M1.

||𝜇kj+1 − 𝜇opt||2 ≤ ||𝜇0 − 𝜇opt||2 + 2
M0

(𝛤𝛤 T )jj
||𝜇0 − 𝜇opt||

+
2

(𝛤𝛤 T )jj
M1

< ∞.

𝛥
kj

1
= min

i∈Iup
∇if (𝜃

kj ) −max
i∈Ilow

∇if (𝜃
kj )

≥ ∇īf (𝜃
kj ) − ∇j̄f (𝜃

kj )

≥ (∇īf (𝜃̄) − 𝜖) − (∇j̄f (𝜃̄) + 𝜖)

= 𝛥1 − 2𝜖.

𝛥
kj

1
≥ 𝛥1 − 2𝜖� = 2𝜖� > 0.
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Let us now suppose that 𝛥3 > 0 it means that there exists an index ī such that 
∇𝛾i

f (𝜃̄) < 0 . For all 𝜖 > 0 , there exists K1 , K2 such as for all kj > max(K1,K2)

We choose 𝜖 = 𝛥3 − 𝜖� where 0 < 𝜖′ < 𝛥3 which leads to

This inequality is true for all kj ≥ max(K1,K2) which contradicts the fact that �kj

3
→ 0.

Finally let’s assume that 𝛥kj

4
> 0 , it means that |∇�i

f (�kj )| ≠ 0 . Using the continuity of 
the gradient we write that for all 𝜖 > 0 there exists K1 such that for all kj ≥ K1 we have 
|∇𝜇i

f (𝜃kj ) − ∇𝜇i
f (𝜃̄| < 𝜖 . Using triangle inequality we get that

Thus −𝜖 ≤ |∇𝜇i
f (𝜃kj )| − |∇𝜇i

f (𝜃̄)| ≤ 𝜖, which means that

Then we have the following:

We choose 𝜖 = 𝛥4 − 𝜖� where 0 < 𝜖′ < 𝛥4 which leads to

This inequality is true for all kj ≥ max(K1,K2) which contradicts the fact that �kj

4
→ 0 . 	

� ◻

Proof  We are now able to give the proof of the Theorem 1. From Lemma 3, we have that 
1

2
||�k − �opt|| ≤ f (�k) − f (�opt). Moreover, from Lemma 6 we know that there is a subse-

quence {�kj} generated by the Generalized SMO algorithm where clipping does not take 
place and that converges to 𝜃̄ , with 𝜃̄ a solution of (LSVR-D). The continuity of the objec-
tive function f allows us to say that f (𝜃kj ) → f (𝜃̄) . From Lemma 4, we know that {f (�kj )} 
is decreasing and bounded so the monotone convergence theorem implies that the whole 
sequence f (𝜃k) → f (𝜃̄) and it follows that 1

2
||�k − �opt|| → 0 and finally that �k → �opt . 	

� ◻

𝛥
kj

3
= − min

i∈{1,…,k1}
∇𝛾i

f (𝜃kj )

≥ −∇𝛾ī
f (𝜃kj )

≥ −(∇𝛾ī
f (𝜃̄) + 𝜖)

= 𝛥3 − 𝜖.

𝛥
kj

3
≥ 𝛥3 − 𝜖 = 𝜖� > 0.

||||∇𝜇i
f (𝜃kj )| − |∇𝜇i

f (𝜃̄)|||| ≤ |∇𝜇i
f (𝜃kj ) − ∇𝜇i

f (𝜃̄)| < 𝜖.

|∇𝜇i
f (𝜃̄)| − 𝜖 ≤ |∇𝜇i

f (𝜃kj )|.

𝛥
kj

4
= max

i∈{1,…,k2}
|∇𝜇i

f (𝜃kj )|
≥ ∇𝜇ī

f (𝜃kj )|
≥ |∇𝜎 f (𝜃̄)| − 𝜖

= 𝛥4 − 𝜖.

𝛥
kj

4
≥ 𝛥4 − 𝜖 = 𝜖� > 0.
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