
Vol.:(0123456789)

Machine Learning (2021) 110:2335–2387
https://doi.org/10.1007/s10994-021-06020-8

1 3

A deep reinforcement learning framework for continuous
intraday market bidding

Ioannis Boukas1 · Damien Ernst1 · Thibaut Théate1 · Adrien Bolland1 ·
Alexandre Huynen2 · Martin Buchwald2 · Christelle Wynants2 · Bertrand Cornélusse1

Published online: 12 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
The large integration of variable energy resources is expected to shift a large part of the
energy exchanges closer to real-time, where more accurate forecasts are available. In this
context, the short-term electricity markets and in particular the intraday market are consid-
ered a suitable trading floor for these exchanges to occur. A key component for the success-
ful renewable energy sources integration is the usage of energy storage. In this paper, we
propose a novel modelling framework for the strategic participation of energy storage in the
European continuous intraday market where exchanges occur through a centralized order
book. The goal of the storage device operator is the maximization of the profits received
over the entire trading horizon, while taking into account the operational constraints of the
unit. The sequential decision-making problem of trading in the intraday market is modelled
as a Markov Decision Process. An asynchronous version of the fitted Q iteration algorithm
is chosen for solving this problem due to its sample efficiency. The large and variable num-
ber of the existing orders in the order book motivates the use of high-level actions and
an alternative state representation. Historical data are used for the generation of a large
number of artificial trajectories in order to address exploration issues during the learning
process. The resulting policy is back-tested and compared against a number of benchmark
strategies. Finally, the impact of the storage characteristics on the total revenues collected
in the intraday market is evaluated.

Keywords  European continuous intraday markets · Energy storage control · Markov
decision process · Deep reinforcement learning · Asynchronous fitted Q iteration

Editors: Yuxi Li, Alborz Geramifard, Lihong Li, Csaba Szepesvari, Tao Wang.

 *	 Ioannis Boukas
	 ioannis.boukas@uliege.be

1	 Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
2	 Global Market Analysis - GEM, ENGIE, Brussels, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06020-8&domain=pdf

2336	 Machine Learning (2021) 110:2335–2387

1 3

1  Introduction

The vast integration of renewable energy resources (RES) into (future) power systems, as
directed by the recent worldwide energy policy drive (The European Commission 2017),
has given rise to challenges related to the security, sustainability and affordability of the
power system (“The Energy Trilemma”). The impact of high RES penetration on the mod-
ern short-term electricity markets has been the subject of extensive research over the last
few years. Short-term electricity markets in Europe are organized as a sequence of trading
opportunities where participants can trade energy in the day-ahead market and can later
adjust their schedule in the intraday market until the physical delivery. Deviations from this
schedule are then corrected by the transmission system operator (TSO) in real time and the
responsible parties are penalized for their imbalances (Meeus and Schittekatte 2017).

Imbalance penalties serve as an incentive for all market participants to accurately
forecast their production and consumption and to trade based on these forecasts (Scharff
and Amelin 2016). Due to the variability and the lack of predictability of RES, the out-
put planned in the day-ahead market may differ significantly from the actual RES output
in real time (Karanfil and Li 2017). Since the RES forecast error decreases substantially
with a shorter prediction horizon, the intraday market allows RES operators to trade these
deviations whenever an improved forecast is available (Borggrefe and Neuhoff 2011). As a
consequence, intraday trading is expected to reduce the costs related to the reservation and
activation of capacity for balancing purposes. The intraday market is therefore a key aspect
towards the cost-efficient RES integration and enhanced system security of supply.

Owing to the fact that commitment decisions are taken close to real time, the intraday
market is a suitable market floor for the participation of flexible resources (i.e. units able to
rapidly increase or decrease their generation/consumption). However, fast-ramping thermal
units (e.g. gas power plants) incur a high cost when forced to modify their output, to oper-
ate in part load, or to frequently start up and shut down. The increased cost related to the
cycling of these units will be reflected to the offers in the intraday market (Pérez Arriaga
and Knittel et al 2016). Alternatively, flexible storage devices (e.g. pumped hydro storage
units or batteries) with low cycling and zero fuel cost can offer their flexibility at a com-
paratively low price, close to the gate closure. Hence, they are expected to play a key role
in the intraday market.

1.1 � Intraday markets in Europe

In Europe, the intraday markets are organized in two distinct designs, namely auction-
based or continuous trading.

In auction-based intraday markets, participants can submit their offers to produce or
consume energy at a certain time slot until gate closure. After the gate closure, the submit-
ted offers are used to form the aggregate demand and supply curves. The intersection of the
aggregate curves defines the clearing price and quantity (Neuhoff et al. 2016). The clearing
rule is uniform pricing, according to which there is only one clearing price at which all
transactions occur. Participants are incentivized to bid at their marginal cost since they are
paid at the uniform price. This mechanism increases price transparency, although it leads
to inefficiencies, since imbalances after the gate closure can no longer be traded (Hage-
mann 2015).

In continuous intraday (CID) markets, participants can submit at any point during the
trading session orders to buy or to sell energy. The orders are treated according to the first

2337Machine Learning (2021) 110:2335–2387	

1 3

come first served (FCFS) rule. A transaction occurs as soon as the price of a new “Buy”
(“Sell”) order is equal or higher (lower) than the price of an existing “Sell” (“Buy”) order.
Each transaction is settled following the pay-as-bid principle, stating that the transaction
price is specified by the oldest order of the two present in the order book. Unmatched
orders are stored in the order book and are accessible to all market participants. The energy
delivery resolution offered by the CID market in Europe ranges between hourly, 30-min
and 15-min products, and the gate closure takes place between five and 60 min before
actual delivery. Continuous trading gives the opportunity to market participants to trade
imbalances as soon as they appear (Hagemann 2015). However, the FCFS rule is inher-
ently associated with lower allocative inefficiency compared to auction rules. This implies
that, depending on the time of arrival of the orders, some trades with a positive welfare
contribution may not occur while others with negative welfare contribution may be realised
(Henriot 2014). It is observed that a combination of continuous and auction-based intra-
day markets can increase the market efficiency in terms of liquidity and market depth, and
results in reduced price volatility (Neuhoff et al. 2016).

In practice, the available contracts (“Sell” and “Buy” orders) can be categorized into
three types:

•	 The market order, where no price limit is specified (the order is matched at the best
price)

•	 The limit order, which contains a price limit and can only be matched at that or at a bet-
ter price

•	 The market sweep order, which is executed immediately (fully or partially) or gets can-
celled.

Limit orders may appear with restrictions related to their execution and their validity.
For instance, an order that carries the specification Fill or Kill should either be fully and
immediately executed or cancelled. An order that is specified as All or Nothing remains in
the order book until it is entirely executed (Balardy 2017a).

The European Network Codes and specifically the capacity allocation and congestion
management guidelines (Meeus and Schittekatte 2017) (CACM GL) suggest that continu-
ous trading should be the main intraday market mechanism. Complementary regional intra-
day auctions can also be put in place if they are approved by the regulatory authorities
(Meeus and Schittekatte 2017). To that direction, the Cross-Border Intraday (XBID) Ini-
tiative (Spot 2018) has enabled continuous cross-border intraday trading across Europe.
Participants of each country have access to orders placed from participants of any other
country in the consortium through a centralized order book, provided that there is available
cross-border capacity.

1.2 � Bidding strategies in literature

The strategic participation of power producers in short-term electricity markets has been
extensively studied in the literature. In order to co-optimize the decisions made in the
sequential trading floors from day-ahead to real time the problem has been traditionally
addressed using multi-stage stochastic optimization. Each decision stage corresponds to a
trading floor (i.e. day-ahead, capacity markets, real-time), where the final decisions take
into account uncertainty using stochastic processes. In particular, the influence that the

2338	 Machine Learning (2021) 110:2335–2387

1 3

producer may have on the market price formation leads to the distinction between “price-
maker” and “price-taker” and results in a different modelling of the uncertainty.

In Baillo et al. (2004), the optimization of a portfolio of generating assets over three
trading floors (i.e. the day-ahead, the adjustment and the reserves market) is proposed,
where the producer is assumed to be a “price-maker”. The offering strategy of the producer
is a result of the stochastic residual demand curve as well as the behaviour of the rest of
the market players. On the contrary, a “price-taker” producer is considered in Plazas et al.
(2005) for the first two stages of the problem studied, namely the day-ahead and the auto-
matic generation control (AGC) market. However, since the third-stage (balancing market)
traded volumes are small, the producer can negatively affect the prices with its participa-
tion. Price scenarios are generated using ARIMA models for the two first stages, whereas
for the third stage a linear curve with negative slope is used to represent the influence of
the producer’s offered capacity on the market price.

Hydro-power plant participation in short-term markets accounting for the technical con-
straints and several reservoir levels is formulated and solved in Fleten and Kristoffersen
(2007). Optimal bidding curves for the participation of a “price-taker” hydro-power pro-
ducer in the Nordic spot market are derived accounting for price uncertainty. In Boomsma
et al. (2014), the bidding strategy of a two-level reservoir plant is casted as a multi-stage
stochastic program in order to represent the different sequential trading floors, namely
the day-ahead spot market and the hour-ahead balancing market. The effects of coordi-
nated bidding and the “price-maker” versus “price-taker” assumptions on the generated
profits are evaluated. In PandŽić et al. (2013), bidding strategies for a virtual power plant
(VPP) buying and selling energy in the day-ahead and the balancing market in the form of
a multi-stage stochastic optimization are investigated. The VPP aggregates a pumped hydro
energy storage (PHES) unit as well as a conventional generator with stochastic intermittent
power production and consumption. The goal of the VPP operator is the maximization of
the expected profits under price uncertainty.

In these approaches, the intraday market is considered as auction-based and it is mod-
elled as a single recourse action. For each trading period, the optimal offered quantity is
derived according to the realization of various stochastic variables. However, in reality,
for most European countries, according to the EU Network Codes (Meeus and Schittekatte
2017), modern intraday market trading will primarily be a continuous process.

The strategic participation in the CID market is investigated for the case of an RES
producer in Henriot (2014) and Garnier and Madlener (2015). In both works, the problem
is formulated as a sequential decision-making process, where the operator adjusts its offers
during the trading horizon, according to the RES forecast updates for the physical delivery
of power. Additionally, in Gönsch and Hassler (2016) the use of a PHES unit is proposed to
undertake energy arbitrage and to offset potential deviations. The trading process is formu-
lated as a Markov Decision Process (MDP) where the future commitment decision in the
market is based on the stochastic realization of the intraday price, the imbalance penalty,
the RES production and the storage availability.

The volatility of the CID prices, along with the quality of the forecast updates, are found
to be key factors that influence the degree of activity and success of the deployed bidding
strategies (Henriot 2014). Therefore, the CID prices and the forecast errors are considered
as correlated stochastic processes in Garnier and Madlener (2015). Alternatively, in Hen-
riot (2014), the CID price is constructed as a linear function of the offered quantity with an
increasing slope as the gate closure approaches. In this way, the scarcity of conventional
units approaching real time is reflected. In Gönsch and Hassler (2016), real weather data
and market data are used to simulate the forecast error and CID price processes.

2339Machine Learning (2021) 110:2335–2387	

1 3

For the sequential decision-making problem in the CID market, the offered quantity of
energy is the decision variable to be optimized (Garnier and Madlener 2015). The optimi-
zation is carried out using Approximate Dynamic Programming (ADP) methods, where a
parameterised policy is obtained based on the observed stochastic processes for the price,
the RES error and the level of the reservoir (Gönsch and Hassler 2016). The ADP approach
presented in Gönsch and Hassler (2016) is compared in Hassler (2017) to some thresh-
old-based heuristic decision rules. The parameters are updated according to simulation-
based experience and the obtained performance is comparable to the ADP algorithm. The
obtained decision rules are intuitively interpretable and are derived efficiently through sim-
ulation-based optimization.

The bidding strategy deployed by a storage device operator participating in a slightly
different real-time market organized by NYISO is presented in Jiang and Powell (2014).
In this market, the commitment decision is taken 1 h ahead of real-time and the settle-
ments occur intra-hour every 5 min. In this setting, the storage operator selects two price
thresholds at which the intra-hour settlements occur. The problem is formulated as an MDP
and is solved using an ADP algorithm that exploits a particular monotonicity property. A
distribution-free variant that assumes no knowledge of the price distribution is proposed.
The optimal policy is trained using historical real-time price data.

Even though the focus of the mentioned articles lies on the CID market, the trading
decisions are considered to take place in discrete time-steps. A different approach is pre-
sented in Aïd et al. (2016), where the CID market participation is modelled as a continuous
time process using stochastic differential equations (SDE). The Hamilton Jacobi Bellman
(HJB) equation is used for the determination of the optimal trading strategy. The goal is the
minimization of the imbalance cost faced by a power producer arising from the residual
error between the RES production and demand. The optimal trading rate is derived assum-
ing a stochastic process for the market price using real market data and the residual error.

In the approaches presented so far, the CID price is modelled as a stochastic process
assuming that the participating agent is a “price-taker”. However, in the CID market, this
assumption implies that the CID market is liquid and the price at which one can buy or
sell energy at a given time are similar or the same. This assumption does not always hold,
since the mean bid-ask spread in a trading session in the German intraday market for 2015
was several hundred times larger than the tick-size (i.e. the minimum price movement of a
trading instrument) (Balardy 2017b). It is also reported in the same study that the spread
decreases as trading approaches the gate closure.

An approach that explicitly considers the order book is presented in Bertrand and Papa-
vasiliou (2019). A threshold-based policy is used to optimize the bid acceptance for storage
units participating in the CID market. A collection of different factors such as the time of
the day are used for the adaptation of the price thresholds. The threshold policy is trained
using a policy gradient method (REINFORCE) and the results show improved performance
against the rolling intrinsic benchmark.

The rolling intrinsic benchmark was originally introduced in Gray and Khandelwal
(2004) as a gas storage valuation method and relies on repeated re-optimization as new
price information arrives. According to this method, the trader starts with an initial posi-
tion and when new information about the prices arrives it calculates whether the profit of
(partially) changing its position and taking the optimal position based on these new prices
outweighs the transaction costs. The rolling intrinsic strategy yields profits if the spread
between different tradable products changes sign and if it makes sense to swap trading
decisions. This strategy, although risk-free, is not fundamentally maximizing profit.

2340	 Machine Learning (2021) 110:2335–2387

1 3

1.3 � Contributions of the paper

In this paper, we focus on the sequential decision-making problem related to the optimal
operation of a storage device participating in the CID market. Firstly, we present a novel
modelling framework for the CID market, where the trading agents exchange energy via a
centralized order book. Each trading agent is assumed to dynamically select the orders that
maximize its benefits throughout the trading horizon. Secondly, we model the asset trading
process and describe explicitly the dynamics of the storage system.

We elaborate on a set of assumptions that allow the formulation of the resulting prob-
lem as an MDP. In particular, we consider that the strategy of the trading agents is mod-
eled by a stochastic process that depends on the previous order book observations. The
exogenous information to the trading process is considered to be the outcome of a time-
dependent stochastic model and the charging/discharging decisions of the storage unit are
always such that they minimize any resulting imbalances. Additionally, in order to reduce
the possible trading actions, we assume that the trading agent can only select existing
orders and is not able to post new free-standing offers (aggressor). In order to fully comply
with German regulation policies, we further restrict the agent to select orders if and only
if it does not result in any imbalances. Lastly, since in practice the storage unit is used for
other operational obligations (reserves etc.), we consider that its initial and final state of
charge for each day are decided in advance and are fixed during each CID trading session.
This assumption allows the decoupling of the full optimization horizon in smaller (daily)
windows.

Due to the high-dimensionality and the dynamically evolving size of the order book,
we propose a novel low-dimensional order book representation that allows to capture the
relevant order book information about the arbitrage opportunities of a storage unit. In par-
ticular, we pool the available orders and we engineer features that serve as a proxy of the
potential benefit from this order book configuration for a storage device. Additionally, due
to the dynamically evolving size of the order book, the set of possible actions is still large
despite our assumption on our agent being an aggressor. We thus define a set of two high
level actions, i.e. “Trade” and “Idle”. The new action space allows us to design a set of pol-
icies that are variants of the rolling intrinsic strategy, where instead of sequentially repeat-
ing the optimization steps as new information arrives, we introduce the possibility to wait.

In the absence of a realistic model for the rest of the participants in the market we use
historical data, to construct the trading environment in which the storage agent engages.
The CID market trading problem of a storage device is solved using Deep Reinforcement
Learning techniques, specifically an asynchronous distributed variant of the fitted Q itera-
tion RL algorithm with deep neural networks as function approximators (Ernst et al. 2005).
The resulting policy is evaluated using real data from the German CID market (EPEXS-
POT 2017). The results suggest that the designed trading agent has the ability to identify
the moments in which it would be better off by waiting based on a sequence of market indi-
cators as well as other exogenous information. In summary, the contributions of this work
are the following:

•	 We model the CID market trading process as an MDP where the energy exchanges
occur explicitly through a centralized order book.

•	 We construct a novel state representation in order to provide a structured lower dimen-
sional representation of the order book.

2341Machine Learning (2021) 110:2335–2387	

1 3

•	 We derive, using a batch-mode reinforcement algorithm, an operational policy that is
able to identify the opportunity cost between trading and idling.

1.4 � Outline of the paper

The rest of the paper is organized as follows. In Sect. 2, the CID market trading frame-
work is presented. The interaction of the trading agents via a centralized order book is
formulated as a dynamic process. All the available information for an asset trading agent
is detailed and the objective is defined as the cumulative profits. In Sect. 3, all the assump-
tions necessary to formulate the bidding process in the CID market as an MDP are listed.
The methodology utilised to find an optimal policy that maximizes the cumulative profits
of the proposed MDP is detailed in Sect. 4. A case study using real data from the German
CID market is performed in Sect. 5. The results as well as considerations about limitations
of the developed methodology are discussed in Sect. 6. Finally, conclusions of this work
are drawn and future recommendations are provided in Sect. 7. A detailed nomenclature is
provided at the Appendix A.

2 � Continuous intraday bidding process

In this section, we firstly present a detailed description of the CID market mechanism. Sec-
ondly, we model the dynamics and the decision-making process of an asset trading agent
that participates in the CID market. The goal of the presented framework is to describe in
a generic way the process under consideration. In the following sections, we introduce a
number of assumptions and restrictions to this generic framework targeting a problem that
can be tractable to solve.

2.1 � Continuous intraday market design

The participation in the CID market is a continuous process similar to the stock exchange.
Each market product x ∈ X , where X is the set of all available products, is defined
as the physical delivery of energy in a pre-defined time slot. The time slot correspond-
ing to product x is defined by its starting point tdelivery(x) and its duration �(x) . The trad-
ing process for time slot x opens at topen(x) and closes at tclose(x) . During the time inter-
val t ∈

[
topen(x), tclose(x)

]
 , a participant can exchange energy with other participants for the

lagged physical delivery during the interval �(x) , with:

The exchange of energy takes place through a centralized order book that contains all
the unmatched orders oj , where j ∈ Nt corresponds to a unique index that every order
receives upon arrival. The set Nt ⊆ ℕ gathers all the unique indices of the orders available
at time t. We denote the status of the order book at time t by sOB

t
= (oj,∀j ∈ Nt) . As time

progresses new orders appear and existing ones are either accepted or cancelled.
Trading for a set of products is considered to start at the gate opening of the first

product and to finish at the gate closure of the last product. More formally, consid-
ering an ordered set of available products (hourly, half-hourly and quarter-hourly)
X = {H1,… ,H24,HH1,… ,HH48,Q1,… ,Q96} , the corresponding continuous trading

�(x) =
[
tdelivery(x), tdelivery(x) + �(x)

]
.

2342	 Machine Learning (2021) 110:2335–2387

1 3

horizon is defined as T̃ =
[
topen(Q1), tclose(Q96)

]
 . For instance, in the German CID market,

trading of hourly (quarter-hourly) products for day D opens at 3 p.m. (4 p.m.) of day D − 1
respectively. For each product x, the gate closes 30 min before the actual energy delivery at
tdelivery(x) . The timeline for trading products Q1 to Q4 that correspond to the physical deliv-
ery in 15-min time slots from 00:00 until 01:00, is presented in Fig. 1. It can be observed
that the agent can trade for all products until 23:30. After each subsequent gate closure the
number of available products decreases and the commitment for the corresponding time
slot is defined. Potential deviations during the physical delivery of energy are penalized in
the imbalance market.

2.2 � Continuous intraday market environment

As its name indicates, the CID market is a continuous environment. In order to solve the
trading problem presented in this paper, it has been decided to perform a relevant discre-
tisation operation on the continuous trading horizon T̃  . As shown in Fig. 1, the trading
timeline T̃ is discretised in a high number of time-steps of constant duration Δt and results
in the discretised timeline T. Each discretised trading interval for product x can be denoted
by the set of time-steps T̂(x) =

{
topen(x), topen(x) + Δt,… , tclose(x) − Δt, tclose(x)

}
 . Then, the

discrete-time trading opportunities for the entire set of products X can be modelled such
that the time-steps are defined as t ∈ T =

⋃
x∈X T̂(x) . In the following, for the sake of clar-

ity, the increment (decrement) operation t + 1 ( t − 1 ) will be used to model the discrete
transition from time-step t to time-step t + Δt ( t − Δt).

It is important to note that in theory the discretisation operation leads to suboptimalities
in the decision-making process. However, as the discretisation becomes finer ( Δt → 0 ), the
decisions taken can be considered near-optimal. Increasing the granularity of the decision
time-line results in an increase of the number of decisions that can be taken and hence, the
size of the decision-making problem. Thus, there is a clear trade-off between complexity
and quality of the resulting decisions when using a finite discretisation.

Let Xt denote the set of available products at time-step t ∈ T such that:

Fig. 1   Trading (continuous and discrete) and delivery timelines for products Q1 to Q4

2343Machine Learning (2021) 110:2335–2387	

1 3

We define the state of the CID market environment at time-step t as sOB
t

∈ SOB . The state
contains the observation of the order book at time-step t ∈ T i.e. the unmatched orders for
all the available products x ∈ Xt ⊂ X.

A set of n agents I = {1, 2,… , n} are continuously interacting in the CID environment
exchanging energy. Each agent i ∈ I can express its willingness to buy or sell energy by
posting at instant t a set of new orders ai,t ∈ Ai in the order book, which results in the joint
action at = (a1,t,… , an,t) ∈

∏n

i=1
Ai.

The process of designing the set of new orders ai,t for agent i at instant t consists, for each
new order, in determining the product x ∈ Xt , the side of the order y ∈ {}}Sell��, }}Buy��} ,
the volume v ∈ ℝ

+ , the price level p ∈
[
pmin, pmax

]
 of each unit offered to be produced or

consumed, and the various validity and execution specifications e ∈ E . The index of each
new order j belongs to the set j ∈ N�

t
 . The set of execution specifications E includes:

•	 All or Nothing (AoN), where a limit order remains in the order book until it is entirely
executed.

•	 Fill or Kill (FoK), where the entire volume of the limit order will be either matched
immediately upon submission or withdrawn from the market.

•	 Immediate or Cancel (IoC), where as much as possible of the limit order volume is
matched immediately upon submission and the remaining volume is withdrawn from
the market.

•	 Iceberg order (IBO), that is a type of limit order, usually with a large volume, intended
to hide the full size of the order by dividing it into a set of orders with smaller volumes.
Each volume is shown to the market progressively, only after the previous one has been
fully matched.

•	 User-defined block order, that is a limit order composed of one or several (up to 24)
consecutive hourly products. User-defined block orders are AoN limit orders where
only the entire volume may be executed.

The set of new orders is defined as ai,t =
{
(xj, yj, vj, pj, ej),∀j ∈ N�

t
⊆ ℕ

}
 . We will use

the notation for the joint action at = (ai,t, a−i,t) to refer to the action that agent i selects ai,t
and the joint action that all other agents use a−i,t = (a1,t,… , ai−1,t, ai+1,t,… , an,t).

The orders are treated according to the first come first served (FCFS) rule. Table 1 pre-
sents an observation of the order book for product Q1 . The difference between the most
expensive “Buy” order (“bid”) and the cheapest “Sell” order (“ask”) defines the bid-ask
spread of the product. A deal between two counter-parties is struck when their submitted
orders satisfy a number of conditions based on their limit prices as well as their execution
specifications. For simple limit orders, a deal takes place when the price pbuy of a “Buy”

Xt =
{
x|x ∈ X, t ≤ tclose(x)

}
.

Table 1   Order Book for Q1 and
time slot 00:00–00:15

i Side v (MW) p (€/MWh)

4 “Sell” 6.25 36.3
2 “Sell” 2.35 34.5 ⟵ ask
1 “Buy” 3.15 33.8 ⟵ bid
3 “Buy” 1.125 29.3
5 “Buy” 2.5 15.9

2344	 Machine Learning (2021) 110:2335–2387

1 3

order and the price psell of a “Sell” order satisfy the condition pbuy ≥ psell . This condition is
tested at the arrival of each new order. The volume of the transaction is defined as the mini-
mum quantity between the “Buy” and “Sell” order ( min(vbuy, vsell) ). The residual volume
remains available in the market at the same price. As mentioned in the previous section,
each transaction is settled following the pay-as-bid principle, at the price indicated by the
oldest order. In the following, and for the sake of simplicity, we will assume that the agents
can only submit simple limit orders ignoring the execution specifications.

Finally, at each time-step t, every agent i observes the state of the order book sOB
t

 , per-
forms certain actions (posting a set of new orders) ai,t , inducing a transition which can be
represented by the following equation:

2.3 � Asset trading

An asset optimizing agent participating in the CID market can adjust its position for prod-
uct x until the corresponding gate closure tclose(x) . However, the physical delivery of power
is decided at tdelivery(x) . An additional amount of information (potentially valuable for cer-
tain players) is received during the period

{
tclose(x),… , tdelivery(x)

}
 , from the gate closure

until the delivery of power. Based on this updated information, an asset-trading agent may
need to or have an incentive to deviate from the net contracted power in the market.

Let vcon
i,t

= (vcon
i,t

(x),∀x ∈ Xt) ∈ ℝ
|Xt| , gather the volumes of power contracted by agent

i for the available products x ∈ Xt at each time-step t ∈ T  . In the following, we will adopt
the convention for vcon

i,t
(x) to be positive when agent i contracts the net volume to sell (pro-

duce) and negative when the agent contracts the volume to buy (consume) energy for prod-
uct x at time-step t.

Following each market transition as indicated by Eq. (1), the volumes contracted vcon
i,t

are determined based on the transactions that have occurred. The contracted volumes vcon

i,t

are derived according to the FCFS rule that is detailed in EPEXSPOT (2019). The mathe-
matical formulation of the clearing algorithm is provided in Le et al. (2019). The objective
function of the clearing algorithm is comprised of two terms, namely the social welfare
and a penalty term modelling the price-time priority rule. The orders that maximize this
objective are matched, provided that they satisfy the balancing equations and constraints
related to their specifications. The clearing rule is implicitly given by:

We denote as Pmar
i,t

(x) ∈ ℝ the net contracted power in the market by agent i for each
product x ∈ X , which is updated at every time-step t ∈ T according to:

The discretisation of the delivery timeline Ť is done with time-steps of duration Δ� ,
equal to the minimum duration of delivery for the products considered. The discrete deliv-
ery timeline Ť starts at the beginning of delivery of the first product �init and to finish at the
end of the delivery of the last product �term . For the simple case where only four quarter-
hourly products are considered, as shown in Fig. 1, the delivery time-step is Δ� = 15min

(1)sOB
t+1

= f (sOB
t
, ai,t, a−i,t).

(2)vcon
i,t

= clear(i, sOB
t
, ai,t, a−i,t).

(3)
Pmar
i,t+1

(x) = Pmar
i,t

(x) + vcon
i,t

(x).

∀x ∈ Xt

2345Machine Learning (2021) 110:2335–2387	

1 3

and the delivery timeline Ť = {00 ∶ 00, 00 ∶ 15,… , 01 ∶ 00} , where �init = 00 ∶ 00 and
�term = 01 ∶ 00 . In general, when only one type of product is considered (e.g. quarter-
hourly), there is a straightforward relation between time of delivery � and product x, since
� = tdelivery(x) and Δ� = �(x) . Thus, terms x or � can be used interchangeably. For the sake
of keeping the notation relatively simple, we will only consider quarter-hourly products
in the rest of the paper. In such a context, the terms Pmar

i,t
(�) or Pmar

i,t
(x) can be used inter-

changeably to denote the net contracted power in the market by agent i at trading step t for
delivery time-step � (product x).

As the trading process evolves the set of delivery time-steps � for which the asset-opti-
mizing can make decisions decreases as trading time t crosses the delivery time � . Let
T̄(t) ⊆ Ť be a function that yields the subset of delivery time-steps 𝜏 ∈ Ť that follow time-
step t ∈ T such that:

The participation of an asset-optimizing agent in the CID market is composed of two
coupled decision processes with different timescales. First, the trading process where
a decision is taken at each time-step t about the energy contracted until the gate closure
tclose(x) . During this process, the agent can decide about its position in the market and cre-
ate scenarios/make projections about the actual delivery plan based on its position. Second,
the physical delivery decision that is taken at the time of the delivery � or tdelivery(x) based
on the total net contracted power in the market during the trading process.

An agent i participating in the CID market is assumed to monitor the state of the order
book sOB

t
 and its net contracted power in the market Pmar

i,t
(x) for each product x ∈ X , which

becomes fixed once the gate closure occurs at tclose(x) . Depending on the role it presumes
in the market, an asset-optimizing agent is assumed to monitor all the available information
about its assets. We distinguish the three following cases among the many different roles
that can be played by an agent in the CID market:

•	 The agent controls a physical asset that can generate and/or consume electricity. We
define as Gi,t(�) ∈

[
Gi,Gi

]
 the power production level for agent i at delivery time-step �

as computed at trading step t. In a similar way, we define the power consumption level
Ci,t(�) ∈

[
Ci,Ci

]
 , where Ci,Ci,Gi,Gi ∈ ℝ

+ . We further assume that the actual produc-
tion gi,t(t

�) and consumption level ci,t(t
�) during the time-period of delivery

t� ∈ [�, � + Δ�) , is constant for each product x such that:

 At each time-step t during the trading process, agent i can decide to adjust its genera-
tion level by ΔGi,t(�) or its consumption level by ΔCi,t(�) . According to these adjust-
ments the generation and consumption levels can be updated at each time-step t accord-
ing to:

T̄(t) =
{
𝜏|𝜏 ∈ Ť ⧵

{
𝜏term

}
, t ≤ 𝜏

}
.

(4)gi,t(t
�) = Gi,t(�),

(5)
ci,t(t

�) = Ci,t(�),

∀t� ∈ [�, � + Δ�).

(6)Gi,t+1(�) = Gi,t(�) + ΔGi,t(�),

2346	 Machine Learning (2021) 110:2335–2387

1 3

 Let wexog

i,t
 denote any other relevant exogenous information to agent i such as the RES

forecast, a forecast of the actions of other agents, or the imbalance prices. The compu-
tation of ΔGi,t(⋅) and ΔCi,t(⋅) depends on the market position, the technical limits of the
assets, the state of the order book and the exogenous information wexog

i,t
 . We define the

residual production Pres
i,t
(�) ∈ ℝ at delivery time-step � as the difference between the

production and the consumption levels and can be computed by:

 We note that the amount of residual production Pres
i,t
(�) aggregates the combined effects

that Gi,t(�) and Ci,t(�) have on the revenues made by agent i through interacting with the
markets (intraday/imbalance).

	  The level of generation and consumption for a market period � can be adjusted at
any time-step t before the physical delivery � , but it becomes binding when t = � . We
denote as Δi,t(�) the deviation from the market position for each time-step � , as sched-
uled at time t, after having computed the variables Gi,t(�) and Ci,t(�) , as follows:

 The term Δi,t(�) represents the imbalance for market period � as estimated at time t.
This imbalance may evolve up to time t = � . We denote by Δi(�) = Δi,t=� (�) the final
imbalance for market period �.

	  The power balance of Eq. (9) written for time-step t + 1 is given by:

 It can be observed that by substituting Eqs. (3), (6) and (7) in Eq. (10) we have:

 The combination of Eqs. (8) and (9) with Eq. (11) yields the update of the imbalance
vector according to:

•	 The agent does not own any physical asset (market maker). It is equivalent to the first
case with Ci = Ci = Gi = Gi = 0 . The net imbalance Δi,t(�) is updated at every time-
step t ∈ T according to:

(7)
Ci,t+1(𝜏) = Ci,t(𝜏) + ΔCi,t(𝜏),

∀𝜏 ∈ T̄(t).

(8)Pres
i,t
(�) = Gi,t(�) − Ci,t(�).

(9)
Pmar
i,t

(𝜏) + Δi,t(𝜏) = Pres
i,t
(𝜏),

∀𝜏 ∈ T̄(t).

(10)
Pmar
i,t+1

(𝜏) + Δi,t+1(𝜏) = Gi,t+1(𝜏) − Ci,t+1(𝜏)

∀𝜏 ∈ T̄(t + 1).

(11)

Pmar
i,t

(𝜏) + vcon
i,t

(𝜏) + Δi,t+1(𝜏)

= Gi,t(𝜏) + ΔGi,t(𝜏) − (Ci,t(𝜏) + ΔCi,t(𝜏))

∀𝜏 ∈ T̄(t).

(12)
Δi,t+1(𝜏) = Δi,t(𝜏) + ΔGi,t(𝜏) − ΔCi,t(𝜏) − vcon

i,t
(𝜏)

∀𝜏 ∈ T̄(t).

(13)
Pmar
i,t

(𝜏) + Δi,t(𝜏) = 0,

∀𝜏 ∈ T̄(t).

2347Machine Learning (2021) 110:2335–2387	

1 3

•	 The agent controls a storage device that can produce, store and consume energy. We
can consider an agent controlling a storage device as an agent that controls generation
and production assets with specific constraints on the generation and the consumption
level related to the nature of the storage device. Following this argument, let Gi,t(�)
( Ci,t(�) ) refer to the level of discharging (charging) of the storage device for delivery
time-step � , updated at time t. Obviously, if Gi,t(𝜏) > 0 ( Ci,t(𝜏) > 0 ), then we automati-
cally have Ci,t(�) = 0 ( Gi,t(�) = 0 ) since a battery cannot charge and discharge energy at
the same time. In this case, agent i can decide to adjust its discharging (charging) level
by ΔGi,t(�) ( ΔCi,t(�) ). Let SoCi,t(�) denote the state of charge of the storage unit at
delivery time-step 𝜏 ∈ Ť as it is computed at time-step t, where SoCi,t(�) ∈

[
SoCi, SoCi

]
 .

The evolution of the state of charge during the delivery timeline can be updated at deci-
sion time-step t as:

 Parameter � represents the charging and discharging efficiencies of the storage unit
which, for simplicity, we assume are equal. We note that for batteries, charging and dis-
charging efficiencies may be a function of the battery conditions. As can be observed
from Eq. (14), time-coupling constraints are imposed on Ci,t(�) and Gi,t(�) in order to
ensure that the amount of energy that can be discharged during some period already
exists in the storage device. Additionally, constraints associated with the maximum
charging power Ci and discharging power Gi , as well as the maximum and minimum
energy level ( SoCi , SoCi ) are considered in order to model the operation of the storage
device.

	  Equation (14) can be written for time-step t + 1 as:

 Combining Eqs. (14) and (15) we can derive the updated vector of the state of charge
at time-step t + 1 depending on the decided adjustments ( ΔGi,t(�),ΔCi,t(�) ) as:

 The state of charge SoCi,t(�) at delivery time-step � can be updated until t = � . Let us
also observe that there is a bijection between Pres

i,t
(�) and the terms Ci,t(�) and Gi,t(�) or,

in other words, determining Pres
i,t

 is equivalent to determining Ci,t(�) and Gi,t(�) and vice
versa. The deviation from the committed schedule Δi,t+1(�) at delivery time-step � at
each time-step t + 1 can be computed by Eq. (12).

	  All the new information arriving at time-step t for an asset-optimizing agent i (con-
trolling a storage device) is gathered in variable:

(14)

SoCi,t(𝜏 + Δ𝜏)

= SoCi,t(𝜏) + Δ𝜏 ⋅

(
𝜂Ci,t(𝜏) −

Gi,t(𝜏)

𝜂

)
,

∀𝜏 ∈ T̄(t).

(15)SoCi,t+1(𝜏 + Δ𝜏) = SoCi,t+1(𝜏) + Δ𝜏 ⋅

(
𝜂Ci,t+1(𝜏) −

Gi,t+1(𝜏)

𝜂

)
,∀𝜏 ∈ T̄(t + 1).

(16)

SoCi,t+1(𝜏 + Δ𝜏) − SoCi,t+1(𝜏)

= SoCi,t(𝜏 + Δ𝜏) − SoCi,t(𝜏)

+ Δ𝜏 ⋅ (𝜂ΔCi,t(𝜏) −
ΔGi,t(𝜏)

𝜂
),

∀𝜏 ∈ T̄(t).

2348	 Machine Learning (2021) 110:2335–2387

1 3

The control action applied by an asset-optimizing agent i trading in the CID mar-
ket at time-step t consists of posting new orders in the CID market and adjusting
its production/consumption level or equivalently its charging/discharging level for
the case of the storage device. The control actions can be summarised in variable
ui,t = (ai,t, (ΔCi,t(𝜏),ΔGi,t(𝜏),∀𝜏 ∈ T̄(t)).

In this paper, we consider that the trading agent adopts a simple strategy for determin-
ing, at each time-step t, the variables ΔCi,t(�) , ΔGi,t(�) once the trading actions ai,t have
been selected. In this case, the decision regarding the trading actions ai,t fully defines
action ui,t and thus the notation ui,t will not be further used. This strategy will be referred to
in the rest of the paper as the “default” strategy for managing the storage device. According
to this strategy, the agent aims at minimizing any imbalances ( Δi,t+1(�) ) and therefore we
use the following decision rule:

One can easily see that from Eq. (11) this decision rule is equivalent to imposing
Pres
i,t+1

(�) as close as possible to Pmar
i,t+1

(�) , given the operational constraints of the device. We
will elaborate later in this paper on the fact that adopting such a strategy is not suboptimal
in a context where the agent needs to be balanced for every market period while being an
aggressor in the CID market.

For the sake of simplicity, we assume that the decision process of an asset-optimizing
agent terminates at the gate closure tclose(x) along with the trading process. Thus, the final
residual production Pres

i
(�) for delivery time-step � is given by Pres

i
(�) = Pres

i,t=tclose(x)
(�) . Sim-

ilarly, the final imbalance is provided by Δi(�) = Δi,t=tclose(x)
(�).

Although this approach can be used for the optimization of a portfolio of assets, in this
paper, the focus lies on the case where the agent is operating a storage device. We note
that this case is particularly interesting in the context of energy transition, where storage
devices are expected to play a key role in the energy market.

2.4 � Trading rewards

The instantaneous reward signal collected after each transition for agent i is given by:

where Ri ∶ T × Si × A1 ×⋯ × An → ℝ.
The reward function Ri is composed of the following terms:

	 i.	 The trading revenues obtained from the matching process of orders at time-step t,
given by � where � is a stationary function � ∶ SOB × A1 ×⋯ × An → ℝ,

	 ii.	 The imbalance penalty for deviation Δi(�) from the market position for delivery time-
step � at the imbalance price I(�) . The imbalance settlement process for product x ∈ X
(delivery time-step � ) takes place at the end of the physical delivery tsettle(x) (i.e. at

si,t = (sOB
t
, (Pmar

i,t
(𝜏),Δi,t(𝜏),Gi,t(𝜏),Ci,t(𝜏), SoCi,t(𝜏),∀𝜏 ∈ Ť),w

exog

i,t
) ∈ Si.

(17)

(
ΔCi,t(𝜏),ΔGi,t(𝜏),∀𝜏 ∈ T̄(t)

)∗
= argmin

∑
𝜏∈T̄(t)

∣ Δi,t+1(𝜏) ∣,

s.t. (2), (3), (8), (9), (12), (14) .

(18)ri,t = Ri

(
t, si,t, ai,t, a−i,t

)
,

2349Machine Learning (2021) 110:2335–2387	

1 3

� + Δ� ), as presented in Fig. 1. We define the imbalance settlement timeline TImb , as
TImb =

{
𝜏 + Δ𝜏,∀𝜏 ∈ Ť

}
 . The imbalance penalty1 is only applied when time instance

t is an element of the imbalance settlement timeline.

The function Ri is defined as:

2.5 � Trading policy

All the relevant information that summarises the past and that can be used to opti-
mize the market participation is assumed to be contained in the history vector
hi,t = (si,0, ai,0, ri,0,… , si,t−1, ai,t−1, ri,t−1, si,t) ∈ Hi . Trading agent i is assumed to select its
actions following a non-anticipative history-dependent policy �i(hi,t) ∈ Π from the set of
all admissible policies Π , according to: ai,t ∼ �i(⋅|hi,t).

2.6 � Trading objective

The return collected by agent i in a single trajectory � = (si,0, ai,0,… , ai,K−1, si,K) of K − 1
time-steps, given an initial state si,0 = si ∈ Si , which is the sum of cumulated rewards over
this trajectory is given by:

The sum of returns collected by agent i, where each agent i is following a randomized
policy �i ∈ Π are consequently given by:

The goal of the trading agent i is to identify an optimal policy �∗
i
∈ Π that maximizes the

expected sum of rewards collected along a trajectory. An optimal policy is obtained by:

(19)
Ri

(
t, si,t, ai,t, a−i,t

)
=

�
(
sOB
t
, ai,t, a−i,t

)
+

{
Δi(�) ⋅ I(�), if t ∈ TImb,

0, otherwise
.

(20)G� (si) =

K−1∑
t=0

Ri

(
t, si,t, ai,t, a−i,t

)|si,0 = si.

(21)V�i (si) = � ai,t∼�i ,a−i,t∼�−i

{ K−1∑
t=0

Ri

(
t, si,t, ai,t, a−i,t

)|si,0 = si

}
.

(22)�∗
i
= argmax �i∈Π

V�i (si).

1  The imbalance price I(�) is defined by a process that depends on a plethora of factors among which is the
net system imbalance during delivery period � , defined by the imbalance volumes of all the market players
( 
∑I

Δi(�) ). For the sake of simplicity we will assume that it is randomly sampled from a known distribution
over prices that is not conditioned on any variable.

2350	 Machine Learning (2021) 110:2335–2387

1 3

3 � Markov decision process formulation

In this section, we propose a series of assumptions that allow us to formulate the previ-
ously introduced problem of a storage device operator trading in the CID market using a
reinforcement learning (RL) framework. Based on these assumptions, the decision-mak-
ing problem is cast as an MDP; the action space is tailored in order to represent a par-
ticular market player and additional restrictions on the operation of the storage device are
introduced.

3.1 � Assumptions on the decision process

Assumption 1  (Behaviour of the other agents) The other agents −i interact with the order
book in between two discrete time-steps in such a way that agent i is the only agent inter-
acting with the CID market at each time-step t. Moreover, it is assumed that the other
agents −i can only react in the market according to the previously observed order book
states. More precisely their actions a−i,t depend strictly on the history of order book states
sOB
t−1

 and thus by extension on the history hi,t−1 for every time-step t:

Assumption (1) suggests that the agents engage in a way that is very similar to a Markov
Game (Littman 1994). The process under consideration is such that it interleaves between
agent i taking actions ai,t followed by its opponents −i taking actions a−i,t . Furthermore, the
joint strategy of the opponents is modeled with Eq. (23) such that the agent i is involved in
an MDP. This behaviour is illustrated in Fig. 1 (magnified area). Given this assumption, the
notation a−i,t can also be seen as referring to actions selected during the interval (t − Δt, t).

Assumption 2  (Exogenous information) The exogenous information wexog

i,t
 is given by a

stochastic model that depends solely on k past values, where 0 < k ≤ t and a random dis-
turbance ei,t according to:

Assumption 3  (Strategy for storage control) The control decisions related to the charging
( ΔCi,t(�) ) or discharging ( ΔGi,t(�) ) power to/from the storage device are made based on the
“default” strategy described in Sect. 2.3.

As described in Sect. 2.3, the original control action that can be applied at each time-
step t is ui,t = (ai,t, (ΔCi,t(𝜏),ΔGi,t(𝜏),∀𝜏 ∈ Ť)) . It can be observed that with such an
assumption, the storage control decisions ( ΔCi,t(�) and ΔGi,t(�) ) are obtained as a direct
consequence of the trading decisions ai,t . Indeed, after the trading decisions are submitted
and the market position is updated, the storage control decisions are subsequently derived
following the “default” strategy. Assumption (3) results in reducing the dimensionality of
the action space and consequently the complexity of the decision-making problem.

(23)a−i,t ∼ Pa−i,t
(⋅|hi,t−1).

(24)w
exog

i,t
= b(w

exog

i,t−1
,… ,w

exog

i,t−k
, et),

(25)ei,t ∼ Pei,t
(⋅|hi,t).

2351Machine Learning (2021) 110:2335–2387	

1 3

3.2 � Decision process

Following Assumptions (1), (2) and (3), one can simply observe that the decision-mak-
ing problem faced by an agent i operating a storage device and trading energy in the
CID market can be formalised as a fully observable finite-time MDP with the following
characteristics:

•	 Discrete time-step t ∈ T  , where T is the optimization horizon.
•	 State space Hi , where the state of the system hi,t ∈ Hi at time t summarises all past

information that is relevant for future optimization.
•	 Action space Ai , where ai,t ∈ Ai is the set of new orders posted by agent i at time-step t.
•	 Transition probabilities hi,t+1 ∼ P(⋅|hi,t, ai,t) , that can be inferred by the following pro-

cesses:

1.	 a−i,t ∈ A−i is drawn according to Eq. (23)
2.	 The state of the order book sOB

t+1
 follows the transition given by Eq. (1)

3.	 The exogenous information wexog

i,t
 is given by Eq. (24) and the noise by (25)

4.	 The variable si,t+1 that summarises the information of the storage device optimizing
agent follows the transition given by Eqs. (1), (6)–(12) (24), (25) and (16)

5.	 The instantaneous reward ri,t collected after each transition is given by Eqs. (18)
and (19).

	  The elements resulting from these processes can be used to construct hi,t+1 in a
straightforward way.

3.3 � Assumptions on the trading actions

Assumption 4  (Aggressor) The trading agent can only submit new orders that match
already existing orders at their price (i.e. aggressor or liquidity taker).

Let Ared
i

 be the space that contains only actions that match pre-existing orders in the order
book. According to Assumption (4), the ith agent, at time-step t, is restricted to select
actions ai,t ∈ Ared

i
⊂ Ai . Let sOB

t
=
{
(xOB

j
, y�OB

j
, vOB

j
, pOB

j
),∀j ∈ Nt

}
 be the order book obser-

vation at trading time-step t. We use y′OB to denote that the new orders have the opposite
side (“Buy” or “Sell”) than the existing orders. We denote as aj

i,t
∈ [0, 1] the fraction of the

volume accepted from order j. The reduced action space Ared
i

 is then defined as:

At this point, posting a new set of orders ai,t ∈ Ared
i

 boils down to simply specifying the
vector of fractions:

that define the partial or full acceptance of the existing orders. The action ai,t submitted by
an aggressor is a function l of the observed order book sOB

t
 and the vector of fractions āi,t

and is given by:

Ared
i

= {
(
xOB
j
, y�OB

j
, a

j

i,t
⋅ vOB

j
, pOB

j

)
, a

j

i,t
∈ [0, 1],∀j ∈ Nt}.

āi,t =
(
a
j

i,t
,∀j ∈ Nt

)
∈ Āred

i

2352	 Machine Learning (2021) 110:2335–2387

1 3

3.4 � Restrictions on the storage operation

Assumption 5  (No imbalances permitted) The trading agent can only accept an order to
buy or sell energy if and only if it does not result in any imbalance for the remaining deliv-
ery periods.

According to Assumption (5) the agent is completely risk-averse in the sense that, even if
it stops trading at any given point, its position in the market can be covered without caus-
ing any imbalance. This assumption is quite restrictive with respect to the full potential
of an asset-optimizing agent in the CID market. We note that, according to the German
regulation policies (see Braun and Hoffmann 2016), the imbalance market should not be
considered as an optimization floor and the storage device should always be balanced at
each trading time-step t ( Δi,t(𝜏) = 0,∀𝜏 ∈ Ť  ). In this respect, we can view Assumption 5 as
a way to comply with the German regulation policies in a risk-free context where each new
trade should not create an imbalance that would have to be covered later.

Assumption 6  (Optimization decoupling) The storage device has a given initial value
for the storage level SoCinit

i
 at the beginning of the delivery timeline. Moreover, it is con-

strained to terminate at a given level SoCterm
i

 at the end of the delivery timeline.

Under Assumption (6) the optimization of the storage unit over a long trading horizon
can be decomposed into shorter optimization windows (e.g. of one day). In the simulation
results reported later in this paper, we will choose SoCinit

i
= SoCterm

i
.

4 � Methodology

In this section, we describe the methodology that has been applied for tackling the MDP
problem described in Sect. 3. We consider that, in reality, an asset-optimizing agent has
at its disposal a set of trajectories (one per day) from participating in the CID market in
the past years. The process of collecting these trajectories and their structure is presented
in Sect. 4.1. Based on this dataset, we propose in Sect. 4.2 the deployment of the fitted Q
iteration algorithm as introduced in Ernst et al. (2005). This algorithm belongs to the class
of batch-mode RL algorithms that make use of all the available samples at once for updat-
ing the policy. This class of algorithms is known to be very sample efficient.

Despite the different assumptions made on the operation of the storage device and the
way it is restricted to interact with the market, the dimensionality of the action space still
remains very high. Due to limitations related to the function approximation architecture
used to implement the fitted Q iteration algorithm, a low-dimensional and discrete action
space is necessary, as discussed in Sect. 4.3. Therefore, as part of the methodology, in
Sect. 4.4 we propose a way for reducing the action space. Afterwards, in Sect. 4.5, a more
compact representation of the state space is proposed in order to reduce the computational
complexity of the training process and increase the sample efficiency of the algorithm.

Finally, the low number of available samples (one trajectory per day) gives rise to issues
related to the limited exploration of the agent. In order to address these issues, we generate

(26)ai,t = l(sOB
t
, āi,t).

2353Machine Learning (2021) 110:2335–2387	

1 3

a large number of trading trajectories of our MDP according to an �-greedy policy, using
historical trading data. In the last part of this section, we elaborate on the strategy that is
used in this paper for generating the trajectories and the limitations of this procedure.

4.1 � Collection of trajectories

As previously mentioned, an asset-optimizing agent can collect a set of trajectories from
previous interactions with the CID market. Based on Assumption (6), each day can be
optimized separately and thus, trading for one day corresponds to one trajectory. We con-
sider that the trading horizon defined in Sect. 2.2 consists of K discrete trading time-steps
such that T = {0,… ,K} . A single trajectory sampled from the MDP described in Sect. 3 is
defined as:

A set of M trajectories can be then defined as:

The set of trajectories F can be used to generate the set of sampled one-step system tran-
sitions F′ defined as:

The set F′ is split into K sets of one-step system transitions F′
t
 defined as:

In the following subsection, the type of RL algorithm used for inferring a high-quality
policy from this set of one-step system transitions is explained in detail.

4.2 � Batch‑mode reinforcement learning

Q-functions and dynamic programming: In this section, the fitted Q iteration algorithm
is proposed for the optimization of the MDP defined in Sect. 3, using a set of collected tra-
jectories. In order to solve the problem, we first define the Q-function for each state-action
pair ( hi,t, ai,t ) at time t as proposed in Bertsekas (2005) as:

A time-variant policy � =
{
�0,… ,�K−1

}
∈ Π , consists in a sequence of functions �t ,

where �t ∶ Hi → Ared
i

 . An action ai,t is selected from this policy at each time-step t, accord-
ing to ai,t = �t(hi,t) . We denote as �t+1 =

{
�t+1,… ,�K−1

}
 the sequence of functions �t

�m =
(
hm
i,0
, am

i,0
, rm

i,0
,… , hm

i,K−1
, am

i,K−1
, rm

i,K−1
, hm

i,K

)
.

F =
{
�m,m = 1,… ,M

}
.

F� =

⎧⎪⎨⎪⎩

(h1
i,0
, a1

i,0
, r1

i,0
, h1

i,1
), ⋯ (h1

i,K−1
, a1

i,K−1
, r1

i,K−1
, h1

i,K
),

⋮ ⋱ ⋮

(hM
i,0
, aM

i,0
, rM

i,0
, hM

i,1
), ⋯ (hM

i,K−1
, aM

i,K−1
, rM

i,K−1
, hM

i,K
)

⎫⎪⎬⎪⎭
.

F�
t
=
{
(hm

i,t
, am

i,t
, rm

i,t
, hm

i,t+1
),m = 1,… ,M

}
t
,

∀t ∈ {0,… ,K − 1}.

(27)
Qt(hi,t, ai,t) = �

a−i,t, ei,t

{
ri,t + Vt+1(hi,t+1)

}
,

∀t ∈ {0,… ,K − 1}.

2354	 Machine Learning (2021) 110:2335–2387

1 3

from time-step t + 1 until the end of the horizon. Standard results from dynamic program-
ming (DP) show that for the finite time MDP we are addressing in this paper, there exists
at least one such time-variant policy which is an optimal policy as defined by Eq. (22).
Therefore, we focus on the computation of such an optimal time-variant policy. We define
the value function Vt+1 as the optimal expected cumulative rewards from stage t + 1 until
the end of the horizon K given by:

We observe that Qt(hi,t, ai,t) is the value attained by taking action ai,t at state hi,t and sub-
sequently using an optimal policy. Using the dynamic programming algorithm (Bertsekas
2005) we have:

Equation (27) can be written in the following form that relates Qt and Qt+1:

An optimal time-variant policy �∗ =
{
�∗
0
,… ,�∗

K−1

}
 can be identified using the Q-func-

tions as following:

Computing the Q-functions from a set of one-step system transitions: In order to obtain
the optimal time-variant policy �∗ , the effort is focused on computing the Q-functions
defined in Eq. (30). However, two aspects render the use of the standard value iteration
algorithm impossible for solving the MDP defined in Sect. 3. First, the transition prob-
abilities of the MDP defined in Sect. 3 are not known. Instead, we can exploit the set of
collected historical trajectories to compute the exact Q-functions using an algorithm such
as Q-learning (presented in Watkins and Dayan 1992). Q-learning is designed for working
only with trajectories, without any knowledge of the transition probabilities. Optimality is
guaranteed given that all state-action pairs are observed infinitely often within the set of
the historical trajectories and that the successor states are independently sampled at each
occurrence of a state-action pair (Bertsekas 2005). In Sect. 4.6 we discuss the validity of
this condition and we address the problem of limited exploration by generating additional
artificial trajectories. Second, due to the continuous nature of the state and action spaces
a tabular representation of the Q-functions used in Q-learning is not feasible. In order to
overcome this issue, we use a function approximation architecture to represent the Q-func-
tions (Busoniu et al. 2017).

The computation of the approximate Q-functions is performed using the fitted Q itera-
tion algorithm (Ernst et al. 2005). We present the algorithm for the case where a parametric
function approximation architecture ( Qt(hi,t, at;�t) ) is used (e.g. neural networks). In this
case, the algorithm is used to compute, recursively, the parameter vectors �t starting from
t = K − 1 . However, it should be emphasized that the fitted Q iteration algorithm can be

(28)Vt+1(hi) = max
�t+1∈Π

�
(a−i,t+1, ei,t+1)

⋯

(a−i,K−1, ei,K−1)

{
K−1∑
k=t+1

Ri,k

(
hi,k,�k(hi,k), a−i,k

)|hi,t+1 = hi

}
.

(29)Vt(hi,t) = max
ai,t∈A

red
i

Qt(hi,t, ai,t).

(30)Qt(hi,t, ai,t) = �
a−i,t , ei,t

{
ri,t + max

ai,t+1∈A
red
i

Qt+1(hi,t+1, ai,t+1)

}
.

�∗
t
= argmax ai,t∈A

red
i
Qt(hi,t, ai,t),

∀t ∈ {0,… ,K − 1}.

2355Machine Learning (2021) 110:2335–2387	

1 3

adapted in a straightforward way to the case in which a non-parametric function approxi-
mation architecture is selected.

The set of M samples of quadruples F�
t
=
{
(hm

i,t
, am

i,t
, rm

t
, hm

i,t+1
),m = 1,… ,M

}
 obtained

from previous experience is exploited in order to update the parameter vectors �t by solving
the supervised learning problem presented in Eq. (31). The target vectors yt are computed
using the Q-function approximation of the next stage ( Qt+1(hi,t+1, at+1;�t+1) ) according to
Eq. (32). The Q-function for the terminal state is set to zero ( ̂QK ≡ 0 ) and the algorithm
iterates backwards in the time horizon T, producing a sequence of approximate Q-functions
denoted by Q̂ = {Q̂0,… , Q̂K−1} until termination at t = 0.

Once the parameters �∗
t
 are computed, the time-variant policy 𝜋̂∗ =

{
𝜇̂∗
0
,… , 𝜇̂∗

K−1

}
 is

obtained as:

In practice, a new trajectory is collected after each trading day. The set of collected tra-
jectories F is consequently augmented. Thus, the fitted Q iteration algorithm can be used to
compute a new optimal policy when new data arrive.

4.3 � Limitations

The fitted Q iteration algorithm, described in the previous section, can be used to provide a
trading policy based on the set of past trajectories at the disposal of the agent. Even though,
this approach is theoretically sound, in practice there are several limitations to overcome.
The efficiency of the described fitted Q iteration algorithm is overshadowed by the high-
dimensionality of the state and the action space.

The state variable

is composed of :

•	 The entire history of actions
(
ai,0,… , ai,t−1

)
 before time t

•	 The entire history of rewards
(
ri,0,… , ri,t−1

)
 before time t

•	 The history of order book states
(
sOB
0
,… , sOB

t

)
 up to time t and, of the private informa-

tion (sprivate
i,0

,… , s
private

i,t
) up to time t, where:

The state space Hi as well as the action space Ared
i

 , as described in Sect. 3.3, depend
explicitly on the content of the order book sOB

t
 . The dimension of these spaces at each

(31)�∗
t
= argmin �t

M∑
m=1

(Qt(h
m
i,t
, am

t
;�t) − ym

t
)2

(32)ym
t
= rm

t
+ max

ai,t+1∈A
red
i

Qt+1(h
m
i,t+1

, ai,t+1;�
∗
t+1

)

(33)
𝜇̂∗
t
(hi,t) = argmax ai,t∈A

red
i
Qt(hi,t, ai,t;𝜃

∗
t
),

∀t ∈ {0,… ,K − 1}.

hi,t = (si,0, ai,0, ri,0,… , si,t−1, ai,t−1, ri,t−1, si,t) ∈ Hi

s
private

i,t
= ((Pmar

i,t
(𝜏),Δi,t(𝜏),Gi,t(𝜏),Ci,t(𝜏), SoCi,t(𝜏),∀𝜏 ∈ Ť),w

exog

i,t
).

2356	 Machine Learning (2021) 110:2335–2387

1 3

time-step t depends on the total number of available orders ∣ Nt ∣ in the order book. How-
ever, the total number of orders is changing at each step t. Thus, both the state and the
action spaces are high-dimensional spaces of variable size. In order to reduce the complex-
ity of the decision-making problem, we have chosen to reduce these spaces so as to work
with a small action space of constant size and a compact state space. In the following, we
describe the procedure that was carried out for the reduction of the state and action spaces.

4.4 � Action space reduction: high‑level actions

In this section, we elaborate on the design of a small and discrete set of actions that is an
approximation of the original action space. Based on Assumptions (1), (2), (3), (4), (5)
and (6), a new action space A′

i
 is proposed, which is defined as A�

i
= {“Trade", “Idle"} . The

new action space is composed of two high-level actions a�
i,t
∈ A�

i
 . These high-level actions

are transformed to an original action through mapping p ∶ A�
i
→ Ared

i
 , from space A′

i
 to the

reduced action space Ared
i

 . The high-level actions are defined as follows:

4.4.1 � “Trade”

At each time-step t, agent i selects orders from the order book with the objective of maxi-
mizing the instantaneous reward under the constraint that the storage device can remain
balanced for every delivery period, even if no further interaction with the CID market
occurs. As a reminder, this constraint was imposed by Assumption (5).

Under this assumption, the instantaneous reward signal ri,t , presented in Eq. (19), con-
sists only of the trading revenues obtained from the matching process of orders at time-
step t. We will further assume that mapping u ∶ ℝ

+ × {“Sell��, “Buy��} → ℝ that adjusts the
sign of the volume vOB of each order according to their side yOB . Orders posted for buying
energy will be associated with positive volume and orders posted for selling energy with
negative volume, or equivalently:

Consequently, the reward function � defined in Sect. 2.4 is adapted according to the pro-
posed modifications. The new reward function � , where 𝜌 ∶ SOB × Āred

i
→ ℝ , is a stationary

function of the orders observed at each time-step t and the agent’s response to the observed
orders. An analytical expression for the instantaneous reward collected is given by:

The High-level action “Trade” amounts to solving the bid acceptance optimization prob-
lem presented in Model 1. The objective function of the problem, formulated in Eq. (37),
consists of the revenues arising from trading. It is important to note that the operational
constraints guarantee that no order will be accepted if it causes any imbalance. We denote
as N̂t(𝜏) ⊂ ℕ the set of unique indices of the orders available at step t that correspond to
delivery time-step � and Nt =

⋃
𝜏∈T̄ N̂t(𝜏) . In Eq. (38), the energy purchased and sold

( 
∑

j∈N̂t(𝜏)
a
j

i,t
u(vOB

j
) ), the past net energy trades ( Pmar

i,t
(�) ) and the energy discharged by the

storage ( Gi,t(�) ) must match the energy charged by the storage ( Ci,t(�) ) for every delivery
time-step � . The energy balance of the storage device, presented in Eq. (38), is responsible

(34)u(vOB, yOB) =

{
vOB, if yOB = “Buy��,

−vOB, if yOB = “Sell��.

(35)ri,t = 𝜌
(
sOB
t
, āi,t

)
=

Nt∑
j=1

a
j

i,t
⋅ u(vOB

j
, yOB

j
) ⋅ pOB

j
.

2357Machine Learning (2021) 110:2335–2387	

1 3

for the time-coupling and the arbitrage between two products x (delivery time-steps � ). The
technical limits of the storage level and the charging and discharging process are described
in Eqs. (40) to (44). The binary variables ki,t = (ki,t(𝜏),∀𝜏 ∈ Ť) restrict the operation of the
unit for each delivery period in only one mode, either charging or discharging.

The optimal solution to this problem yields the optimal vector of fractions:

that are used in Eq. (26) to construct the action ai,t ∈ Ared
i

 . The optimal solution also
defines at each time-step t the adjustments in the level of the production (discharge)
ΔG∗

i,t
= (ΔGi,t(𝜏),∀𝜏 ∈ T̄(t))∗ and the consumption (charge) ΔC∗

i,t
= (ΔCi,t(𝜏),∀𝜏 ∈ T̄(t))∗ .

The evolution of the state of charge SoC∗
i,t+1

= (SoCi,t+1(𝜏),∀𝜏 ∈ T̄(t))∗ of the
unit as well as the production G∗

i,t+1
= (Gi,t+1(𝜏),∀𝜏 ∈ T̄(t))∗ and consumption

C∗
i,t+1

= (Ci,t+1(𝜏),∀𝜏 ∈ T̄(t))∗ levels are computed for each delivery period.

4.4.2 � “Idle”

No transactions are executed, and no adjustment is made to the previously scheduled
quantities. Under this action, the vector of fractions āi,t is a zero vector. The discharge and
charge as well as the state of charge of the storage device remain unchanged ( ΔGi,t ≡ 0 and
ΔCi,t ≡ 0 ) and we have:

ā∗
i,t
=
(
a
j,∗

i,t
,∀j ∈ Nt

)
∈ Āred

i

(49)Gi,t+1(𝜏) = Gi,t(𝜏),∀𝜏 ∈ T̄(t),

2358	 Machine Learning (2021) 110:2335–2387

1 3

With such a reduction of the action-space, the agent can choose at every time-step t
between the two described high-level actions ( a�

i,t
∈ A�

i
= {“Trade", “Idle"} ). Note that

when the agent learns to idle, given a current situation, it does not necessarily mean, that
if it had chosen to “Trade" instead, it would not make a positive immediate reward. Indeed,
the agent would choose “Idle′′ if it believes that there may be a better market state emerg-
ing, i.e. the agent would learn to wait for the ideal opportunity of orders appearing in the
order book at subsequent time-steps. In this way, we extend the myopic policy, which we
refer to as the rolling intrinsic policy. According to the latter, the agent selects at every
time-step t of the trading horizon the combination of orders that optimizes its operation
and profits, based on the current information assuming that the storage device must remain
balanced for every delivery period as presented in Gray and Khandelwal (2004), Löhndorf
and Wozabal (2020) and Bertrand and Papavasiliou (2019). The rolling intrinsic policy
is, thus, equivalent to sequentially selecting the action “Trade" (Model 1), as defined in
this framework. The algorithm proposed later in this paper exploits the experience that the
agent can gain through (artificial) interaction with its environment, in order to learn the
value of trading or idling at every different state that agent may encounter.

4.5 � State space reduction

In this section, we propose a more compact and low-dimensional representation of the state
space Hi . The state hi,t , as explained in Sect. 4.3, contains the entire history of all the rele-
vant information available for the decision-making process up to time t. As such, the infor-
mation contained in the trajectories is represented as unstructured sets. We consider each
one of the components of the state hi,t , namely the entire history of actions, order book
states and private information, and we provide an alternative form. This alternative form is
engineered with the aim to capture the structure between observed bids in the order book.

First, the vector containing the entire history of actions is reduced to a vector of binary
variables after the modifications introduced in Sect. 4.4.

Second, the vector containing the history of order book states is reduced
into a vector of engineered features. We start from the order book state
sOB
t

= ((xOB
j
, y�OB

j
, vOB

j
, pOB

j
),∀j ∈ Nt ⊆ ℕ) ∈ SOB that is defined in Sects. 2.1 and 2.2 as a

high-dimensional continuous vector used to describe the state of the CID market. Owing
to the variable (non-constant) and large amount of orders ∣ Nt ∣ , the space SOB has a non-
constant size with high-dimensionality.

In order to overcome this issue, we proceed as following. First, we consider the market
depth curves for each product x. The market depth of each side (“Sell” or “Buy”) at a time-
step t, is defined as the total volume available in the order book per price level for prod-
uct x. The market depth for the “Sell” (“Buy”) side is computed by stacking the existing
orders in ascending (descending) price order and accumulating the available volume. The
market depth for each of the quarter-hourly products Q1 to Q6 at time instant t is illustrated
in Fig. 2a using data from the German CID market. The market depth curves serve as a
visualization of the order book that provides information about the liquidity of the mar-
ket. Moreover, it provides information about the maximum (minimum) price that a trading
agent will have to pay in order to buy (sell) a certain volume of energy. If we assume a

(50)Ci,t+1(𝜏) = Ci,t(𝜏),∀𝜏 ∈ T̄(t),

(51)SoCi,t+1(𝜏) = SoCi,t(𝜏),∀𝜏 ∈ T̄(t).

2359Machine Learning (2021) 110:2335–2387	

1 3

fixed-price discretisation, certain upper and lower bounds on the prices and interpolation of
the data in this price range, the market depth curves of each product x can be approximated
by a finite and constant set of values.

Even though this set of values has a constant size, it can still be extremely large. Its
dimension is not a function of the number of existing orders any more, but it depends on
the resolution of the price discretisation, the price range considered, and the total num-
ber of products in the market. Instead of an individual market depth curve for each prod-
uct x, we consider a market depth curve for all the available products, i.e. existing orders
in ascending (descending) price order and accumulating the available volumes for all the
products. In this way we can construct the aggregated market depth curve, presented in
Fig. 2b. The aggregated market depth curve illustrates the total available volume (“Sell” or
“Buy”) per price level for all products.

The motivation for considering the aggregated curves comes from the very nature of a
storage device. The main profit-generating mechanism of a storage device is the arbitrage
between two delivery periods. Its functionality involves the purchasing (charging) of elec-
tricity during periods of low prices and the selling (discharging) during periods of high
prices.

For instance, in Fig. 2a, a storage device would buy volume for product Q4 and sell vol-
ume back for product Q5 . The intersection of the “Sell” and “Buy” curves in Fig. 2b defines
the maximum volume that can be arbitraged by the storage device if no operational con-
straints were considered and serves as an upper bound for the profits at each step t. Alterna-
tively, the market depth for the same products Q1 to Q6 at a different time-step of the trading
horizon is presented in Fig. 3a. As illustrated in Fig. 3b, there is no arbitrage opportunity
between the products, hence the aggregated curves do not intersect. Thus, we assume, that
the aggregated curves provide a sufficient representation of the order book.

At this point, considering a fixed-price discretisation and a fixed price range would yield
a constant set of values able to describe the aggregated curves. However, in order to further
decrease the size of the set of values with sufficient price discretisation, we motivate the
use of a set of distance measures between the two aggregated curves that succeed in cap-
turing the arbitrage potential at each trading time-step t as state variables, as presented in
Figs. 2b and 3b.

For instance, we define as D1 the signed distance between the 75th percentile of “Buy”
price and the 25th percentile of “Sell” price and as D2 the absolute distance between the
mean value of “Buy” and “Sell” volumes. Other measures used are the signed price differ-
ence and absolute volume difference between percentiles (25%, 50%, 75%) and the bid-ask
spread. A detailed list of the distance measures is provided in Table 2.

The new, continuous, low-dimensional observation of the order book
s�OB
t

∈ S�OB = {D1,… ,D10} is used to represent the state of the order book and, in par-
ticular, its profit potential. It is important to note that in contrast to sOB

t
∈ SOB , the new

order book observation s�OB
t

∈ S�OB does not depend on the number of orders in the order
book and therefore has a constant size, i.e. the cardinality of S′OB is constant over time.

Finally, the history of the private information of agent i, that is not publicly available,
is a vector that contains the high-dimensional continuous variables sprivate

i,t
 related to the

operation of the storage device. As described in Sect. 4.3, sprivate
i,t

 is defined as:

According to Assumption (5), the trading agent cannot perform any transaction if it
results in imbalances. Therefore, it is not relevant to consider the vector Δi,t since it will

s
private

i,t
= ((Pmar

i,t
(𝜏),Δi,t(𝜏),Gi,t(𝜏),Ci,t(𝜏), SoCi,t(𝜏),∀𝜏 ∈ Ť),w

exog

i,t
).

2360	 Machine Learning (2021) 110:2335–2387

1 3

Ta
bl

e 
2  

O
rd

er
 b

oo
k

fe
at

ur
es

 u
se

d
fo

r t
he

 st
at

e
re

du
ct

io
n

Sy
m

bo
l

D
efi

ni
tio

n
D

es
cr

ip
tio

n

D
1

p
B
u
y

m
a
x
−
p
S
el
l

m
in

Si
gn

ed
 d

iff
. b

et
w

ee
n

th
e

m
ax

im
um

 “
B

uy
”

pr
ic

e
an

d
th

e
m

in
im

um
 “

Se
ll”

 p
ric

e

D
2

p
B
u
y

m
ea
n
−
p
S
el
l

m
ea
n

Si
gn

ed
 d

iff
. b

et
w

ee
n

th
e

m
ea

n
“B

uy
”

pr
ic

e
an

d
th

e
m

ea
n

“S
el

l”
 p

ric
e

D
3

p
B
u
y

2
5
%
−
p
S
el
l

7
5
%

Si
gn

ed
 d

iff
. b

et
w

ee
n

th
e

25
th

 p
er

ce
nt

ile
 “

B
uy

”
pr

ic
e

an
d

th
e

75
th

 p
er

ce
nt

ile
 “

Se
ll”

 p
ric

e

D
4

p
B
u
y

5
0
%
−
p
S
el
l

5
0
%

Si
gn

ed
 d

iff
. b

et
w

ee
n

th
e

50
th

 p
er

ce
nt

ile
 “

B
uy

”
pr

ic
e

an
d

th
e

50
th

 p
er

ce
nt

ile
 “

Se
ll”

 p
ric

e

D
5

p
B
u
y

7
5
%
−
p
S
el
l

2
5
%

Si
gn

ed
 d

iff
. b

et
w

ee
n

th
e

75
th

 p
er

ce
nt

ile
 “

B
uy

”
pr

ic
e

an
d

th
e

25
th

 p
er

ce
nt

ile
 “

Se
ll”

 p
ric

e

D
6

|vB
u
y

m
in
−
vS

el
l

m
in
|

A
bs

. d
iff

. b
et

w
ee

n
th

e
m

in
im

um
 “

B
uy

”
cu

m
. v

ol
um

e
an

d
th

e
m

ax
im

um
 “

Se
ll”

 c
um

. v
ol

um
e

D
7

|vB
u
y

m
ea
n
−
vS

el
l

m
ea
n
|

A
bs

. d
iff

. b
et

w
ee

n
th

e
m

ea
n

“B
uy

”
cu

m
. v

ol
um

e
an

d
th

e
m

ea
n

“S
el

l”
 c

um
. v

ol
um

e

D
8

|vB
u
y

2
5
%
−
vS

el
l

2
5
%
|

A
bs

. d
iff

. b
et

w
ee

n
th

e
25

th
 p

er
ce

nt
ile

 “
B

uy
”

cu
m

. v
ol

um
e

an
d

th
e

25
th

 p
er

ce
nt

ile
 “

Se
ll”

 c
um

. v
ol

um
e

D
9

|vB
u
y

5
0
%
−
vS

el
l

5
0
%
|

A
bs

. d
iff

. b
et

w
ee

n
th

e
50

th
 p

er
ce

nt
ile

 “
B

uy
”

cu
m

. v
ol

um
e

an
d

th
e

50
th

 p
er

ce
nt

ile
 “

Se
ll”

 c
um

. v
ol

um
e

D
10

|vB
u
y

7
5
%
−
vS

el
l

7
5
%
|

A
bs

. d
iff

. b
et

w
ee

n
th

e
75

th
 p

er
ce

nt
ile

 “
B

uy
”

cu
m

. v
ol

um
e

an
d

th
e

75
th

 p
er

ce
nt

ile
 “

Se
ll”

 c
um

. v
ol

um
e

2361Machine Learning (2021) 110:2335–2387	

1 3

always be zero according to the way the high-level actions are defined in Sect. 4.4. Addi-
tionally, Assumption (3) regarding the default strategy for storage control in combination
with Assumption (5) yields a direct correlation between vectors Pmar

i,t
 and Gi,t , Ci,t , SoCi,t .

Thus, it is considered that Pmar
i,t

 contains all the required information and thus vectors Gi,t ,
Ci,t and SoCi,t can be dropped.

Following the previous analysis we can define the low-dimensional pseudo-state
zi,t = (s�

i,0
, a�

i,0
, ri,0,… , a�

i,t−1
, ri,t−1, s

�
i,t
) ∈ Zi , where s�

i,t
= (s�OB

t
,Pmar

i,t
,w

exog

i,t
) ∈ S�

i
 . This

pseudo-state can be seen as the result of applying an encoder enc ∶ Hi → Zi which maps a
true state hi,t to pseudo-state zi,t.

zi,t = (s�
i,0
, a�

i,0
, ri,0,… , a�

i,t−1
, ri,t−1, s

�
i,t
) ∈ Zi

In the following, it is considered that the pseudo-state zi,t ∈ Zi contains all the relevant
information for the optimization of the CID market trading of an asset-optimizing agent.
Thus, replacing the true state hi,t with pseudo-state zi,t is not considered to lead to a sub-
optimal policy. The resulting decision process after the state and action spaces reductions
is illustrated in Fig. 4.

Fig. 2   a Market depth per product (for products Q1 to Q6 ) at a time-step t with arbitrage potential. b The
corresponding aggregated curves for a profitable order book

2362	 Machine Learning (2021) 110:2335–2387

1 3

Fig. 3   a Market depth per product (for products Q1 to Q6 ) at a time-step t with no arbitrage potential. b The
corresponding aggregated curves for a non profitable order book

Fig. 4   Schematic of the decision process. The original MDP is highlighted in a gray background. The state
of the original MDP hi,t is encoded in pseudo-state zi,t . Based on zi,t , agent i takes an high-level action a′

i,t
 ,

according to its policy �i . This action a′
i,t

 is mapped to an original action ai,t and submitted to the CID mar-
ket. The CID market makes a transition based on the action of agent i and the actions of the other agents
a−i,t . After this transition, the market position of agent i is defined and the control actions for storage device
are derived according to the “default” strategy. Each transition yields a reward ri,t and a new state hi,t

2363Machine Learning (2021) 110:2335–2387	

1 3

4.6 � Generation of artificial trajectories

In this section, the generation of artificial trajectories for addressing exploration issues in
an offline setting is discussed. Indeed, if we were to implement an agent that selects at
every time-step among the “Idle” and “Trade” actions, we would collect a certain num-
ber of trajectories (one per day) over a certain period of interactions with the real market.
The collected dataset could be used to train a policy using a batch mode RL algorithm, as
described in Sect. 4.2. Every time a new trajectory would arrive, it would be appended in
the previous set of trajectories and the entire dataset could be used to improve the trading
policy.

As discussed in Sect. 4.2, sufficient exploration of the state and action spaces is a
key requirement for converging to a near-optimal policy. The RL agent needs to explore
unknown grounds in order to discover interesting policies (exploration). It should also
apply these learned policies to get high rewards (exploitation). However, since the set of
collected trajectories would come from a real agent, the visitation of many different states
is expected to be limited.

Furthermore, the aforementioned approach requires the direct interaction with the CID
market in order to collect samples from the unknown initial state distribution and from
the opponents’ actions. In the RL context, exploration is then performed when the agent
selects a different action than the one that, according to its experience, will yield the high-
est rewards. In real life, it is unlikely for a trader to select such actions, and potentially bear
negative revenues, for the sake of gaining more experience. This leads to limited explora-
tion of the learning process and would result in a suboptimal policy.

Assumption 7  (No impact on the behaviour of the rest of the agents) The actions of trad-
ing agent i do not influence the future actions of the rest of the agents −i in the CID market.
In this way, agent i is not capable of influencing the market.

Assumption (7) implies that each of the agents −i entering in the market would post
orders solely based on their individual needs. Furthermore, its actions are not considered as
a reaction to the actions of the other market players.

Leveraging Assumption (7) allows one to tackle the exploration issues discussed previ-
ously in an offline setting by generating several artificial trajectories using historical order

2364	 Machine Learning (2021) 110:2335–2387

1 3

book data. An artificial trajectory is generated as follows. At each time t, the agent i takes
an action according to the current state of the order book. Under Assumption (7), the next
state of the order book is then the historical state at time t + 1 from which the bids accepted
by agent i have been removed. Finally, in this framework, such an artificial trajectory corre-
sponds to a trajectory sampled from the CID model developed. We denote by Ê the number
of episodes (times) each day from historical data is repeated and by Ltrain the set of trad-
ing days used to train the agent. We can then obtain the total number of trajectories M as
M = Ê ⋅ |Ltrain|.

The simulation of trajectories is performed according to the process described in Fig-
ure 1 in Ernst et al. (2005). Nevertheless, in this framework, trajectories are generated
artificially as described previously rather than directly sampled from the system. This
process interleaves the generation of trajectories with the computation of an approximate
Q-function using the trajectories already generated. As shown in Algorithm 1, for a num-
ber of episodes ep, we randomly select days from the train set which we simulate using an
�-greedy policy. According to this policy, an action is chosen at random with probability �
and according to the available Q-functions with probability ( 1 − � ). The generated trajecto-
ries are added to the set of trajectories. The second step consists of updating the Q-function
approximation using the set of collected trajectories. This process is terminated when the
total number of episodes has reached the specified number Ê.

This process introduces parameters Ltrain , Ê , ep, � and decay. The selection of these
parameters impacts the training progress and the quality of the resulting policy. The set
of days considered for training ( Ltrain ) is typically selected as a proportion (e.g. 70%) of
the total set of days available. The total number of episodes Ê should be large enough
so that convergence is achieved and is typically tuned based on the application. The fre-
quency with which the trajectory generation and the updates are interleaved is controlled
by parameter ep. A small number of ep results in a large number of updates. Parameter �
is used to address the trade-off between exploration-exploitation during the training pro-
cess. As the training evolves, this parameter is annealed based on some predefined param-
eter decay, in order to gradually reduce exploration and to favour exploration along the
(near-)optimal trajectories. In practice, the size of the buffer F cannot grow infinitely due to
memory limitations, so typically a limit on the number of trajectories stored in the buffer is
imposed. Once this limit is reached, the oldest trajectories are removed as new ones arrive.
The buffer is a double-ended queue of fixed size.

4.7 � Neural network architecture

As described in Sect. 4.5, pseudo-state zi,t contains a sequence of variables whose length
is proportional to t. This motivates the use of Recurrent Neural Networks (RNNs), that are
known for being able to efficiently process variable-length sequences of inputs. In particu-
lar, we use Long Short-term Memory (LSTM) networks (Goodfellow et al. 2016), a type
of RNNs where a gating mechanism is introduced to regulate the flow of information to the
memory state.

All the networks in this study have the architecture presented in Fig. 5. It is composed of
one LSTM layer with 128 neurons followed by five fully connected layers with 36 neurons
where “ReLU” was selected as the activation function. The structure of the network (num-
ber of layers and neurons) was selected after cross-validation.

Theoretically, the length of the sequence of features that is provided as input to the neu-
ral network can be as large as the total number of trading steps in the optimization horizon.

2365Machine Learning (2021) 110:2335–2387	

1 3

In practice though, there are limitations with respect to the memory that is required to store
a tensor of this size. As we can observe in Fig. 5, each sample in the batch contains a vec-
tor of size 249 for each time-step. Assuming a certain batch size, there is a certain limit to
the number of steps that can be stored in the memory. Therefore, for practical reasons and
due to hardware limitations, we assume a history length h̄ defined as
zi,t = (a�

i,t−h̄−1
, ri,t−h̄−1, s

�

i,t−h̄
, a�

i,t−h̄
, ri,t−h̄,… , a�

i,t−1
, ri,t−1, s

�
i,t
) ∈ Zi . At each step t, the history

length h̄ takes the minimum value between the time-step t and h̄max , ( ̄h = min(t, h̄max) ).
Additionally, we provide the variable s̄t = (a�

i,t−1
, ri,t−1, s

�
i,t
) , as a fixed size input for each

step t of the LSTM. Consequently, the pseudo-state can be written as zi,t = (s̄t−h̄,… , s̄t).

4.8 � Asynchronous distributed fitted Q iteration

The exploration requirements of the continuous state space, as defined previously introduce
the necessity for collecting a large number of trajectories M. The total time required for
gathering these trajectories heavily depends on the simulation time needed for one episode.
In this particular setting developed, the simulation time can be quite long since, at each
decision step, if the action selected is “Trade”, an optimization model is constructed and
solved.

In order to address this issue, we resort to an asynchronous architecture, similar to the
one proposed in Horgan et al. (2018), presented in Fig. 6. The two processes, described in
Sect. 4.6, namely generation of trajectories and computation of the Q-functions, run con-
currently with no high-level synchronization.

Multiple actors that run on different threads are used to generate trajectories. Each actor
contains a copy of the environment, an individual �-greedy policy based on the latest ver-
sion of the Q functions and a local buffer. The actors use their �-greedy policy to perform
transitions in the environment. The transitions are stored in the local buffer. When the local
buffer of each actor is filled, it is appended to the global buffer, the agent collects the latest

Fig. 5   Schematic of the neural network architecture

2366	 Machine Learning (2021) 110:2335–2387

1 3

Q-functions from the learner and continues the simulation. A single learner continuously
updates the Q-functions using the simulated trajectories from a global buffer.

The benefits from asynchronous methods in Deep Reinforcement Learning (DRL) are
elaborated in Mnih et al. (2016). Each actor can use a different exploration policy (different
initial � value and decay) in order to enhance diversity in the collected samples which leads
to a more stable learning process. Additionally, it is shown that the total computational
time scales linearly with the number of threads considered. Another major advantage is
that distributed techniques were shown to have a super-linear speedup for one-step methods
that are not only related to computational gains. It is argued that, the positive effect of hav-
ing multiple threads leads to a reduction of the bias in one-step methods (Mnih et al. 2016).
In this way, these algorithms are shown to be much more data efficient than the original
versions.

5 � Case study

The proposed methodology is applied to the case of a PHES unit. Firstly, the parameters
and the exogenous information used for the optimization of the CID market participation
of a PHES operator are described. Secondly, the benchmark strategy used for comparison
purposes and the process that was carried out for validation are presented. Finally, perfor-
mance results of the obtained policy are presented and discussed.

Fig. 6   Schematic of the asynchronous distributed architecture. Each actor runs on a different thread and
contains a copy of the environment, an individual �-greedy policy based on the latest version of the network
parameters and a local buffer. The actors generate trajectories that are stored in their local buffers. When
the local buffer of each actor is filled, it is appended to the global buffer and the agent collects the latest
network parameters from the learner. A single learner runs on a separate thread and is continuously training
using experiences from the global buffer

2367Machine Learning (2021) 110:2335–2387	

1 3

5.1 � CID order book data

In the presented case study, we used a dataset containing anonymous historical orders for
the quarter-hourly products of the German CID market for the second half of the year 2015.
In particular, for the construction of the training/test sets, we proceed as following. Due
to the high computational burden, we train our algorithm on a period of |Ltrain| = 92 days
(i.e. 2015/05/01–2015/07/31) in which a high variance in prices is observed and there-
fore high profit potential. Subsequently, we evaluate its performance in the following
|Ltest| = 152 days (i.e. 2015/08/01–2015/12/31). This dataset is composed of the columns
presented in Table 3. In this paper, we did not consider the execution specifications of limit
orders. This choice was partially made (besides its increased modeling complexity), due to
the fact that these specifications are not stated explicitly in the historical order book dataset
that is used. In effect, it could be possible to apply some heuristic rules in order to identify
some of the execution specifications ex-post. However, this task is not trivial, especially for
some of the most complex specifications. Therefore, we chose to treat all orders as simple
limit orders.

We simulate through the historical order book in such a way that at each trading step t,
the agent is presented with the active orders, i.e. the historical orders for which trading step
t is after their Start Validity Date and t is before their End Validity Date. Additionally, we
filter the orders at each step in order to guarantee that for each product the minimum selling
price (ask) is always higher that the maximum buying price (bid). The number of orders
dropped by this filtering process depends on the trading frequency that is selected. In this
case study, the dropped orders correspond to less than 1% of the orders observed during the
defined trading timeline for the train and test sets. Table 4 , summarizes the information
regarding the order book data that were used in the presented case study.

Table 3   Dataset columns

Symbol Description

Instrument type Product type i.e. quarter-hourly, half-hourly or hourly
Delivery instrument Time of delivery (e.g. 00:00–00:15)
Delivery date Date stamp (e.g. 17/04/2015)
Start validity date Date-time stamp (e.g. 16/04/2016 17:58:47.093)
End validity date Date-time stamp (e.g. 16/04/2015 23:30:02.880)
Cancelling date Date-time stamp (e.g. 04/16/2015 23:30:02.880)
Is executed Integer, i.e. 0 (not executed), 1 (fully executed) and 2 (partially executed)
Side “Buy” or “Sell”
Price (€/MWh) Limit price
Execution Price ($/MWh) Price at which an order was matched
Volume (MWh) Offered volume
Executed Volume (MWh) Volume that was transacted
Parent ID Unique order ID (10 digit number)
Initial ID Unique order ID that was assigned at first appearance of the order

2368	 Machine Learning (2021) 110:2335–2387

1 3

5.2 � Parameters specification

The proposed methodology is applied for an instance of a PHES unit2 participating in the
German CID market with the following characteristics:

•	 SoCi = 40 MWh,
•	 SoCi = 0 MWh,
•	 SoCinit

i
= SoCterm

i
=
(
SoCi − SoCi

)
∕2,

•	 Ci = Gi = 8 MW,
•	 Ci = Gi = 0 MW,
•	 � = 90%.

The discrete trading horizon has been selected to be the full day, i.e.
T = {16 ∶ 00,… , 00 ∶ 00,… , 23 ∶ 15} . The trading time interval is selected to be Δt = 15
min. Thus the trading process takes K = 124 steps until termination. Moreover, all 96 quar-
ter-hourly products of the day, X = {Q1,… ,Q96} , are considered. Consequently, the deliv-
ery timeline is Ť = {00 ∶ 00,… , 23 ∶ 45} , with �init = 00 ∶ 00 and �term = 24 ∶ 00 and the
delivery time interval is Δ� = 15 min. Each product can be traded until 30 min before the
physical delivery of electricity begins (e.g. tclose(Q1) = 23 ∶ 30 etc.).

The total number of simulated episodes was selected to be Ê = 10000 episodes for the
artificial trajectories generation process, described in Sect. 4.6. During the trajectories
generation process the high-level actions (“Trade” or “Idle”) were chosen following an �
-greedy policy. As described in Sect. 4.8, each of the actor threads is provided with a dif-
ferent exploration parameter � that is initialised with a random uniform sample in the range
[0.1, 0.5] . The parameter � is then annealed exponentially until a zero value is reached.

The pseudo-state zi,t = (s�
i,0
, a�

i,0
, ri,0,… , a�

i,t−1
, ri,t−1, s

�
i,t
) ∈ Zi is composed of the entire

history of observations and actions up to time-step t, as described in Sect. 4.5. For the sake
of memory requirements, as explained in Sect. 4.7, we assume that the last ten trading
steps contain sufficient information about the past. Thus, the pseudo-state is transformed
in sequences of fixed length h̄max = 10 . Simulations were performed in an AWS EC2
g4dn.8xlarge instance with the following specifications: 32 cores Intel(R) Xeon(R) Plati-
num 8259CL CPU 2.50 GHz, 1 GPU NVIDIA T4, 128 Gb RAM. The operating system
used was Ubuntu 18.04 and the programming language was Python 3.7. The optimization
model is implemented on docplex, the CPLEX modeling framework for Python, and solved
with CPLEX 12.10. Full training of one experiment takes approximately 6 h. For the full
experiment training time is approximately 60 h.

Table 4   Summary statistics of
the order book dataset used in the
case study

Δt Total orders Observed orders Dropped

15 min 9,218,857 3,450,838 7904
5 min 9,218,857 4,226,184 13,074

2  A small instance of the storage unit was selected due to the low volumes available in the historical order
book data used.

2369Machine Learning (2021) 110:2335–2387	

1 3

5.3 � Exogenous variable

The exogenous variable wexog

i,t
 represents any relevant information available to agent i about

the system. In this case study, we assumed that the variable wexog

i,t
 contains:

•	 The 24 values of the Day-ahead price for the entire trading day
•	 The Imbalance price and the system Imbalance for the four quarters preceding each

time-step t
•	 The 96 values of the intraday auction prices for the entire trading day
•	 Time features: (1) the month, (2) whether the traded day is a weekday or weekend and

(3) the time-step t.

5.4 � Benchmark strategies

In this section, we introduce several benchmark strategies used to compare the perfor-
mance of the fitted Q policy. Firstly, we consider a look-ahead policy that has access to
future states of the MDP. Although this policy cannot be implemented in practice, it can
provide a good upper bound on the performance of other non-anticipative strategies. Sec-
ondly, we introduce a heuristic policy that relies on the solution of the look-ahead policy
on the train set in order to obtain a probabilistic decision rule. In addition to that, we use
variants of the rolling intrinsic that selects the “Trade” action at each step. Finally, an alter-
native reinforcement learning algorithm is considered in order to show the benefits of using
batch mode learning

5.4.1 � Look‑ahead

Firstly, we select an anticipative strategy as a benchmark which we call look-ahead policy
�LA . This policy cannot be implemented in practice because it relies on future information
that a storage operator would not have in its possession in real-time. However, it can pro-
vide a good measure on how well the fitted Q iteration policy can anticipate future rewards.

According to the look-ahead policy �LA , at each decision step t the agent can fast-for-
ward a number of � steps into the future3 and compute the potential profits r̂i,t+𝜓 . The com-
putation of the potential profits r̂i,t at each time-step t is performed by solving the opti-
mization problem defined in Model 1 without applying any of the output actions to the
real system. If the future potential profits r̂i,t+𝜓 are higher than the current potential profits
r̂i,t , the agent selects to “Idle”. In the opposite case, the agent selects to “Trade”. In the
presented case study, we use the values � = 1 and � = 2 , denoted as �LA1 and �LA2 respec-
tively. The look-ahead policy �LA can be summarized by the following rule:

(52)a�
i,t
= 𝜋LA(r̂i,t+𝜓 , r̂i,t) =

{
“Idle", if r̂i,t+𝜓 ≥ r̂i,t,

“ Trade", otherwise .

3  Only changes related to the state of the order book occur during these steps.

2370	 Machine Learning (2021) 110:2335–2387

1 3

5.4.2 � Heuristic

Secondly, we consider a heuristic policy �HE that relies on the solution obtained by the
look-ahead policy on the train set in order to obtain a probabilistic decision rule. More
specifically, for each time step t of the trading horizon T, we compute the percentage of
days d of the train set Ltrain for which the look-ahead policy has selected the action ( aLA

d,t
 ) to

“Trade” as following:

We can construct a stochastic policy where at each time-step t, an action is sampled accord-
ing to a Bernoulli distribution over the action space as following:

5.4.3 � Rolling intrinsic

Central in our comparison is the rolling intrinsic policy (Gray and Khandelwal 2004;
Löhndorf and Wozabal 2020; Bertrand and Papavasiliou 2019), denoted by �RI . This is a
myopic policy according to which, the agent selects at each trading time-step t the action
“Trade”, as described in Sect. 4.4. Formally we have:

 In addition to that, and for comparison purposes, we also consider a variant of the roll-
ing intrinsic �RI5min , where the trading agent selects the action “Trade” at higher frequency
( Δt = 5 min).

Selecting the action to “Trade” at each time-step t can be quite restrictive, especially
due to the fact that in the beginning of the trading horizon there is not much trading activ-
ity taking place. However, later in the trading horizon and especially around the gate clo-
sures an upsurge in trading activity is expected as market participants attempt to finalize
their positions. Motivated by this, we also consider a variant of the rolling intrinsic policy,
denoted by �RIg that selects the action “Trade” only when time-step t corresponds to a gate
closure for a product. More precisely, we have:

5.4.4 � Learning‑based

Finally, we consider an alternative reinforcement learning algorithm for comparison pur-
poses. We select the asynchronous prioritized experience replay deep Q networks (APE-X
DQN) algorithm, as it is presented in Horgan et al. (2018). Let Q(zt, at;�) denote a paramet-
ric approximation of the state-action value function Q with parameters � . This algorithm
proceeds by iteratively updating parameters � . In each iteration step, the algorithm is using

(53)p"Trade"
t

=

∑
d∈Ltrain �

�
aLA
d,t
="Trade"

�

�Ltrain�

(54)a�
i,t
∼ �HE(⋅|t) =

{
“Trade", with probability p“

t
Trade",

“Idle��, with probability 1 − p“
t
Trade".

(55)a�
i,t
= �RI(⋅) = “Trade"

(56)a�
i,t
= �RIg (⋅|t) =

{
“Trade", if t ∈

{
tclose(x),∀x ∈ Xt

}
,

“Idle��, otherwise.

2371Machine Learning (2021) 110:2335–2387	

1 3

the latest version of parameters �old and the one-step system transitions from set F to con-
struct the target vector y according to:

Parameters � are then updated based on the target vector according to:

This iterative process continues until the algorithm converges to the optimal parameters
�∗ . Once the parameters �∗ are computed, the policy �APEXDQ is obtained as:

The main difference between the fitted Q algorithm proposed in this paper and APE-X
DQN is that a single neural network is used for approximating the value function Q(zt, a�t ;�)
instead of using one network per time-step t. The selection of this asynchronous algorithm
is motivated by the computational efficiency that was discussed previously in Sect. 4.8.
The neural network architecture used for approximating the value function is the same as
the one described in Sect. 4.7.

Additionally, the benchmark presented in Bertrand and Papavasiliou (2019) could be
used for comparison purposes. However, the basis of our analysis is significantly differ-
ent. In particular, the assumptions related to the storage operation (Assumptions 5 and 6)
as well as the fact that quarterly products are considered (instead of hourly) in this paper,
constitute the comparison impossible.

5.5 � Validation process

The performance of the policy obtained using the fitted Q iteration algorithm, denoted by
�FQ , is evaluated on test set Ltest that contains historical data from 152 days. These days are
not used during the training process. This evaluation pass is performed by using a greedy
policy based on the outputs of the neural networks. During this process, the policy is fixed
and is not updated with data collected from the test set. This process of backtesting a strat-
egy on historical data is widely used because it can provide a measure of how successful
a strategy would be if it had been executed in the past. However, there is no guarantee that
this performance can be expected in the future. This validation process heavily relies on
Assumption (7) about the inability of the agent to influence the behaviour of the other play-
ers in the market. It can still provide an approximation on the results of the obtained policy
before deploying it in real life. However, the only way to evaluate the exact viability of a
strategy is to deploy it in real life.

We compare the performances of the policy obtained by the fitted Q iteration algorithm
�FQ and the benchmark policies described above. The comparison is based on the compu-
tation of the return of the policies on each day. For a given policy, the return over a day is
simply computed by running the policy on the day and summing up the rewards obtained.

Our learning algorithm has two sources of variance, namely those related to the genera-
tion of the new trajectories and those related to the learning of the Q-functions from the set
of trajectories. Hence, we perform several runs and average the performances of the poli-
cies learned. In the following, when we report the performance of a fitted Q iteration policy

(57)y = rt + max
a�
i,t+1

∈A�
i

Q(zi,t+1, a
�
i,t+1

;�old)

(58)�new = �old − � ⋅ (y − Q(zt, a
�
t
;�old)) ⋅ ∇�Q(zt, a

�
t
;�),

(59)�APEXDQN(zi,t) = argmax a�
i,t
∈A�

i
Q(zi,t, a

�
i,t
;�∗),

2372	 Machine Learning (2021) 110:2335–2387

1 3

over a dataset, we will actually report the average performances of ten learned policies over
this dataset.

We describe the different indicators that will be used afterwards to assess the perfor-
mance of our method. These indicators are computed for both the train set and the test set,
but are detailed hereafter when they are computed for the test set. It is straightforward to
adapt the procedure for computing the indicators for the train set.

Let V�b

d
 denote the return of a policy

�b ∈ � =
{
�FQ,�APEXDQN ,�HE,�LA1 ,�LA2 ,�RIg ,�RI5min ,�RI

}
 for day d, respectively. Set �

contains the policies under comparison in this case study. We gather the obtained returns
of each policy for each day d ∈ Ltest . We sort the returns in ascending order, and we obtain
an ordered set containing a number of |Ltest| values for each policy. We provide descriptive
statistics about the distribution of the returns V�b

d
 of each policy �b ∈ � on the test set Ltest .

In particular, we report the mean, the minimum and maximum values achieved for the set
considered. Moreover, we provide the values obtained for each of the quartiles (25%, 50%
and 75%) of the set. Additionally, we can compute the sum of returns over the entire set of
days as follows:

Central in our analysis is the risk-averse rolling intrinsic policy. Therefore, we consider
an alternative performance indicator defined as the discrepancy of the returns coming from
the considered policies with respect to the rolling intrinsic. We define the profitability ratio
r�

b

d
 for each day d ∈ Ltest , that corresponds to the signed percentage difference between the

two policies as follows:

In a similar fashion, we sort the profitability ratios obtained for each day in the test set
and we provide descriptive statistics about its distribution across the set. The mean, mini-
mum and maximum values of the profitability ratio as well as the values of each quartile
are reported. Finally, we compute the profitability ratio for the sum of returns over the
entire set between two policies, as:

5.6 � Results

The performance indicators described previously are computed for both the training and
the test set. The results obtained are summarised in Tables 5 and 6. Descriptive statistics
about the distribution of the returns from both policies as well as the profitability ratio are
presented for each dataset.

It can be observed that on average �FQ yields better returns than �RI both on the training
and the test set. More specifically, on the train set, the obtained policy performs, on average
3.4% better than the rolling intrinsic policy. For the top 50% of the training days the profit-
ability ratio is higher than 4.1% and in some cases it even exceeds 10% . Overall, the total

(60)V�b

=
∑
d∈Ltest

V�b

d
, ∀�b ∈ �

(61)r�
b

d
=

V�b

d
− V�RI

d

V�RI

d

⋅ 100%, ∀�b ∈ �.

(62)r�
b

sum
=

V�b

− V�RI

V�RI
⋅ 100%, ∀�b ∈ �.

2373Machine Learning (2021) 110:2335–2387	

1 3

Ta
bl

e 
5  

D
es

cr
ip

tiv
e

st
at

ist
ic

s o
f t

he
 re

tu
rn

s o
bt

ai
ne

d
on

 th
e

da
ys

 o
f t

he
 tr

ai
n

se
t f

or
 a

ll
co

ns
id

er
ed

 p
ol

ic
ie

s

�
F
Q

�
A
P
E
X
D
Q
N

�
H
E

�
L
A
1

�
L
A
2

�
R
I g

�
R
I 5
m
in

�
R
I

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)

M
ea

n
75

2.
2

3.
4

72
6.

6
1.

4
72

4.
6

–
2.

6
83

2.
0

12
.7

83
9.

2
14

.0
72

7.
6

–
0.

1
73

6.
3

–
0.

5
74

6.
2

M
in

26
9.

2
–

38
28

4.
5

–
52

.3
30

3.
2

–
16

29
9.

5
–

4.
0

30
9.

5
–

5.
7

17
8.

7
–

39
.4

29
7.

3
–

23
28

2.
1

25
%

52
7.

0
–

2.
5

51
5.

4
–

2.
6

48
8.

8
–

7.
6

56
9.

7
4.

4
57

0.
9

5.
3

51
1.

6
–

7.
8

51
9.

2
–

5.
4

50
7.

0
50

%
70

3.
4

4.
1

66
7.

7
0.

6
65

2.
4

–
3.

9
73

2.
4

8.
5

75
4.

2
9.

2
66

1.
5

–
1.

2
67

3.
1

–
0.

35
65

5.
1

75
%

85
7.

7
11

.1
81

1.
1

7.
2

80
2.

5
–

0.
7

90
1.

1
17

91
2.

9
18

.9
82

4.
8

6.
9

81
2.

6
4.

2
81

3.
6

M
ax

29
58

54
.7

23
03

34
.7

48
53

37
.7

49
23

56
49

41
76

.8
29

83
47

.0
49

16
25

48
30

Su
m

68
,9

25
–

66
,1

19
–

65
,9

36
–

75
,7

11
–

76
,3

70
–

66
,2

09
–

67
,0

08
–

67
,9

07

2374	 Machine Learning (2021) 110:2335–2387

1 3

Ta
bl

e 
6  

D
es

cr
ip

tiv
e

st
at

ist
ic

s o
f t

he
 re

tu
rn

s o
bt

ai
ne

d
on

 th
e

da
ys

 o
f t

he
 te

st
se

t f
or

 a
ll

co
ns

id
er

ed
 p

ol
ic

ie
s

�
F
Q

�
A
P
E
X
D
Q
N

�
H
E

�
L
A
1

�
L
A
2

�
R
I g

�
R
I 5
m
in

�
R
I

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)
r (

%
)

V
(€

)

M
ea

n
66

7.
9

3.
8

66
9.

1
3.

9
61

6.
9

–
4.

2
71

2.
6

10
.6

72
4.

0
12

.2
68

2.
3

5.
5

62
3.

0
–

2.
3

64
5.

2
M

in
15

3.
7

–
26

.7
18

7.
9

–
9.

4
15

0.
8

–
19

.6
20

1.
2

–
4.

6
18

9.
6

–
7.

4
14

9.
7

–
32

.8
18

8.
1

–
28

18
1.

6
25

%
49

0.
9

–
0.

7
50

1.
0

0.
4

45
9.

0
–

8.
2

50
8.

0
4.

2
52

3.
0

4.
8

49
9.

0
–

4.
1

45
9.

6
–

7.
4

47
6.

5
50

%
64

9.
9

4.
0

63
2.

3
3.

3
59

5.
1

–
3.

8
68

2.
1

8.
0

69
4.

8
8.

5
62

7.
1

4.
2

60
9.

0
–

1.
95

62
0.

8
75

%
81

4.
1

9.
9

77
2.

0
7.

1
71

5.
2

–
0.

8
85

0.
7

15
.0

86
2.

7
18

.9
81

0.
8

11
.7

73
4.

9
2.

6
75

3.
3

M
ax

16
61

40
.9

14
71

.4
19

.9
13

57
32

.9
17

77
51

.5
18

34
55

.5
20

25
71

.7
13

67
27

.8
13

98
Su

m
10

2,
93

7
–

10
1,

70
8

–
93

,7
75

–
10

8,
31

3
–

11
0,

04
5

–
10

3,
71

6
–

94
,7

06
–

98
,0

71

2375Machine Learning (2021) 110:2335–2387	

1 3

profits coming from the fitted Q policy add up to €68925, yielding a difference of €1018
( 1.4% ) more than the profits from the rolling intrinsic for the set of 92 days considered.

The fitted Q policy yields on average a 3.8% greater profit on the test set with respect
to the returns of the rolling intrinsic policy. It is important to highlight that for 50% of the
test set, the profits from the fitted Q policy are higher than 4% in comparison to the rolling
intrinsic. The difference between the total profits resulting from the two policies over the
set of 152 days considered amounts to €4866 ( 4.9%).

The distribution of training and test set samples according to the obtained profitability
ratio is presented in Fig. 7. It can be observed that most samples are spread in the interval
between − 10 % and 20% and that the distribution has a positive skew. However, as dis-
cussed earlier, the back-testing of a strategy in historical data may differ from the outcomes
in real deployment for various reasons.

It can be observed that the anticipative benchmark policies �LA1 and �LA2 yield on aver-
age a 12% improvement with respect to the rolling intrinsic. This implies that the margins
for performance improvements are quite tight in this particular instance that is considered.
Moreover, we can see that there are cases that the look-ahead policies lead to negative
profitability ratios. We remind at this point that, the rolling intrinsic strategy yields prof-
its if the spread between different tradable products changes sign and if it makes sense to
swap trading decisions. Instead, in the considered approach, the action to “Idle” would be
desirable when there is no change in the sign between the prices of two products and the
spread between these products increases in time. Furthermore, in our approach the agent
would try to capture the largest spread by selecting to “Trade” at the right instant. We can
observe that, given the selected trading interval of Δt = 15 min there exist several price
swaps between products such that the rolling intrinsic is more profitable than a look-ahead
policy. It is interesting to see that the rolling intrinsic variant �RI5min , where the agent selects
to “Trade” at a higher frequency ( Δt = 5 min), yields on average negative profitability
ratios in both train ( −0.5% ) and test ( −2.5% ) sets. This indicates that �RI5min is somewhat
more restrictive since price swaps between products do not occur in such high frequency.
The results for the variant of the rolling intrinsic �RIg , that selects to “Trade” only at gate
closures, suggest that an agent should not start commit its unit (“Trade”) since the begin-
ning of the trading horizon, but it should wait until the first gate closure. In particular, �RIg

Fig. 7   Profitability ratio

2376	 Machine Learning (2021) 110:2335–2387

1 3

leads to similar results to �RI in the train set and a 5.5% improvement in the test set, that is
slightly better than the fitted Q policy �FQ.

The heuristic policy �HE , that solely relies on computed statistics depending on the
time-step t, does not manage to outperform the rolling intrinsic and yields a profitability
ratio of −2.6 % in the train set and −4.2 % in the test set. The APE-X DQN policy �APEXDQN
manages to outperform the rolling intrinsic benchmark by 1.4% on the train set and by 4%
on the test set. However, it does not reach the performance improvements achieved by the
fitted Q policy.

The evolution of the expected return of the fitted Q iteration policy V�FQ and the APE-X
DQN policy V�APEXDQN as function of the training episodes (number of trajectories collected)
is presented in Figs. 8 and 9 for the train and test set respectively. We can observe that,
at the early steps both learning-based methods manage to reach a performance compara-
ble to the rolling intrinsic. Later in the training process, they progressively learn the right
moments to idle in order to increase their returns. The shaded area in both graphs repre-
sents the variance obtained between the ten different runs.

Fig. 8   Progressive evaluation in
the train set

Fig. 9   Progressive evaluation in
the test set

2377Machine Learning (2021) 110:2335–2387	

1 3

5.7 � Trading policy analysis

In this section, we compare the policy obtained by the fitted Q iteration �FQ with the look-
ahead policy �LA1 . For each time step in the trading horizon T, we compute the percentage
of days for which each policy has selected the action to “Trade”. The results are presented
in Figs. 10 and 11 for �LA1 and �FQ respectively. As we can observe in Fig. 10, the look-
ahead policy suggests that the agent should trade at the beginning of the trading horizon,
and then wait until the gate closure of the first products. After that, the agent should mostly
trade until the end of the horizon. We can see in Fig. 11 that the fitted Q agent does not
trade in the beginning of the horizon, but instead starts trading approximately around 19:00
until 20:30. Then, the agent starts trading again at the first gate closure and idles only a few
times until the end of the horizon. Both policies suggest that there is an upsurge of poten-
tial profits as trading approaches to the first gate closure at 23:30. This fact is supported
by the increased number of orders that are on average observed at this time of the trading
horizon, as shown in Fig. 12.

Fig. 10   Percentage of days that
the “Trade” action is selected by
the look-ahead policy �LA1 over
the trading horizon

Fig. 11   Percentage of days that
the “Trade” action is selected by
�FQ over the trading horizon

2378	 Machine Learning (2021) 110:2335–2387

1 3

5.8 � Sensitivity analysis

In this section, we present a sensitivity analysis of the profit potential in the CID market
with respect to the specifications of the storage unit. To this end, we apply all the pre-
viously described policies on different storage unit configurations. More specifically, we
vary the charging/discharging power Gi∕Ci and the charging/discharging efficiency � .
The results obtained by applying the considered policies on the test set are summarized
in Table 7. It can be observed that, the look-ahead policies �LA1 , �LA2 achieve better per-
formance improvements with respect to the rolling intrinsic, as the power capacity of the
storage and the efficiency decrease. This outcome suggests that it becomes more relevant
(beneficial) to idle and wait for good opportunities to arise when the storage capabilities
are more restricted. Naturally, the total amount of profits collected decreases as the power
capacity and efficiency decrease. The performance gain from policy �RIg remains steady at
approximately 6% over all storage configurations. It is interesting to see that �RIg reaches
on average half of the performance of the look-ahead policies. The reinforcement learning
policies manage to outperform the rolling intrinsic by approximately 4% but do not suc-
ceed in reaching the �RIg performance gains. The profits of the reinforcement learning poli-
cies show a marginal increase with the decreasing power capacity and efficiency. Finally,
�RI5min results in a profitability ratio of approximately −2.5% for all the cases with efficiency
� = 0.9 . However, it yields similar performance to �RI for the cases with efficiency � = 0.8.

6 � Discussion

In this section, we provide some remarks related to the practical challenges encountered
and the validity of the assumptions considered throughout this paper.

6.1 � Behaviour of the rest of the agents

In this paper, we assumed (Assumption 1) that the rest of the agents −i post orders in the
market based on their needs and some historical information of the state of the order book.
In reality, the available information that the other agents possess is not accessible by agent

Fig. 12   Average number of
orders observed by the agent over
the trading horizon

2379Machine Learning (2021) 110:2335–2387	

1 3

Ta
bl

e 
7  

M
ea

n
va

lu
es

 o
f t

he
 re

tu
rn

s a
nd

 th
e

pr
ofi

ta
bi

lit
y

ra
tio

s o
bt

ai
ne

d
on

 th
e

da
ys

 o
f t

he
 te

st
se

t f
or

 a
ll

co
ns

id
er

ed
 p

ol
ic

ie
s f

or
 d

iff
er

en
t s

to
ra

ge
 u

ni
t s

pe
ci

fic
at

io
ns

�
F
Q

�
A
P
E
X
D
Q
N

�
H
E

�
L
A
1

�
L
A
2

�
R
I g

�
R
I 5
m
in

�
R
I

G
i∕
C
i

�
V

(€
)

r (
%

)
V

(€
)

r (
%

)
V

(€
)

r (
%

)
V

(€
)

r (
%

)
V

(€
)

r (
%

)
V

(€
)

r (
%

)
V

(€
)

r (
%

)
V

(€
)

8
0.

9
66

7.
9

3.
8

66
9.

1
3.

9
61

6.
9

–
4.

2
71

2.
6

10
.6

72
4.

0
12

.2
68

2.
3

5.
5

62
3.

0
–

2.
3

64
5.

2
8

0.
8

43
1.

9
3.

6
42

8.
0

3.
4

39
1.

4
–

6.
4

47
5.

7
14

.5
48

5.
4

16
.8

44
4.

8
5.

7
40

5.
8

–
0.

52
41

5.
4

6
0.

9
54

6.
0

2.
7

55
1.

5
3.

5
51

0.
2

-4
.4

59
4.

6
11

.6
60

4.
3

13
.5

56
7.

5
6.

4
51

3.
6

–
2.

5
53

3.
0

6
0.

8
35

3.
0

0.
0

36
1.

1
4.

2
31

7.
3

–
8.

1
39

8.
1

14
.8

40
3.

2
16

.2
37

1.
6

5.
6

33
6.

2
–

0.
55

34
6.

7
4

0.
9

39
8.

7
1.

5
41

0.
4

4.
7

37
3.

7
–

4.
4

44
0.

4
12

.6
44

7.
5

14
.4

41
7.

4
6.

1
37

9.
0

–
2.

5
39

2.
6

4
0.

8
26

3.
5

1.
6

26
8.

0
4.

0
23

8.
9

–
7.

6
29

5.
9

15
.4

29
9.

2
16

.7
27

3.
9

5.
2

24
8.

5
–

0.
88

25
6.

3

2380	 Machine Learning (2021) 110:2335–2387

1 3

i. This fact gives rise to issues related to the validity of the assumption that the process is
Markovian.

We further assumed (Assumption 7) in Sect. 4.6 that the behaviour of agent i does not
influence the strategy of the other agents −i . Based on this assumption the training and the
validation process were performed using historical data. However, the strategy of each of
the market participants is highly dependent on the actions of the rest participants, espe-
cially in a market with limited liquidity such as the CID market.

These assumptions, although slightly unrealistic and optimistic, provide us with a mean-
ingful testing protocol for a trading strategy. The actual profitability of a strategy can be
obtained by deploying the strategy in real-time. However, it is important to show that the
strategy is able to obtain substantial profits in back-testing first.

6.2 � Partial observability of the process

In Sect. 3, the decision-making problem studied in this paper was framed as an MDP after
considering certain assumptions. Theoretically, this formulation is very convenient, but
does not hold in practice. In particular, the reduced pseudo-state may not contain all the
relevant information required.

Indeed, the trading agents do not have access to all the information required. For
instance, a real agent does not know how many other agents are active in the market. They
do not know the strategy of each agent either. There is also a lot of information gathered by
wexog which is not available for the agent. Finally, the fact that the state space was reduced
results in an inevitable loss of information.

Therefore, it would be more accurate to consider a Partially Observable Markov Deci-
sion Process (POMDP) instead. In a POMDP, the real state is hidden and the agent only
has access to observations. For an RL algorithm to properly work with a POMDP, the
observations have to be representative of the real hidden states.

6.3 � Action space reduction

The presented action space (High-level actions) is rather restricted in the sense that the
storage unit will buy energy for a product only if it can sell it back to another product at
the same instant. According to this definition of the action space, there is no risk of buy-
ing energy without using it later. However, as expected, this strategy results in reduced
profits eventually. The action space reduction performed leads to a rather constrained set
of admissible policies. The restrictions arise from the imposed rule that no trade of energy
is allowed if it cannot be physically backed (Assumption 5). Although this assumption is
made to fully comply with the German regulation, it is rather restrictive on the profits that
can be achieved by the storage unit.

Alternatively, one can relax this assumption and use the reduced action space Ared . This
would significantly increase the dimensionality of the action space and the need for explo-
ration. Additionally, that would imply the need for a risk measure in order to quantify and
control the freedom to which the resulting policy is operating.

2381Machine Learning (2021) 110:2335–2387	

1 3

6.4 � Exploration

There are two main issues related to the state space exploration that result in the somewhat
limited performance of the obtained policy. First, in the described setting, the way in which
we generate the artificial trajectories is very important for the success of the method. The
generated states must be “representative” in the sense that the areas around these states are
visited often under a near optimal policy (Bertsekas 2005). In particular, the frequency of
appearance of these areas of states in the training process should be proportional to the
probability of occurrence under the optimal policy. However, in practice, we are not in a
position to know which areas are visited by the optimal policy. In that respect, the asyn-
chronous distributed algorithm used in this paper was found to successfully address the
issue of state exploration.

Second, the assumptions (Assumptions 3, 4, 5) related to the operation of the storage
device according to the “default” strategy without any imbalances allowed, as well as the
participation of the agent as an aggressor, are restrictive with respect to the set of all admis-
sible policies. Additionally, the adoption of the reduced discrete action space described in
Sect. 4.4 introduces further restrictions on the set of available actions. Although having
a small and discrete space is convenient for the optimization process, it leads to limited
state exploration. For instance, the evolution of the state of charge of the storage device is
always given as the output of the optimization model based on the order book data. Thus,
in this configuration, it is not possible to explore all areas of the state space (storage levels)
but only certain areas driven by the historical order book data. However, evaluating the
policy on a different dataset might lead to areas of the state space (e.g. storage level) that
are never visited during training, leading to poor performance. Potential mitigations of this
issue involve diverse data augmentation techniques and/or different representation of the
action space.

7 � Conclusions and future work

In this paper, a novel RL framework for the participation of a storage device operator in the
CID market is proposed. The energy exchanges between market participants occur through
a centralized order book. A series of assumptions related to the behaviour of the market
agents and the operation of the storage device are considered. Based on these assumptions,
the sequential decision-making problem is cast as an MDP. The high dimensionality of
both the action and the state spaces increase the computational complexity of finding a
policy. Thus, we motivate the use of discrete high-level actions that map into the origi-
nal action space. We further propose a more compact state representation. The resulting
decision process is solved using fitted Q iteration, a batch mode reinforcement learning
algorithm. The obtained policy is compared against a number of benchmark strategies. The
results illustrate that reinforcement learning-based policies are able to outperform on aver-
age (5%) the rolling intrinsic on out-of-sample data. The proposed method can serve in
practice as a decision support tool to energy trading activities. Finally, the impact of the
storage size on the collected revenues is evaluated. Results show that as the storage capa-
bilities become more restricted, waiting for good opportunities to arise is more beneficial
in terms of revenues for the storage operator.

The main limitations of the developed strategy originate from: (1) the insufficient
amount of relevant information contained in the state variable, either because the state

2382	 Machine Learning (2021) 110:2335–2387

1 3

reduction proposed leads to a loss of information or due to the unavailability of information
and (2) the limited state space exploration as a result of the proposed high-level actions in
combination with the use of historical data. To this end and as future work, a more detailed
and accurate representation of the state should be devised. This can be accomplished by
increasing the amount of information considered, such as RES forecasts, and by improv-
ing the order book representation. We propose the use of continuous high-level actions in
an effort to gain state exploration without leading to very complex and high-dimensional
action space.

A. Nomenclature

Acronyms

ADP	� Approximate dynamic programming.
CID	� Continuous intraday.
DRL	� Deep reinforcement learning.
FCFS	� First come first served.
MDP	� Markov decision process.
OB	� Order book.
PHES	� Pumped hydro energy storage.
RES	� Renewable energy sources.

Sets and indexes

Name	� Description
i	� Index of an agent.
−i	� Index of all the agents except agent i.
j	� Index of an order.
m	� Index of a sample of quadruples.
d	� Index of a day in a set.
t	� Trading time-step.
�	� Discrete time-step of delivery.
A	� Joint action space for all the agents.
Ai	� Action space of agent i.
A−i	� Action space of the rest of the agents −i.
Ared
i

	� Reduced action space of agent i.
A′
i
	� Set of high-level actions for agent i.

Āi	� Set of all factors for the partial/full acceptance of orders by agent i.
E	� Set of execution specifications that can apply to an order.
�	� Set that contains all benchmark policies.
Ê	� Number of episodes (trajectories).
F	� Set of all sampled trajectories.

2383Machine Learning (2021) 110:2335–2387	

1 3

F′	� Set of sampled one-step transitions.
F′
t
	� Set of sampled one-step transitions for time t.

Hi	� Set of all histories for agent i.
I	� Set of agents.
Ltrain	� Set of trading days used to train the agent.
Ltest	� Set of trading days used to evaluate the agent.
Nt	� Set of all available order unique indexes at time t.
N′
t
	� Set of all the unique indexes of new orders posted at time t.

N̂t(𝜏)	� Set unique indices of the orders available at step t that correspond to delivery
time-step �.

SOB	� Set of all available orders in the order book.
S′OB	� Low dimensional set of all available orders in the order book.
Si	� State space of agent i.
T̃ 	� Continuous trading timeline, i.e. time interval between first possible trade and last

possible trade.
T	� Discretized trading timeline.
T̂(x)	� Discretised trading interval for product x.
Ť 	� Discretization of the delivery timeline.
T̄(t)	� Discretization of the delivery timeline at trading step t.
TImb	� Discretization of the imbalance settlement timeline.
X	� Set of all available products.
Xt	� Set of all available products at time t.
Zi	� Set of pseudo-states for agent i.
Π	� Set of all admissible policies.

Parameters

Name	� Description
Ci	� Minimum consumption level for the asset of agent i.
Ci	� Maximum consumption level for the asset of agent i.
E	� Number of episodes.
e	� Conditions applying on an order other than volume and price.
ep	� Number of simulations between two successive Q function updates.
decay	� Parameter for the annealing of �.
Gi	� Maximum production level for the asset of agent i.
Gi	� Minimum production level for the asset of agent i.
h̄	� Sequence length of past information.
h̄max	� Maximum sequence length of past information.
H

⋅
	� Hourly products in the order book.

HH
⋅
	� Half-hourly products in the order book.

I(�)	� Imbalance price for delivery period �(x).
K	� Number of steps in the trading period.
M	� Number of samples of quadruples.
n	� Number of agents.
ot	� Market order.
p	� Price of an order.

2384	 Machine Learning (2021) 110:2335–2387

1 3

pmax	� Maximum price of an order.
pmin	� Minimum price of an order.
p“
t
Trade"	� Probability to select action “Trade”.

Q
⋅
	� Quarter-hourly products in the order book.

SoCi	� Maximum state of charge of storage device.
SoCi	� Minimum state of charge of storage device.
SoCinit

i
	� State of charge of storage device at the beginning of the delivery timeline.

SoCterm
i

	� State of charge of storage device at the end of the delivery timeline.
tclose(x)	� End of trading period for product x.
tdelivery(x)	� Start of delivery of product x.
topen(x)	� Start of trading period for product x.
tsettle(x)	� Time of settlement for product x.
v	� Volume of an order.
x	� Market product.
y	� Side of an order (“Sell” or “Buy”).
ym
t
	� Target computed for sample m at time t.

�(x)	� Time interval covered by product x (delivery).
Δt	� Time interval between trading time-steps.
Δ�	� Time interval between delivery time-steps.
�	� Parameter for the �-greedy policy.
�	� Charging/discharging efficiency of storage device.
�t	� Parameters vector of function approximation at time t.
�(x)	� Duration of time-interval �(x).
�	� A single trajectory.
�m	� A single indexed trajectory.
�init	� Initial time-step of the delivery timeline.
�term	� Terminal time-step of the delivery timeline.

Variables

Name	� Description
at	� Joint action from all the agents at time t.
ai,t	� Action of posting orders by agent i at time t.
a−i,t	� Action of posting orders by the rest of the agents −i at time t.
a′
i,t

	� High-level action by agent i at time t.
a
j

i,t
	� Acceptance (partial/full) factor for order j by agent i at time t.

āi,t	� Factors for the partial/full acceptance of all orders by agent i at time t.
Ci,t(�)	� Consumption level at delivery time-step � computed at time t.
ci,t(t

�)	� Consumption level during the delivery interval.
ei,t	� Random disturbance for agent i at time t.
Gi,t(�)	� Generation level at delivery time-step � computed at t.
gi,t(t

�)	� Generation level during the delivery interval.
hi,t	� History vector of agent i at time t.
ki,t(�)	� Binary variable that enforces either charging or discharging of the storage

device.
Pmar
i,t

(x)	� Net contracted power of agent i for product x (delivery time-step � ) at time t.

2385Machine Learning (2021) 110:2335–2387	

1 3

Pres
i,t
(�)	� Residual production of agent i delivery time-step � (for product x) at time t.

Pres
i
(�)	� Final residual production of agent i for product

ri,t	� Instantaneous reward of agent i at time t.
r�

b

d
	� Profitability ratio of policy �b at day d.

r�
b

sum
	� Profitability ratio of policy �b for the sum of returns over set.

r̂i,t+𝜓	� Future potential profits in � steps.
si,t	� State of agent i at time t.
SoCi,t(�)	� State of charge of device at delivery time-step � computed at t.
sOB
t

	� State of the order book at time t.
s′OB
t

	� Low dimensional state of the order book at time t.
s
private

i,t
	� Private information of agent i at time t.

s̄t	� Triplet of fixed size, part of pseudo-state zi,t that serves as an input at LSTM at
time t.

ui,t	� Aggregate (trading and asset) control action of the asset trading agent i at time
t.

vcon
i,t

(x)	� Volume of product x contracted by agent i at time t.
w
exog

i,t
	� Exogenous information of agent i at time t.

zi,t	� Pseudo-state for agent i at time t.
Δi,t(�)	� Imbalance for delivery time � for agent i computed at time t.
Δi(�)	� Final imbalance for delivery time � for agent i.
ΔGi,t	� Change in the production level for the asset of agent i at time t.
ΔCi,t	� Change in the consumption level for the asset of agent i at time t.

Functions

Name	� Description
clear(⋅)	� Market clearing function.
b(⋅)	� Univariate stochastic model for exogenous information.
ench(⋅)	� Encoder that maps from the original state space Hi to pseudo-state space Zi.
enca(⋅)	� Encoder that maps from the high level action space A′

i
 to the original action

space Ai.
f (⋅)	� Order book transition function.
G� (⋅)	� Revenue collected over a trajectory.
g(⋅)	� System dynamics of the MDP.
k(⋅)	� System dynamics of asset trading process.
l(⋅)	� Reduced action space construction function.
Pa−i,t(⋅)

	� Probability distribution function for the actions of the rest of the agents −i.
Pet

(⋅)	� Random disturbance probability distribution function.
P(⋅)	� Transition probabilities of the MDP.
P�t,0

(⋅)	� Distribution of the initial parameters �t,0.
p(⋅)	� Mapping from high-level actions A′

i
 to the reduced action space Ared

i
.

Qt(⋅, ⋅)	� State-action value function at time t.
Q̂(⋅, ⋅)	� Sequence of Q-function approximations.
R(⋅)	� Reward function.
u(⋅)	� Signing convention for the volume wrt. the side (‘Buy” or ‘Sell”) of each

order.

2386	 Machine Learning (2021) 110:2335–2387

1 3

V�i (⋅)	� Total expected reward function for policy �i.
V�FQ

d
(⋅)	� Return of the fitted Q policy �FQ for day d.

V�RI

d
(⋅)	� Return of the “rolling” intrinsic policy �RI for day d.

V�b	� Return of a benchmark policy �b for day d.
�t(⋅)	� Policy function at time t.
�i(⋅)	� Policy followed by agent i.
�LA(⋅)	� Look-ahead policy.
�RI(⋅)	� Rolling intrinsic policy.
�RIg (⋅)	� Rolling intrinsic policy that selects to “Trade” only on gate closure.
�RI5min (⋅)	� Rolling intrinsic policy that selects to “Trade” every 5 min.
�APEXDQN(⋅)	� Asynchronous prioritized experience replay deep Q networks (APEXDQN)

policy.
�FQ(⋅)	� Fitted Q policy.
�b(⋅)	� A benchmark policy.
�(⋅)	� Trading revenue function.

Acknowledgements  The authors would like to thank the insightful comments of the four anonymous
reviewers that largely contributed to the final version of the manuscript.

References

Aïd, R., Gruet, P., & Pham, H. (2016). An optimal trading problem in intraday electricity markets. Math-
ematics and Financial Economics, 10(1), 49–85.

Baillo, A., Ventosa, M., Rivier, M., & Ramos, A. (2004). Optimal offering strategies for generation com-
panies operating in electricity spot markets. IEEE Transactions on Power Systems, 19(2), 745–753.
https://​doi.​org/​10.​1109/​TPWRS.​2003.​821429.

Balardy, C. (2017a). German continuous intraday market: Orders book’s behavior over the trading session.
In Meeting the energy demands of emerging economies, 40th IAEE international conference, June
18–21, 2017. International Association for Energy Economics.

Balardy, C. (2017b). An analysis of the bid-ask spread in the German power continuous market. In Heading
towards sustainable energy systems: Evolution or revolution? 15th IAEE European conference, Sep-
tember 3–6, 2017. International Association for Energy Economics.

Bertrand, G., & Papavasiliou, A. (2019). Adaptive trading in continuous intraday electricity markets for
a storage unit. IEEE Transactions on Power Systems. https://​doi.​org/​10.​1109/​TPWRS.​2019.​29572​46.

Bertsekas, D. P. (2005). Dynamic programming and optimal control (Vol. 1). Belmont, MA: Athena
Scientific.

Boomsma, T. K., Juul, N., & Fleten, S.-E. (2014). Bidding in sequential electricity markets: The Nordic
case. European Journal of Operational Research, 238(3), 797–809. https://​doi.​org/​10.​1016/j.​ejor.​2014.​
04.​027.

Borggrefe, F., & Neuhoff, K. (2011). Balancing and intraday market design: Options for wind integration.
DIW discussion papers 1162, Berlin. http://​hdl.​handle.​net/​10419/​61319.

Braun, S., & Hoffmann, R. (2016). Intraday optimization of pumped hydro power plants in the German elec-
tricity market. Energy Procedia, 87, 45–52. https://​doi.​org/​10.​1016/j.​egypro.​2015.​12.​356.

Busoniu, L., Babuska, R., De Schutter, B., & Ernst, D. (2017). Reinforcement learning and dynamic pro-
gramming using function approximators. Londdon: CRC Press.

EPEXSPOT. Market data intraday continuous, 2017. http://​www.​epexs​pot.​com/​en/​market-​data/​intra​dayco​
ntinu​ous.

EPEXSPOT. EPEXSPOT Operational rules, 2019. https://​www.​epexs​pot.​com/​docum​ent/​40170/​EPEX
Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode reinforcement learning. Journal of

Machine Learning Research, 6, 503–556.
Fleten, S. E., & Kristoffersen, T. K. (2007). Stochastic programming for optimizing bidding strategies of a

Nordic hydropower producer. European Journal of Operational Research, 181(2), 916–928. https://​
doi.​org/​10.​1016/j.​ejor.​2006.​08.​023.

https://doi.org/10.1109/TPWRS.2003.821429
https://doi.org/10.1109/TPWRS.2019.2957246
https://doi.org/10.1016/j.ejor.2014.04.027
https://doi.org/10.1016/j.ejor.2014.04.027
http://hdl.handle.net/10419/61319
https://doi.org/10.1016/j.egypro.2015.12.356
http://www.epexspot.com/en/market-data/intradaycontinuous
http://www.epexspot.com/en/market-data/intradaycontinuous
https://www.epexspot.com/document/40170/EPEX
https://doi.org/10.1016/j.ejor.2006.08.023
https://doi.org/10.1016/j.ejor.2006.08.023

2387Machine Learning (2021) 110:2335–2387	

1 3

Garnier, E., & Madlener, R. (2015). Balancing forecast errors in continuous-trade intraday markets. Energy
Systems, 6(3), 361–388.

Gönsch, J., & Hassler, M. (2016). Sell or store? An ADP approach to marketing renewable energy. OR Spec-
trum, 38(3), 633–660. https://​doi.​org/​10.​1007/​s00291-​016-​0439-x.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. http://​www.​deepl​earni​
ngbook.​org.

Gray, J., & Khandelwal, P. (2004). Towards a realistic gas storage model. Commodities Now, 7(2), 1–4.
Hagemann, S. (2015). Price determinants in the German intraday market for electricity: An empirical analy-

sis. Journal of Energy Markets, 8, 21–45.
Hassler, M. (2017). Heuristic decision rules for short-term trading of renewable energy with co-located

energy storage. Computers and Operations Research. https://​doi.​org/​10.​1016/j.​cor.​2016.​12.​027.
Henriot, A. (2014). Market design with centralized wind power management: Handling low-predictability in

intraday markets. Energy Journal, 35(1), 99–117. https://​doi.​org/​10.​5547/​01956​574.​35.1.6.
Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M., Van Hasselt, H., & Silver, D. (2018). Dis-

tributed prioritized experience replay. arXiv:​1803.​00933.
Jiang, D. R., & Powell, W. B. (2014). Optimal hour-ahead bidding in the real-time electricity market with

battery storage using approximate dynamic programming (pp. 1–28). https://​doi.​org/​10.​1287/​ijoc.​
2015.​0640, arxiv:​1402.​3575.

Karanfil, F., & Li, Y. (2017). The role of continuous intraday electricity markets: The integration of large-
share wind power generation in Denmark. Energy Journal, 38(2), 107–130. https://​doi.​org/​10.​5547/​
01956​574.​38.2.​fkar.

Le, H. L., Ilea, V., & Bovo, C. (2019). Integrated European intra-day electricity market: Rules, modeling
and analysis. Applied Energy, 238, 258–273. https://​doi.​org/​10.​1016/j.​apene​rgy.​2018.​12.​073.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In Machine
learning proceedings 1994 (pp. 157–163). Elsevier.

Löhndorf, N., & Wozabal, D. (2020). Gas storage valuation in incomplete markets. European Journal of
Operational Research, 288, 318–330.

Meeus, B. L., & Schittekatte, T. (2017). The EU electricity network codes: Course text for the Florence
School of Regulation online course.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K.
(2016). Asynchronous methods for deep reinforcement learning. In International conference on
machine learning (pp. 1928–1937).

Neuhoff, K., Ritter, N., Salah-Abou-El-Enien, A., & Vassilopoulos, P. (2016). Intraday markets for power:
discretizing the continuous trading?.

PandŽić, H., Morales, J. M., Conejo, A. J., & Kuzle, I. (2013). Offering model for a virtual power plant
based on stochastic programming. Applied Energy, 105, 282–292. https://​doi.​org/​10.​1016/j.​apene​rgy.​
2012.​12.​077.

Pérez Arriaga, I., & Knittel, C., et al. (2016) Utility of the future. An MIT energy initiative response. ISBN
9780692808245. https://​energy.​mit.​edu/​uof.

Plazas, M. A., Conejo, A. J., & Prieto, F. J. (2005). Multimarket optimal bidding for a power producer. IEEE
Transactions on Power Systems, 20(4), 2041–2050. https://​doi.​org/​10.​1109/​TPWRS.​2005.​856987.

Scharff, R., & Amelin, M. (2016). Trading behaviour on the continuous intraday market Elbas. Energy Pol-
icy, 88, 544–557. https://​doi.​org/​10.​1016/j.​enpol.​2015.​10.​045.

Spot, N. (2018). Xbid cross-border intra day market project. https://​www.​nordp​oolsp​ot.​com/​globa​lasse​ts/​
downl​oad-​center/​xbid/​xbid-​qa_​final.​pdf.

The European Commission. 2030 energy strategy, 2017. https://​ec.​europa.​eu/​energy/​en/​topics/​energy-​strat​
egy-​and-​energy-​union/​2030-​energy-​strat​egy.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3–4), 279–292.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s00291-016-0439-x
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1016/j.cor.2016.12.027
https://doi.org/10.5547/01956574.35.1.6
http://arxiv.org/abs/1803.00933
https://doi.org/10.1287/ijoc.2015.0640
https://doi.org/10.1287/ijoc.2015.0640
http://arxiv.org/abs/1402.3575
https://doi.org/10.5547/01956574.38.2.fkar
https://doi.org/10.5547/01956574.38.2.fkar
https://doi.org/10.1016/j.apenergy.2018.12.073
https://doi.org/10.1016/j.apenergy.2012.12.077
https://doi.org/10.1016/j.apenergy.2012.12.077
https://energy.mit.edu/uof
https://doi.org/10.1109/TPWRS.2005.856987
https://doi.org/10.1016/j.enpol.2015.10.045
https://www.nordpoolspot.com/globalassets/download-center/xbid/xbid-qa_final.pdf
https://www.nordpoolspot.com/globalassets/download-center/xbid/xbid-qa_final.pdf
https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy
https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy

	A deep reinforcement learning framework for continuous intraday market bidding
	Abstract
	1 Introduction
	1.1 Intraday markets in Europe
	1.2 Bidding strategies in literature
	1.3 Contributions of the paper
	1.4 Outline of the paper

	2 Continuous intraday bidding process
	2.1 Continuous intraday market design
	2.2 Continuous intraday market environment
	2.3 Asset trading
	2.4 Trading rewards
	2.5 Trading policy
	2.6 Trading objective

	3 Markov decision process formulation
	3.1 Assumptions on the decision process
	3.2 Decision process
	3.3 Assumptions on the trading actions
	3.4 Restrictions on the storage operation

	4 Methodology
	4.1 Collection of trajectories
	4.2 Batch-mode reinforcement learning
	4.3 Limitations
	4.4 Action space reduction: high-level actions
	4.4.1 “Trade”
	4.4.2 “Idle”

	4.5 State space reduction
	4.6 Generation of artificial trajectories
	4.7 Neural network architecture
	4.8 Asynchronous distributed fitted Q iteration

	5 Case study
	5.1 CID order book data
	5.2 Parameters specification
	5.3 Exogenous variable
	5.4 Benchmark strategies
	5.4.1 Look-ahead
	5.4.2 Heuristic
	5.4.3 Rolling intrinsic
	5.4.4 Learning-based

	5.5 Validation process
	5.6 Results
	5.7 Trading policy analysis
	5.8 Sensitivity analysis

	6 Discussion
	6.1 Behaviour of the rest of the agents
	6.2 Partial observability of the process
	6.3 Action space reduction
	6.4 Exploration

	7 Conclusions and future work
	Acknowledgements
	References

