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Abstract
Principal component analysis (PCA) has been widely used as an effective technique for 
feature extraction and dimension reduction. In the High Dimension Low Sample Size set-
ting, one may prefer modified principal components, with penalized loadings, and auto-
mated penalty selection by implementing model selection among these different models 
with varying penalties. The earlier work (Zou et al. in J Comput Graph Stat 15(2):265–286, 
2006; Gaynanova et al. in J Comput Graph Stat 26(2):379–387, 2017) has proposed penal-
ized PCA, indicating the feasibility of model selection in �

2
-penalized PCA through the 

solution path of Ridge regression, however, it is extremely time-consuming because of the 
intensive calculation of matrix inverse. In this paper, we propose a fast model selection 
method for penalized PCA, named approximated gradient flow (AgFlow), which lowers 
the computation complexity through incorporating the implicit regularization effect intro-
duced by (stochastic) gradient flow (Ali et  al. in: The 22nd international conference on 
artificial intelligence and statistics, pp 1370–1378, 2019; Ali et al. in: International confer-
ence on machine learning, 2020) and obtains the complete solution path of �

2
-penalized 

PCA under varying �
2
-regularization. We perform extensive experiments on real-world 

datasets. AgFlow outperforms existing methods (Oja and Karhunen in J Math Anal Appl 
106(1):69–84, 1985; Hardt and Price in: Advances in neural information processing sys-
tems, pp 2861–2869, 2014; Shamir in: International conference on machine learning, pp 
144–152, PMLR, 2015; and the vanilla Ridge estimators) in terms of computation costs.
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1  Introduction

Principal component analysis (PCA) (Jolliffe 1986; Dutta et  al. 2019) is widely used as 
an effective technique for feature transformation, data processing and dimension reduc-
tion in unsupervised data analysis, with numerous applications in machine learning and 
statistics such as handwritten digits classification (LeCun et al. 1995; Hastie et al. 2009), 
human faces recognition (Huang et al. 2008; Mohammed et al. 2011), and gene expression 
data analysis (Yeung and Ruzzo 2001; Zhu et  al. 2007). Generally, given a data matrix 
� ∈ ℝ

n×d , where n refers to the number of samples and d refers to the number of variables 
in each sample, PCA can be formulated as a problem of projecting samples to a lower d′
-dimensional subspace ( d′ ≪ d ) with variances maximized. To achieve the goal, numerous 
algorithms, such as Oja’s algorithm (Oja and Karhunen 1985), power iteration algorithm 
(Hardt and Price 2014), and stochastic/incremental algorithm (Shamir et al. 2015; Arora 
et al. 2012; Mitliagkas et al. 2013; De Sa et al. 2015) have been proposed, and the conver-
gence behaviors of these algorithms have also been intensively investigated. In summary, 
given the matrix of raw data samples, the eigensolvers above output d′-dimensional vectors 
which are linear combinations of the original predictors, projecting original samples into 
the d′-dimensional subspace desired while capturing maximal variances.

In addition to the above estimates of PCA, penalized PCA has been proposed (Zou et al. 
2006; Irina et  al. 2017; Witten et  al. 2009; Lee et  al. 2012) to improve its performance 
using regularization. For example, Zou et al. (2006) introduced a direct estimation of �2

-penalized PCA using Ridge estimator (see also in Theorem 1 in Section 3.1 of (Zou et al. 
2006)), where an �2-regularization hyper-parameter (denoted as � ) has been used to bal-
ance the error term for fitting and the penalty term for regularization. Whereas an �1-regu-
larization is usually introduced for achieving sparsity (Irina et al. 2017). Though the effects 
of � in �2-penalized PCA would be waived by normalization when the sample covariance 
matrix is non-singular (i.e., d < n ), the penalty term indeed regularizes the sample covari-
ance matrix (Witten et al. 2009) for a stable inverse under High Dimension Low Sample 
Size (HDLSS) settings. Therefore, it is desirably necessary to do model selection to get the 
optimal � on the solution path, where the solution path is formed by all the solutions cor-
responding to all the candidate � -s in the �2-penalized problem, and each model is deter-
mined by the parameter � . Thus, given the datasets for training and validation, it is only 
needed to retrieve the complete solution path (Friedman et al. 2010; Zou and Hastie 2005) 
for penalized PCA using the training dataset, where each solution corresponds to an Ridge 
estimator, and iterate every model on the solution path for validation and model selection. 
An example of �2-penalized PCA for dimension reduction over the solution path is listed in 
Fig. 1, where we can see that both the validation and testing accuracy are heavily affected 
by the value of � , the �2 regularization in �2-penalized PCA, no matter what kind of classi-
fier is employed after dimension reduction.

While a solution path for penalized PCA is highly required, the computational com-
plexity of estimating a large number of models using grid searching of hyper-parameters 
is usually unacceptable. Specifically, to obtain the complete solution path or the models 
for �2-penalized PCA, it is needed to repeatedly solve the Ridge estimator with a wide 
range of values for � , where the matrix inverse to get a shrunken sample covariance matrix 
is required in O(d3) complexity for every possible setting of � . To lower the complexity, 
inspired by the recent progress on implicit regularization effects of gradient descent (GD) 
and stochastic gradient descent (SGD) in solving Ordinary Least-Square (OLS) problems 
(Ali et al. 2019, 2020), we propose a fast model selection method, named Approximated 
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Gradient Flow (AgFlow), which is an efficient and effective algorithm to accelerate model 
selection of �2-penalized PCA with varying penalties.

Our contributions.  We make three technical contributions as follows.

•	 We study the problem of lowering the computational complexity while accelerating 
the model selection for penalized PCA under varying penalties, where we particularly 
pay attention to �2-penalized PCA via the commonly-used Ridge estimator (Zou et al. 
2006) under High Dimension Low Sample Size (HDLSS) settings.

Fig. 1   A Running Example of 
Performance Tuning for Clas-
sification with �

2
-penalized PCA 

Dimension-Reduced Data. We 
reduce the dimension of FACES 
dataset (Huang et al. 2008) from 
d = 4096 to d� = 20 , using �

2

-penalized PCA (Ridge-based), 
and try to select models over the 
solution path of varying � for 
classification tasks. The model 
(i.e., the �

2
-penalized PCA 

estimation with a fixed � ) that 
achieves better performance in 
validation set empirically works 
better on the testing set

(a) Validation Accuracy with �2-penalized PCA

(b) Testing Accuracy with �2-penalized PCA
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•	 We propose AgFlow to do fast model selection in �2-penalized PCA with O(K ⋅ d2) com-
plexity, where K refers to the total number of models estimated for selection, and d is the 
number of dimension. More specifically, AgFlow first adopts algorithms in Shamir et al. 
(2015) to sketch d′ principal subspaces, then retrieves the complete solution path of the 
corresponding loadings for every principal subspace. Especially, AgFlow incorporates 
the implicit �2-regularization of approximated (stochastic) gradient flow over the Ordinary 
Least Squares (OLS) to screen and validate the �2-penalized loadings, under varying � 
from +∞ → 0+ , using the training and validation datasets respectively.

•	 We conduct extensive experiments to evaluate AgFlow, where we compare the pro-
posed algorithm with vanilla PCA, including (Hardt and Price 2014; Shamir et al. 2015; 
Oja and Karhunen 1985) and �2-penalized PCA via Ridge estimator (Zou et al. 2006) 
on real-world datasets. Specifically, the experiments are all based on HDLSS settings, 
where a limited number of high-dimensional samples have been given for PCA esti-
mation and model selection. The results showed that the proposed algorithm can sig-
nificantly outperform the vanilla PCA algorithms (Hardt and Price 2014; Shamir et al. 
2015; Oja and Karhunen 1985) with better performance on validation/testing datasets 
gained by the flexibility of performance tuning (i.e., model selection). On the other 
hand, AgFlow consumes even less computation time to select models from 50 times 
more models compared to Ridge-based estimator (Zou et al. 2006).

Note that we don’t intend to propose the “off-the-shelf” estimators to reduce the computa-
tional complexity of PCA estimation. Instead, we study the problem of model selection for 
�2-regularized PCA, where we combine the existing algorithms (Zou et al. 2006; Ali et al. 
2019; Shamir et al. 2015) to lower the complexity of model selection and accelerate the 
procedure. The unique contribution made here is to incorporate with the novel continuous-
time dynamics of gradient descent (gradient flow) Ali et  al. (2019, 2020) to obtain the 
time-varying implicit regularization effects of �2-type for PCA model selection purposes.

Notations The following key notations are used in the rest of the paper. Let � ∈ ℝ
d be 

the d-dimensional predictors and y ∈ ℝ be the response, and denote 
� = [�1,… , �n]

⊤ = [X1,… ,Xd] and Y = [y1,… , yn]
⊤ , where n is the sample size and d is 

the number of variables. Without loss of generality, assume Xj, j = 1,… , d and Y are cen-
tered. Given a d-dimensional vector � ∈ ℝ

d , denote the �2 vector-norm 
‖�‖2 =

�∑d

i=1
�zi�2

�1∕2

.

2 � Preliminaries

In this section, firstly the Ordinary Least Squares and Ridge Regression is briefly intro-
duced, then followed with the formulation that PCA is rewritten as a regression-type opti-
mization problem with an explicit �2 regularization parameter � , and lastly ended up with 
the introduction of the implicit regularization effect introduced by the (stochastic) gradient 
flow.

2.1 � Ordinary least squares and ridge regression

Let � ∈ ℝ
n×d and Y ∈ ℝ

n be a matrix of predictors (or features) and a response vector, 
respectively, with n observations and d predictors. Assume the columns of � and Y are cen-
tered. Consider the ordinary least squares (linear) regression problem



Machine Learning	

1 3

To enhance the solution of OLS for linear regression, regularization is commonly used as a 
popular technique in optimization problems in order to achieve a sparse solution or allevi-
ate the multicollinearity problem (Friedman et al. 2010; Zou and Hastie 2005; Tibshirani 
1996; Fan and Li 2001; Yuan and Lin 2006; Candes and Tao 2007). Recently an enormous 
amount of literature has focused on the related regularization methods, such as the lasso 
(Tibshirani 1996) which is friendly to interpretability with a sparse solution, the grouped 
lasso (Yuan and Lin 2006) where variables are included or excluded in groups, the elastic 
net (Zou and Hastie 2005) for correlated variables which compromises �1 and �2 penalties, 
the Dantzig selector (Candes and Tao 2007) which serves as a slightly modified version of 
the lasso, and some variants (Fan and Li 2001).

The ridge regression is the �2-regularized version of the linear regression in Eq. (1), impos-
ing an explicit �2 regularization on the coefficients (Hoerl and Kennard 1970; Hoerl et  al. 
1975). Thus, the ridge estimator 𝛽ridge(𝜆) , a penalized least squares estimator, can be obtained 
by minimizing the ridge criterion

The solution of the ridge regression has an explicit closed-form,

We can see that the ridge estimator, Eq. (3), applies a type of shrinkage in comparison to 
the OLS solution 𝛽OLS = (�⊤�)−1�⊤Y  , which shrinks the coefficients of correlated predic-
tors towards each other and thus alleviates the multicolinearity problem.

2.2 � PCA as ridge regression

PCA can be formulated as a regression-type optimization problem which was first proposed 
by Zou et al. (2006), where the loadings could be recovered by regressing the principal com-
ponents on the d variables given the principal subspace.

Consider the jth principal component. Let �j be a given n × 1 vector referring to the esti-
mate of the jth principal subspace. For any � ≥ 0 , the Ridge-based estimator (Theorem 1 in 
Zou et al. (2006)) of �2-penalized PCA is defined as

Obviously, the estimator above highly depends on the estimate of the principal subspace 
�j . Given the original data matrix � = [�1,… , �n]

⊤ , we could obtain its singular value 
decomposition as � = ���

⊤ and the estimate of subspace could be �j = �j�j , where �j 
and �j refers to the jth columns of the corresponding matrices, respectively. Then the nor-
malized vector can be used as the penalized loadings of the jth principal component

(1)𝛽OLS = argmin
𝛽∈ℝd

1

2n
‖Y − �𝛽‖2

2
.

(2)𝛽ridge(𝜆) = argmin
𝛽∈ℝd

�
1

2n
‖Y − �𝛽‖2

2
+

𝜆

2
‖𝛽‖2

2

�
.

(3)𝛽ridge(𝜆) = (�⊤
� + n𝜆�)−1�⊤Y .

(4)𝛽 j(𝜆) = argmin
𝛽∈ℝd

�
1

2n

����
j − �𝛽

���
2

2
+

𝜆

2
‖𝛽‖2

2

�
.

(5)𝛽 j(𝜆) =
𝛽 j(𝜆)

‖𝛽 j(𝜆)‖2
.
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Note that, when the sample covariance matrix 1
n
�⊤� is nonsingular ( d ≤ n ), 𝛽 j(𝜆) would be 

invariant on � and 𝛽 j(𝜆) ∝ �j . When the sample covariance matrix is singular ( d > n ), the 
�2-norm penalty would regularize the inverse of shrunken covariance matrix (Witten et al. 
2009) with respect to the strength of �.

2.3 � Implicit regularization with (stochastic) gradient flow

The implicit regularization effect of an estimation method means that the method produces 
an estimate exhibiting a kind of regularization, even though the method does not employ an 
explicit regularizer (Ali et al. 2019, 2020; Friedman and Popescu 2003, 2004). Consider gradi-
ent descent applied to Eq. (1), with initialization value �0 = � , and a constant step size 𝜂 > 0 , 
which gives the iterations

for k = 1, 2, 3,… . With simply rearrangement, we get

To adopt a continuous-time (gradient flow) view, consider infinitesimal step size in gradi-
ent descent, i.e., � → 0 . The gradient flow differential equation for the OLS problem can be 
obtained with the following equation,

which is a continuous-time ordinary differential equation over time t ≥ 0 with an initial 
condition �(0) = � . We can see that by setting �(t) = �k at time t = k� , the left-hand side 
of Eq. (7) could be viewed as the discrete derivative of �(t) at time t, which approaches its 
continuous-time derivative as � → 0 . To make it clear, �(t) denotes the continuous-time 
view, and �k the discrete-time view.

Lemma 1  With fixed predictor matrix � and fixed response vector Y, the gradient flow 
problem in Eq. (8), subject to �(0) = � , admits the following exact solution (Ali et al. 2019)

for all t ≥ 0 . Here A+ is the Moore-Penrose generalized inverse of a matrix A, and 
exp(A) = I + A + A2∕2! + A3∕3! +⋯ is the matrix exponential.

In continuous-time, �2-regularization corresponds to taking the estimator 𝛽gf(t) in Eq. (9) 
for any finite value of t ≥ 0 , where smaller t corresponds to greater regularization. Specifi-
cally, the time t of gradient flow and the tuning parameter � of ridge regression are related by 
� = 1∕t.

(6)𝛽k = 𝛽k−1 +
𝜂

n
�

⊤(Y − �𝛽k−1) ,

(7)
𝛽k − 𝛽k−1

𝜂
=

�⊤(Y − �𝛽k−1)

n
.

(8)𝛽̇(t) =
1

n
�

⊤(Y − �𝛽(t − 1)),

(9)𝛽gf(t) = (�⊤
�)+(� − exp(−t�⊤

�∕n))�⊤Y ,
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3 � The proposed AgFlow algorithm

In this section, we first formulate the research problem, then present the design of pro-
posed algorithm with a brief algorithm analysis.

3.1 � Problem definition for �
2
‑penalized PCA model selection

We formulate the model selection problem as selecting the empirically-best �2-Penal-
ized PCA for the given dataset with respect to a performance evaluator.

•	 𝜆 ∈ Λ ⊆ ℝ
+—the tuning parameters and the set of possible tuning parameters (which 

is a subset of positive reals);
•	 �train ∈ ℝ

ntrain×d and �val ∈ ℝ
nval×d—the training data matrix and the validation data 

matrix, with ntrain samples and nval samples respectively;
•	 �j —a given n × 1 vector referring to the estimate of the jth principal subspace;
•	 𝛽 j(𝜆)—the jth projection vector, or the corresponding loading vector of the jth PC, 

𝛽 j(𝜆) =
(
�⊤� + n𝜆�

)−1
�⊤�j solution of Eq. (4);

•	 �̂(𝜆) = [𝛽1(𝜆), 𝛽2(𝜆),⋯ , 𝛽d
�

(𝜆)] ∈ ℝ
d×d�—the projection matrix based on �2-penal-

ized PCA with the tuning parameter � , where each column 𝛽 j(𝜆) is the corresponding 
loadings of the jth principal component;

•	 �train�̂(𝜆) and �val�̂(𝜆)—the dimension-reduced training data matrix and the dimen-
sion-reduced validation data matrix, respectively;

•	 �����(⋅) ∶ ℝ
ntrain×d

�

→ H—the target learner for performance tuning that outputs a 
model h ∈ H using the dimension-reduced training data �train�̂(𝜆).

•	 ���������(⋅) ∶ ℝ
nval×d

�

×H → ℝ—the evaluator that outputs the reward (a real sca-
lar) of the input model h based on the dimension-reduced validation data �val�̂(𝜆).

Then the model selection problem can be defined as follows.

Where

Note that �����(⋅) can be any arbitrary target learner in the learning task and ���������(⋅) 
can be any evaluation function of validation metrics. To make it clear, we take a classifi-
cation problem as an example, thus the target learner �����(⋅) can be the support vector 
machine (SVM) or random forest (RF), and the evaluation function ���������(⋅) can be 
the classification error. To solve the above problem for arbitrary learning tasks �����(⋅) 
under various validation metrics ���������(⋅) , there are at least two technical challenges 
needing to be addressed, 

(10)
maximize

𝜆∈Λ
���������

(
�val�̂(𝜆), h(𝜆)

)
,

subject to h(𝜆) = �����
(
�train�̂(𝜆)

)
.

(11)

𝛽 j(𝜆) = argmin
𝛽∈ℝd

�
1

2n

����
j − �𝛽

���
2

2
+

𝜆

2
‖𝛽‖2

2

�
, for j = 1,… , d�,

𝛽 j(𝜆) =
𝛽 j(𝜆)

‖𝛽 j(𝜆)‖2
.
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1.	 Complexity -  For any given and fixed � , the time complexity to solve the �2-penalized 
PCA (for dimension reduction to d′ ) based on the Ridge-regression is O(d� ⋅ d3) , as it 
requests to solve the Ridge regression (to get the Ridge estimator) d′ rounds to obtain 
the corresponding loadings of the top-d′ principal components and the complexity to 
calculate the Ridge estimator in one round is O(d3).

2.	 Size of  Λ - The performance of the model selection relies on the evaluation of models 
over a wide range of � , while the overall complexity to solve the problem should be 
O(|Λ| ⋅ d� ⋅ d3) . Thus, we need to obtain a well-sampled set of tuning parameters Λ that 
can balance the cost and the quality of model selection.

3.2 � Model selection for �
2
‑penalized PCA over approximated gradient flow

In this section, we present the design of AgFlow algorithm (Algorithm  1) for obtaining 
the whole path of the loadings corresponding to each principal component for �2-penalized 
PCA. Consider the jth principal component. Let �j be the jth principal subspace, which can 
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be approximated by the Quasi-Principal Subspace Estimation Algorithm (QuasiPS) through 
the call of �������(�, �) (Algorithm 2). The path of �2-penalized PCA should be the solu-
tion path of Ridge regression in Eq. (4) with varying � from 0 → ∞.

With the implicit regularization of Stochastic Gradient Descent (SGD) for Ordinary Least 
Squares (OLS) (Ali et al. 2020), the solution path is equivalent to the optimization path of the 
following OLS estimator using SGD with zero initialization, such that

More specifically, with a constant step size 𝜂 > 0 , an initialization � j
0
= �d , and mini-batch 

size m, every SGD iteration updates the estimation as follows,

for k = 1, 2,… ,K , and thus the solutions on the (stochastic) gradient flow path for the jth 
principal component can be obtained. According to (Ali et al. 2020), the relationship of the 
explicit regularization � and the implicit regularization effects introduced by SGD is 
� ∝

1

k
√
�
 . Thus, with the total number of iteration steps K large enough, the proposed algo-

rithm could compete the path of penalized PCA for a full range of � , but with a much lower 
computation cost.

Since in the problem of model selection of �2-penalized PCA based on Ridge estimator, we 
need to select the optimal 𝛽(𝜆∗) corresponding to the the optimal �∗ . Here we deal with the 
same model selection problem but with an alternative algorithm which uses the AgFlow 
algorithm instead of using matrix inverse in Ridge estimator. Therefore, we need to select the 
optimal 𝛽∗ corresponding to the the optimal k∗ with k∗ ∝ 1

�∗
√
�
 . To obtain the optimal �∗ , k-fold 

cross-validation is usually applied on a searching grid of � -s in the model selection. As an 
analog of obtaining the optimal k∗ , the proposed AgFlow algorithm is firstly used to get the 
iterated projection vector 𝛽k of the given training data, which corresponds to some 𝛽(𝜆∗) with 
k ∝

1

�
√
�
 , then to select the optimal �∗ based on the performance on the validation data.

Finally, Algorithm 1 outputs the best projection matrix �̂k∗ ∈ ℝ
d×d� , which maximizes the 

evaluator ����k = ���������
(
�val�̂k, h(k)

)
 , for k = 1,… ,K . Where the index k ∝ 1

�
√
�
 , 

and each column of the projection matrix �̂k is a normalized projection vector ‖𝛽 j
k
‖2 = 1 . Note 

that, as discussed in the preliminaries in Sect. 2, when the sample covariance matrix 1∕n�⊤� 
is non-singular (when n ≫ d ), there is no need to place any penalty here, i.e., � → 0 , and 
k → ∞ , as the normalization would remove the effect of the �2-regularization (Zou et  al. 
2006) considering Karush-Kuhn-Tucker conditions. However, when d ≫ n , the sample covar-
iance matrix 1∕n�⊤� becomes singular, and the Ridge-liked estimator starts to shrink the 
covariance matrix as in Eq. (3), i.e., � ≠ 0 , and k is some finite integer but not ∞ , making the 
sample covariance matrix invertible and the results penalized in a covariance-regularization 
fashion (Witten et al. 2009). Even though the normalization would rescale the vectors to a �2-
ball, the regularization effect still remains.

3.3 � Near‑optimal initialization for quasi‑principal subspace

The goal of the QuasiPS algorithm is to approximate the principal subspace of PCA 
with given data matrix with extremely low cost, and AgFlow would fine-tune the rough 

(12)min
�∈ℝd

1

2n
‖�j − ��‖2

2
.

(13)𝛽
j

k
= 𝛽

j

k−1
+

𝜂

m
⋅

∑

i∈Ik

(�
j

i
− �

⊤
i
𝛽
j

k−1
)�i ,
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quasi-principal projection estimation (i.e. the loadings) and obtain the complete path of the 
�2-penalized PCA accordingly. While there are various low-complexity algorithms in this 
area , such as (Hardt and Price 2014; Shamir et al. 2015; De Sa et al. 2015; Balsubramani 
et al. 2013), we derive the Quasi-Principal Subspace (QuasiPS) estimator (in Algorithm 
2) using the stochastic algorithms proposed in (Shamir et  al. 2015). More specifically, 
Algorithm 2 first pursues a rough estimation of the jth principal component projection 
(denoted as w̃L after L iterations) using the stochastic approximation (Shamir et al. 2015), 
then obtains the quasi-principal subspace �j through projection �j = �w̃L.

Note that w̃L is not a precise estimation of the loadings corresponding to its principal 
component (compared to our algorithm and (Oja and Karhunen 1985) etc.), however it can 
provide a close solution in an extremely low cost. In this way, we consider �j = �w̃L as a 
reasonable estimate of the principal subspace. With a random unit initialization w̃0 , w̃L con-
verges to the true principal projection �∗ in a fast rate under mild conditions, even when 
w̃⊤
0
�∗ ≥

1√
2
 (Shamir et al. 2015). Thus, our setting should be non-trivial. 

3.4 � Algorithm analysis

In this section, we analyze the proposed algorithm from perspectives of statistical perfor-
mance and its computational complexity.

3.4.1 � Statistical performance

AgFlow algorithm consists of two steps: Quasi-PS initialization and solution path 
retrieval. As the goal of our research is fast model selection on the complete solution path 
for �2-penalized PCA over varying penalties, the performance analysis of the proposed 
algorithm can be decomposed into two parts.
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Approximation of Quasi-PS to the true principal subspace. In Algorithm  2, the 
������� algorithm first obtains a Quasi-PS projection w̃L using L epochs of low-complexity 
stochastic approximation, then it projects the sample � to get the jth principal subspace �j via 
�w̃L.

Lemma 2  Under some mild conditions as in Shamir et al. (2015) and given the true prin-
cipal projection w∗ , with probability at least 1 − log2(1∕�)� , the the distance between w∗ 
and w̃L holds that

provided that L = log(1∕�)∕log(2∕�).

It can be easily derived from (Theorem  1. in Shamir et  al. (2015)). When � → 0 , 
‖w̃L − w∗‖2

2
→ 0 and the error bound becomes tight. Suppose samples in � are i.i.d. realiza-

tions from the random variable X and �XX⊤ = Σ∗ denote the true covariance.

Theorem 1  Under some mild conditions as in Shamir et al. (2015), the distance between 
the Quasi-PS and the true principal subspace holds that

where �max(⋅) refers to the largest eigenvalue of a matrix.

When considering the largest eigenvalue �max(Σ
∗) as a constant, Quasi-PS is believed to 

achieve exponential coverage rate for principal subspace approximation for every sample. 
Thus, the statistical performance of Quasi-PS can be guaranteed.

Approximation of approximated stochastic gradient flow to the solution path of ridge. In 
(Ali et al. 2019, 2020), the authors have demonstrated that when the learning rate � → 0 , the 
discrete-time SGD and GD algorithms would diffuse to two continuous-time dynamics over 
(stochastic) gradient flows, i.e., 𝛽sgf(t) and 𝛽gf(t) over continuous time t > 0 . According to 
Theorem 1 in Ali et al. (2019), the statistical risk between Ridge and continuous-time gradient 
flow is bounded by

where Risk(�1, �2) = �‖�1 − �2‖22 , �
∗ refers to the true estimator, and � = 1∕t for Ridge. 

While the stochastic gradient flow enjoys a faster convergence but with slightly larger sta-
tistical risk, such that

where m refers to the batch size and o
(

n

m

)
 is an error term caused by the stochastic gradi-

ent noises. Under mild conditions, with discretization ( �t =
√
� ), we consider the kth itera-

tion of SGD for Ordinary Least Squares, denoted as �k , which tightly approximates to 
𝛽sgf(t) in a o(

√
�)-approximation with t = k

√
� . In this way, given the learning rate � and 

(14)‖w̃L − w∗‖2
2
≤ 2 − 2

√
1 − 𝜀,

(15)

�
�∼X

‖�w̃L − �w∗‖2
2
= (w̃L − w∗)⊤Σ∗(w̃L − w∗)

≤ 𝜆max(Σ
∗)‖w̃L − w∗‖2

2

= (2 − 2
√
1 − 𝜀) ⋅ 𝜆max(Σ

∗) ,

(16)Risk(𝛽gf(t), 𝛽
∗) ≤ 1.6862 ⋅ Risk(�𝛽ridge(1∕t), 𝛽

∗)

(17)Risk(𝛽sgf(t), 𝛽
∗) ≤ Risk(𝛽gf(t), 𝛽

∗) + o
(
n

m

)
,
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the total number of iterations K, the implicit Ridge-like AgFlow screens the �2-penalized 
PCA with varying � in the range of

with bounded error in both statistics and approximation.
In this way, we could conclude that under mild conditions, QuasiPS can well approxi-

mate the true principal subspace ( d′ ≪ n ) while AgFlow retrieves a tight approximation 
of the Ridge solution path..

3.4.2 � Computational complexity

The proposed algorithm consists of two steps: the initialization of the quasi-principal sub-
space and the path retrieval. To obtain a fine estimate of Quasi-PS and hit the error in 
Eq. (14), one should run Shamir’s algorithm (Shamir et al. 2015) with

iterations, where rank(⋅) refers to the matrix rank, eigengap(⋅) refers to the gap between the 
first and second eigenvalues, and � has been defined in Lemma 2 referring to the error of 
principal subspace estimation.

Furthermore, to get the loadings corresponding to the jth principal subspace, AgFlow 
uses K iterations for OLS to obtain the estimate of K models for �2-penalized PCA, 
where each iteration only consumes O(m ⋅ d2) complexity with batch size m, which gets 
total O(K ⋅ m ⋅ d2) for K models, and total O(d� ⋅ K ⋅ m ⋅ d2) with the reduced-dimension 
d′ . Moreover, we also propose to run ������ with full-batch size m = n using gradient 
descent per iteration, which only consumes O(d2) per iteration with lazy evaluation of �⊤� 
and �⊤� , with total O(K ⋅ d2) for K models, which gets O(d� ⋅ K ⋅ ⋅d2) with the reduced-
dimension d′.

To further improve AgFlow without incorporating higher-order complexity, we carry 
out the experiments by running a mini-batch AgFlow, and a full-batch AgFlow (i.e., 
m = n ) with lazy evaluation of �⊤� and �⊤� in parallel for model selection.

4 � Experiments

In this section, we show some experiments on real-world datasets with a significantly 
large number of features; that fits well in the natural High Dimension Low Sample Size 
(HDLSS) settings. Since cancer classification has remained a great challenge to research-
ers in microarray technology, we try to adopt our new algorithm on these gene expression 
datasets. In particular, except for three publicly available gene expression datasets (Zhu 
et al. 2007), the well-known FACES dataset (Huang et al. 2008) in machine learning is also 
considered in our study. A brief overview of these four datasets is summarized in Table 1.

4.1 � Experiment setups

Evaluation procedure of the AgFlow algorithm. There are two regimes to demon-
strate the performance of the proposed model selection method; the first is to evaluate 

(18)
1

K
√
�
≤ � ≤

1
√
�
,

O
(
(rank(Σ∗)∕eigengap(Σ∗))2log(1∕�)

)
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the accuracy of the AgFlow algorithm based on k-fold cross-validation, which we call 
it evaluation-based model selection; the second is to do prediction based on the given 
training-validation-testing set which consists of three steps, i.e., model selection, model 
evaluation and prediction, which we call it prediction-based model selection. Usually, 
in the real-world applications, the prediction-based model selection is used, where the 
testing set is unseen in advance. The proceeding step would be to split the raw data into 
training-validation set for further cross-validation in evaluation-based model selection 
and training-validation-testing set for prediction-based model selection. There are two 
main steps, first is to get the the projection matrix of the the training data using the 
AgFlow algorithm; second is to apply the projection matrix to the validation/testing 
set.

Here we take the prediction-based model selection as an example. To do model selec-
tion using the AgFlow algorithm, firstly we need to get the projection matrix flow of the 
given training set by running the AgFlow algorithm, e.g. �̂k ∈ ℝ

d×d� for k = 1,… ,K . 
Then the dimension-reduced training-validation-testing data matrix flow can be obtained 
by matrix multiplication, e.g. �̃train(k) = �train�̂k , where �̂k = [𝛽1

k
, 𝛽2

k
,… , 𝛽d

�

k
] ∈ ℝ

d×d� . 
Each column 𝛽 j

k
 is the jth projection vector, i.e., the jth loadings corresponding to the jth 

principal component, which approximates the �2-penalized PCA with the tuning param-
eter � , under the calibration � ∝ 1∕(k

√
�) . Then the dimension-reduced training data 

matrix flow is fed into the target learner h(k) = �����(�train�̂k) for performance tuning 
which outputs models h(k) for k = 1,… ,K . Lastly, the dimension-reduced validation 
data matrix flow is used to choose the optimal model with best performance accord-
ing to the evaluator ���������(�val�̂k, h(k)) for k = 1,… ,K , which gives the optimal 
�̂
∗
= argmax�̂k

���������(�val�̂k, h(k)) and the optimal k∗ . Note that each data flow 
matrix possesses some implicit regularization introduced by the AgFlow algorithm, 
which corresponds to an explicit penalty in Ridge. Under the calibration � ∝ 1∕(k

√
�) , 

we have �̂k ≈ �̂(𝜆) , �̂
∗
≈ �̂(𝜆∗) , with �∗ ∝ 1∕(k∗

√
�) , thus we can do model selection 

using results based on AgFlow algorithm.
Settings of the AgFlow algorithm. 

•	 Construction of training-validation-testing set.  For the above four datasets, we ran-
domly split the raw data samples into training-validation-testing set with a fixed split 
ratio of 60% − 20% − 20% within each class. Then the sample size for the training-val-
idation-testing set is (240, 80, 80), (37, 12, 13), (43, 14, 15), (35, 11, 14) for FACES, 
Colon Tumor, ALL-AML Leukemia, Central Nervous System data, respectively. Thus 
dimension/sample size ratio d/n of the training set is 17.1, 54.1, 165.8, 203.7 accord-
ingly.

•	 Settings of default parameters. For the default parameters in AgFlow, the number of 
iterations is set K = 5000 , the step size � = 0.5 × 10−4 , the batch size min(100, n∕2) , 
and the reduced dimension d� = 30.

Table 1   Description of the 
FACES dataset and Three 
Microarray Datasets (i.e. gene 
expression dataset of Colon 
Tumor, ALL-AML Leukemia, 
Central Nervous System)

Dataset #Total Fea-
tures (d)

#Samples (n) #Classes

FACES 4096 400 10
Colon Tumor 2000 62 2
ALL-AML 7129 72 2
Central Nervous System 7129 60 2
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	   For the values of explicit regularization of � in Ridge, the �2-penalized PCA, we 
take 100 values in the log-scale ranging from 10−4 to 104 as the searching grid. For 
the default parameters in �������(�, j) , we take the same default values as those 
specified in the original paper Shamir et  al. (2015), where the step size 𝜂2 =

1

r̄n
 , and 

r̄ =
1

n

∑n

i=1
‖�i‖22 , the epoch length M = n , and the number of iterations L = 100.

Baseline PCA Algorithms.  To demonstrate the performance of the AgFlow algorithm, 
we compare the results with some other comparable methods, such as Oja’s method (Oja 
and Karhunen 1985), Power iteration (Golub and Loan 2013), Shamir’s Variance Reduc-
tion method (Shamir et al. 2015), vanilla PCA (Jolliffe 1986), and Ridge-based PCA (Zou 
et al. 2006) (two variants: the closed-form ridge estimator in Eq.  (3), Ridge_C, and that 
based on scikit-learn solvers, Ridge_S).

4.2 � Overall comparisons of model selection

In this section, we evaluate the performance of the proposed AgFlow algorithm and com-
pare it with other baseline algorithms (especially in the performance comparisons with 
Ridge-based estimator) using FACES data, and three gene expression data of Colon Tumor, 
ALL-AML Leukemia, and Central Nervous System, respectively. In all these experiments, 
the training datasets have a limited number of samples and a significantly large number 
of features in the dimension reduction problem. For example, d/n ranges from 10 to 120, 
which is significantly larger than one in the four datasets. The common learning problem 
becomes ill-posed and models are all over-fit to the small training datasets. Model selection 
with the validation set becomes a crucial issue to improve the performance.

Figure  2 presents the overall performance comparisons on the dimension reduction 
problem between AgFlow and other baseline algorithms using FACES dataset, where 
the classification accuracy with dimension-reduced data is used as the metric. As only 
AgFlow and Ridge are capable of estimating penalized PCA models for model selection, 
in Fig. 2, we select the best models of both AgFlow and Ridge in terms of validation accu-
racy. For a fair comparison, we compare AgFlow with Ridge for model selection in a simi-
lar range of penalties ( � ) using a similar budget of computation time, while we make sure 
that the time spent by AgFlow algorithm is much shorter than Ridge (Please refer Table 2 
for the time consumption comparisons between AgFlow and Ridge.).

Under such critical HDLSS settings, usually all algorithms work poorly while AgFlow 
outperforms all these algorithms in most cases. Furthermore, Shamir’s (Shamir et al. 2015) 
method, Oja’s method (Oja and Karhunen 1985), Power iteration method and the vanilla 
PCA based on SVD, all achieve the similar performance in these settings, it seems these 
algorithms beat the best performance achievable for the unbiased PCA estimator with-
out any regularization under ill-posed and HDLSS settings. The comparison between 
AgFlow and unbiased PCA estimators demonstrates the performance improvement con-
tributed by the implicit regularization effects (Ali et al. 2020) and the potentials of model 
selection with validation accuracy. Furthermore, the comparison between AgFlow and 
Ridge indicates that the implicit regularization effect of SGD provides the model estima-
tor with higher stability than Ridge in estimating penalized PCA under HDLSS settings, 
as the matrix inverse used in Ridge is unstable when the model is ill-posed (Eldad et al. 
2008). Furthermore, the continuous trace of SGD provides model selector with more flex-
ibility than Ridge in screening massive models under varying penalties with fine-grained 
granularity.
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Figure 3 gives the performance comparison of validation and testing accuracy of dif-
ferent dimension reduction methods on different datasets, including AgFlow and other 
baseline algorithms such as vanilla PCA based on SVD (Jolliffe 1986), Oja’s Stochas-
tic PCA method (Oja and Karhunen 1985), Power Iteration method (Golub and Loan 
2013), Shamir’s Variance Reduction method (Shamir et  al. 2015), and Ridge: Ridge-
based PCA (Zou et al. 2006). Figure 3 shows that for the gene expression dataset of the 
Colon Tumor and Central Nervous System, the AgFlow algorithm outperforms other 
baseline algorithms with an overwhelming improvement with respect to the validation 
accuracy as well as the testing accuracy. For the FACES dataset, not much advantage 
of AgFlow is gained because all the algorithms achieve an accuracy above 90% , thus 
the improvement is less than 5% . For the ALL-AML dataset, the performance of all the 
algorithms varies a lot, our AgFlow is still the best one with respect to the validation 
accuracy, however, it is not the case when applied to the testing accuracy. The reason 
may be that, with one shot of training-validation-testing splitting, there is some vari-
ability in the data splitting and as the sample size is not that large that makes this uncer-
tainty worse, which also explains that the testing accuracy is somewhat larger than the 
validation accuracy for some algorithms.

In this way, based on the comparisons of different dimension reduction methods 
using the same data with a given classifier function as in Fig. 2 and the the compari-
sons using different datasets Fig.  3, we can conclude that AgFlow is more effective 
than Ridge for estimating massive models and selecting the best models for penalized 
PCA, with the same or even stricter budget conditions. We also present the comparison 

Fig. 2   Performance Comparisons on Dimension Reduction between AgFlow and Other Baseline Algo-
rithms based on the Validation Accuracy of Adaptive Boosting Classifier, Gaussian Naive Bayes, Decision 
Tree Classifier, Gradient Boosting Classifier on FACES Dataset, respectively. SVD: Vanilla PCA based on 
SVD (Jolliffe 1986), Oja: Oja’s stochastic PCA method (Oja and Karhunen 1985), Power: Power Iteration 
method (Golub and Loan 2013), Shamir: Shamir’s Variance Reduction method (Shamir et  al. 2015) and 
Ridge: Ridge-based PCA (Zou et al. 2006). (Ridge_C stands for the ridge estimator based on the closed-
form as in Eq. (3), Ridge_S stands for the ridge estimator based on scikit-learn solvers)
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results based on different datasets in Fig. 3 using various classifiers. Similar results are 
obtained: Ridge works well as more samples provided and AgFlow outperforms Ridge 
estimator in most cases.

4.3 � Comparisons of time consumption and performance tuning

Table  2 illustrates the time consumption of the AgFlow algorithm and Ridge-based 
algorithms over varying penalties on the four datasets. We can see from the table that 
the time used in the AgFlow algorithm is only a small portion of that of the Ridge_S 
and Ridge_C which are two versions of Ridge-based algorithms. When the sample 
size and the number of predictors are both small, as in the Colon Tumor dataset with 
(n, d) = (62, 2000) , the time consumption is acceptable for both AgFlow and Ridge-
based algorithms. However, when the number of the dimension becomes extremely 

(a) Validation and Test on FACES (b) Validation and Test on Colon Tumor

(c) Validation and Test on ALL-AML (d) Validation and Test on Central Nervous System

Fig. 3   Performance Comparisons of Validation and Testing Accuracy of Different Dimension Reduction 
Methods, AgFlow and Other Baseline Algorithms, on FACES (with d� = 30 and Gradient Boosting Clas-
sifier), Colon Tumor (with d� = 30 and Quadratic Discriminant Analysis), ALL-AML (with d� = 30 and 
Random Forest Classifier), Central Nervous System Dataset (with d� = 24 and Gradient Boosting Classi-
fier). SVD: vanilla PCA based on SVD (Jolliffe 1986), Oja: Oja’s Stochastic PCA method (Oja and Kar-
hunen 1985), Power: Power Iteration method (Golub and Loan 2013), Shamir: Shamir’s Variance Reduction 
method (Shamir et al. 2015) and Ridge: Ridge-based PCA (Zou et al. 2006). (Ridge_C stands for the ridge 
estimator based on the closed-form as in Eq.. (3), Ridge_S stands for the ridge estimator based on scikit-
learn solvers)
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large as in the ALL-AML dataset with (n, d) = (72, 7129) or the Central Nervous System 
data with (n, d) = (60, 7129) , the time consumption of Ridge_S and Ridge_C becomes 
dramatically large. For example, when d� = 30 for the ALL-AML dataset, Ridge_S 
requires more than 12.39 hours, which is unacceptable in practice application, whereas 
the the AgFlow algorithm requires 14 minutes, which has dramatically reduced the 
computation time.

More specifically, when considering the time consumption of AgFlow and Ridge-
Path for the above performance tuning procedure, we can find AgFlow is much more 
efficient. Table  2 shows that AgFlow only consumes 246 seconds to obtain the esti-
mates of 10,000 penalized PCA models when d� = 30 for the Colon Tumor data with 
d = 2000 genes and 851 seconds for the ALL-AML Leukemia data with d = 7129 genes, 
while Ridge-Path needs 1226 seconds/1276 seconds to obtain only 100 penalized PCA 
models for the Colon Tumor data and 44,  606 seconds/43,  268 seconds for the ALL-
AML Leukemia data, whether using closed-form Ridge estimators or solver-based ones.

Figure  4 illustrates the examples of performance tuning using Ridge-Path and 
AgFlow over varying penalties with Random Forest classifiers. While AgFlow esti-
mates the �2-penalized PCA with varying penalty by stopping the SGD optimizer with 
different number of iterations, Ridge-Path needs to shrink the sample covariance matrix 
with varying � and estimate �2-penalized PCA through the time-consuming matrix 
inverse. It is obvious that both AgFlow and Ridge-Path have certain capacity to screen 
models with different penalties.

In conclusion, AgFlow demonstrates both efficiency and effectiveness in model selec-
tion for penalized PCA, in comparisons with a wide range of classic and newly-fashioned 
algorithms (Zou et al. 2006; Shamir et al. 2015; Oja and Karhunen 1985; Golub and Loan 
2013). Note that, the classification accuracy of some tasks here might not be as good as 
those reported in Zhu et al. (2007). While our goal is to compare the performance of �2

-penalized PCA model selection with classification accuracy as the selection objective, the 
work (Zhu et al. 2007) focus on selecting a discriminative set of features for classification.

5 � Conclusions

Since PCA has been widely used for data processing, feature extraction and dimension 
reduction in unsupervised data analysis, we have proposed AgFlow algorithm to do fast 
model selection with a much lower complexity in �2-penalized PCA where the regu-
larization is usually incorporated to deal with the multicolinearity and singularity issues 
encountered under HDLSS settings. Experiments show that our AgFlow algorithm beats 
the existing methods with an overwhelming improvement with respect to the accuracy 
and computational complexity, especially, when compared with the ridge-based estima-
tor which is implemented as a time-consuming model estimation and selection procedure 
among a wide range of penalties with matrix inverse. Meanwhile, the proposed AgFlow 
algorithm naturally retrieves the complete solution path of each principal component, 
which shows an implicit regularization and can help us do the model estimation and selec-
tion simultaneously. Thus we can identify the best model from an end-to-end optimization 
procedure using low computational complexity. In addition, except for the advantage of 
the accuracy and computational complexity, the AgFlow enlarges the capacities of perfor-
mance tuning in a more intuitive and easily way. The observations backup our claims.
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6 � Future work

Though the AgFlow algorithm naturally retrieves the complete solution path of each prin-
cipal component and can do model selection under the implicit �2-norm regularization 
effect, the linear combination of all the original variables is often not friendly to interpret 
the results. New methods with implicit or explicit �1-norm regularization (lasso penalty) 
are in great demand, where �1-norm regularization produces sparse solutions and we can 
do variable estimation and selection simultaneously.

In addition to the Approximated Gradient Flow, we are also interested in the implicit 
regularization introduced by other (stochastic) optimizers, such as Adam and/or Nester-
ov’s momentum methods, with potential new applications to Markov Chain Monte Carlo 
or other statistical computations. Furthermore, the implicit regularization of the AgFlow 
running nonlinear models for statistical inference would be interesting too.
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