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Abstract
In traditional semantic segmentation, knowing about all existing classes is essential to yield 
effective results with the majority of existing approaches. However, these methods trained 
in a Closed Set of classes fail when new classes are found in the test phase, not being able 
to recognize that an unseen class has been fed. This means that they are not suitable for 
Open Set scenarios, which are very common in real-world computer vision and remote 
sensing applications. In this paper, we discuss the limitations of Closed Set segmentation 
and propose two fully convolutional approaches to effectively address Open Set semantic 
segmentation: OpenFCN and OpenPCS. OpenFCN is based on the well-known OpenMax 
algorithm, configuring a new application of this approach in segmentation settings. Open-
PCS is a fully novel approach based on feature-space from DNN activations that serve as 
features for computing PCA and multi-variate gaussian likelihood in a lower dimensional 
space. In addition to OpenPCS and aiming to reduce the RAM memory requirements of 
the methodology, we also propose a slight variation of the method (OpenIPCS) that uses an 
iteractive version of PCA able to be trained in small batches. Experiments were conducted 
on the well-known ISPRS Vaihingen/Potsdam and the 2018 IEEE GRSS Data Fusion Chal-
lenge datasets. OpenFCN showed little-to-no improvement when compared to the simpler 
and much more time efficient SoftMax thresholding, while being some orders of magnitude 
slower. OpenPCS achieved promising results in almost all experiments by overcoming both 
OpenFCN and SoftMax thresholding. OpenPCS is also a reasonable compromise between 
the runtime performances of the extremely fast SoftMax thresholding and the extremely 
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slow OpenFCN, being able to run close to real-time. Experiments also indicate that Open-
PCS is effective, robust and suitable for Open Set segmentation, being able to improve the 
recognition of unknown class pixels without reducing the accuracy on the known class pix-
els. We also tested the scenario of hiding multiple known classes to simulate multimodal 
unknowns, resulting in an even larger gap between OpenPCS/OpenIPCS and both SoftMax 
thresholding and OpenFCN, implying that gaussian modeling is more robust to settings 
with greater openness.
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1  Introduction

The development of new technologies for the acquisition of aerial images onboard satel-
lites or aerial vehicles has made it possible to observe and study various phenomena on 
the Earth’s surface, both on a small and large scale. A highly requested task, in this sense, 
is automated geographic mapping, which gives an easier and faster approach of monitor-
ing cities, regions, countries, or entire continents. Automatic mapping of remote sens-
ing images is typically modeled as a supervised classification task, commonly known as 
semantic segmentation, in which a model is first trained using labeled pixels and then used 
to classify other pixels in a new region. Commonly, this process is based on the Closed Set 
(or Closed World) assumption: it assumes that all training and testing pixels come from the 
same label space, e.g., train and test sets have the same set of classes. It is easy to notice 
that this assumption does not hold in real-world scenarios, mainly for Earth Observation 
applications, such as geographic mapping, given the huge size of the images and the (pos-
sible) elevated number of distinct objects (classes). In these scenarios, the model is likely 
to observe, during the prediction phase, samples of classes not seen during the training. In 
these cases, Closed Set semantic segmentation methods are error-prone to unknown classes 
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given that they will wrongly recognize it as one of the known classes during the inference. 
This limits the use of such approaches to real-world Earth Observation applications, such 
as automated geographic mapping.

Towards solving this, Open Set Recognition (OSR) can be described as the set of algo-
rithms that address the problem of identifying, during the inference phase, samples of 
unknown classes, e.g., instances of classes not seen during the training. Using the same 
definitions of Geng et al. (2020) and Scheirer et al. (2014), during the inference phase, an 
OSR system, such as an Open Set semantic segmentation approach, should be able to cor-
rectly classify the instances/pixels of classes employed during the training (Known Known 
Classes – KKCs) whereas recognizing the samples/pixels of classes not seen during train-
ing (Unknown Unknown Classes – UUCs).

By this definition, it is possible to state that the main difference between the closed and 
Open Set scenarios is related to the knowledge of the world, e.g., the knowledge of all pos-
sible classes. Specifically, while in the Closed Set scenario the methods should have full 
knowledge of the world, Open Set approaches must assume that they do not know all the 
possible classes during the training. Obviously, different approaches may have a distinct 
knowledge of the world depending on the problem. A visual example of this difference, in 
terms of knowledge of the world, is depicted in Fig. 1.

Technically, OSR is usually achieved via transductive learning (Li and Wechsler 2005) 
by trying to infer samples from UUCs using only the test data distribution. Another 
approach is to adapt Anomaly Detection techniques for OSR by using auxiliary data to try 
to learn a generative model via supervision, such as the Outlier Exposure (OE) (Hendry-
cks et al. 2018). However, neither of these approaches is ideal for Open Set semantic seg-
mentation. This is because transduction requires continuous updates of a model in order to 
cope with new data, presenting an overhead that might be too expensive in most real-world 
applications, and the OE (Hendrycks et al. 2018) depends on the existence and availability 
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Fig. 1   Graphical depiction of the problem settings of Closed Set, Anomaly Detection and Open Set Rec-
ognition in dense labeling scenarios. The x-axis ranges from fully Closed Set (that is, assuming full knowl-
edge of the world) on the left side to Open Set on the rightmost example. In the middle, there is the binary 
task of Pixel Anomaly Detection, wherein pixels are segmented either into KKCs or UUCs without discern-
ing between distinct KKCs. We also depict the Label Space (Semantic Segmentation map) and a sample of 
some pixels’ representation in a 2D manifold of the Feature Space separated by labels and decision bounda-
ries for each class
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of auxiliary Out-of-Distribution (OOD) data for training, which may not be possible or 
even useful in semantic segmentation. Therefore, an Open Set semantic segmentation algo-
rithm must rely solely on inductive learning and use only the available training data and 
KKCs, while also addressing performance concerns, given the higher output dimensions of 
segmentation.

In this paper, we proposed two novel approaches for Open Set semantic segmentation of 
remote sensing image. We evaluate our methods and compare it with baselines by simulat-
ing Open Set situations in well known urban scenes such as Vaihingen and Potsdam data-
sets. It is important to mention that the concept of Open Set semantic segmentation is still 
very little explored in the literature. The first and unique work that introduces this problem 
is da Silva et al. (2020), which proposes a method based on OpenMax (Bendale and Boult 
2016) for pixelwise classification, which have many limitations concerning both effective-
ness and efficiency.

The main contributions of this work are: 

1.	 The first fully convolutional methodology for semantic segmentation in RS imagery or 
otherwise adapted from OpenMax (Bendale and Boult 2016), explained in Sect. 3.1;

2.	 Proposal of a completely novel fully convolutional methodology for identifying UUCs 
in dense labeling scenarios using Principal Components from the internal feature space 
of the DNNs, further described in Sect. 3.2;

3.	 Definition of a benchmark evaluation protocol with standard threshold-dependent and 
threshold-independent metrics for testing OSR Semantic Segmentation tasks;

4.	 Extensive evaluations of architectures and thresholding for the proposed approaches in 
both Open and Closed Set baselines.

This paper is organized in sections, as follow: Sect.  2 presents the related work, other 
papers that try to solve the Open Set semantic segmentation problem; Sect. 3 describes the 
proposed methods, explaining in details how it works; Sect. 4 shows the setup used for this 
paper, the datasets evaluated and the metrics; Sect. 5 presents the obtained results from the 
experimental setup; Finally, Sect. 6 contains the conclusion over the obtained results and 
the proposed method.

2 � Related work and background

Convolutional Neural Networks (CNNs) have become the backbone of visual recognition 
for the last decade. AlexNet (Krizhevsky et  al. 2012) reintroduced image feature learn-
ing, allowing for better scalability than the first CNNs (e.g. LeNet LeCun et al. 1998) in 
order to perform inference over harder tasks (e.g. ImageNet Deng et al. 2009 and CIFAR 
Krizhevsky et  al. 2009). AlexNet took advantage of larger convolutional kernels in the 
earlier layers and contained a total of eight layers, between convolutional and fully-con-
nected ones. VGG (Simonyan and Zisserman 2014) simplified CNN architectures by using 
the same 3 × 3 kernels in all convolutions and max-poolings for downscaling. In contrast 
to VGG, the GoogleNet architecture (Szegedy et  al. 2015)—also known as Inception—
studied a diverse set of kernel sizes to enforce disentanglement in activations. Inception 
modules mix combinations of multiple kernel sizes and poolings. Both VGG and Incep-
tion allow for deeper networks with smaller convolutional kernels in each module, which 
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proved to be more efficient than shallower networks with larger convolutions, at least up to 
around 20 layers.

It was observed that adding layers beyond a total of 20 was detrimental to the training 
of CNNs, as the gradients did not reach the earlier layers, effectively preventing their train-
ing. Residual Networks (ResNets) (He et al. 2016) based on residual identity functions that 
allow for shortcuts in the backpropagation were then introduced. ResNets with between 
18 and 151 convolutional blocks were investigated by He et al. (2016), with little benefit 
being observed beyond that. With time, some tweaks were proposed to the standard ResNet 
architecture, with the more noteworthy ones being Wide ResNets (WRNs) (Zagoruyko and 
Komodakis 2016) and ResNeXt (Xie et  al. 2017), which yielded considerable improve-
ments to the traditional ResNets. However, ResNets were observed to be highly inefficient, 
as the activations of most convolutions throughout the network could be dropped with lit-
tle-to-no effect on classification performance (Srivastava et al. 2015). Densely Connected 
Convolutional Networks (DenseNets) (Huang et al. 2017) improved on the parameter effi-
ciency of ResNets by replacing the identity function by concatenation and adding bottle-
neck and transition layers, which lowered the parameter requirements of the architecture. 
Huang et al. (2017) tested in DenseNet a variation between 121 and 264 layers, observing 
them to be more efficient than ResNets in both parameter and flops, when similar error val-
ues were compared in the validation set.

The remainder of this section presents the main concepts to the understand of this work 
and the recent literature about semantic segmentation (Sect. 2.1) and Open Set recognition 
(Sect. 2.2).

2.1 � Deep semantic segmentation

CNNs (Krizhevsky et  al. 2012) are considered the state-of-the-art for sparse labeling 
tasks as object/scene classification due to their feature learning capabilities. The literature 
quickly learned to adapt CNNs for dense labeling tasks by patchwise training, using the 
label for the central pixel (Farabet et  al. 2012; Pinheiro and Collobert 2014). However, 
Fully Convolutional Networks (FCNs) (Long et al. 2015) were shown to be considerably 
more efficient than patchwise training, providing the first end-to-end framework for seman-
tic segmentation. Besides the accuracy and efficiency benefits of fully convolutional train-
ing, any traditional CNN architecture could be converted into an FCN by adding a bilinear 
interpolation to the activations and replacing the dense layers by convolutional ones, as 
shown in Fig. 2. This simple scheme also allowed for transfer learning from large labeled 
datasets as ImageNet (Deng et al. 2009) to relatively smaller semantic segmentation data-
sets as Pascal VOC (Everingham et al. 2015) and MS COCO (Lin et al. 2014). FCNs are 
also shown to benefit from skip connections that merge the high semantic level activations 
at the end of the network with the high spatial resolution information from earlier layers 
(Long et al. 2015).

More recently, several semantic segmentation methods have been proposed specifically 
to deal with different aspects of remote sensing images such as spatial constraints (Nogue-
ira et al. 2016; Maggiori et al. 2017; Marmanis et al. 2018; Wang et al. 2017; Audebert 
et  al. 2016; Nogueira et  al. 2019) or non-RGB data (Kemker et  al. 2018; Guiotte et  al. 
2020). Nogueira et al. (2016) use patchwise semantic segmentation in RS imaging for both 
urban and agricultural scenarios. Maggiori et al. (2017) proposed a multi-context method 
based on upsampled and concatenated features extracted from distinct layers of a fully con-
volutional network. In Marmanis et al. (2018), the authors proposed multi-context methods 
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that combine boundary detection with deconvolution networks. In Audebert et al. (2016), 
the authors fine-tuned a deconvolutional network using 256 × 256 fixed size patches. To 
incorporate multi-context knowledge into the learning process, they proposed a multi-ker-
nel technique at the last convolutional layer. Wang et al. (2017) proposed to extract features 
from distinct layers of the network to capture low- and high-level spatial information. In 
Kemker et al. (2018), the authors adapt state-of-the-art semantic segmentation approaches 
to work with multi-spectral images. Guiotte et al. (2020) proposed an aprooach for seman-
tic segmentation from LiDAR point clouds.

2.2 � Open set recognition

The Open Set recognition problem was first introduced by Scheirer et al. (2012). They dis-
cussed about the notion of “openness”, that occurs when we do not have knowledge of the 
entire set of possible classes during supervised training, and must account for unknowns 
during predicting phase. The first studies and applications involving Open Set recognition 
were adaptations of “shallow” methods that acted in the feature space of visual samples 
and consisted mainly of threshold-based or support-vector-based methods (Scheirer et al. 
2012). More recent work has extended the concept to deep neural networks (Bendale and 
Boult 2016; Cardoso et al. 2017).

A recent survey by Geng et al. (2020) splits Open Set methods mainly between discrim-
inative and generative approaches. Discriminative approaches usually use 1-vs-All Support 

Car
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Fig. 2   Architecture example of a CNN for image classification and its equivalent FCN architecture with 
the same backbone for semantic segmentation. Activations from layer l are depicted as a(l) for all layers 
in the network ( L1 through L7 for the CNN and L1 through L5 for the FCN). One should notice that in both 
architectures the input layer a(L1) has the number of channels nch depending on the input data’s number of 
channels (in the case of RGB images, nch = 3 ). In the CNN, the number of neurons in the output layer must 
match the number of KKCs ( nKKCs ) in the data. Equivalently, in the FCN, the number of channels in the 
output layer nKKCs , as suggested by the notation, depends on the number of KKCs of the dataset. In this 
example, nKKCs = 4 as there are 4 known classes in this example
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Vector Machines (SVMs) (Scheirer et  al. 2012) in order to delineate the space between 
valid samples from the training classes and outliers—which ideally would identify UUCs. 
Meta-recognition can also be used to predict failures in visual learning tasks (Scheirer 
et al. 2012, 2014). Extreme Value Theory (EVT) is one of the most common modelings 
for meta-recognition using DNNs (Bendale and Boult 2016; Ge et al. 2017; Oza and Patel 
2019) for classification.

Earlier deep OSR methods (Bendale and Boult 2016; Ge et al. 2017; Liang et al. 2017) 
aimed to incorporate the prediction of UUCs directly onto the prediction of the DNN out-
put layer. Bendale and Boult (2016) and Ge et al. (2017) perform this by reweighting the 
output probabilities of the SoftMax activation to accomodate a UUC into the prediction 
during test time. This approach is known as OpenMax (Bendale and Boult 2016), and fur-
ther developments to it have been proposed; for instance, aiding the computation of Open-
Max with synthetic images from a Generative Adversarial Network (GAN) in G-OpenMax 
(Ge et al. 2017). OpenMax (Bendale and Boult 2016) will be further detailed in the meth-
odology (Sect. 3.1), as it is the basis for one of the proposed methods in this paper.

Inspired by adversarial attacks (Goodfellow et al. 2014), Out-of-Distribution Detector 
for Neural Networks (ODIN) (Liang et  al. 2017) insert small perturbations in the input 
image x in order to increase the separability in the SoftMax predictions between in- and 
out-of distribution data ( Din and Dout , respectively). This separability allows ODIN to work 
similarly to OpenMax (Bendale and Boult 2016) and operate close to the label space, using 
a threshold over class probabilities to discern between KKCs and UUCs. The manuscript 
reports Area Under ROC curve metrics between 0.90 and 0.99 for CIFAR-10 (Krizhevsky 
et al. 2009) as Din and between 0.70 and 0.85 for CIFAR-100 (Krizhevsky et al. 2009) as 
Din , depending on the Dout (e.g. TinyImageNet,1 LSUN (Yu et  al. 2015), random noise, 
etc). Extensive hyperparameter tuning experiments are reported in the paper as well. As 
will be further discussed in Sect. 3.2, restricting the information used for OSR to the acti-
vations in the last layers has severe limitations. Thus, modern methods have employed 
different strategies than simply thresholding the output probabilities to split samples into 
KKCs and UUCs.

A recent trend in both Anomaly Detection and OSR for deep image classification has 
been to incorporate input reconstruction error in supervised DNN training as a way to iden-
tify OOD samples (Yoshihashi et al. 2019; Oza and Patel 2019; Sun et al. 2020). These 
approaches fall under the branch of generative OSR, according to the taxonomy by Geng 
et  al. (2020). Classification-Reconstruction learning for Open-Set Recognition (CROSR) 
(Yoshihashi et  al. 2019) trains conjointly a supervised DNN for classification model 
( x → y ) and an AutoEncoder (AE) to encode the input (x) into an bottleneck embedding (z) 
and then decode it to reconstruct x̃ . Conjoint training allows the DNN to optimize a com-
pound loss function that minimizes both the classification and reconstruction errors. Dur-
ing the test phase, the reconstruction error magnitude between err(x, x̃) = ||x − x̃|| dictates 
if the input x is indeed from the predicted class ŷ or an OOD sample.

Class Conditional AutoEncoder (C2AE) (Oza and Patel 2019), similarly to CROSR, 
uses the reconstruction error of the input ( ||x − x̃|| ) from an AE and EVT modeling to 
determine a threshold in order to discern between KKC and UUC samples. Following the 
same trend of thresholding a certain point in the density function of the reconstruction 
error from the inputs, Conditional Gaussian Distribution Learning (CGDL) (Sun et  al. 

1  https://​tiny-​image​net.​herok​uapp.​com/.

https://tiny-imagenet.herokuapp.com/
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2020) uses a Variational AutoEncoder (VAE) to model the bottleneck representation of 
the input images according to a vector of gaussian means � and standard deviations � in 
a lower-dimensional high semantic-level space. This modeling allows CGDL to unsu-
pervisedly discriminate between KKCs and UUCs by thresholding the likelihood of the 
embedding zi generated from a novel sample xi pertaining to the multivariate gaussians 
N(zi,�k, �

2
k
) , where k represents the predicted class for sample xi.

2.2.1 � Open set semantic segmentation

OpenPixel (da Silva et  al. 2020) is based on patchwise training of classification DNNs 
for image classification (Nogueira et  al. 2016) of RS images. The method builds on top 
of OpenMax (Bendale and Boult 2016) in order to recognize out-of-distribution pixels in 
urban scenarios. However, OpenPixel is highly inefficient during both training and test 
times due to the patchwise training using a customly built CNN.

As we have discussed in the introduction, to the best of our knowledge, the unique 
work in the literature that address the Open Set segmentation problem was proposed by da 
Silva et al. (2020). The authors introduce the concept and proposes two methods based on 
OpenMax (Bendale and Boult 2016) for pixelwise classification. Although promising, the 
approaches proposed in da Silva et al. (2020) have several limitations both in effectiveness 
and efficiency aspects. In this work we have extended the OpenPixel method proposed in 
da Silva et al. (2020) to be feasible in practical situations. We better explain the improve-
ments and adaptations in Sect. 3.1.

As far as the authors are aware, there are no fully convolutional architectures for deep 
Open Set semantic segmentation in neither the remote sensing nor computer vision com-
munities. Section 3 bridges this gap with the proposal of two approaches based on Open-
Max (Bendale and Boult 2016) (Sect.  3.1) and Principal Component likelihood scoring 
(Tipping and Bishop 1999) (Sect. 3.2) in the domain of urban scene segmentation.

3 � Proposed methods

This section details the two proposed methods presented in this work: (1) Open Fully Con-
volutional Network (OpenFCN), a fully convolutional extension of OpenMax (Bendale and 
Boult 2016; da Silva et al. 2020) for dense labeling tasks (Sect. 3.1); and (2) Open Prin-
cipal Component Scoring (OpenPCS), a novel approach that uses feature-level informa-
tion to fit multivariate gaussian distributions to a low-dimensional manifold of the data in 
order to obtain a score based on the data likelihood for identifying failures in recognition 
(Sect. 3.2).

3.1 � OpenFCN

OpenFCN relies on traditional FCN-based architectures, which are normally composed of 
traditional CNN backbones with the inference layers replaced by bilinear interpolation and 
more convolutions. As the dense prediction is treated at training time as a classification 
task, the distinction between OpenFCN and FCN can be seen more clearly during valida-
tion and predicting. A meta-recognition module based on OpenMax (Bendale and Boult 
2016) is added to the prediction procedure of traditional FCNs, as can be seen in Fig. 3.
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Let {X, Y} be a paired set of image pixels and semantic labels from a dataset containing C 
KKCs. A deep model M can be trained in a stochastic manner by feeding samples Xi to a gra-
dient descent optimizer as Kingma et al. (2014) with a loss function as Cross Entropy, given 
by:

This strategy ultimately yields an activation ai ∈ ℝ
C for each pixel i after the last layer. 

Thus, M can be seen as a function ℝ3 → ℝ
C that converts the input space Xi into the prior 

SoftMax prediction �i for sample i. Obtaining the class prediction Ŷpri

i
 can be easily done 

by finding the class with the larger probability in �i across all KKCs. Thus, OpenFCNs 
are trained using the exact same procedure as traditional FCNs for Closed Set semantic 
segmentation. Posteriori predictions Ŷpos are only computed on validation and testing, as 
described in the following paragraphs.

OpenMax ( O ) relaxes the traditional SoftMax requirement that prediction probabilities for 
KKCs must add to 1, introducing an extra class to the posterior prediction Ŷpos to the predic-
tion set for X. The function O(X, Y ,M) is, therefore, able to reweight the SoftMax predic-
tions, aggregating the probability of misclassifications due to UUCs. Following the protocol 
of OpenMax (Bendale and Boult 2016), during OpenFCN’s validation procedure each KKC 
ck, k ∈ {0, 1,… ,C − 1} yields one Weibull distribution Wk . Wk is fit to the deviations from 
the mean �k of a(L5) according to some distance (e.g. euclidean, cosine, hybrid distances). 
Averages �k are computed in the validation set according only to the correctly classified pixels 
of class ck.

Finally, in order to identify Out-of-Distribution (OOD) samples, quantiles from the Cumu-
lative Distribution Function (CDF) for Wk are computed, with all pixels in the set Ŷpri pre-
dicted to be from ck and with less confidence than Tk being attributed to be from a UUC. Thus, 
the posterior OpenMax prediction Ŷpos

i
 for a specific pixel Xi is given by:

(1)LCE(Y , Ŷ
pri) = −Y log (Ŷpri) − (1 − Y) log (1 − Ŷpri)

Fig. 3   OpenFCN scheme for Open Set Semantic Segmentation. During training, OpenFCN behaves like the 
traditional Closed Set FCN, with only Known Known Classes (KKCs) being fed to a supervised loss, such 
as Cross Entropy. OpenFCN differs from FCN only during validation and testing, when OpenMax is com-
puted and the probabilities are thresholded in order to predict Unknown Unknown Classes (UUCs)
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where l is the output layer in a DNN and cunk is the identifier for the UUC in the Open Set 
scenario. This scheme is shown in Fig. 4.

Dense labeling tasks (e.g. instance/semantic segmentation or detection) inherently 
have higher dimensional outputs than sparse labeling tasks (e.g. classification or sin-
gle-target regression). Dense predictions also present their particular set of difficul-
ties, including how to handle boundaries between adjacent objects. Early in our experi-
ments, we have seen a large number of border artifacts in OpenFCN predictions. As 
depicted in Fig. 5, adjacent areas between objects with distinct classes naturally yield 
class predictions with smaller certainties than the central pixels of these objects, result-
ing in warped Weibull distributions. This happens because the last layer in the network 
tries to model directly the label space distribution, retaining little-to-no information 

(2)Ŷ
pos

i
=

{
ck, if max(a

(l)

i
) ≥ Tk

cunk, if max(a
(l)

i
) < Tk,

Imp. Surfaces
Building
Low Vegetation
Tree
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Legend
/
/
/
/
/

Fig. 4   OpenFCN’s generative modeling for detecting UUC samples. A Weibull model Wc for KKC c is 
fit using the last layer’s activations ( a(L5) ) from correctly classified samples of this class in the training set. 
According to the CDF for each class’ Weibull distribution, a threshold Tc is set and samples that do not 
reach this threshold are classified as pertaining from a UUC​
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Fig. 5   Depiction of OpenFCN’s prediction confidence degradation on object boundaries due to the use of 
information close to the label space. SoftMax and OpenMax probabilities on dense labeling tasks are natu-
rally lower on boundary regions between objects from distinct classes
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about the original input. Hence, activations from later layers in the network are more 
affected by object boundary uncertainties.

In order to mitigate this limitation of OpenFCNs in dense labeling tasks, we propose 
a completely novel method that is able to fuse information from low and high semantic 
level information into one single model. This method will be presented in Sect. 3.2.

3.2 � OpenPCS

OpenPCS works similarly to CGDL (Sun et al. 2020), but with three important differ-
ences: (1) we fit gaussian priors using not only the input images X, but also the inter-
mediary activations (e.g. a(L3) , a(L4) , a(L5) , etc); (2) we use a PCA instead of a VAE; and 
(3) the training is purely supervised and the low dimensional gaussians are fitted only 
during the validation phase, and not conjointly with the training, as CGDL. This was all 
done for simplicity and aiming to ease computational complexity, as open set semantic 
segmentation is a very recent field of research.

It is well known that the deeper a certain layer l is placed in a DNN, the closer to 
the label space the activation features a(l) are (Shwartz-Ziv and Tishby 2017). In fact, 
Shwartz-Ziv and Tishby (2017) argue that any supervised DNN can be seen as a Markov 
chain of sequential tensorial representations that gradually morph the information pro-
cessed by the network from the input space (in the input layer) to the label space (in the 
output layer). Thus, by using only the last layer’s activations to fit Weibull distributions 
to each KKC, OpenFCNs—and, by extension, OpenMax (Bendale and Boult 2016)—
limit themselves to work with information close to the label space.

Unlike OpenFCN, OpenPCS takes into account feature maps from earlier layers, 
which encode information closer to the input space, and combine them with activa-
tions from the last layers, fusing low and high semantic level information. This can be 
seen in Figs. 6 and 7 in the form of the yellow columns shown in the lower part of the 
image. Each output pixel in Ŷpri gets a correspondent activation vector ( a∗ ) made by the 

Fig. 6   OpenPCS general schematics. Subsequent activations ( a(L1) , a(L2) , ..., a(L4) ) from an FCN with a cer-
tain CNN backbone (as in Fig. 2) is shown. Activations from the last layers (e.g. a(L5) , a(L4) and a(L3) , in this 
case) are concatenated to form column vectors for each predicted output pixel in Ŷpri . The prior prediction 
Ŷpri is then processed according to the scheme shown in Fig. 7 using a generative model G in order to detect 
OOD pixels and, thus, classify them as unknowns
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concatenation of earlier layer activations for the corresponding prediction map region 
in the channel axis. As earlier layers ( a(L4) and a(L3) ) have lower spatial resolution due 
to the network’s bottleneck, the activations from these layers are upsampled where the 
↑ function is shown in order to match the dimensions of the input image and output 
prediction. In the example shown in Fig. 6, a∗ = (a(L5), ↑2 a(L4), ↑4 a(L3)) , so, for instance, 
if a(L5) ∈ ℝ

4×MN , ↑2 a(L4) ∈ ℝ
8×MN and ↑4 a(L3) ∈ ℝ

16×MN , then a∗ has dimensionality 
28 ×MN . The concatenated feature vector for each input/output pixel of index i in this 
example would be, therefore, a∗

i
∈ ℝ

(28).
Concatenating activations from multiple layers into a∗ yields high dimensionality fea-

ture vectors for each pixel, as modern CNNs/FCNs easily output hundreds or thousands of 
activation channels from each layer. The large redundancy found in activation maps from 
convolutional layers (Srivastava et  al. 2015; Huang et  al. 2017) should also render a∗ to 
be highly redundant. OpenPCS mitigates both problems by computing a lower dimension 
manifold alow of each pixel’s activation with Principal Component Analysis (PCA) pre-
viously to fitting a generative model ( G ), as shown in Fig.  7. This approach grants two 
desirable properties to OpenPCS: (1) faster inference time during testing, as PCA imple-
mentations can be highly parallelized via vectorial operations and low-dimensional gauss-
ian likelihood scoring can be computed in a fast manner; and (2) PCA feature selection 
guarantees that only the most important activation channels are used to compute a scoring 
function to detect OOD samples and, consequently, UUCs.

3.2.1 � Open set scoring with principal components

Besides being purely a tensorial operation used for dimensionality reduction, PCA can be 
seen as a probability density estimator with gaussian priors. As described by Tipping and 
Bishop (1999), this allows PCA to be used as a generative model for novelty detection. In 
other words, the low dimensional Principal Components generated by PCA using a mul-
tivariate gaussian prior can yield likelihoods that allow for OOD recognition in new data.

PCA reduces dimensionality by finding latent variables composed of combinations 
of features in the original input space such that the reconstruction error when returning 
to this original space is minimized. This operation works by computing eigenvalues ( � ) 
and eigenvectors (v) of a covariance matrix A (computed, in this work, using the Singular 
Value Decomposition on the input data). Those values can be calculated using the equation 

Imp. Surfaces
Building
Low Vegetation
Tree
Unknown

Legend

Fig. 7   Graphical scheme for the generative modeling in OpenPCS. In contrast to OpenFCN’s Weibull fit-
ting, OpenPCS uses a gaussian modeling in a low-dimensional representation alow of the activations a∗ . The 
Principal Components for each pixel are computed according to the concatenation of activations a∗ from 
multiple layers (e.g. a(L3) , a(L4) , a(L5) , etc) for the corresponding region of each specific pixel. One multivari-
ate gaussian is fit for each KKC and thresholds defined according to likelihoods from these models are used 
in order to identify OOD pixels
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Av = �v . In the PCA procedure, the eigenvalues represent how impacting their correspond-
ent eigenvector direction is to the data variability. Since reconstructions provided by PCA 
emphasize variation, in order to perform dimensionality reduction, the standard procedure 
is to project your data into an orthogonal basis composed by the eigenvectors that have the 
biggest correspondent eigenvalues, i.o.w., a subspace with the highest variance possible.

Exemplifying the application of PCA in OpenPCS, first we compute a covariance 
matrix using feature vector a∗ – that is, a concatenation of activations from different layers 
in a DNN for a specific set of pixels. After that, we calculate the eigenvalues and eigenvec-
tors of this matrix and select the set of low eigenvectors ( vlow ) that have the correspondent 
low largest eigenvalues ( �low ). Finally, we use those eigenvectors as a basis and project our 
input vectors ( a∗ ) on it, resulting in alow = a∗ ⋅ vlow.

3.2.2 � OpenIPCS

OpenPCS is highly memory intensive, as fitting nKKC PCA models using millions of pixels with 
feature vectors in the scale of hundreds or thousands of bins requires all this data to be stored 
in RAM. In practice, for training the traditional OpenPCS we used a subsample of randomly 
selected patches to fit the models using a reasonable amount of memory. Empirically, we found 
that 150 patches with 224 × 224 pixels each resulted in an acceptable trade-off between mem-
ory and enough training data for the computation of Principal Components for each class. Even 
with this approach, OpenPCS required between 20 and 30 GB of memory, depending on the 
dimensionality of the feature vectors a∗ . In addition, PCA models trained using subrepresented 
classes in the imbalanced datasets (e.g. Cars) did not fit correctly due to a low number of cor-
rectly classified samples used for training the generative model. Ultimately, OpenPCS for large 
and highly imbalanced datasets can result in underperformance on the task of UUC identifica-
tion due to the subsampling required by the large memory usage of the method.

In an effort to minimize this problem, in addition to the traditional OpenPCS we also 
evaluate an Incremental PCA (IPCA) for generative modeling and likelihood scoring. The 
full OSR segmentation methodology will be henceforth referred to as OpenIPCA. In con-
trast to the traditional offline training of the standard PCA, IPCA allows for mini-batch 
online training, which is highly useful for correctly computing the Principal Components 
in large datasets. OpenIPCA also allows for the model to be further updated in an efficient 
manner whenever new data might arise, not requiring a full retraining of the standard PCAs 
from scratch, but instead updating the IPCA model by feeding newly acquired patches. We 
emphasize that, apart from the incremental/online training that allows all the training data-
set to be used in the computation of the Principal Components, all other aspects of the 
implementation of OpenIPCS were identical to the standard OpenPCS.

4 � Experimental setup

This section describes the experimental setup for the evaluation of OpenFCN against open 
and Closed Set baselines. In order to encourage reproducibility, we provide details regard-
ing the datasets and evaluation protocol (Sect. 4.1), fully convolutional architectures and 
baselines (Sect. 4.2). In addition, we are publicizing the code for OpenFCN, OpenPCS and 
OpenIPCS in this project’s webpage2 in a conscious effort to encourage reproducibility of 

2  http://​patreo.​dcc.​ufmg.​br/​2020/​03/​20/​openf​cn/.

http://patreo.dcc.ufmg.br/2020/03/20/openfcn/
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our results and follow-up research on OSR segmentation. OpenFCN’s Weibull fitting and 
distance computation was based on libMR3 and OpenPCS’ Principal Components and like-
lihood scoring were computed using the scikit-learn4 library.

4.1 � Datasets and evaluation protocol

In order to validate the effectiveness of OpenFCN and OpenPCS on RS image segmenta-
tion, we used two urban scene 2D semantic labeling datasets from the International Society 
for Photogrammetry and Remote Sensing (ISPRS) with pixel-level labeling: Vaihingen5 
and Potsdam.6 Vaihingen presents a spatial resolution of 5 cm/pixel with patches ranging 
from 2000–2500 pixels in each axis and Potsdam has 9 cm/pixel samples with 6000 × 6000 
patches. Both datasets contain IR-R-G-B spectral channels paired with semantic maps 
divided into 6 KKCs: impervious surfaces, buildings, low vegetation, high vegetation, cars 
and miscellaneous; and 1 KUC: segmentation boundaries between objects.

The data also allows for 3D information to be incorporated into the models via Dig-
ital Surface Model (DSM) images, which is also made available in its normalized form 
(nDSM). In order to follow standard procedures in the RS literature (Sherrah 2016; Aude-
bert et al. 2016; da Silva et al. 2020), we ignored the blue channel in our evaluation, lim-
iting the experiments to the IR-R-G channels, in addition to the nDSM data, which was 
simply added as another channel to the inputs. Aiming to ease the computation complexity 
of our experiments, we also ignored the miscellaneous class, as it contains a rather small 
number of samples mainly on Vaihingen. For both datasets we used the standard procedure 
in the literature of training with most patches, while separating some specific patches for 
testing: 11, 15, 28, 30 and 34 for Vaihingen; and 2_11, 2_12, 4_10, 5_11, 6_7, 7_8 and 
7_10 in the case of Potsdam.

Additionally to Vaihingen and Potsdam, we conducted experiments on the dataset of the 
2018 IEEE GRSS Data Fusion Challenge7, from now on referred to as Houston dataset. 
Like Vaihingen and Potsdam, Houston dataset contains RGB and DSM images with pixel 
resolutions of 5 cm and 50 cm, respectively. These previously discussed bands are paired 
with 48 hyperspectral bands in a 1 m resolution in the Houston dataset. For consistency 
with the experimental setups in Vaihingen and Potsdam datasets, we employed only the 
RGB and DSM bands in Houston. In order to match the differing RGB and DSM bands in 
Houston, we simply resize the RGB band to the lower resolution of the DSM using bilinear 
interpolation. While this is not the best use of the high resolution RGB information, the 
goal of this work is not to achieve state-of-the-art segmentation through some clever multi-
scale data fusion scheme, but instead to use the available data for testing OSR in segmenta-
tion scenarios.

Compared to Vaihingen and Potsdam, Houston allows for a stress test of the open set 
segmentation methods in a scenario with a considerably larger amount of known classes: 
unclassified, healthy grass, stressed grass, artificial turf, evergreen trees, deciduous trees, 
bare earth, water, residential buildings, non-residential buildings, roads, sidewalks, 

7  https://​ieee-​datap​ort.​org/​open-​access/​2018-​ieee-​grss-​data-​fusion-​chall​enge-%​E2%​80%​93-​fusion-​multi​
spect​ral-​lidar-​and-​hyper​spect​ral-​data.

4  https://​scikit-​learn.​org/​stable/.
5  http://​www2.​isprs.​org/​commi​ssions/​comm3/​wg4/​2d-​sem-​label-​vaihi​ngen.​html.
6  http://​www2.​isprs.​org/​commi​ssions/​comm3/​wg4/​2d-​sem-​label-​potsd​am.​html.

3  https://​github.​com/​Vastl​ab/​libMR.

https://ieee-dataport.org/open-access/2018-ieee-grss-data-fusion-challenge-%E2%80%93-fusion-multispectral-lidar-and-hyperspectral-data
https://ieee-dataport.org/open-access/2018-ieee-grss-data-fusion-challenge-%E2%80%93-fusion-multispectral-lidar-and-hyperspectral-data
https://scikit-learn.org/stable/
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
https://github.com/Vastlab/libMR
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crosswalks, major thoroughfares, highways, railways, paved parking lots, unpaved parking 
lots, cars, trains, and stadium seats. Among these classes, we explicitly ignore three ones 
in all experiments during both training and evaluation: unclassified, stadium seats, and 
water. The unclassified class is closer to a Known Unknown Class (KUC) than to a KKC, 
even containing unlabeled samples from other KKCs (e.g. cars and buildings) that were not 
labeled; while the latter two classes were removed due to extreme imbalance in the training 
set, making their samples unrepresentative for both the closed and open set models without 
the hyperspectral bands. Similarly to Vaihingen/Potsdam, experiments on Houston are con-
ducted using the standard split between train and test of this dataset.

In order to simulate the Open Set environments on the Closed Set RS datasets, we 
employed a Leave-One-Class-Out (LOCO) protocol. LOCO works by selecting one class 
as UUC and ignoring its samples during training as shown in Fig. 8. This protocol allows 
for verifying both the overall performances of the segmentation architectures and class-by-
class metrics, as there is a large class imbalance mainly when comparing classes as imper-
vious surfaces and cars in the datasets. In order to not take into account the samples from 
the UUCs in each experiment, we only compute and backpropagate the loss according to 
the labels of the KKCs, with UUC pixels in the ground truths being skipped. This scheme 
guarantees that no information about the UUCs is fed to the model during the training pro-
cedure. Additionally, we test groupings semantically similar classes (e.g. vegetation, build-
ings, vehicles) as UUCs in experiments on Vaihingen, Potsdam and Houston.

One should notice that all samples in the data used in our experiments pertains to 
Closed Set Semantic Segmentation datasets, which allows for an objective evaluation of 
the effect of OSR segmentation on well-known classification metrics. Aiming to capture all 
nuances of training and testing Open Set scenarios, we propose a new standard set of test 
metrics that accounts for KKCs and UUCs, while also capturing the overall performance 
over all known and unknown classes. In order to evaluate the impact of adding the meta-
recognition step to the inference procedure of KKCs, we computed the accuracy for known 
classes ( AccK ). The main metric adopted by da Silva et al. (2020) for evaluating the per-
formance of OSR segmentation on UUCs is the binary accuracy between KKCs and UUCs 
( AccU ), as in the case of Anomaly Detection. However, AccU is artificially inflated due to 
the large imbalance between the number of pixels from KKCs and UUC in most cases. 
We solved this by adding the precision of unknown detection ( PreU ) to the evaluation in 

High

Unknown

Legend

Fig. 8   LOCO procedure for Open Set evaluation. On the left one can see a mini-patch chosen from one of 
the larger patches that compose sample 11 of Vaihingen. On the right we present the Closed Set labels and 
different KKCs marked as Unknown using the LOCO protocol
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order to observe the trade-off in performance in the binary meta-recognition task. The 
Kappa ( � ) metric was used to evaluate the overall performance in both KKCs and UUC 
of the algorithms, as it is a common metric for the evaluation of semantic segmentation 
in remote sensing. All of the metrics above are, however, threshold dependent, making it 
hard to compare methods with distinct threshold ranges. As the thresholds do not represent 
equal statistical entities in SoftMax Thresholding, OpenFCN and OpenPCS, we define the 
thresholds for the methods based on preset values of True Positive Rate (TPR). This evalu-
ation protocol also has the benefit of yielding information about the recall of the methods, 
as TPR and recall are equivalent in this case.

In order to evaluate the methods in a threshold-independent fashion, we complement 
our analysis with the Receiver Operating Characteristic (ROC) curve—which evaluates the 
whole range of thresholds for the different methods on a TPR vs. False Positive Rate (FPR) 
2D plot—and its corresponding Area Under Curve (AUC). The ROC/AUC is a suitable 
measure since we want to evaluate the performance of the proposed methods and baselines 
across the whole threshold spectrum. Note that different choices of threshold values may 
result in an imbalance in the performance over closed and open classes, possibly skewing 
the results to one side or another. Thus, we believe that by evaluating the ROC/AUC one 
can assess if one algorithm is better than another for all possible thresholds.

Due to the large spatial resolution of Vaihingen and Potsdam patches, we sliced them 
into 224 × 224 mini-patches for training, in order to fit ImageNet’s (Deng et al. 2009) tra-
ditional patch size, which is the most commonly expected input size for the CNNs used as 
backbones in our experiments. During training, we used data augmentation based on ran-
dom cropping for patch selection, random flips in the horizontal and vertical dimensions, 
and random rotations by multiples of 90 degrees. In order to solve inconsistencies due to 
lack of context and to compensate for patch border uncertainties, we employed overlapping 
patches of 224 × 224 pixels during testing. We explicit that this procedure considerably 
increased the computational budget of our experiments mainly in the Potsdam dataset for 
OpenFCN due to inefficiencies and non-vectorized operations in libMR. A more thorough 
evaluation of time complexity can be found in Sect. 5.2.4.

4.2 � Fully convolutional architectures and baselines

We compared several distinct fully convolutional architectures for OSR semantic segmen-
tation, including five distinct CNN backbones: VGG-19 (Simonyan and Zisserman 2014), 
ResNet-50 (He et al. 2016), Wide ResNet-50-2 (Zagoruyko and Komodakis 2016) (WRN-
50), ResNeXt-50-32x4d (Xie et al. 2017) (ResNeXt-50) and DenseNet-121 (Huang et al. 
2017). All FCN implementations were based on the CNN source codes from torchvision8.

In order to spare memory and computational resources, only a subset of layers in each 
FCN architecture is fed to the generative model. As the last convolutional layers after the 
FCN bilinear interpolation already possess high semantic level information about the pre-
diction (classes), we added earlier layers to a∗ aiming to insert more information about the 
raw data (pixels). Table 1 compiles all layers concatenated in a∗ for pixel open set recogni-
tion, as well as information about which layers were fed via skip connections to the classifi-
cation layers in order to improve the spatial resolution of FCN predictions.

8  https://​pytor​ch.​org/​docs/​stable/​torch​vision/​models.​html.

https://pytorch.org/docs/stable/torchvision/models.html
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Based on the methodology of OpenMax (Bendale and Boult 2016), we also compare 
OpenFCN and OpenPCS with traditional SoftMax followed by thresholding. SoftMax 
Thresholding ( SoftMaxT  ) follows the premise that least certain network predictions may 
be motivated by outlier classes seen in test time. In addition to these Open Set approaches, 
we evaluate the proposed methods in comparison with traditional Closed Set fully convolu-
tional architectures for dense labeling using the LOCO protocol. Closed Set FCNs wrongly 
classify UUCs by design, forcing the pixel to be segmented according to the higher prob-
ability prediction among KKCs. One should notice that OpenPCS, OpenFCN, SoftMaxT  
and Closed Set FCNs were evaluated according to the same pretrained DNNs, differing 
only on test time. This protocol allows for direct comparisons in objective metrics disre-
garding performance variability due to the random nature of gradient descent optimization.

4.3 � Cutoff values for OOD detection

All methods investigated in our experimental setup require a cutoff value Tk to delineate 
the boundary between KKC pixels from a class k and UUC pixels. Aiming to mimic a 
true OSR task, these thresholds were defined empirically according to the KKCs available 
during training. That is, no information about the UUCs should be fed to the process of 
choosing cutoff values from the network’s confidence—in the case of SoftMaxT  and Open-
FCN—and to the multivariate gaussian likelihoods, for OpenPCS and OpenIPCS.

Table 1   Layers used in the skip connections of all FCN architectures and passed to the generative gaussian 
modeling of OpenPCS/OpenIPCS

conv i  layers indicate the index i of convolutional layer on VGG-19, while block j represent the jth residual 
or densely connected block on DenseNet and ResNet variations. At last, classifierk layers indicate that the 
kth layer after the FCN bilinear interpolation was fed to the generative model

Backbone Layers fed to skip connection Layers fed 
to generative 
model

WRN-50 (Zagoruyko and Komodakis 2016) Block1 Block2

Block4 Classifier1

– Classifier2

DenseNet-121 (Huang et al. 2017) Block2 Block2

Block4 Classifier1

– Classifier2

ResNeXt-50 (Xie et al. 2017) Block1 Block2

Block4 Classifier1

– Classifier2

ResNet-50 (He et al. 2016) Block1 Block2

Block4 Classifier1

– Classifier2

VGG-19 (Simonyan and Zisserman 2014) conv2 conv3

conv5 Classifier1

– Classifier2
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OpenFCN and SoftMaxT  follow the methodology of OpenMax (Bendale and Boult 
2016), with the cutoffs being cross-validated experimentally. OpenPixel (da Silva et  al. 
2020) also performed this analysis across all UUCs in Vaihingen and Potsdam, finding 0.7 
to be a suitable value for thresholding between KKCs and UUCs. In other words, all pixels 
predicted to be from a certain class with confidence smaller than 0.7 should be considered 
as OOD, while predictions with confidence of 0.7 or above keep their predicted KKC.

The same cutoff idea is employed in OpenPCS and OpenIPCS, albeit with a crucial 
distinction: while all SoftMaxT  and OpenMax predictions are bounded to the interval [0, 1] , 
gaussian likelihood ranges vary depending on the number of Principal Components of 
PCA. Thus, in order to consistently compute cutoff values that work on any architecture 
and with a distinct number of Principal Components, we define threshold values based on 
TPR quantiles. One last remark about OpenIPCS is that, even if iterative/online training 
allows it to be fitted on the whole training set, we still used random patch subsampling in 
order to shorten the training time for the generative part of OpenIPCS.

Additionally to using the log-likelihoods for cutoff in the case of OpenPCS and OpenI-
PCS, we also observed in our exploratory experiments that the reconstruction error of the 
encoded a∗ tensors produces similar results. Thus, an alternative with considerably lower 
computational cost to the score-based thresholding can be to perform the thresholding on 
the reconstruction error, whilst keeping the rest of the pipeline as is. This early finding is, 
in fact, aligned to other recent works in the OSR literature (Oza and Patel 2019; Yoshihashi 
et al. 2019). We highlight that the experiments that support this claim had a limited and 
exploratory nature and that a much more thorough assessment should be conducted to vali-
date this hypothesis. Figure 9 contains the Log-likelihood distributions overall classes for 
the models in which the UUC were Impervious Surfaces and Low Vegetation, respectively. 
Those models used a fcndensenet121 as a backbone on the Vaihingen dataset. In (a), we 
can see a clear separation between the distributions of KKC and UUC, unlike (b), in which 
most of them overlap each other. It is important to mention that for acceptable discrimina-
tion between KKC and UUC, it is desirable that their Log-likelihood distributions are as 
separate as possible.

(a) (b)

Fig. 9   Log-likelihoods for two scenarios in open set segmentation with distinct UUCs: Impervious Surfaces 
(a) and Low Vegetation (b). A much greater separation between the likelihoods of KKCs ( �KKC ) and the 
likelihoods of the UUCs ( �UUC ) can be seen in (a) than in (b), as the class Impervious Surfaces contains 
considerably less intra-class variability and similarity with other classes than Low Vegetation in the data-
sets described in Sect. 4.1. One should notice that worse separations between these distributions of likeli-
hoods results in worse overall OSR performance
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5 � Results and discussion

In this section we present and discuss the obtained results. We design our experimental 
evaluation in order to cover all possible aspects desirable to know in an OSR task. First, an 
analysis is performed in Sect. 5.1 in order to define the most suitable architectures for the 
proposed approaches. This section contains both overall and per-class threshold-independ-
ent analysis (AUC-ROC). Section 5.2 compares the proposed methods with the baseline 
in terms of quantitative metrics, qualitative segmentation maps (Sect. 5.2.3), and runtime 
performance (Sect. 5.2.4). At last, Sect. 5.3 presents our analysis of scenarios with a larger 
proportion of UUCs to KKCs, evaluating the performance of the proposed methods and 
baselines in settings with greater openness (Scheirer et al. 2012).

Note that, for the sake of simplicity and clarity, only the most relevant results were 
reported in this Section. For a full report of the results, please, check the supplementary 
material on this project’s webpage linked in Sect. 4.

5.1 � Architecture analysis

In this Section, we analyze the networks in order to define the most suitable architec-
tures for the proposed techniques. To perform this evaluation, we employed the AUC, a 
threshold-independent performance measurement that allows comparisons between meth-
ods without resorting to (potentially) arbitrary thresholds. Furthermore, it is important to 
emphasize that we performed this analysis by using only the Vaihingen dataset. This is due 
to the fact that the Potsdam dataset is very similar to Vaihingen and, therefore, analysis and 
decisions made over the latter dataset are also applicable to the former one.

Table 2   Average AUC values in the LOCO protocol for each evaluated FCN backbone in the Vaihingen 
dataset

Bold values indicate the best overall results including all methods

Backbone SoftMax
T OpenFCN OpenPCS

WRN-50 (Zagoruyko and Komodakis 2016) 0.68 ± 0.09 0.69 ± 0.10 0.82 ± 0.12
DenseNet-121 (Huang et al. 2017) 0.68 ± 0.08 0.68 ± 0.09 0.79 ± 0.12
ResNeXt-50 (Xie et al. 2017) 0.64 ± 0.06 0.65 ± 0.04 0.72 ± 0.12
ResNet-50 (He et al. 2016) 0.69 ± 0.12 0.71 ± 0.12 0.69 ± 0.16
VGG-19 (Simonyan and Zisserman 2014) 0.67 ± 0.06 0.68 ± 0.07 0.77 ± 0.12

Table 3   Average AUC values in the LOCO protocol for DenseNet-121 and WRN-50 backbones in the 
Potsdam dataset

Bold values indicate the best overall results including all methods

Backbone SoftMaxT OpenFCN OpenPCS OpenIPCS

WRN 0.62 ± 0.06 0.62 ± 0.07 0.73 ± 0.13 0.73 ± 0.13
DenseNet 0.61 ± 0.11 0.62 ± 0.12 0.66 ± 0.25 0.71 ± 0.23
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Table  2 presents the average AUC results over all runs of the LOCO protocol. 
For SoftMaxT  and OpenFCN, the ResNet-50 architecture (He et  al. 2016) produced 
the best outcomes, followed closely by WRN-50 (Zagoruyko and Komodakis 2016) 
and DenseNet-121 (Huang et  al. 2017). OpenPCS showed better results with WRN-
50 (Zagoruyko and Komodakis 2016), followed closely by DenseNet-121 (Huang 
et al. 2017) and VGG (Simonyan and Zisserman 2014). Since WRN (Zagoruyko and 
Komodakis 2016) and DenseNet (Huang et  al. 2017) were the most stable networks, 
producing good results in all approaches, they were selected and used in further exper-
iments shown in the following sections.

Based on the best results for Vaihingen, we also report the threshold independ-
ent average AUC analysis over all UUCs on Potsdam. Table  3 shows the results for 
DenseNet-121 and WRN-50 on the considerably larger Potsdam dataset, wherein 
extensive architectural comparisons were not feasible.

One can easily see that in both tables OpenPCS and OpenIPCS present better 
AUC results than OpenFCN and SoftMaxT  , while the distinction between OpenFCN 
and SoftMaxT  is often rather small or nonexistent. These evaluations are averages 
and standard deviations computed across all classes in the LOCO protocol, therefore, 
apart from a raw evaluation of the overall performance of each method, the previously 
mentioned.

Table 4   AUC values for each UUC of the Vaihingen dataset

Bold values indicate the best results when comparing SoftMax
T  , OpenFCN and OpenPCS for each network 

and UUC. Results followed by † represent a significant increase in performance when using OpenPCS com-
pared to both OpenFCN and SoftMax

T  . The significance of these results was assessed using a paired one-
tailed t-Student hypothesis test with p = 0.05

Backbone Methods UUC: Imp. 
Surf.

UUC: Building UUC: Low 
Veg.

UUC: High 
Veg.

UUC: Car

DenseNet SoftMaxT .78 ± .03 .63 ± .05 .73 ± .05 .67 ± .06 .58 ± .06
OpenFCN .81 ± .03 .64 ± .05 .72 ± .05 .66 ± .06 .58 ± .05
OpenPCS .84 ± .03 † .94 ± .01 † .70 ± .08 .81 ± .07 † .65 ± .06 †

WRN SoftMaxT .80 ± .03 .64 ± .04 .75 ± .05 .63 ± .06 .58 ± .05
OpenFCN .83 ± .03 .67 ± .03 .74 ± .05 .62 ± .06 .58 ± .05
OpenPCS .87 ± .03 † .94 ± .02 † .77 ± .04 .63 ± .09 .87 ± .03 †

ResNeXt SoftMaxT .66 ± .06 .55 ± .07 .71 ± .07 .66 ± .04 .65 ± .04
OpenFCN .67 ± .06 .59 ± .05 .71 ± .07 .64 ± .03 .63 ± .04
OpenPCS .88 ± .03 † .81 ± .07 † .58 ± .08 .69 ± .09 .65 ± .05

ResNet SoftMaxT .83 ± .03 .62 ± .06 .81 ± .05 .60 ± .05 .60 ± .05
OpenFCN .86 ± .02 .64 ± .05 .80 ± .05 .61 ± .05 .62 ± .05
OpenPCS .75 ± .03 .92 ± .02 † .65 ± .07 .50 ± .07 .63 ± .05

VGG SoftMaxT .72 ± .02 .59 ± .04 .74 ± .04 .66 ± .05 .66 ± .05
OpenFCN .74 ± .03 .59 ± .04 .74 ± .03 .65 ± .05 .65 ± .04
OpenPCS .82 ± .04 † .90 ± .02 † .71 ± .06 .60 ± .07 .81 ± .04 †
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5.2 � Baseline comparison

Based on the analysis performed in previous sections, we have conducted several 
experiments to investigate the effectiveness of the proposed methods using the most 
promising architectures: WRN-50 and DenseNet-121. We further investigate the per-
formance on both KKCs and UUCs of the proposed methods (OpenFCN and Open-
PCS), and baseline ( SoftMaxT  ) using the threshold-dependent metrics described in 
Sect.  4.1. This section also contains qualitative segmentation predictions taken from 
the experiments.

5.2.1 � Per‑class analysis

Table 4 presents the results, in terms of AUC per UUC, for the Vaihingen dataset. As can 
be seen, the OpenPCS obtained most of the best results when evaluating the UUCs and net-
works independently (bold values). When considering all the networks together and only 
the UUCs independently (values with † ), OpenPCS produced the best outcomes for four 
UUCs, while OpenFCN yielded the best result for one UUC.

Analysis of Tables 4 and 5 reveal that OpenPCS excels in almost all architectures and 
UUCs in the LOCO protocol. The overall best results for four out of five UUCs in the 
LOCO protocol (Impervious Surfaces, Building, High Vegetation and Car) pertain to 
OpenPCS. Most AUCs for OpenPCS in these UUCs achieve values larger than 0.80, peak-
ing at 0.94 in the class Building. It is also notable that OpenPCS achieved a significant 
increase in AUC performance for most of the cases. Not coincidentally, these classes are 
also the most semantically and visually distinct from the other ones. More detailed insights 
regarding the nature of the superiority of OpenPCS over the other methods will be dis-
cussed further in the next sections.

The outlier in this pattern is the class Low Vegetation, as its samples present a much 
larger intraclass variability than the others, encompassing sidewalks, bushes, grass fields 
in the interior and exterior of buildings, gardens, backyards, some sections of parking 
lots and even train tracks partially covered with vegetation. Due to this higher variation in 

Table 5   AUC values for each UUC of the Potsdam dataset

Bold values indicate the best results when comparing SoftMax
T  , OpenFCN, OpenPCS and OpenIPCS for 

each network and UUC. Results followed by † represent a significant increase in performance when using 
OpenPCS/OpenIPCS compared to both OpenFCN and SoftMax

T  . The significance of these results was 
assessed using a paired one-tailed t-Student hypothesis test with p = 0.05

Backbone Methods UUC: Imp. 
Surf.

UUC: Building UUC: Low 
Veg.

UUC: High 
Veg.

UUC: Car

DenseNet SoftMaxT .66 ± .09 .49 ± .07 .53 ± .13 .64 ± .08 .76 ± .02
OpenFCN .66 ± .09 .50 ± .06 .51 ± .13 .62 ± .07 .80 ± .03
OpenPCS .83 ± .06† .87 ± .13† .28 ± .03 .54 ± .11 .77 ± .04
OpenIPCS .84 ± .07 † .88 ± .14 † .41 ± .07 .54 ± .09 .91 ± .04 †

WRN SoftMaxT .68 ± .06 .53 ± .06 .60 ± .12 .62 ± .07 .66 ± .10
OpenFCN .69 ± .05 .54 ± .05 .58 ± .12 .60 ± .07 .69 ± .09
OpenPCS .66 ± .08 .86 ± .10 † .71 ± .08† .57 ± .10 .86 ± .04 †
OpenIPCS .64 ± .09 .86 ± .10 † .76 ± .07 † .55 ± .10 .83 ± .04†
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samples, the lower-dimensional multivariate gaussian fitting of OpenPCS was not able to 
properly map the whole variation in the data, as was the simple Weibull fitting of Open-
FCN. Thus, SoftMaxT  overcame both proposed methods and achieved a peak AUC of 
0.81 on ResNet-50. Even though the best result in the UUC High Vegetation was achieved 
by OpenPCS, the peak AUC for this class was also 0.81, this time using a DenseNet-121 
backbone. The main visual distinction between High Vegetation and Low Vegetation is not 
in the visible spectrum, though. While textures for most patches of both classes are rather 
similar when taking into account grass fields and bushes for Low Vegetation, the DSM data 
is more visually distinct than the IRRG data, as the peak altitude for tree tops are above the 
mostly plain areas of Low Vegetation. This implies that using the inputs channels (IRRG 
and DSM) coupled with the middle and later activations of the DNNs on the computation 
of PCAs for OpenPCS could have improved the performance of both classes. However, 
more research on this must be done to either confirm or deny this hypothesis.

To better demonstrate the differences in performance between the techniques, Figs. 10 
and  11 present the ROC curves for samples from the Vaihingen and Potsdam datasets, 
respectively. It is important to emphasize that each figure was created using a binary mask 
that separates KKCs from the evaluated UUC. Through Fig. 10, it is possible to observe 
that, in general, OpenPCS produces better results with lower FPRs for the same TPRs. It 
is also possible to visually assess that the detection capabilities of the methods for UUC 
Impervious Surfaces were considerably superior to other classes. The ROCs for Buildings, 

(a) Imp. Surf. (b) Building (c) Low Veg.

(d) High Veg. (e) Car

Fig. 10   ROC curves for SoftMax
T  , OpenFCN and OpenPCS on sample 11 from Vaihingen using a 

DenseNet-121 backbone
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(a) Imp. Surf. (b) Building (c) Low Veg.

(d) High Veg. (e) Car

Fig. 11   ROC curves for SoftMax
T  , OpenFCN, OpenPCS and OpenIPCS on sample 6_7 from Potsdam 

using a WRN-50 backbone

Table 6   Results for different unknown TPR thresholds applied to SoftMax
T  , OpenFCN and OpenPCS from 

an FCN with DenseNet-121 backbone in Vaihingen 

Bold values indicate the best overall AccK , PreU and � results for a certain UUC. “Closed” rows mean 
unknown TPRs of 0.0, which is equivalent to Closed Set segmentation

TPR SoftMaxT OpenFCN OpenPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUC: Impervious Surfaces
Closed .85±.02 .00±.00 .52±.04 .85±.02 .00±.00 .52±.04 .85±.02 .00±.00 .52±.04
0.10 .83±.03 .47±.11 .53±.04 .85±.02 .67±.12 .55±.04 .85±.02 .97±.02 .55±.04
0.30 .79±.03 .48±.10 .56±.02 .81±.03 .56±.11 .58±.02 .85±.03 .91±.07 .61±.03
0.50 .74±.03 .47±.11 .57±.02 .76±.03 .52±.11 .59±.02 .82±.04 .77±.14 .65±.03
0.70 .67±.04 .45±.10 .57±.04 .70±.04 .49±.11 .59±.03 .71±.09 .57±.15 .61±.09
0.90 .54±.05 .41±.09 .51±.06 .58±.04 .43±.10 .54±.05 .38±.06 .35±.08 .35±.06
UUC: Building
Closed .83±.03 .00±.00 .50±.06 .83±.03 .00±.00 .50±.06 .83±.03 .00±.00 .50±.06
0.10 .77±.03 .26±.06 .48±.05 .78±.03 .28±.07 .48±.05 .82±.03 .98±.02 .53±.05
0.30 .70±.03 .32±.06 .47±.04 .71±.03 .32±.06 .47±.04 .82±.03 .96±.02 .59±.05
0.50 .62±.03 .33±.06 .45±.04 .62±.03 .34±.06 .46±.04 .82±.03 .94±.03 .65±.04
0.70 .50±.06 .33±.06 .40±.06 .51±.06 .33±.06 .41±.06 .80±.03 .87±.06 .70±.03
0.90 .30±.13 .30±.06 .26±.13 .29±.15 .30±.06 .25±.14 .71±.04 .64±.07 .68±.03
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High Vegetation and Car in Vaihingen also highlight the superiority of OpenPCS when 
compared to the other approaches.

Figure 11 provides distinct insights, as Potsdam is a much harder dataset than Vaihin-
gen. Figure 11b, e show that OpenPCS and its online/incremental implementation (OpenI-
PCS) behaves dramatically better than both OpenFCN and SoftMaxT  . OpenFCN and 
SoftMaxT  stay mostly close to randomly selecting pixels in the images, which is delineated 
in the figures by the 45 degree dashed line in the plot. For Building and Car, the ROCs 
and AUCs show that SoftMaxT  and OpenFCN achieved worse than random results, while 
OpenPCS and OpenIPCS reached close to or above 0.90 in AUC.

Analysis of the per-class ROCs and Tables reveal that OpenPCS (and its variant OpenI-
PCS) behave considerably better than both SoftMaxT  and OpenFCN in the binary task of 
Pixel Anomaly Detection for most UUCs. One can clearly see the distinction of the dis-
tinct methods in Pixel Anomaly Detection performance between UUCs in Figs. 10 and 11. 
OpenPCS excels by a large margin on some UUCS, especially Building and High Vegeta-
tion on Vaihingen, presenting lower FPR values than OpenFCN and SoftMaxT  by almost 
any TPR threshold in the ROC. The evaluation on the other classes is more nuanced, as 
the plots cross at some points. OpenPCS tends to perform better on the lower end of FPR 
detections, providing the first evidence that OSR using Principal Components lessens the 
effect of UUC segmentation on the KKC classification performance, as smaller FPRs 
indicate that a smaller number of KKC pixels were misclassified as UUCs. This relation 
between UUCs and their distinction in performance on both KKCs and UUCs will further 
explored in the next Section.

5.2.2 � Performance for KKCs and UUCs

OSR tasks are inherently multi-objective, as Open Set algorithms must be able to success-
fully discern UUCs from KKCs, while still being able to correctly classify samples from 
KKCs. Table 6 presents the results, in terms of accuracy for KKCs ( AccK ), Precision for 
UUC ( PreU ), and � , for the Vaihingen dataset using a FCN with DenseNet-121 backbone. 
For simplicity, this table only reports the results for UCCs Impervious Surfaces and Build-
ing. However, detailed results, for the Vaihingen and Potsdam datasets, can be found in 
Appendices A and B.

Through the table, it possible to observe that the comparison of TPRs larger than one—
that is, thresholds that allow for OSR—with their Closed Set counterparts (TPR = 0) using 
� reveals that, in many cases, assuming openness improves object recognition in scenarios 
where full knowledge of the world is not possible. Specifically, for Impervious Surfaces, 
we obtained gains of 0.13 in terms of � (0.52 when considering the Closed Set versus 0.65 
when using OpenPCS with 0.50 TPR). For the UCC Building, the OpenPCS improved � 
from 0.50 (in the Closed set) to 0.70 using 0.70 TPR. These gains mean that, for both 
UUCs, OpenPCS was able to maintain the accuracy of KKCs ( Acck ) while considerably 
increasing the precision of the UUCs ( PreU).

On the other hand, despite also improving (in a smaller magnitude) the results in terms 
of � , SoftMaxT  and OpenFCN were not as effective at preserving the Acck while increasing 
PrecU . This means that pixels that were correctly classified by the original DNNs were cast 
as UUCs by the OSR post-processing resulting in a high FPR.

Aside from these UUCs, similar conclusions can be drawn from other ones, such as 
High Vegetation and Car. Furthermore, similar outcomes were obtained for the Potsdam 
dataset. As aforementioned, a detailed discussion of all obtained results, for the Vaihingen 
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and Potsdam datasets, can be found in Appendices A and B. Overall, the results allow us to 
conclude that OpenPCS is more effective to perform open set semantic segmentation when 
compared to the other approaches. This difference can be better observed in the qualitative 
results presented in Sect. 5.2.3.

5.2.3 � Qualitative analysis

Figures 12 and 13 present some visual examples of the results generated by the FCN 
with DenseNet-121 backbone in the Vaihingen and Potsdam datasets respectively. 
Qualitatively, the effectiveness of OpenPCS to distinguish KKCs from UUCs is even 
clearer. As can be observed, OpenPCS is capable of producing more accurate UUC 
identification for both KKCs and UUCs, when compared to the ground-truth label. On 
the other hand, outcomes generated by the SoftMaxT  and OpenFCN are very similar 
to each other, but not very alike to the ground-truth label, mainly for the UUCs. This 
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Fig. 12   Some visual result samples obtained for the Vaihingen dataset according to distinct UUCs in the 
LOCO protocol and distinct TPR thresholds for SoftMax

T  , OpenFCN and OpenPCS
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corroborates with previous analysis and conclusions about the effectiveness of the 
OpenPCS mainly for discriminating UUCs.

Performing a deep analysis of the qualitative results, we can see that the proposed 
OpenPCS identified the UUC Building almost perfectly, while the SoftMaxT  and Open-
FCN techniques quite confused this UUC with other KCCs using the same threshold 
TPR. This same outcome can be seen for the UUC Car. Although this UCC comprises 
only a tiny percentage of the total amount of pixels and does not contribute a lot in 
terms of � , it was much better identified by the OpenPCS than by other approaches. In 
fact, the above outcomes are repeated for all UUCs, except for the Low Vegetation one, 
which has enormous intra-class variability (with pixels of grass fields, sidewalk-like 
areas and other structures) and, consequently, natural erratic behaviour. For a more 
detailed qualitative analysis, please, check the project’s webpage.

5.2.4 � Runtime performance analysis

One of the most important motivations for proposing OpenPCS was the observation that 
OpenMax did not scale well to dense labeling, being prohibitively expensive when oper-
ating in a pixelwise fashion, while the simple SoftMaxT  performed exponentially faster. 
In order to properly quantify the time differences between SoftMaxT  , OpenFCN and 
OpenPCS, we computed the per-patch runtimes of each method for 224 × 224 patch res-
olution. These results are shown in Fig. 14 for both Vaihingen and Potsdam (Fig. 14a, 
b, respectively) and these same results are also presented in log10 scale (Fig.  14c, d, 
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Fig. 13   Some visual result samples obtained for the Potsdam dataset according to distinct UUCs in the 
LOCO protocol and distinct TPR thresholds for SoftMax
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respectively), as the linear time comparisons severely hampered the visualization of 
SoftMaxT  ’s performance when compared to OpenFCN.

Visual analysis of Fig.  14 reveals the discrepancies between OSR methods, with 
SoftMaxT  inference being the fastest, usually taking between 0.03 and 0.1 s per 224 × 224 
patch. On the opposite side, OpenFCN was observed to be by far the slowest method, with 
runtimes for one single patch in the range between 10 and 20 s. This may be justified by the 
fact that, at each inference, the method needs to sort the predictions (softmax activations) 
for each sample (e.g., for each pixel) in order to multiply them by the correct alpha value 
previously calculated by the OpenMax, then recalibrating the prediction scores. This sam-
ple-wise sorting at each inference, originally proposed in the OpenMax and consequently 
incorporated into the OpenFCN, significantly affects the running time of the algorithm, 
making it highly unsuitable for real-time computer vision applications.

On the faster end of the spectrum between SoftMaxT  and OpenFCN, there were 
OpenPCS and OpenIPCS, with execution times between 0.25 and 0.7 seconds per patch. 
Both the online and offline PCAs used for the inference of UUCs from the proposed 
methods are highly vectorized operations, which allows them to be parallelized into sev-
eral processing cores and be faster even in single-core architectures. While we did not 

(a)

(c)

(b)

(d)

Fig. 14   Per-patch time comparison between the proposed approaches. The time presented in the y-axis is 
shown in seconds for each ( 224 × 224 ) patch across all test patches. The left part of the figure (a, c) shows 
times for Vaihingen, while the rightmost figures (b, d) depict times for Potsdam. Results are also shown 
in linear (a, b) and log10 scale (c, d) in order to show the exponential distinction between execution times 
across SoftMax

T  , OpenFCN and OpenPCS. Confidence intervals for each plot are shown as error bars 
computed with the t-Student distribution on the average execution runtimes for patches over 5 runs of the 
LOCO protocol (one for each class set as UUC) for each backbone
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tune the algorithms for this purpose, OpenPCS’ and OpenIPCS’ runtimes allow for near 
real-time inference on applications as self-driving cars or autonomous drone control. In 
contrast, the original implementation of OpenMax from libMR is not naturally vector-
ized, requiring inferences to be performed linearly on pixels and severely hampering 
OpenFCN’s performance.

5.3 � Experiments with multiple UUCs

In addition to the results shown in Sects. 5.1 and 5.2, we also conducted experiments 
on multiple UUCs aiming to test scenarios with a larger proportion of UUCs to KKCs. 
The current section will be focused on presenting and discussing these experiments 
quantitatively and qualitatively for Vaihingen and Potsdam (Sect. 5.3.1) and for GRSS 
(Sect. 5.3.2).

5.3.1 � Multiple UUCs on vaihingein and potsdam

In order to simplify and speed up the experiments, we split the classes in groups of 
KKCs with considerable semantic similarities, forming the divisions presented in 
Table 7. This table also presents our nomenclature for the multiple UUC experiments, in 
order to more easily refer to them in the text.

While some divisions are clear in purpose (e.g. E(0,1,4) and E(2,3) separate man-made 
constructions from vegetation; and E(0,4) split elements present in streets from the other 
classes), other combinations of UUCs were added to test the proposed methods in more 
diverse environments (e.g. E(0,1) or E(0,2,3) ). All AUC results for the 6 experiments with 
multiple UUCs ( E(0,1) , E(0,4) , E(1,4) , E(2,3) , E(0,1,4) and E(0,2,3) ) in DenseNet-121 and WRN-
50 backbones, as well as the additional metrics AccK , PreU and � for E(0,1) , E(2,3) and 
E(0,1,4) using the DenseNet-121 backbone are shown in Tables 8, 9, 10 and 11. However, 
for the sake of simplicity and objectivity, AccK , PreU and � for E(0,4) , E(1,4) and E(0,2,3) for 
DenseNet-121, as well as the experiments for all threshold-dependent metrics using the 
WRN-50 as a backbone are reported only in Appendix C.

Tables 8 and 9 show a much larger margin between OpenPCS/OpenIPCS and Open-
FCN/SoftMaxT  , indicating that likelihood scoring from principal components is con-
siderably more reliable in OSR Segmentation than both SoftMax Thresholding and 

Table 7   Class divisions in experiments with two and three UUCs among the classes of Vaihingen and 
Potsdam 

These experiments are using the notation E(a,b,…n) , with a, b and n representing the indices of the UUC 
classes in the semantic maps of Vaihingen and Potsdam

Exp. KKCs UUCs

E
(0,1) Low Veg. High Veg. Car Imp. Surf. Building –

E
(0,4) Building Low Veg. High Veg. Imp. Surf. Car –

E
(1,4) Imp. Surf. Low Veg. High Veg. Building Car –

E
(2,3) Imp. Surf. Building Car Low Veg. High Veg. –

E
(0,1,4) Low Veg. High Veg. – Imp. Surf. Building Car

E
(0,2,3) Building Car – Imp. Surf. Low Veg. High Veg.
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OpenMax. Specifically, AUC results show significant improvements in both Vaihin-
gen and Potsdam when using principal components modeling than the baselines for 
almost all experiments. OpenPCS and OpenIPCS showed far superior performance 
to both OpenFCN and SoftMaxT  in the majority of multiple UUC experiments, even 
reaching AUCs greater than 0.9 in many cases, allowing for reliable UUC identifica-
tion in scenarios with larger openness. On Vaihingen five out of six experiments—E(0,1) , 
E(0,4) , E(1,4) and E(0,1)—showed significantly greater performance for OpenPCS, reach-
ing AUCs of 0.91, 0.86, 0.92, 0.92 and 0.86 using the DenseNet-121 backbone, respec-
tively. With ROC curves this close to the left upper corner, one can set the cutoff value 
for TPRs between 0.6 and 0.9 with relatively small FPRs in the range of 0.1–0.2. In 
other words, in scenarios with a high proportion of UUCs to KKCs, the recognition of 
unknown pixels using OpenPCS and OpenIPCS can be done without compromising as 
much the performance of KKCs, which might also be caused by a better modeling of 
the fewer classes by the FCNs. This assessment will be further discussed in the results 
presented in Tables 10 and 11.

Table 10   AccK , PreU and � results for different TPR thresholds applied to SoftMax
T  , OpenFCN and Open-

PCS using a DenseNet-121 backbone in the Vaihingen dataset

Bold values indicate the best overall AccK , PreU and � values for a certain experiment with multiple UUCs. 
“Closed” rows mean unknown TPRs of 0.0, which is equivalent to Closed Set segmentation. This table 
focuses on experiments E(0,1) , E(2,3) and E(0,1,4) , while the complete multiple UUC experiments can be seen 
in Table 17

TPR SoftMaxT OpenFCN OpenPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUCs: Imp. Surf./Building ( E(0,1))
Closed .82±.04 .00±.00 .24±.06 .82±.04 .00±.00 .24±.06 .82±.04 .00±.00 .24±.06
0.10 .76±.04 .51±.07 .24±.06 .78±.04 .57±.08 .25±.06 .82±.04 .79±.39 .28±.06
0.30 .65±.05 .53±.08 .24±.06 .67±.05 .54±.08 .25±.06 .82±.04 .99±.01 .39±.05
0.50 .52±.07 .53±.08 .23±.06 .53±.07 .54±.08 .24±.07 .81±.04 .96±.02 .50±.05
0.70 .37±.07 .53±.08 .21±.06 .37±.07 .53±.08 .21±.07 .77±.04 .90±.03 .60±.04
0.90 .17±.09 .52±.08 .14±.11 .15±.08 .52±.08 .11±.10 .54±.04 .70±.07 .53±.04
UUCs: High/Low Veg. ( E(2,3))
Closed .91±.02 .00±.00 .29±.04 .91±.02 .00±.00 .29±.04 .91±.02 .00±.00 .29±.04
0.10 .86±.02 .54±.09 .30±.04 .86±.02 .52±.10 .29±.04 .90±.01 .89±.07 .34±.04
0.30 .77±.03 .58±.08 .33±.03 .77±.03 .58±.08 .33±.03 .89±.02 .88±.04 .44±.04
0.50 .67±.03 .60±.08 .36±.03 .68±.03 .61±.07 .38±.03 .86±.02 .86±.04 .54±.04
0.70 .56±.04 .60±.07 .39±.04 .59±.03 .62±.07 .42±.03 .80±.04 .81±.06 .61±.04
0.90 .40±.04 .59±.07 .37±.04 .45±.04 .61±.07 .43±.04 .64±.07 .72±.07 .61±.07
UUCs: Imp. Surf./Building/Car ( E(0,1,4))
Closed .84±.03 .00±.00 .23±.05 .84±.03 .00±.00 .23±.05 .84±.03 .00±.00 .23±.05
0.10 .77±.04 .46±.09 .21±.05 .76±.04 .43±.08 .20±.05 .84±.03 .98±.03 .28±.05
0.30 .63±.07 .50±.09 .20±.07 .62±.06 .49±.09 .19±.06 .84±.03 .97±.03 .39±.05
0.50 .47±.07 .51±.08 .17±.07 .47±.07 .51±.08 .17±.07 .83±.03 .95±.03 .50±.04
0.70 .33±.07 .53±.08 .16±.07 .34±.07 .53±.08 .17±.07 .78±.03 .89±.04 .60±.03
0.90 .15±.07 .53±.08 .11±.08 .16±.07 .53±.08 .12±.08 .58±.03 .73±.07 .56±.04
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The only exception to the superior performance of OpenPCS/OpenIPCS in multiple 
UUC experiments was E(2,3) on Potsdam—that is, when High and Low Vegetation were 
removed from the set of KKCs used during training. This was an expected outcome, as 
OpenIPCS did show their worse results in High/Low Vegetation on the experiments dis-
cussed in Sect. 5.1. However, one should notice that no method was able to achieve in E(2,3) 
the same performance of OpenPCS/OpenIPCS in the other multiple UUC experiments. We 
attribute this failure case to the high intra-class variability of Low Vegetation, while we 
raise the hypothesis that multimodal modeling for the likelihood distribution and/or a∗ mul-
timodal gaussian modeling should improve the results on these classes.

Similarly to Sect. 5.2.1, Tables 10 and 11 show the quantitative measures of AccK , PreU 
and � , aiming to quantitatively assess the performance of the proposed methods and base-
lines on the KKCs, on the UUCs and the overall performance encompassing known and 
unknown classes.

These tables show major improvements, in terms of � , for all experiments, except 
the ones using High/Low Vegetation in the Potsdam dataset. As previously explained, 
we hypothesize that this is due to the high intra-class variability of those classes. 

Table 11   AccK , PreU and � results for different TPR thresholds applied to SoftMax
T  , OpenFCN and OpenI-

PCS using a DenseNet-121 backbone in the Potsdam dataset

Bold values indicate the best overall AccK , PreU and � values for a certain experiment with multiple UUCs. 
“Closed” rows mean unknown TPRs of 0.0, which is equivalent to Closed Set segmentation. This table 
focuses on experiments E(0,1) , E(2,3) and E(0,1,4) , while the complete multiple UUC experiments can be seen 
in Table 19

TPR SoftMaxT OpenFCN OpenPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUCs: Imp. Surf./Building ( E(0,1))
Closed .71±.03 .00±.00 .17±.06 .71±.03 .00±.00 .17±.06 .71±.03 .00±.00 .17±.06
0.10 .66±.03 .55±.14 .18±.06 .68±.03 .67±.12 .19±.06 .71±.03 .28±.44 .18±.06
0.30 .56±.05 .53±.17 .18±.06 .58±.05 .57±.16 .20±.07 .70±.03 .97±.02 .30±.06
0.50 .43±.08 .52±.17 .16±.08 .46±.07 .54±.17 .19±.08 .69±.03 .96±.03 .40±.05
0.70 .27±.10 .50±.17 .12±.10 .30±.11 .52±.17 .15±.11 .67±.04 .92±.05 .50±.04
0.90 .09±.09 .49±.17 .05±.09 .10±.10 .50±.17 .06±.11 .51±.09 .74±.10 .48±.08
UUCs: High/Low Veg. ( E(2,3))
Closed .93±.05 .00±.00 .29±.15 .93±.05 .00±.00 .29±.15 .93±.05 .00±.00 .29±.15
0.10 .89±.05 .61±.16 .31±.14 .89±.05 .63±.17 .31±.14 .93±.05 .87±.11 .34±.15
0.30 .82±.07 .65±.19 .35±.11 .84±.06 .69±.19 .37±.11 .90±.06 .80±.17 .41±.12
0.50 .73±.09 .66±.20 .39±.08 .78±.08 .70±.19 .43±.08 .76±.16 .70±.24 .41±.12
0.70 .61±.13 .64±.20 .41±.09 .68±.11 .68±.20 .47±.08 .57±.22 .63±.23 .37±.17
0.90 .33±.17 .57±.20 .29±.17 .40±.18 .60±.21 .36±.18 .32±.11 .57±.18 .28±.10
UUCs: Imp. Surf./Building/Car ( E(0,1,4))
Closed .76±.04 .00±.00 .17±.08 .76±.04 .00±.00 .17±.08 .76±.04 .00±.00 .17±.08
0.10 .72±.04 .58±.14 .19±.08 .72±.04 .57±.15 .19±.08 .76±.04 .28±.44 .18±.07
0.30 .58±.06 .51±.19 .16±.07 .59±.06 .51±.19 .17±.07 .76±.04 .97±.02 .32±.09
0.50 .37±.08 .47±.20 .08±.06 .38±.08 .48±.20 .08±.06 .75±.05 .96±.02 .43±.09
0.70 .15±.07 .46±.19 -.02±.05 .15±.07 .46±.19 -.02±.05 .72±.06 .93±.03 .54±.07
0.90 .03±.02 .48±.18 -.03±.02 .03±.02 .48±.18 -.03±.02 .59±.13 .79±.07 .55±.10
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Disregarding this experiment, for all others, the gains, in terms of � , were even better 
than the ones obtained with only one UCC (Sect.  5.2.2), implying that the proposed 
OpenPCS/OpenIPCS are more robust to problems with higher openness. Deeply analyz-
ing such gains, we may observe that they come from the fact that the proposed methods 
are capable of improving the recognition of UUCs ( PreU ) without significantly sacrific-
ing the identification of KKCs ( AccK ). Precisely, in many cases, OpenPCS/OpenIPCS 
achieved more than 0.90 of PreU with only 1 2% loss in AccK . This shows the capacity 
of the proposed methods to efficiently perform open set semantic segmentation even 
in datasets with greater openness. As with the experiments with only one UCC, all 
obtained results using multiple UUCs as well as a discussion about them can be seen in 
Appendix C.
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Fig. 15   Images, ground truths and predictions for SoftMax
T  , OpenFCN and OpenPCS on the Vaihingen 

dataset for the six experiments with distinct UUC combinations presented in Table  7. These predictions 
were obtained using a DenseNet-121 
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Fig. 16   Images, ground truths and predictions for SoftMax
T  , OpenFCN and OpenPCS on the Potsdam 

dataset for the six experiments with distinct UUC combinations presented in Table  7. These predictions 
were obtained using a DenseNet-121 

(a) (b)

Fig. 17   ROC curves for SoftMax
T  , OpenFCN, OpenPCS and OpenIPCS on Houston using a 

DenseNet-121 backbone
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It is noticeable in Figs. 15 and 16 that OpenPCS produces better predictions when com-
pared to the other methods for almost all pairs or triplets of UUCs ( E(0,1) , E(0,4) , E(1,4) , 
E(0,1,4) and E(0,2,3) ), but exhibits worse results in experiment E(2,3) . These results reiterate 
the inability of OpenPCS to deal with the high intra-class variability present in Low Veg-
etation, as previously shown in Sects. 5.1 and 5.2.

As previously reported in Sect. 5.2.3, OpenFCN and SoftMaxT  still suffered with the 
naturally lower prediction confidences in multiple UUC experiments, with most of the 
UUC pixels predicted by these methods lying on object boundaries, even between two 
KKCs. Again, this is likely responsible for the considerably poorer quantitative results of 
these methods shown in Tables 8, 9, 11, and 11, with OpenPCS and OpenIPCS excelling 
due to their use of middle-level features from the networks, which still contain information 
about the input space, not being entirely bound by the output class space as OpenFCN and 
SoftMaxT .

One last remark about the qualitative results in Figs. 15 and 16 is regarding E(0,1) , E(2,3) 
and E(0,2,3) . In all those cases, the class Car is a KKC, being naturally the most unrep-
resented objects in both Vaihingen and Potsdam due to the large class imbalance. While 
SoftMaxT  and OpenFCN severely struggled with this class imbalance, being unable to 
properly identify Cars as KKCs, OpenPCS and OpenIPCS preserved vastly more correctly 
predicted Car pixels, indicating that they are more robust to high class imbalance during 
the training of their generative model.

Table 12   AccK , PreU and � results for different TPR thresholds applied to SoftMax
T  , OpenFCN and OpenI-

PCS using a DenseNet-121 backbone in the Houston dataset

Bold values indicate the best overall AccK , PreU and � values for a certain experiment with multiple UUCs. 
“Closed” rows mean unknown TPRs of 0.0, which is equivalent to Closed Set segmentation

TPR SoftMaxT OpenFCN OpenPCS OpenIPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U � Acc

K
Pre

U �

UUCs: Vegetation
Closed 0.63 0.00 0.43 0.63 0.00 0.43 0.63 0.00 0.43 0.63 0.00 0.43
0.10 0.60 0.28 0.42 0.60 0.29 0.42 0.60 0.29 0.42 0.61 0.41 0.43
0.30 0.56 0.32 0.43 0.56 0.34 0.43 0.56 0.34 0.43 0.58 0.55 0.46
0.50 0.50 0.33 0.41 0.51 0.36 0.43 0.51 0.36 0.43 0.55 0.53 0.48
0.70 0.40 0.33 0.37 0.43 0.35 0.40 0.43 0.35 0.40 0.51 0.52 0.49
0.90 0.26 0.31 0.27 0.32 0.35 0.34 0.32 0.35 0.34 0.44 0.46 0.47
UUCs: Building
Closed 0.65 0.00 0.53 0.65 0.00 0.53 0.65 0.00 0.53 0.65 0.00 0.53
0.10 0.63 0.20 0.53 0.63 0.21 0.53 0.63 0.21 0.53 0.65 0.00 0.53
0.30 0.59 0.20 0.52 0.59 0.21 0.51 0.59 0.21 0.51 0.60 0.32 0.52
0.50 0.54 0.20 0.49 0.53 0.20 0.48 0.53 0.20 0.48 0.53 0.27 0.49
0.70 0.47 0.19 0.44 0.43 0.18 0.41 0.43 0.18 0.41 0.47 0.25 0.45
0.90 0.32 0.17 0.32 0.27 0.16 0.27 0.27 0.16 0.27 0.36 0.21 0.37
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5.3.2 � Multiple UUCs on GRSS

Figure  17 shows ROC curves and AUCs for the Houston dataset on two scenarios with 
multiple UUCs at a time: (i) the first scenario, referenced as Vegetation, is composed of the 
classes healthy grass, stressed grass, artificial turf, evergreen trees, and deciduous trees; 
and (ii) the second scenario, referenced as Building, is composed of residential buildings, 
and non-residential buildings. As presented in Sects. 5.2 and 5.3.1, one can clearly see the 
superiority of OpenPCS and OpenIPCS in comparison to SoftMaxT  or OpenFCN, with 
Principal Component Scoring obtaining higher AUCs than the other methods. Addition-
ally, in both experiments, OpenIPCS presented considerably higher performance than 
OpenPCS, with the former surpassing the latter in AUC by approximately 0.1. Even though 
further experimentation is required for any definitive assertion, this result serves as initial 
evidence that OpenIPCS is more adaptable to a scenario with a larger number of KKCs.

Table 12 presents threshold-dependent metrics for experiments in the Houston dataset. 
Overall, known class accuracy results are not as high as in Vaihingen and Potsdam; an 
expected outcome given that this is a very fine-grained dataset. Aside from this, we can 
observe that for Vegetation as UUCs the OpenIPCS outperformed all other methods, as 
well as the Closed Set scenario, in terms of � and PreU . This outcome is similar to those 
previously reported for Vaihingen/Potsdam. For the Buildings as UUCs, all approaches 
produced very similar outcomes, with the best result, in terms of � , being the one obtained 
by the Closed Set. We believe that this is due to the class imbalance of the Houston dataset, 
i.e., Buildings classes represent a small fraction of the dataset and therefore do not impact 
the final result as much as the Vegetation classes, which are more prevalent in the dataset.

6 � Conclusion

In this manuscript we introduced, formally defined and explored the problem of Open Set 
Segmentation and proposed two approaches for solving OSR segmentation tasks: (1) Open-
FCN, which is based on the well-known OpenMax (Bendale and Boult 2016) approach; 
and (2) OpenPCS, a completely novel method for Open Set Semantic Segmentation. A 
comprehensive evaluation protocol based on a set of standard objective metrics to be used 
on this novel field that takes into account KKCs and UUCs was proposed, executed and 
discussed for the proposed methods and the main baseline: SoftMaxT .

OpenPCS—and its more scalable variant referred to as OpenIPCS—yielded signifi-
cantly better results than OpenFCN and SoftMaxT  . OpenPCS and OpenIPCS are able to 
merge activations from both shallower layers—containing input pixel-level information—
and deeper layers that encode class-level information, while OpenFCN can only take into 
account information about class, as it operates on the outputs of the network. Performance 
analysis of OpenPCS/OpenIPCS vs. OpenFCN suggests that using middle-level feature 
information that combines both the input and output spaces of the FCN is highly useful for 
OSR segmentation. The latter scheme works well for sparse labeling scenarios (Bendale 
and Boult 2016) (e.g. image classification), however, dense labeling inherently consists of 
highly correlated samples (pixels) and labels (semantic maps) with border regions naturally 
presenting lower confidence than the interior pixels of objects. This distinction between 
sparse and dense labeling severely hampered the capabilities of OpenFCN and SoftMaxT  
of detecting OOD samples.
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As expected, UUCs with larger semantic and visual distinctions in relation to the 
remaining KKCs also showed considerably better classification performance in the LOCO 
protocol. Specifically, Low Vegetation samples have a high intra-class variability, repre-
senting grass fields, sidewalk-like areas and other structures in the Vaihingen and Potsdam 
datasets, rendering them similar to samples from the classes Street and Tree. This resulted 
in lower performances in almost all metrics for all methods assessed in our experimental 
procedure. Closed Set predictions by the DNN architectures evaluated in Sect. 5.2 gener-
ally resulted in lower overall � results than when OSR was added in the form of OpenPCS 
mainly, with gains up to 0.20 in this metric for the Building UUC. The analysis conducted 
in Sect. 5.2.4 also revealed the discrepancies between OSR methods in inference runtime, 
with SoftMaxT  being the fastest method, OpenFCN being the exponentially slower and 
OpenPCS being a reasonable compromise, being able to run close to real-time, depending 
on GPU memory for larger patches and/or image size.

As OpenFCN is simply a fully convolutional version of OpenPixel (da Silva et al. 
2020), also based on OpenMax (Bendale and Boult 2016), we can confidently infer 
that even OpenFCN performed better than OpenPixel. That is because OpenPixel was 
based on a traditional CNNs trained in a patchwise fashion for the classification of 
the central pixel and fully convolutional training was already shown to improve both 
segmentation performance and dramatically improve runtime efficiency of patchwise 
approaches in the pattern recognition literature (Long et  al. 2015). While OpenFCN 
differs in this aspect, it even uses the same meta-recognition lib and some of the code 
of OpenPixel for the computation of OpenMax. One important variation of OpenPix-
el’s approach that still needs to be verified in the context of fully convolutional training 
is the post processing using morphology, called Morph-OpenPixel by da Silva et  al. 
(2020). This post-processing was shown to considerably improve the performance of 
OpenPixel. At last, even though time comparisons were not made available by da Silva 
et al. (2020), it is also possible to infer that OSR segmentation using even OpenFCN is 
exponentially faster than patchwise training also due to the experiments performed on 
the original FCN paper (Long et al. 2015).

Experiments in Sect. 5.3 lead to the conclusion that the superiority of OpenPCS and Open-
IPCS in comparison with OpenFCN and SoftMaxT  is even more pronounced in settings with 
larger openness—that is, in experiments with a greater ration between the number of UUCs 
and KKCs. Large AUC values computed from the ROC curves in the binary task of OOD 
recognition—that is, classifying between UUCs and KKCs—allowed for reliable UUC identi-
fication via larger TPR cutoffs with smaller FPRs in OpenPCS/OpenIPCS. These results may 
aid in the planning of future developments of OSR Segmentation in datasets with a larger 
variety of classes that can be assessed as UUCs. Hence, we are planning future developments 
of our approaches in experimental setups, which may include the exploitation of: (i) Com-
puter Vision datasets, such as Pascal VOC (Everingham et  al. 2015) and MS COCO (Lin 
et al. 2014; ii) synthetic datasets, including GTA-V (Richter et al. 2016), SYLVIA (Ros et al. 
2016; iii) urban scene understanding datasets, such as CityScapes (Cordts et al. 2016); and (iv) 
other Remote Sensing datasets, including the DLR-SkyScapes (Azimi et al. 2019) and DOTA/
iSAID (Xia et al. 2018; Waqas Zamir et al. 2019). This will allow a better understanding of 
the effectiveness of the proposed approaches in scenarios with different images (varying from 
RGB to hyperspectral) and contexts (such as urban and rural), and with a variable number of 
classes.

Finally, approaches as CGDL (Sun et al. 2020) and C2AE (Oza and Patel 2019) couple the 
supervised training for KKC classification with the training of the generative model—usually 
a variation on an AE architecture. These approaches allow for an end-to-end training of DNNs 
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for OSR image classification tasks, and are currently considered the state-of-the-art for this 
task. Future works for OpenPCS/OpenIPCS include the adaptation of these methods for Open 
Set Semantic Segmentation, which would incorporate low-, middle- and high-level semantic 
features into the recognition of OOD samples, possibly allowing for an end-to-end training 
of Pixel Anomaly Detection and OSR segmentation. We also aim to investigate the capabili-
ties of other lighter and/or more robust models in the OpenPCS pipeline, such as Gaussian 
Mixture Models (GMMs) (Bishop 2006; Attias 2000) instead of the simpler Principal Com-
ponents used for computing multimodal likelihoods. Such method should obtain better perfor-
mance with KKCs that are multimodal in nature. Additionally, we intend to incorporate more 
lightweight models during inference (e.g. One-Class SVM (OCSVM) (Schölkopf et al. 2001; 
Scheirer et al. 2012)) in order to perform OSR Segmentation in real-time, which may ben-
efit applications such as autonomous driving or anomaly detection in videos for time-sensitive 
applications. At last, performing the likelihood scoring on instances of objects may reduce the 
OpenFCN problem with borders, where the certainty of the network predictions is naturally 
lower. For that, merging OpenFCN and possibly also OpenPCS with a Faster-RCNN (Ren 
et al. 2015) and/or Mask-RCNN (He et al. 2017) could improve OSR detection with less noisy 
UUC regions.

Appendix A performance on vaihingen for KKCs and UUCs

OSR tasks are inherently multi-objective, as Open Set algorithms must be able to success-
fully discern UUCs from KKCs, while still being able to correctly classify samples from 
distinct KKCs. Tables  13 and  14 show results from AccK , PreU and � in the Vaihingen 
dataset using FCNs with WRN-50 and DenseNet-121 backbones, respectively.

Tables 13, and 14 show the performance of the OSR segmentation approaches on both 
KKCs and UUCs. The comparison of TPRs larger than one—that is, thresholds that allow 
for OSR—with their Closed Set counterparts (TPR = 0) using � reveals that, in many 
cases, assuming openness improves object recognition in scenarios where full knowledge 
of the world is not possible. The most noticeable improvements in � happen in UUCs that 
are visually and semantically more distinct from the other classes in the dataset: Impervi-
ous Surfaces, Building, Tree and Car. In the following paragraphs we will discuss the per-
formance of the methods for each UUC in LOCO, starting from Impervious Surfaces.

Impervious Surfaces pixels in both Vaihingen and Potsdam are mainly composed of 
streets and driveways in residential/commercial buildings. These surfaces are considerably 
distinct from vegetation areas, as the “gray” signature in IRRG bands of asphalt is con-
siderably distinct from the redness of plants due to their large reflection of near-infrared 
radiation. On Vaihingen, � using fully closed DNNs achieve 0.53 with WRN-50 and and 
0.52 with DenseNet-121. By adding openness to these DNNs via OpenPCS, we were able 
to increase these � metrics to 0.68 and 0.65, respectively, representing gains in � between 
0.13 and 0.15. The OSR methods allowed the methods to correctly delineate most streets 
and driveways in the samples—as can also be seen in a qualitative manner in Sect. 5.2.3. 
SoftMaxT  and OpenFCN also improved the performance of the closed DNNs for Impervi-
ous Surfaces, albeit in a smaller magnitude when compared to OpenPCS, achieving gains 
of between 0.05 and 0.09.

Closed Set WRN-50 achieved an AccK of 0.86, followed closely by DenseNet-121 with 
0.85 when Impervious Surface pixels were set as UUC in LOCO. For the same TPR, AccK 
was only barely affected by the openness of OpenPCS, maintaining their original levels 
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of 0.86 and 0.85 up until a TPR of 0.30. In contrast, AccK was considerably sacrificed in 
SoftMaxT  and OpenFCN for TPRs larger than 0.10, meaning that pixels that were correctly 
classified by the original DNNs were cast as UUCs by the OSR post-processing. OpenPCS 

Table 13   Results for different unknown TPR thresholds applied to SoftMax
T  , OpenFCN and OpenPCS 

from an FCN with WRN-50 backbone in Vaihingen 

Bold values indicate the best overall AccK , PreU and � results for a certain UUC. “Closed” rows mean 
unknown TPRs of 0.0, which is equivalent to Closed Set segmentation

TPR SoftMaxT OpenFCN OpenPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUC: Impervious Surfaces
Closed .86±.01 .00±.00 .53±.04 .86±.01 .00±.00 .53±.04 .86±.01 .00±.00 .53±.04
0.10 .85±.01 .61±.11 .55±.03 .85±.01 .77±.07 .56±.04 .86±.01 1.00±.00 .56±.04
0.30 .81±.02 .52±.10 .57±.02 .83±.02 .63±.10 .59±.02 .86±.01 .95±.03 .62±.02
0.50 .76±.02 .50±.09 .59±.02 .78±.02 .55±.10 .61±.02 .84±.02 .85±.08 .68±.02
0.70 .70±.03 .47±.10 .59±.03 .72±.03 .50±.10 .62±.02 .78±.04 .64±.13 .67±.04
0.90 .56±.05 .42±.10 .52±.06 .59±.04 .44±.09 .56±.05 .53±.07 .41±.10 .49±.08
UUC: Building
Closed .82±.02 .00±.00 .49±.05 .82±.02 .00±.00 .49±.05 .82±.02 .00±.00 .49±.05
0.10 .79±.02 .34±.07 .49±.05 .79±.02 .34±.08 .49±.05 .82±.02 1.00±.00 .53±.05
0.30 .73±.03 .36±.06 .49±.04 .73±.03 .36±.07 .49±.04 .82±.02 .99±.01 .59±.04
0.50 .65±.03 .36±.05 .48±.04 .65±.03 .36±.06 .49±.04 .82±.02 .93±.04 .65±.03
0.70 .52±.05 .33±.04 .42±.04 .54±.03 .35±.05 .44±.03 .80±.03 .85±.06 .70±.03
0.90 .23±.12 .28±.04 .20±.11 .34±.05 .31±.05 .30±.04 .71±.04 .64±.09 .68±.04
UUC: Low Vegetation
Closed .92±.01 .00±.00 .61±.04 .92±.01 .00±.00 .61±.04 .92±.01 .00±.00 .61±.04
0.10 .91±.01 .47±.05 .62±.04 .90±.01 .46±.05 .62±.04 .90±.02 .46±.12 .62±.04
0.30 .86±.02 .45±.05 .64±.04 .86±.02 .44±.06 .63±.04 .84±.04 .47±.12 .62±.05
0.50 .79±.03 .43±.05 .63±.04 .77±.04 .41±.06 .61±.05 .77±.05 .44±.08 .61±.05
0.70 .66±.07 .39±.05 .56±.07 .63±.07 .36±.06 .53±.08 .67±.05 .41±.06 .57±.05
0.90 .44±.09 .32±.05 .40±.09 .43±.08 .32±.04 .39±.08 .49±.04 .35±.05 .45±.04
UUC: Tree
Closed .88±.02 .00±.00 .54±.07 .88±.02 .00±.00 .54±.07 .88±.02 .00±.00 .54±.07
0.10 .81±.04 .22±.05 .50±.08 .81±.04 .23±.04 .51±.08 .88±.02 .88±.08 .57±.06
0.30 .70±.05 .28±.06 .46±.08 .69±.06 .27±.05 .45±.08 .81±.07 .62±.17 .57±.10
0.50 .62±.06 .32±.06 .45±.07 .60±.06 .31±.06 .43±.07 .61±.14 .37±.08 .44±.16
0.70 .53±.06 .35±.07 .43±.06 .51±.06 .34±.07 .41±.06 .38±.07 .29±.05 .28±.07
0.90 .40±.05 .34±.06 .37±.05 .37±.05 .33±.06 .33±.05 .17±.06 .28±.05 .14±.06
UUC: Car
Closed .84±.02 .00±.00 .77±.02 .84±.02 .00±.00 .77±.02 .84±.02 .00±.00 .77±.02
0.10 .77±.05 .01±.01 .69±.05 .77±.04 .01±.01 .70±.04 .84±.02 .27±.06 .77±.02
0.30 .64±.06 .01±.01 .56±.06 .64±.06 .01±.01 .56±.06 .83±.02 .25±.05 .77±.02
0.50 .54±.05 .01±.01 .46±.05 .55±.06 .01±.01 .47±.05 .81±.02 .13±.04 .75±.02
0.70 .45±.04 .02±.01 .38±.04 .46±.05 .02±.01 .39±.04 .72±.04 .05±.02 .64±.04
0.90 .35±.04 .02±.01 .28±.03 .34±.04 .02±.01 .28±.03 .56±.05 .03±.01 .48±.05
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maintained large AccK values up until TPRs of 0.50, with a large drop only being seen in a 
TPR of 0.70. These results imply that OpenPCS is more accuracy efficient when identify-
ing OOD Impervious Surface pixels, barely sacrificing KKC segmentation performances. 

Table 14   Results for different unknown TPR thresholds applied to SoftMax
T  , OpenFCN and OpenPCS 

from an FCN with DenseNet-121 backbone in Vaihingen 

Bold values indicate the best overall AccK , PreU and � results for a certain UUC. “Closed” rows mean 
unknown TPRs of 0.0, which is equivalent to Closed Set segmentation

TPR SoftMaxT OpenFCN OpenPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUC: Impervious Surfaces
Closed .85±.02 .00±.00 .52±.04 .85±.02 .00±.00 .52±.04 .85±.02 .00±.00 .52±.04
0.10 .83±.03 .47±.11 .53±.04 .85±.02 .67±.12 .55±.04 .85±.02 .97±.02 .55±.04
0.30 .79±.03 .48±.10 .56±.02 .81±.03 .56±.11 .58±.02 .85±.03 .91±.07 .61±.03
0.50 .74±.03 .47±.11 .57±.02 .76±.03 .52±.11 .59±.02 .82±.04 .77±.14 .65±.03
0.70 .67±.04 .45±.10 .57±.04 .70±.04 .49±.11 .59±.03 .71±.09 .57±.15 .61±.09
0.90 .54±.05 .41±.09 .51±.06 .58±.04 .43±.10 .54±.05 .38±.06 .35±.08 .35±.06
UUC: Building
Closed .83±.03 .00±.00 .50±.06 .83±.03 .00±.00 .50±.06 .83±.03 .00±.00 .50±.06
0.10 .77±.03 .26±.06 .48±.05 .78±.03 .28±.07 .48±.05 .82±.03 .98±.02 .53±.05
0.30 .70±.03 .32±.06 .47±.04 .71±.03 .32±.06 .47±.04 .82±.03 .96±.02 .59±.05
0.50 .62±.03 .33±.06 .45±.04 .62±.03 .34±.06 .46±.04 .82±.03 .94±.03 .65±.04
0.70 .50±.06 .33±.06 .40±.06 .51±.06 .33±.06 .41±.06 .80±.03 .87±.06 .70±.03
0.90 .30±.13 .30±.06 .26±.13 .29±.15 .30±.06 .25±.14 .71±.04 .64±.07 .68±.03
UUC: Low Vegetation
Closed .92±.01 .00±.00 .61±.04 .92±.01 .00±.00 .61±.04 .92±.01 .00±.00 .61±.04
0.10 .90±.01 .45±.08 .62±.04 .90±.01 .46±.09 .62±.04 .92±.01 .70±.06 .64±.04
0.30 .85±.02 .43±.07 .63±.04 .85±.03 .43±.08 .63±.04 .88±.02 .56±.05 .66±.04
0.50 .77±.04 .41±.06 .60±.05 .76±.05 .40±.06 .60±.06 .77±.06 .44±.07 .61±.07
0.70 .64±.06 .37±.04 .54±.06 .61±.07 .35±.05 .51±.07 .55±.14 .33±.07 .45±.14
0.90 .42±.07 .31±.04 .38±.07 .39±.06 .30±.04 .35±.06 .23±.11 .26±.04 .19±.11
UUC: Tree
Closed .87±.02 .00±.00 .53±.05 .87±.02 .00±.00 .53±.05 .87±.02 .00±.00 .53±.05
0.10 .84±.02 .33±.09 .53±.05 .84±.02 .34±.09 .53±.05 .87±.02 .97±.04 .56±.05
0.30 .77±.04 .37±.09 .53±.05 .77±.04 .37±.09 .53±.06 .86±.02 .82±.11 .62±.05
0.50 .68±.05 .37±.09 .51±.06 .68±.06 .37±.08 .50±.06 .80±.04 .64±.10 .63±.06
0.70 .57±.06 .37±.08 .46±.06 .54±.07 .35±.08 .44±.07 .70±.07 .50±.04 .60±.08
0.90 .35±.10 .33±.09 .31±.11 .30±.08 .31±.08 .27±.08 .47±.10 .38±.04 .43±.09
UUC: Car
Closed .84±.02 .00±.00 .77±.03 .84±.02 .00±.00 .77±.03 .84±.02 .00±.00 .77±.03
0.10 .77±.04 .01±.01 .69±.04 .76±.04 .01±.00 .68±.04 .83±.02 .17±.08 .76±.02
0.30 .66±.06 .01±.01 .58±.06 .65±.05 .01±.01 .57±.05 .80±.04 .07±.03 .72±.04
0.50 .55±.07 .01±.01 .47±.06 .56±.05 .01±.01 .48±.05 .68±.07 .03±.01 .60±.08
0.70 .45±.06 .02±.01 .38±.06 .47±.06 .02±.01 .39±.05 .40±.10 .02±.01 .33±.09
0.90 .32±.05 .02±.01 .26±.04 .34±.05 .02±.01 .27±.04 .13±.05 .01±.00 .10±.04
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The precision of unknowns ( PreU ) is another evidence for the superiority of OpenPCS 
compared to OpenFCN and SoftMaxT  , as it reaches a perfect precision of 1.00 in WRN-50 
for a TPR (recall) of 0.10, followed closely by DenseNet’s PreU of 0.97 for the same TPR. 
PreU remains larger than 0.90 for both WRN-50 and DenseNet-121 up to a TPR of 0.30, 
meaning that UUC predictions for Impervious Surfaces from OpenPCS were highly reli-
able, even allowing for real-world applications of the method. Similarly to AccK , the preci-
sion of unknowns PreU was significantly lower from the start on SoftMaxT  and OpenFCN, 
with the best results for these methods peaking (with 0.10 TPR using WRN-50) on 0.61 
and 0.77, respectively.

The UUC Building yielded the most drastic gains in � when OpenPCS was introduced, 
as showed by the increase from 0.50 to 0.70 with the DenseNet-121 backbone (Table 14). 
Building pixels are certainly among the most visually distinct features in the IRRG images 
in both texture and shape. In addition to that, these structures are rather distinct in the DSM 
data, as they can be easily seen on depth maps as sudden variations in altitude in compari-
son with the surrounding terrain. Finally, context also plays a larger role in Bulding detec-
tion, as both commercial and residential structures reside close to driveways or parkways 
(both Street samples) and are often surrounded by vegetation in suburban areas as Vaihin-
gen and Potsdam. Predictions for UUC Building using a TPR of 0.10 were also highly 
precise, with PreU values of 1.0 (perfect scoring) and 0.98 (near perfect) for WRN-50 and 
DenseNet-121, respectively.

Overall results from UUC Tree followed similar patterns to Street and Building, but 
in a smaller scale. � gains using OpenPCS with WRN-50 and DenseNet-121 backbones 
were in the scale of 0.03 and 0.10, respectively, showing a noticeable boost in performance 
mainly in DenseNet-121. In contrast, the best � values for OpenFCN and SoftMaxT  were 
the Closed Set ones, with � quickly dropping even since TPR 0.10 on WRN-50. The best 
PreU was also achieved by OpenPCS on both backbones, reaching a maximum of 0.97 for a 
TPR of 0.10 on DenseNet-121, while no noticeable drop in AccK could be seen in this set-
ting. AccK remained relatively close to the Closed Set KKC classification performance up 
to 0.30 of TPR with DenseNet-121 and up to 0.10 on WRN-50.

Car pixels represent a tiny proportion of samples in both Potsdam and Vaihingen. Thus, 
analysis of Open vs. Closed Set methods by only using � would yield basically no gain in 
adding OSR to the pipeline, as can be seen in Tables 13 and 14. This is due to the ben-
efits of detecting UUCs not outweighing the added errors in KKC classification in met-
rics that measure general multiclass performance as Balanced Accuracy or � . Instead, a 
more accurate picture of Car segmentation can be seen when taking into account PreU and 
AccK , together with the TPR, which is automatically given because it served to compute 
the thresholds for the methods. One can easily see that OpenPCS’ AccK performance was 
barely degraded for TPR values up to 0.50 in WRN-50, while also remaining considerably 
close to the Closed Set accuracy in DenseNet-121 until a TPR of 0.30. In other words, 
there was virtually no harm to KKC classification in WRN-50 in exchange for the correct 
identification of 50% of Car pixels, while DenseNet-121 also kept high AccK values for 
30% of the Car pixels being correctly segmented.

PreU values were not particularly high in either method, even for small TPRs, reaching 
a peak of 0.27 in WRN-50 with a TPR of 0.10—that is, only approximately one in four 
pixels predicted to be pertaining to a vehicle in this setting was really from a vehicle. The 
low PreU of UUC Car can be explained by the relatively high intra-class variability in class 
Building, as most of the pixels misclassified as Car were, in fact, from parts of Building 
structures that were not common in the rest of the houses and warehouses in the data. We 
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reached this conclusion after the qualitative evaluation shown in Sect.  5.2.3 that can be 
fully appreciated in the project’s webpage. It is natural that houses have distinct shapes, 
sizes and rooftop textures, resulting. OpenPCS’ PreU results, though indeed small, are still 
more than one order of magnitude larger than both OpenFCN and SoftMaxT .

Lastly, one important distinction between segmentation and detection must be high-
lighted in the case for Car: while many vehicles were not perfectly segmented, almost all 
automobiles were at least partially identified by OpenPCS. Qualitative results available at 
the project’s webpage show that in both datasets a large proportion of the automobiles were 
correctly identified by having a large subset of their pixels correctly identified as pertaining 
to a UUC. The same cannot be said for OpenFCN and SoftMaxT  , which correctly detected 
(even if only partially) a much lower proportion of vehicles. In addition to that, one can see 
that even for small TPRs of 0.10 OpenFCN and SoftMaxT  presented large drops to both 
AccK and � performances.

Appendix B performance on potsdam for KKCs and UUCs

Similarly to the presentation of the results from Vaihingen, Tables 15 and 16 show the 
same per-class threshold-dependent metrics ( � , AccK and PreU ) in Potsdam for WRN-
50 and DenseNet-121, respectively. As Potsdam is a considerably harder dataset when 
compared to Vaihingen—mainly due to the large imbalance and much larger spatial res-
olution—almost all metrics achieve lower values than the ones from Tables 13 and 14. 
We highlight that the standard OpenPCS with random patch selection for the training of 
PCA was also computed for Potsdam (as shown in Fig. 11), but this section only reports 
OpenIPCS values. The incremental training of PCA showed to be much more stable in 
the larger Potsdam dataset, while we choose to not shot the original OpenPCS results 
mostly due to spatial constraints and organization.

Discussion regarding Potsdam results closely resembles the ones presented from 
Vaihingen on Section A, albeit with one major distinction: relatively poor performance 
in comparison with Vaihingen due to the hardships encountered in processing Potsdam 
samples. These difficulties include the massive size of the dataset, restricting tuning of 
the networks’ hyperparameters due to computational constraints; the larger spatial reso-
lution ( 6000 × 6000 per image) resulting from smaller physical areas covered by each 
pixel in comparison with Vaihingen, which also accentuate the downsides of introducing 
a larger correlation between adjacent pixels and providing less context on a 224 × 224 
patch; and an extremely imbalanced set of labels.

One can indeed observe significant � improvements by introducing OpenIPCS to the 
segmentation procedure in UUCs Impervious Surfaces, Building, Tree and Car, mainly 
with a DenseNet-121 backbone (Table 16). Closed Set � values for these classes were 
0.42, 0.41, 0.51 and 0.56, while the best OSR results (assuming optimal TPR choice) 
increased these values to 0.55, 0.57, 0.52 and 0.57. Analogously to Vaihingen, the 
increases to � were larger for Impervious Surfaces and Building (between 0.13 and 
0.16), while Tree and Car achieve much more modest gains of only 0.01, which are 
not statistically significant. Building again achieved a close to perfect PreU (0.96) using 
DenseNet-121 and TPR 0.10, followed by the also high Impervious Surfaces PreU of 
0.87 also with 0.10 of TPR.

Low Vegetation again was an outlier in the LOCO protocol using DenseNet-121, 
with SoftMaxT  and OpenFCN achieving less degradation in AccK and a larger PreU 
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for the same TPR values. Since Low Vegetation fills a much larger proportion of pix-
els in Potsdam than in Vaihingen, it would be expected that adding OSR would con-
siderably improve � values in comparison with Closed Set when this class was set to 
UUC in the LOCO protocol. However, the best � results were the Closed Set ones for 

Table 15   Results for different unknown TPR thresholds applied to SoftMax
T  , OpenFCN and OpenIPCS 

from an FCN with WRN-50 backbone in Potsdam 

Bold values indicate the best overall AccK , PreU and � results for a certain UUC. “Closed” rows mean 
unknown TPRs of 0.0, which is equivalent to Closed Set segmentation

TPR SoftMaxT OpenFCN OpenIPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUC: Impervious Surfaces
Closed .73±.09 .00±.00 .40±.09 .73±.09 .00±.00 .40±.09 .73±.09 .00±.00 .40±.09
0.10 .71±.09 .58±.14 .41±.08 .72±.09 .70±.13 .42±.08 .71±.08 .54±.18 .41±.08
0.30 .66±.09 .46±.11 .43±.08 .68±.09 .51±.10 .44±.08 .64±.08 .47±.09 .40±.07
0.50 .59±.10 .40±.11 .41±.09 .60±.10 .42±.11 .42±.09 .54±.08 .40±.09 .36±.07
0.70 .47±.11 .35±.11 .37±.10 .48±.11 .36±.11 .37±.10 .39±.08 .33±.09 .28±.07
0.90 .29±.11 .31±.11 .25±.10 .28±.12 .31±.11 .25±.11 .16±.04 .28±.08 .13±.03
UUC: Building
Closed .77±.04 .00±.00 .44±.08 .77±.04 .00±.00 .44±.08 .77±.04 .00±.00 .44±.08
0.10 .74±.04 .34±.15 .43±.07 .75±.04 .38±.16 .44±.07 .77±.04 .90±.06 .46±.07
0.30 .64±.07 .29±.15 .40±.06 .65±.07 .30±.15 .40±.06 .76±.04 .82±.05 .51±.06
0.50 .52±.10 .28±.15 .35±.08 .54±.09 .29±.15 .36±.07 .74±.04 .77±.08 .56±.05
0.70 .37±.10 .27±.14 .26±.08 .39±.09 .28±.14 .28±.07 .71±.05 .69±.14 .59±.06
0.90 .16±.07 .26±.13 .13±.06 .18±.08 .26±.13 .14±.07 .56±.13 .48±.20 .50±.14
UUC: Low Vegetation
Closed .86±.04 .00±.00 .46±.14 .86±.04 .00±.00 .46±.14 .86±.04 .00±.00 .46±.14
0.10 .81±.04 .37±.11 .45±.14 .81±.04 .35±.11 .44±.15 .83±.05 .55±.14 .47±.14
0.30 .71±.09 .39±.12 .43±.16 .69±.11 .38±.12 .41±.18 .78±.07 .56±.15 .49±.13
0.50 .60±.14 .40±.12 .40±.18 .58±.15 .39±.12 .38±.19 .72±.08 .55±.15 .51±.12
0.70 .49±.15 .40±.13 .37±.16 .47±.15 .39±.14 .35±.16 .64±.10 .53±.15 .52±.11
0.90 .34±.13 .39±.16 .30±.11 .31±.11 .38±.16 .27±.10 .50±.13 .47±.15 .47±.10
UUC: Tree
Closed .89±.05 .00±.00 .60±.07 .89±.05 .00±.00 .60±.07 .89±.05 .00±.00 .60±.07
0.10 .85±.05 .26±.04 .58±.07 .85±.05 .25±.04 .58±.07 .80±.06 .28±.17 .53±.10
0.30 .77±.05 .28±.05 .55±.08 .76±.05 .27±.05 .54±.08 .67±.09 .23±.09 .45±.12
0.50 .65±.08 .26±.05 .48±.11 .63±.10 .25±.06 .46±.12 .55±.11 .23±.07 .38±.13
0.70 .50±.12 .25±.05 .39±.13 .47±.13 .24±.05 .35±.14 .39±.13 .21±.06 .27±.13
0.90 .29±.11 .22±.04 .23±.11 .24±.11 .21±.04 .18±.10 .16±.09 .19±.04 .11±.08
UUC: Car
Closed .75±.07 .00±.00 .64±.09 .75±.07 .00±.00 .64±.09 .75±.07 .00±.00 .64±.09
0.10 .74±.08 .22±.13 .63±.10 .75±.08 .28±.16 .64±.09 .75±.07 .29±.15 .64±.09
0.30 .69±.12 .04±.03 .58±.12 .70±.12 .06±.03 .60±.12 .74±.07 .14±.08 .63±.09
0.50 .59±.13 .02±.02 .49±.12 .62±.13 .03±.02 .52±.12 .71±.06 .07±.05 .60±.08
0.70 .47±.13 .02±.01 .38±.11 .51±.12 .02±.01 .41±.10 .62±.07 .04±.03 .51±.09
0.90 .31±.13 .02±.01 .25±.10 .34±.12 .02±.01 .27±.09 .45±.09 .02±.02 .35±.09
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all OSR methods on the DenseNet-121 backbone, implying that neither of the meth-
ods converged well enough on this architecture to compensate for the KKC prediction 
losses. Low Vegetation results were opposite on the WRN-50 backbone in Potsdam: � 

Table 16   Results for different unknown TPR thresholds applied to SoftMax
T  , OpenFCN and OpenIPCS 

from an FCN with DenseNet-121 backbone in Potsdam 

Bold values indicate the best overall AccK , PreU and � results for a certain UUC. “Closed” rows mean 
unknown TPRs of 0.0, which is equivalent to Closed Set segmentation

TPR SoftMaxT OpenFCN OpenIPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUC: Impervious Surfaces
Closed .77±.08 .00±.00 .42±.10 .77±.08 .00±.00 .42±.10 .77±.08 .00±.00 .42±.10
0.10 .74±.08 .44±.11 .43±.09 .74±.08 .45±.11 .43±.09 .76±.08 .87±.11 .45±.10
0.30 .68±.09 .40±.14 .43±.09 .69±.09 .42±.14 .44±.09 .75±.09 .84±.10 .51±.09
0.50 .59±.11 .37±.14 .41±.10 .60±.10 .37±.14 .42±.10 .73±.10 .76±.12 .55±.09
0.70 .47±.14 .35±.14 .36±.13 .47±.14 .35±.14 .36±.13 .66±.10 .63±.13 .55±.09
0.90 .29±.18 .31±.13 .25±.17 .28±.18 .31±.13 .25±.16 .46±.12 .42±.11 .40±.09
UUC: Building
Closed .74±.08 .00±.00 .41±.07 .74±.08 .00±.00 .41±.07 .74±.08 .00±.00 .41±.07
0.10 .71±.08 .37±.17 .41±.06 .72±.08 .40±.18 .42±.06 .74±.08 .96±.05 .44±.07
0.30 .61±.10 .30±.17 .37±.06 .62±.09 .32±.17 .38±.06 .74±.08 .91±.11 .49±.06
0.50 .46±.12 .27±.15 .29±.09 .47±.11 .28±.15 .30±.08 .73±.08 .85±.13 .55±.06
0.70 .25±.14 .25±.14 .16±.11 .26±.12 .25±.14 .17±.10 .69±.09 .73±.17 .57±.09
0.90 .09±.07 .24±.13 .06±.06 .07±.05 .24±.12 .05±.04 .55±.22 .53±.21 .50±.22
UUC: Low Vegetation
Closed .83±.03 .00±.00 .44±.14 .83±.03 .00±.00 .44±.14 .83±.03 .00±.00 .44±.14
0.10 .78±.04 .35±.13 .43±.15 .78±.05 .34±.13 .42±.15 .74±.06 .24±.06 .38±.17
0.30 .65±.13 .36±.14 .37±.19 .63±.15 .35±.14 .36±.21 .57±.09 .28±.11 .30±.17
0.50 .53±.16 .36±.14 .33±.19 .51±.16 .35±.14 .31±.19 .40±.08 .30±.14 .20±.13
0.70 .39±.16 .36±.15 .27±.17 .36±.15 .35±.15 .24±.16 .21±.06 .31±.15 .10±.08
0.90 .20±.12 .35±.16 .16±.12 .18±.10 .35±.16 .14±.09 .06±.02 .32±.16 .02±.03
UUC: Tree
Closed .80±.10 .00±.00 .51±.11 .80±.10 .00±.00 .51±.11 .80±.10 .00±.00 .51±.11
0.10 .77±.10 .25±.05 .50±.11 .77±.09 .26±.07 .50±.10 .79±.09 .34±.12 .52±.10
0.30 .69±.10 .25±.05 .47±.11 .69±.09 .25±.06 .48±.10 .69±.09 .26±.08 .47±.13
0.50 .59±.11 .25±.05 .42±.11 .59±.09 .25±.05 .43±.10 .54±.13 .23±.07 .36±.16
0.70 .49±.13 .25±.05 .38±.12 .47±.11 .24±.05 .36±.10 .31±.13 .19±.05 .19±.12
0.90 .39±.12 .25±.04 .34±.10 .32±.10 .23±.04 .27±.09 .10±.06 .18±.04 .06±.04
UUC: Car
Closed .68±.11 .00±.00 .56±.13 .68±.11 .00±.00 .56±.13 .68±.11 .00±.00 .56±.13
0.10 .68±.12 .15±.10 .56±.14 .68±.11 .16±.09 .56±.13 .68±.11 .58±.29 .57±.13
0.30 .65±.12 .05±.03 .53±.13 .65±.11 .06±.03 .54±.13 .68±.11 .35±.19 .57±.14
0.50 .60±.12 .03±.02 .49±.13 .62±.10 .04±.02 .51±.12 .67±.11 .20±.11 .56±.14
0.70 .52±.10 .03±.01 .42±.10 .56±.09 .03±.02 .45±.10 .65±.11 .10±.06 .54±.13
0.90 .38±.08 .02±.01 .30±.07 .44±.08 .02±.01 .34±.08 .58±.10 .05±.03 .47±.11
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increased by 0.06 (for TPR 0.70); the best PreU results were indeed from OpenIPCS, 
peaking at 0.56 with TPR 0.30 and AccK degradation was much slower than OpenFCN 
and SoftMaxT  as TPRs were allowed to grow. These discrepancies between architec-
tures highlights that, even though OpenPCS and OpenIPCS were found to be the current 
state-of-the-art for OSR segmentation, they can be highly dependent on the DNN archi-
tecture, hyperparameters and proved to be rather unstable, being still a work in progress.

For almost all UUCs, AccK degraded much faster on Potsdam than on Vaihingen, 
as larger TPRs were evaluated. One important outlier in almost all aspects presented 
previously was Car on Potsdam. While on Vaihingen the � did not increase at all in 
comparison to the Closet Set DNNs with the introduction of OpenPCS, the � value for 
Car had a slight, but noticeable, increase from 0.56 to 0.57. PreU values for Car seg-
mentation were also considerably larger on Potsdam, peaking at 0.58 for TPR 0.10 using 
DenseNet-121 and 0.29 using WRN-50. At the same time, AccK remained close to the 
Closed Set counterpart with TPRs up to 0.70, only observing a noticeable decrease in 
KKC classification performance on TPR 0.90. As for OpenFCN and SoftMaxT  , PreU 
results for Car were also higher and AccK also degraded slowly with the increase of 
TPR (comparing with results from Vaihingen), even if these metrics did not achieve the 
same gains as the ones from OpenPCS.

Appendix C complementary results for multiple UUCs

Continuing the discussion of Sect.  5.3, in this appendix we present additional results 
regarding the experiments with multiple UUCs, as foreseen in Sect. 5.3. First we present 
the threshold-independent AUC metric that compares OpenPCS/OpenIPCS with Open-
Max and SoftMaxT  on the whole spectrum of cutoffs. Tables 17, 18, 19 and 20 show 
the threshold-dependent metrics for Vaihingen with DenseNet-121 and WRN-50 back-
bones and Potsdam with DenseNet-121 and WRN-50 backbones.   
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Table 17   AccK , PreU and � results for different TPR thresholds applied to SoftMax
T  , OpenFCN and Open-

PCS using a DenseNet-121 backbone on Vaihingen 

TPR SoftMaxT OpenFCN OpenPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUCs: Imp. Surf./Building
Closed .82±.04 .00±.00 .24±.06 .82±.04 .00±.00 .24±.06 .82±.04 .00±.00 .24±.06
0.10 .76±.04 .51±.07 .24±.06 .78±.04 .57±.08 .25±.06 .82±.04 .79±.39 .28±.06
0.30 .65±.05 .53±.08 .24±.06 .67±.05 .54±.08 .25±.06 .82±.04 .99±.01 .39±.05
0.50 .52±.07 .53±.08 .23±.06 .53±.07 .54±.08 .24±.07 .81±.04 .96±.02 .50±.05
0.70 .37±.07 .53±.08 .21±.06 .37±.07 .53±.08 .21±.07 .77±.04 .90±.03 .60±.04
0.90 .17±.09 .52±.08 .14±.11 .15±.08 .52±.08 .11±.10 .54±.04 .70±.07 .53±.04
UUCs: Imp. Surf./Car
Closed .85±.02 .00±.00 .50±.04 .85±.02 .00±.00 .50±.04 .85±.02 .00±.00 .50±.04
0.10 .82±.02 .39±.09 .50±.03 .82±.02 .40±.09 .50±.04 .85±.02 .95±.05 .53±.04
0.30 .77±.03 .44±.10 .52±.02 .77±.03 .44±.10 .52±.02 .84±.01 .92±.06 .60±.03
0.50 .71±.03 .44±.10 .53±.02 .71±.03 .44±.10 .53±.02 .83±.02 .84±.09 .65±.01
0.70 .62±.04 .42±.10 .52±.04 .61±.05 .42±.10 .51±.04 .76±.04 .65±.12 .65±.03
0.90 .58±.03 .41±.09 .50±.04 .45±.06 .37±.09 .41±.07 .44±.07 .40±.10 .41±.08
UUCs: Building/Car
Closed .83±.02 .00±.00 .48±.05 .83±.02 .00±.00 .48±.05 .83±.02 .00±.00 .48±.05
0.10 .77±.03 .24±.04 .46±.05 .78±.03 .26±.05 .47±.05 .83±.02 .00±.00 .48±.05
0.30 .69±.03 .30±.05 .45±.04 .69±.03 .30±.05 .45±.04 .83±.02 .77±.39 .56±.06
0.50 .58±.03 .31±.05 .41±.03 .59±.03 .32±.04 .41±.04 .82±.02 .93±.03 .65±.03
0.70 .44±.06 .31±.06 .33±.05 .43±.06 .31±.05 .33±.06 .81±.02 .86±.05 .70±.03
0.90 .15±.09 .27±.06 .11±.10 .11±.10 .26±.06 .08±.10 .72±.03 .64±.07 .69±.03
UUCs: High/Low Veg.
Closed .91±.02 .00±.00 .29±.04 .91±.02 .00±.00 .29±.04 .91±.02 .00±.00 .29±.04
0.10 .86±.02 .54±.09 .30±.04 .86±.02 .52±.10 .29±.04 .90±.01 .89±.07 .34±.04
0.30 .77±.03 .58±.08 .33±.03 .77±.03 .58±.08 .33±.03 .89±.02 .88±.04 .44±.04
0.50 .67±.03 .60±.08 .36±.03 .68±.03 .61±.07 .38±.03 .86±.02 .86±.04 .54±.04
0.70 .56±.04 .60±.07 .39±.04 .59±.03 .62±.07 .42±.03 .80±.04 .81±.06 .61±.04
0.90 .40±.04 .59±.07 .37±.04 .45±.04 .61±.07 .43±.04 .64±.07 .72±.07 .61±.07
UUCs: Imp. Surf./Building/Car
Closed .84±.03 .00±.00 .23±.05 .84±.03 .00±.00 .23±.05 .84±.03 .00±.00 .23±.05
0.10 .77±.04 .46±.09 .21±.05 .76±.04 .43±.08 .20±.05 .84±.03 .98±.03 .28±.05
0.30 .63±.07 .50±.09 .20±.07 .62±.06 .49±.09 .19±.06 .84±.03 .97±.03 .39±.05
0.50 .47±.07 .51±.08 .17±.07 .47±.07 .51±.08 .17±.07 .83±.03 .95±.03 .50±.04
0.70 .33±.07 .53±.08 .16±.07 .34±.07 .53±.08 .17±.07 .78±.03 .89±.04 .60±.03
0.90 .15±.07 .53±.08 .11±.08 .16±.07 .53±.08 .12±.08 .58±.03 .73±.07 .56±.04
UUCs: Imp. Surf./High/Low Veg.
Closed .98±.01 .00±.00 .08±.02 .98±.01 .00±.00 .08±.02 .98±.01 .00±.00 .08±.02
0.10 .97±.02 .96±.02 .12±.02 .97±.02 .96±.02 .12±.02 .98±.01 .80±.40 .12±.04
0.30 .96±.02 .97±.01 .21±.03 .96±.02 .97±.01 .22±.03 .97±.02 .99±.00 .25±.03
0.50 .96±.02 .97±.01 .23±.03 .95±.02 .97±.01 .31±.03 .96±.02 .99±.01 .38±.04
0.70 .96±.02 .97±.01 .23±.03 .95±.02 .97±.01 .32±.04 .94±.02 .98±.01 .54±.04
0.90 .96±.02 .97±.01 .23±.03 .95±.02 .97±.01 .32±.04 .77±.04 .92±.03 .67±.03

Bold values indicate the best overall AccK , PreU and � values for a certain experiment with multiple UUCs. 
“Closed” rows mean unknown TPRs of 0.0, which is equivalent to Closed Set segmentation
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Table 18   AccK , PreU and � results for different TPR thresholds applied to SoftMax
T  , OpenFCN and Open-

PCS using a WRN-50 backbone on Vaihingen 

Bold values indicate the best overall AccK , PreU and � values for a certain experiment with multiple UUCs. 
“Closed” rows mean unknown TPRs of 0.0, which is equivalent to Closed Set segmentation

TPR SoftMaxT OpenFCN OpenPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUCs: Imp. Surf./Building
Closed .81±.04 .00±.00 .23±.05 .81±.04 .00±.00 .23±.05 .81±.04 .00±.00 .23±.05
0.10 .76±.05 .52±.09 .23±.06 .78±.04 .61±.08 .24±.06 .81±.04 .59±.48 .26±.05
0.30 .66±.06 .55±.09 .24±.06 .67±.06 .56±.09 .25±.05 .81±.04 .97±.03 .38±.05
0.50 .54±.07 .55±.09 .25±.06 .56±.07 .56±.09 .26±.06 .79±.04 .91±.04 .48±.05
0.70 .41±.08 .55±.09 .24±.08 .42±.08 .56±.08 .25±.07 .72±.05 .83±.05 .55±.05
0.90 .22±.10 .54±.08 .19±.11 .23±.10 .54±.08 .20±.11 .58±.05 .72±.06 .56±.04
UUCs: Imp. Surf./Car
Closed .84±.01 .00±.00 .49±.04 .84±.01 .00±.00 .49±.04 .84±.01 .00±.00 .49±.04
0.10 .81±.02 .37±.09 .49±.03 .81±.02 .40±.09 .50±.03 .83±.02 .79±.09 .52±.04
0.30 .75±.02 .40±.09 .50±.02 .74±.02 .39±.09 .50±.02 .83±.02 .86±.09 .58±.02
0.50 .66±.03 .39±.09 .49±.01 .65±.03 .38±.09 .48±.01 .79±.04 .72±.17 .61±.04
0.70 .61±.03 .38±.08 .47±.02 .52±.02 .36±.08 .42±.02 .63±.09 .47±.14 .52±.09
0.90 .61±.03 .38±.08 .47±.02 .41±.03 .33±.07 .34±.03 .20±.07 .29±.07 .17±.08
UUCs: Building/Car
Closed .80±.03 .00±.00 .46±.06 .80±.03 .00±.00 .46±.06 .80±.03 .00±.00 .46±.06
0.10 .75±.04 .23±.05 .43±.06 .76±.04 .28±.05 .45±.06 .80±.03 .70±.36 .48±.05
0.30 .64±.06 .26±.05 .40±.07 .65±.06 .27±.05 .40±.07 .78±.04 .81±.14 .54±.06
0.50 .53±.07 .28±.05 .35±.07 .53±.07 .29±.05 .36±.07 .75±.06 .73±.14 .58±.06
0.70 .39±.07 .29±.05 .28±.06 .38±.07 .29±.05 .28±.06 .69±.08 .61±.15 .59±.08
0.90 .24±.07 .30±.05 .21±.06 .23±.08 .29±.05 .20±.07 .42±.11 .39±.10 .39±.11
UUCs: High/Low Veg.
Closed .93±.02 .00±.00 .30±.05 .93±.02 .00±.00 .30±.05 .93±.02 .00±.00 .30±.05
0.10 .89±.03 .60±.10 .32±.05 .89±.03 .61±.10 .32±.05 .93±.02 .93±.02 .35±.05
0.30 .82±.05 .65±.09 .38±.05 .83±.04 .66±.09 .38±.05 .91±.01 .91±.02 .46±.05
0.50 .75±.05 .67±.08 .44±.05 .77±.04 .69±.08 .46±.05 .86±.01 .84±.03 .53±.03
0.70 .67±.05 .67±.07 .50±.05 .72±.04 .71±.07 .54±.04 .77±.02 .78±.05 .59±.02
0.90 .58±.05 .67±.07 .55±.05 .63±.04 .70±.07 .60±.04 .58±.05 .69±.07 .56±.05
UUCs: Imp. Surf./Building/Car
Closed .82±.04 .00±.00 .21±.06 .82±.04 .00±.00 .21±.06 .82±.04 .00±.00 .21±.06
0.10 .74±.05 .45±.08 .19±.06 .74±.05 .44±.08 .19±.06 .82±.04 .76±.38 .25±.06
0.30 .58±.06 .47±.08 .16±.06 .58±.06 .46±.08 .15±.06 .78±.04 .85±.05 .34±.05
0.50 .46±.06 .51±.08 .16±.06 .45±.06 .50±.08 .16±.06 .75±.04 .83±.05 .43±.04
0.70 .33±.07 .53±.08 .16±.07 .33±.07 .53±.08 .16±.07 .71±.04 .82±.05 .54±.04
0.90 .13±.08 .52±.08 .08±.09 .12±.08 .52±.08 .07±.09 .58±.05 .75±.07 .57±.04
UUCs: Imp. Surf./High/Low Veg.
Closed .98±.01 .00±.00 .06±.01 .98±.01 .00±.00 .06±.01 .98±.01 .00±.00 .06±.01
0.10 .97±.01 .96±.02 .10±.01 .97±.01 .96±.02 .10±.01 .97±.01 .95±.02 .11±.02
0.30 .97±.01 .97±.01 .20±.02 .97±.01 .97±.01 .20±.02 .94±.02 .94±.02 .20±.03
0.50 .96±.01 .97±.01 .28±.03 .95±.01 .97±.01 .33±.04 .90±.03 .94±.02 .32±.04
0.70 .96±.01 .97±.01 .29±.04 .94±.01 .97±.01 .39±.06 .83±.03 .92±.02 .45±.04
0.90 .96±.01 .97±.01 .29±.04 .94±.01 .97±.01 .39±.06 .72±.03 .90±.02 .62±.03
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Table 19   AccK , PreU and � results for different TPR thresholds applied to SoftMax
T  , OpenFCN and OpenI-

PCS using a DenseNet-121 backbone on Potsdam 

TPR SoftMaxT OpenFCN OpenPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUCs: Imp. Surf./Building
Closed .71±.03 .00±.00 .17±.06 .71±.03 .00±.00 .17±.06 .71±.03 .00±.00 .17±.06
0.10 .66±.03 .55±.14 .18±.06 .68±.03 .67±.12 .19±.06 .71±.03 .28±.44 .18±.06
0.30 .56±.05 .53±.17 .18±.06 .58±.05 .57±.16 .20±.07 .70±.03 .97±.02 .30±.06
0.50 .43±.08 .52±.17 .16±.08 .46±.07 .54±.17 .19±.08 .69±.03 .96±.03 .40±.05
0.70 .27±.10 .50±.17 .12±.10 .30±.11 .52±.17 .15±.11 .67±.04 .92±.05 .50±.04
0.90 .09±.09 .49±.17 .05±.09 .10±.10 .50±.17 .06±.11 .51±.09 .74±.10 .48±.08
UUCs: Imp. Surf./Car
Closed .72±.11 .00±.00 .36±.11 .72±.11 .00±.00 .36±.11 .72±.11 .00±.00 .36±.11
0.10 .69±.11 .43±.13 .37±.11 .70±.11 .52±.10 .38±.11 .72±.11 .73±.34 .38±.12
0.30 .62±.14 .38±.16 .36±.13 .64±.13 .42±.15 .38±.12 .71±.11 .89±.12 .45±.11
0.50 .54±.16 .36±.16 .36±.14 .55±.15 .38±.15 .37±.14 .71±.11 .87±.10 .52±.11
0.70 .44±.17 .35±.15 .33±.16 .45±.17 .36±.15 .35±.16 .66±.09 .77±.16 .54±.09
0.90 .29±.17 .32±.13 .25±.15 .28±.17 .32±.13 .24±.16 .34±.10 .39±.11 .30±.07
UUCs: Building/Car
Closed .69±.11 .00±.00 .34±.05 .69±.11 .00±.00 .34±.05 .69±.11 .00±.00 .34±.05
0.10 .63±.11 .24±.12 .32±.05 .62±.12 .21±.13 .31±.06 .69±.11 .00±.00 .34±.05
0.30 .52±.13 .25±.15 .28±.06 .50±.13 .24±.14 .27±.06 .69±.10 .63±.41 .42±.06
0.50 .40±.14 .26±.15 .23±.09 .38±.15 .25±.15 .21±.09 .68±.10 .87±.11 .49±.07
0.70 .25±.15 .26±.15 .15±.11 .23±.15 .25±.14 .14±.11 .65±.10 .70±.17 .53±.09
0.90 .07±.07 .25±.13 .03±.06 .06±.07 .25±.13 .03±.06 .52±.19 .54±.22 .47±.20
UUCs: High/Low Veg.
Closed .93±.05 .00±.00 .29±.15 .93±.05 .00±.00 .29±.15 .93±.05 .00±.00 .29±.15
0.10 .89±.05 .61±.16 .31±.14 .89±.05 .63±.17 .31±.14 .93±.05 .87±.11 .34±.15
0.30 .82±.07 .65±.19 .35±.11 .84±.06 .69±.19 .37±.11 .90±.06 .80±.17 .41±.12
0.50 .73±.09 .66±.20 .39±.08 .78±.08 .70±.19 .43±.08 .76±.16 .70±.24 .41±.12
0.70 .61±.13 .64±.20 .41±.09 .68±.11 .68±.20 .47±.08 .57±.22 .63±.23 .37±.17
0.90 .33±.17 .57±.20 .29±.17 .40±.18 .60±.21 .36±.18 .32±.11 .57±.18 .28±.10
UUCs: Imp. Surf./Building/Car
Closed .76±.04 .00±.00 .17±.08 .76±.04 .00±.00 .17±.08 .76±.04 .00±.00 .17±.08
0.10 .72±.04 .58±.14 .19±.08 .72±.04 .57±.15 .19±.08 .76±.04 .28±.44 .18±.07
0.30 .58±.06 .51±.19 .16±.07 .59±.06 .51±.19 .17±.07 .76±.04 .97±.02 .32±.09
0.50 .37±.08 .47±.20 .08±.06 .38±.08 .48±.20 .08±.06 .75±.05 .96±.02 .43±.09
0.70 .15±.07 .46±.19 -.02±.05 .15±.07 .46±.19 -.02±.05 .72±.06 .93±.03 .54±.07
0.90 .03±.02 .48±.18 -.03±.02 .03±.02 .48±.18 -.03±.02 .59±.13 .79±.07 .55±.10
UUCs: Imp. Surf./High/Low Veg.
Closed .98±.01 .00±.00 .02±.01 .98±.01 .00±.00 .02±.01 .98±.01 .00±.00 .02±.01
0.10 .93±.02 .83±.08 .04±.02 .93±.02 .84±.08 .04±.03 .97±.02 .97±.03 .07±.04
0.30 .88±.04 .89±.06 .12±.06 .89±.05 .89±.06 .12±.06 .96±.04 .97±.03 .17±.08
0.50 .84±.09 .90±.07 .22±.10 .84±.09 .90±.07 .23±.10 .93±.06 .96±.03 .30±.12
0.70 .80±.10 .89±.07 .31±.09 .76±.12 .89±.07 .35±.10 .88±.11 .95±.05 .44±.14
0.90 .79±.10 .89±.07 .34±.11 .65±.12 .87±.08 .46±.11 .63±.18 .87±.09 .51±.14

Bold values indicate the best overall AccK , PreU and � values for a certain experiment with multiple UUCs. 
“Closed” rows mean unknown TPRs of 0.0, which is equivalent to Closed Set segmentation
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Table 20   AccK , PreU and � results for different TPR thresholds applied to SoftMax
T  , OpenFCN and OpenI-

PCS using a WRN-50 backbone on Potsdam 

TPR SoftMaxT OpenFCNOpenFCN OpenPCS

Acc
K

Pre
U � Acc

K
Pre

U � Acc
K

Pre
U �

UUCs: Imp. Surf./Building
Closed .74±.05 .00±.00 .20±.07 .74±.05 .00±.00 .20±.07 .74±.05 .00±.00 .20±.07
0.10 .69±.05 .52±.17 .20±.07 .72±.05 .66±.12 .22±.08 .74±.05 .28±.44 .21±.07
0.30 .57±.07 .49±.19 .19±.05 .60±.06 .53±.18 .21±.06 .73±.05 .95±.04 .33±.07
0.50 .41±.07 .48±.19 .15±.04 .46±.06 .51±.19 .19±.05 .70±.06 .90±.04 .40±.08
0.70 .21±.06 .46±.19 .06±.04 .25±.05 .48±.18 .11±.04 .64±.07 .83±.06 .47±.07
0.90 .04±.03 .47±.18 -.01±.02 .05±.03 .47±.18 -.00±.02 .46±.08 .67±.12 .42±.07
UUCs: Imp. Surf./Car
Closed .62±.16 .00±.00 .29±.12 .62±.16 .00±.00 .29±.12 .62±.16 .00±.00 .29±.12
0.10 .62±.16 .80±.08 .32±.12 .62±.16 .84±.08 .32±.12 .62±.16 .72±.30 .32±.13
0.30 .61±.16 .74±.10 .37±.13 .61±.16 .80±.11 .38±.13 .61±.16 .84±.10 .37±.13
0.50 .56±.16 .59±.12 .40±.13 .58±.17 .64±.12 .41±.14 .60±.16 .83±.12 .43±.14
0.70 .50±.16 .50±.13 .40±.14 .49±.16 .50±.13 .39±.14 .55±.14 .72±.15 .45±.13
0.90 .37±.15 .40±.13 .34±.13 .36±.16 .40±.13 .33±.14 .26±.05 .37±.11 .23±.06
UUCs: Building/Car
Closed .71±.09 .00±.00 .36±.05 .71±.09 .00±.00 .36±.05 .71±.09 .00±.00 .36±.05
0.10 .65±.10 .24±.13 .33±.05 .67±.09 .30±.12 .35±.05 .71±.09 .00±.00 .36±.05
0.30 .54±.12 .26±.14 .29±.07 .56±.11 .29±.14 .31±.06 .70±.08 .62±.40 .43±.06
0.50 .42±.12 .27±.14 .25±.08 .44±.11 .28±.14 .27±.07 .68±.08 .80±.13 .49±.06
0.70 .27±.10 .26±.13 .17±.07 .29±.10 .27±.13 .18±.07 .62±.10 .64±.19 .50±.10
0.90 .08±.06 .25±.12 .05±.06 .09±.06 .25±.12 .06±.05 .43±.18 .43±.23 .38±.20
UUCs: High/Low Veg.
Closed .92±.05 .00±.00 .29±.16 .92±.05 .00±.00 .29±.16 .92±.05 .00±.00 .29±.16
0.10 .87±.05 .59±.11 .30±.16 .87±.05 .60±.12 .30±.16 .90±.05 .75±.12 .32±.16
0.30 .79±.07 .63±.14 .33±.15 .79±.07 .63±.14 .33±.14 .82±.08 .69±.16 .36±.14
0.50 .66±.08 .61±.16 .33±.12 .65±.08 .60±.17 .32±.11 .68±.10 .63±.17 .35±.12
0.70 .45±.08 .57±.18 .27±.08 .45±.07 .57±.18 .27±.08 .49±.10 .59±.17 .31±.11
0.90 .22±.05 .54±.18 .18±.06 .24±.05 .54±.18 .20±.06 .26±.09 .55±.17 .22±.09
UUCs: Imp. Surf./Building/Car
Closed .67±.08 .00±.00 .11±.04 .67±.08 .00±.00 .11±.04 .67±.08 .00±.00 .11±.04
0.10 .59±.08 .45±.18 .09±.03 .59±.09 .44±.20 .09±.03 .67±.08 .13±.32 .11±.03
0.30 .42±.12 .44±.21 .04±.05 .42±.12 .44±.21 .04±.05 .66±.07 .84±.34 .23±.08
0.50 .27±.11 .45±.20 .00±.06 .27±.11 .45±.20 .00±.06 .65±.07 .95±.02 .35±.04
0.70 .13±.07 .46±.19 -.03±.04 .13±.07 .46±.19 -.03±.04 .61±.07 .87±.08 .43±.04
0.90 .02±.02 .48±.18 -.04±.01 .02±.02 .48±.18 -.04±.01 .42±.07 .67±.15 .39±.08
UUCs: Imp. Surf./High/Low Veg.
Closed .97±.03 .00±.00 .05±.03 .97±.03 .00±.00 .05±.03 .97±.03 .00±.00 .05±.03
0.10 .94±.04 .89±.07 .07±.04 .94±.04 .89±.07 .07±.04 .97±.03 .00±.00 .05±.03
0.30 .90±.09 .91±.08 .14±.09 .90±.09 .91±.09 .14±.09 .97±.03 .28±.45 .09±.07
0.50 .83±.14 .90±.08 .22±.13 .83±.14 .90±.08 .22±.13 .94±.09 .98±.04 .33±.12
0.70 .76±.11 .88±.08 .28±.14 .71±.15 .87±.08 .31±.14 .90±.12 .96±.04 .47±.13
0.90 .74±.11 .88±.08 .29±.14 .41±.10 .82±.09 .31±.10 .73±.17 .91±.07 .59±.14

Bold values indicate the best overall AccK , PreU and � values for a certain experiment with multiple UUCs. 
“Closed” rows mean unknown TPRs of 0.0, which is equivalent to Closed Set segmentation
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