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Abstract
Optimal Transport (OT) has proven to be a powerful tool to compare probability distribu-
tions in machine learning, but dealing with probability measures lying in different spaces 
remains an open problem. To address this issue, the Gromov Wasserstein distance (GW) 
only considers intra-distribution pairwise (dis)similarities. However, for two (discrete) dis-
tributions with N points, the state of the art solvers have an iterative O(N4) complexity 
when using an arbitrary loss function, making most of the real world problems intractable. 
In this paper, we introduce a new iterative way to approximate GW, called Sampled Gro-
mov Wasserstein, which uses the current estimate of the transport plan to guide the sam-
pling of cost matrices. This simple idea, supported by theoretical convergence guarantees, 
comes with a O(N2) solver. A special case of Sampled Gromov Wasserstein, which can be 
seen as the natural extension of the well known Sliced Wasserstein to distributions lying in 
different spaces, reduces even further the complexity to O(N log N). Our contributions are 
supported by experiments on synthetic and real datasets.

Keywords  Optimal transport · Gromov Wasserstein · Convergence guarantees

1  Introduction

Optimal Transport  (OT) (Villani, 2008) and its associated Wasserstein distance allow 
the comparison of probability measures by aligning points between the distributions 
with respect to their masses and transportation costs. Recent advances from a computa-
tional perspective, notably with the entropic regularization introduced in  (Cuturi, 2013) 
or the Sliced Wasserstein  (Rabin & Peyré, 2011), led to some success stories of OT in 
the machine learning community, including the Wasserstein Generative Adversarial 
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Networks (Arjovsky et al., 2017), Domain Adaptation (Courty et al., 2014), Color Trans-
fer (Rabin & Peyré, 2011), to cite a few. Even though the square Euclidean distance is used 
most of the time to compare points of the distributions, various other ground metrics can 
be naturally used or learned to better capture the idiosyncrasies of the application at hand: 
the Earth mover’s distance in computer vision tasks, the Mahalanobis distance (Paty and 
Cuturi 2019), or concave functions in economy such as the square root of the Euclidean 
distance (Delon et al., 2012), etc.

Whatever the cost function, it is worth noting that the OT problem has been originally 
formulated so as to deal with distributions that are required to lie in the same space. To 
relax this constraint, a distance between metric spaces, named Gromov Wasserstein (GW),1 
has been introduced in (Memoli, 2007). It takes the form of the generalization of the well-
known Quadratic Assignment problem (Beckman & Koopmans, 1957) with any distribu-
tion (Mémoli, 2011) and any loss function (Peyré et al., 2016). The intuition is still to align 
points between two distributions but the method only relies on pairwise distances, in each 
space separately. This allows notably to take into account the structure of each distribu-
tion while being invariant to rotation and translation. Therefore, GW is a relevant tool for 
matching and partitioning tasks involving graphs (Xu et al., 2019a, Xu et al., 2019b; Vayer 
et  al., 2019a), by allowing e.g. to encode some structure like the shortest path between 
two vertices. GW has been further used in various other domains, such as Heterogeneous 
Domain Adaptation (Yan et al., 2018), Shape Matching (Mémoli, 2011; Bronstein et al., 
2010; Vayer et al., 2019b), Object Modeling with Deep Learning (Ezuz et al., 2017), Gen-
erative Adversarial Networks (Bunne et al., 2019). The Wasserstein distance and the GW 
distance have also been jointly used in (Vayer et al., 2018) leading to the so-called Fused-
Gromov Wasserstein distance.

From an algorithmic perspective, most of the previous methods resort to the entropic 
approximation (EGW) of the original GW formulation introduced in (Peyré et al., 2016) and 
based on a gradient descent followed by a projection step, both according to the Kullback 
Leibler (KL) divergence. While a naive implementation of the original GW problem leads 
to a O

(
N4

)
 complexity, Peyré et al., (2016) further show that one can compute GW in O

(
N3

)
 

operations for a certain class of losses. Some other attempts have been recently proposed in 
the literature to speed-up the GW calculation. Sliced Gromov-Wasserstein (SGW)  (Vayer 
et al., 2019b) takes inspiration from the Sliced Wasserstein distance (Rabin & Peyré, 2011) by 
projecting each distribution in an 1D line and then solving the 1D Gromov-Wasserstein prob-
lem efficiently in O(N log(N)) . The Anchor Energy (AE) distance from Sato et al., (2020),2 
is also related to the GW distance but simplifies the problem into N2 linear sub-problems. 
The overall time complexity for solving AE is O

(
N2 log(N)

)
 . Scalable Gromov-Wasserstein 

Learning (S-GWL) (Xu et al., 2019a) decomposes recursively the two large probability meas-
ures into a set of small pairwise aligned distributions using a common Gromov-Wasserstein 
barycenter (Peyré et al., 2016). The final transport plan is the aggregation of the result of GW 
on each small aligned distributions.

In this paper, we aim at overcoming the main algorithmic bottleneck of EGW : the multi-
plication of a 4D tensor with a 2D matrix, which we interpret as an expectation over matri-
ces. We leverage this interpretation, using sampling to approximate the expectation instead of 

1  By abuse of notation, we will use throughout this paper the term of Gromov Wasserstein distance, even if 
all the properties of an actual metric do not always hold.
2  Since this work is not published yet and the code is not available, we will omit it in the related work sec-
tion and in the experimental part.
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computing it entirely, reducing the complexity to O
(
N2

)
 . Unlike SGW and AE which propose 

simplified distances, we optimize the original GW distance. Unlike EGW and S-GWL which 
have speedups for specific loss functions, we lower the complexity with any loss function. 
We obtain a generic algorithm, called Sampled Gromov Wasserstein, supported by theoreti-
cal convergence guarantees. We further show that when the number of sampled matrices is 1, 
the particular 1D case of the OT can be used to compute an update in O(N log(N)) . This ver-
sion, called Pointwise Gromov Wasserstein, overcomes most of the limitations of SGW (Vayer 
et al., 2019b) detailed in Sect. 3, while still being very fast. Our contributions are supported 
by experiments on synthetic and real datasets. Interestingly, those experiments show evidence 
that our method outperforms the state of the art when it comes to finding the best compromise 
between the computation time and the quality of the distance. This behavior takes its origin 
from (i) the stochastic nature of our method which can reduce the risk to get stuck in local 
minima and (ii) the fact that the other approaches do not scale well. An experiment on a graph 
classification task shows that being able to change the loss function for free is of high interest 
for finding the one that best fits the problem at hand.

This article is organized as follows: Sect. 2 details the notations and the necessary back-
ground on GW. Section 3 covers the state of the art approaches for solving the underlying 
problem. Section 4 presents our Sampled Gromov Wasserstein algorithm, derives convergence 
guarantees for it, and introduces our very fast specialized variant called Pointwise Gromov 
Wasserstein. Experiments are detailed in Sect. 5.

2 � Background on GW

In this section, we introduce the Optimal Transport (OT) problem with its associated Was-
serstein distance, and the Gromov Wasserstein distance that allows the comparison of distri-
butions lying in different spaces. Let (X, CX) be a compact metric space where X  is a set and 
C
X its associated metric. Let � be a distribution with finite p-moment on (X, CX) . Similarly, 

(Y, CY) denotes another compact metric space and � a distribution with finite p-moment on 
that space. We denote as ��� the collection of coupling probability measures on X × Y con-
strained by the marginals � and � . ��� defines the so-called set of admissible transport plans 
from � to � , used to define the OT problem.

Optimal Transport OT consists in finding the best mapping (or coupling or transport 
plan) between two distributions � and � on the same space, i.e., X = Y and CX = C

Y . Denoting 
as C this common distance, one can define the p-Wasserstein distance (Kantorovich 1942) to 
the power of p, as follows:

In the discrete version of Problem (1), � and � are empirical measures supported by two 
finite sets of points. In this context, � =

∑I

i=1
ai�xi defined by I points (xi)i∈[[1,I]] in X  

and the associated probability vector a. In the same way, we define � =
∑K

k=1
bk�yk in Y 

associated with the probability vector b. The set of admissible transport plans becomes 
�ab = {T ∈ ℝ

I×K
+

|T�K = a, TT�I = b} . In this discrete case, each distance function C can 
be considered as a matrix (or tensor) C . Therefore, the discrete p-Wasserstein distance to 
the power p is written as follows:

(1)Wp
p
(C) = min

�∈��� ∫X×Y

C
p(x, y)d�(x, y).
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where ⟨., .⟩ is the Frobenius dot product. To simplify the notations, it is often assumed that 
I = K (same number of points in both sets) and N is used to denote this value. The optimal 
transport plan T∗ can be found from (2) using a linear solver (Bonneel et al., 2011) with, at 
least, a complexity of O

(
N3 log(N)

)
 (Pele & Werman, 2009). To lower this complexity, an 

entropic regularization can be added (Cuturi, 2013) leading to a strongly convex problem 
that yields a smooth and unique solution in O

(
PN2

)
 with P the number of Sinkhorn’s itera-

tions. Let � ∈ ℝ+ be a regularization parameter and let H(T) =
∑

ik Tik log(Tik) be the nega-
tive entropy, the optimal plan T∗ of Eq. (2) can be approximated by

Gromov Wasserstein Distance (GW) While the OT problem requires the two dis-
tributions to lie in the same space, the GW distance allows to compare distributions in 
different metric spaces. Let L be a bounded loss function which allows the comparison 
of two distances. GW (Mémoli, 2011, 2009; Peyré et al., 2016) is defined as follows:

The discrete case (see Fig. 1) can be formulated as:

where Lijkl = L
(
C
X(xi, xj), C

Y(yk, yl)
)
 . This formulation exhibits an important property of 

GW: only the pairwise distances are needed. This explains why the Gromov Wasserstein 
distance is often used to compare graphs, for which Chowdhury and Mémoli (2019) proves 
that GW is a pseudometric.

(2)Wp
p
(C) = min

T∈�ab

I,K�

i,k=1

C
p(xi, yk)Tik = min

T∈�ab

⟨Cp, T⟩

(3)T∗ ≈ argmin
T∈�ab

⟨Cp, T⟩ + �H(T).

(4)GW
(
C
X, CY,�, �

)
= min

�∈��� ∫(X×Y)2
L
(
C
X(x, x�), CY(y, y�)

)
d�(x, y)d�(x�, y�).

(5)GW
(
C
X, CY, a, b

)
= min

T∈�ab

I,I∑

i,j=1

K,K∑

k,l=1

LijklTikTjl,

Fig. 1   Illustration of GW, with 
only one term Lijkl of the quadru-
ple sum of Eq. (5)



2155Machine Learning (2021) 110:2151–2186	

1 3

3 � Approaches to solve GW

We describe here the most used method for solving GW, namely Entropic Gromov Wasser-
stein, as well as two other approaches that aim at lowering the time complexity of the former. 
As all these methods use an iterative optimization, for the sake of simplicity, we omit in this 
section the number S of iterations (of the outer loop).

Entropic Gromov Wasserstein (EGW) To solve an approximation of Problem (5), the 
authors of  (Peyré et  al., 2016) generalize the idea introduced in Solomon et  al., (2016) by 
using a gradient descent step followed by a projection, both according to the Kullback Leibler 
(KL) divergence. This boil down to a two-step loop. First, from the current estimation of the 
transport plan T, a new matrix defined as �jl =

∑I,K

i,k=1
LijklTik is computed, and which can be 

seen as an updated cost matrix. Second, a new estimate of the transport plan is obtained by 
solving the following entropic regularization-based OT problem:

When the loss L(CX, CY) can be decomposed as f1(C
X) + f2(C

Y) − h1(C
X)h2(C

Y) for func-
tions ( f1, f2, h1, h2 ), it is shown that the � matrix can be computed in O

(
N3

)
 . This notably 

holds for the square loss and the KL divergence. However, in the general case, the com-
plexity is O

(
N4

)
 , making this method intractable as N grows, as shown in our experiments.

Sliced Gromov-Wassertein (SGW) In Rabin and Peyré (2011), the authors introduce an 
alternative metric, called Sliced Wasserstein distance, which uses random 1D-projections. The 
advantage of this method lies in the fact that the OT Problem (2) can be simply solved by sort-
ing both empirical distributions (in O(N log(N)) ) and matching the sorted lists. In a similar 
manner, Sliced Gromov-Wasserstein (SGW) (Vayer et al., 2019b) projects each distribution 
in a common 1D space, to solve the Gromov-Wasserstein problem (5) efficiently. While being 
very fast to compute, SGW comes with some limitations: (i) it cannot be used in general on 
graphs because a feature representation is needed to allow the 1D projection, (ii) it does not 
output an explicit transport plan which can be a pitfall in some applications like domain adap-
tation, (iii) it does not approximate the original GW distance and (iv) it is not naturally invari-
ant to rotation (although the authors propose a solution by repeatedly calling SGW). Note that 
while SGW’s theoretical result and the O(N log(N)) time complexity are relying on the square 
loss, its algorithmic approach can be adapted to handle arbitrary losses. This adaptation results 
in a O

(
N2

)
 time complexity.

Scalable GW Learning (S-GWL) Scalable Gromov-Wasserstein Learning  (Xu et  al., 
2019a) aims at making GW tractable to large scale graph analysis. It recursively decomposes 
the two original graphs into a set of smaller sub-graph pairs, using Gromov-Wasserstein 
barycenters  (Peyré et al., 2016). Then, these sub-graphs are matched. The transport plan is 
updated with a proximal gradient method regularized with a KL divergence. The time com-
plexity is O

(
N2 log(N)

)
 when the cost matrices CX and CY are not sparse and L is the square 

loss. However, with an arbitrary L , the gain in complexity does not hold anymore because 
S-GWL cannot leverage the closed-form solution for the barycenter calculation.

(6)min
T∈�ab

⟨�, T⟩ + �H(T).
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4 � Scalable GW optimization

We aim to address in this section the algorithmic bottleneck of EGW (Peyré et al., 2016) 
which prevents its use on large scale problems. By rewriting Eq. (5) as an alternating opti-
mization problem, we propose to compute the GW distance by solving iteratively an OT 
problem from a cost matrix seen as the expectation of a random variable. This allows us to 
propose a sampling strategy to drastically reduce the algorithmic complexity of GW. We 
introduce our algorithm, called Sampled Gromov Wasserstein (SaGroW), and then derive 
its convergence guarantees.

We also present some special case and a variant of SaGroW: Pointwise Gromov Was-
serstein (PoGroW) which leverages very efficient 1D OT solvers but does not exhibit the 
drawbacks of SGW, and SaGroWKL a version using a Kullback-Leibler regularization. We 
finally show that an appropriate sampling strategy can be also be used to accurately and 
efficiently approximate the GW distance from a known transport plan.

4.1 � Sampled Gromov Wasserstein (SaGroW)

It is known that the GW problem as described in Eq. (5) is not convex in general and thus 
difficult to solve. On the other hand, we can note that the transport plan T appears twice in 
the formulation. In the following, we suggest to treat these two instances differently and 
solve the problem with respect to two transport plan variables T and T ′ , as follows:

Even though our sampling strategy leverages this decomposition into T and T ′ , as if they 
were two different transport plans, note that we still solve the original GW problem. 
Indeed, as we will explain, our Algorithm fuses T and T ′ after each update, fulfilling the 
T = T � constraint.

In an alternating optimization, with a fixed T, the optimal T ′ is thus the solution of the 
following OT problem:

where L.j.l is an extracted matrix i.e., 
(
L.j.l

)
ik
= Lijkl.

As the transport plan T sums to 1, we can interpret it as (the parameters of) a cate-
gorical distribution on pairs of points (j,  l), or equivalently on the associated matri-
ces L.j.l . We thus define a random variable � on matrices, defined3 by the distribution 
ℙ(� = L.j.l) = Tjl ∀(j, l) ∈ [[1,N]]2 . Leveraging this random variable, the cost matrix ∑

j,l TjlL.j.l used in problem (8) can be seen as the expectation of � . Therefore, the problem 
can be rewritten as follows:

(7)min
T∈�ab

min
T �∈�ab

I,K∑

i,k=1

I,K∑

j,l=1

LijklT
�
ik
Tjl.

(8)min
T �∈�ab

I,K,I,K∑

i,k,j,l=1

TjlLijklT
�
ik
= min

T �∈�ab

⟨
I,K∑

j,l=1

TjlL.j.l, T
�

⟩

(9)min
T �∈�ab

⟨
�(�), T �

⟩
.

3  The definition is not rigorous: two matrices L
.j.l and L

.j′ .l′ may be equal, and then the probabilities add up.
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While solving this problem is still in O
(
N4

)
 in general, it presents the advantage of opening 

the door to a sampling strategy allowing a reduction of the complexity. Indeed, rather than 
computing the entire expectation �(�) , we suggest here to calculate an approximation by 
sampling M matrices {Cm}M

m=1
 . To get a matrix Cm drawn according to the distribution of 

� , it suffices to sample two indices (jm, lm) following the weights of the matrix T. Conse-
quently, Cm takes the form of the matrix L.jm.lm . Using these sampled matrices, Problem (9) 
can be approximated as follows:

This approximation comes with two main advantages: (i) it allows a reduction of the com-
putation time of the GW problem and (ii) similarly to a mini batch gradient descent, it 
might avoid being stuck in local minima and thus might lead to a better transport plan. Even 
though Problem (10) can be solved efficiently with any OT solver, our approach resorts to 
the Sinkhorn method (Cuturi, 2013) leading to a time complexity of O

(
(M + P)N2

)
 due to 

summing over M matrices and P iterations of the Sinkhorn algorithm.
Algorithm 1 gives the pseudo-code of Sampled Gromov Wasserstein (SaGroW). In the 

absence of prior, the transport plan T0 is initialized to the joint distribution abT (line 1). 
At each iteration, M pairs of indices (jm, lm) are sampled from the current transport plan Ts 
(line 3). Then �̂ , the approximation of �(�) , is computed (line 4) and used in an entropic 
regularization-based OT problem  (6) solved using the Sinkhorn algorithm, yielding the 
plan T ′

s
 (line 5). As indicated before, Problem (7) inherently assumes that T = T � . To ensure 

that T ′ stays close to T and to mitigate the nature of the process, we perform a partial 
update (1 − �)Ts + �T �

s
 . Given the symmetric roles of T and T ′ (as long as CX and CY are 

symmetric) this partial update becomes our next plan Ts+1 (line 6). This update, inspired by 
the Frank-Wolfe algorithm, allows us to derive theoretical guarantees (see next section). 
Notice that Algorithm 1 returns a single transport plan and thus aims at minimizing the 
original GW problem. In practice, other strategies can be used: as the previous plan Ts and 
the optimized T ′

s
 can be interpreted as distributions, line 6 can be omitted and replaced by a 

KL regularization (on line 5) between them, as detailed in Sect. 4.4.
We end this section by noting that when the expectation is fully computed in SaGroW 

( i.e. , M = ∞ and “ M = N2 ” in terms of complexity as sampling becomes useless) and � 
is set to 1, our method is strictly equivalent to the two steps loop of EGW described in 
Sect. 3. This connection will be used advantageously in the next section by deriving new 
convergence guarantees for EGW when the GW problem is concave.

(10)min
T �∈�ab

⟨
1

M

M∑

m=1

Cm, T �

⟩
.
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4.2 � Convergence analysis

In this section, we aim at studying the convergence of Algorithm 1. Note that convergence 
guarantees have been already derived for EGW in  (Peyré et  al., 2016). However, based 
on Rangarajan et  al., (1999), this convergence has been proven only when L produces a 
convex problem. Unlike Peyré et al., (2016), the guarantees presented in this section have 
two main advantages: (i) they hold whatever the loss function, (ii) a convergence on aver-
age is proven to a stationary point. Note that other results related to the GW problem have 
been recently derived in the literature. The authors of Xu et al., (2019b) prove the conver-
gence of their proximal point method to a stationary point as long as their regularized GW 
problem can be solved perfectly at each iteration. On the other hand, Redko et al., (2020) 
provides a guarantee on the convergence of Problem (7) under the condition that L yields a 
concave problem.

Assuming that the two cost functions CX and CY are symmetric, we introduce the follow-
ing notations: E(A,A�) ∶= E(A�,A) ∶=

∑I

i,j=1

∑K

k,l=1
LijklAikA

�
jl
 and E(A) ∶= E(A,A) . Under 

these notations, our goal is to minimize (5), i.e., to minimize E(T) under constraints on the 
marginals of T. Let us now define G(T) as follows: G(T) ∶= E(T , T) −minT �∈�ab

E(T , T �) . 
In a non convex setting, T is a stationary point of E(T) if and only if G(T) = 0 (Reddi et al., 
2016). The goal of our Theorem 1 is to provide a guarantee on the convergence of G(T) 
with T  uniformly sampled from (Ts)s∈[[0,S−1]] . The convergence is proven on average over 
these sampling. A practical implementation will naturally take only the last transport plan, 
TS−1 , and avoid unnecessary computations.

Theorem  1  (Based on Reddi et  al., (2016)) For any Lijkl ∈ [0,B] , for any distributions 
� and � with uniform weights a and b respectively, for any optimal solution T∗ of Prob-
lem (5), on average for the transport plan T  uniformly sampled from (Ts)s∈[[0,S−1]] , on aver-
age over all the samplings, the following bound holds:

Proof  The complete proof is available in the Appendix A.1. It requires a novel lemma that 
quantifies the difference between the Wasserstein distances obtained with and without the 
entropic regularization: 0 ≤ ⟨C, T�⟩ −

�
C, T0

� ≤ � log(N) . We also prove that E(T) is 2N2

-smooth and we bound the difference between two transport plans: ‖T − T �‖F ≤
�

2

N
 . 

�

(
G
(
T
)) ≤

√
2B

(
E(T0) − E(T∗)

)
N

S
+ B

√
2N

M
+ � log(N).
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Those two results allow us to adapt the proof of Theorem 2 in (Reddi et al., 2016) where 
our new Lemma is useful as the entropy regularized solvers do not find the exact OT mini-
mum. 	�  ◻

While our bound cannot be explicitly computed as T∗ is unknown, it gives meaning-
ful information about Algorithm 1. First of all, it prompts us to initialize T0 so as to get 
E(T0) as close to E(T∗) as possible. Without any prior information, abT (the uniform 
plan) appears to be a reasonable choice to avoid degenerated cases. Regarding the regu-
larization parameter, if � is not small enough, the convergence to a stationary point is 
not guaranteed. On the other hand, we can note that the number of sampled matrices M 
appears in only one term of the bound. Therefore, the costly complete computation of 
the expectation ( M = ∞ ) would not guarantee the convergence while leading to a O

(
N4

)
 

complexity. Thus, our bound prompts us to find a compromise between reducing M and 
increasing the number of iterations S, allowing us to control the complexity while get-
ting a reasonable bound.

As the GW problem has been shown in (Redko et al., 2020) to be often concave, espe-
cially with the square loss and the euclidean distance on both spaces, the following Theo-
rem  2 gives a second bound dedicated to address the specific concave case. This result 
presents the major interest of providing an asymptotic convergence to a stationary point 
for EGW in this concave case, as the proofs proposed in (Peyré et al., 2016) only cover the 
convergence of EGW and only for high values of �.

Theorem  2  With the same notations as in Theorem  1 with the entropy regularization 
parameter �s that may now change along the iterations s, when L yields a concave GW 
problem, the following bound holds:

We can make the following comments from this bound. First, the convergence is better 
in the concave case as, unlike in Theorem 1, the first term is now linear in S . Second, as it 
can be seen in the proof (see Appendix A.1), it can be shown that in this concave scenario, 
the best value for � is 1. Thus, if we completely compute the matrix � ( M = ∞ ), this bound 
applies to EGW . For any sequence (�s)s∈ℕ such that 

∑S−1

s=0
�s is o(S) , the convergence of 

EGW to a stationary point is guaranteed.
Relationship between SaGroW and the Frank-Wolfe algorithm At first sight, 

SaGroW seems akin to a Frank-Wolfe algorithm  (Frank & Wolfe, 1956). In fact, when 
the regularization parameter � = 0 , SaGroW is strictly equivalent to a Stochastic Frank-
Wolfe (Reddi et al., 2016). The convergence analysis of this general non-convex setting is 
thus very similar, except for the term that depends on � which quantifies the error due to 
the entropy regularization. Moreover, note that if � = 0 , EGW becomes equivalent to the 
Frank-Wolfe algorithm (Frank & Wolfe, 1956) when its step size � is set to 1. Since the � 
parameter in our algorithm plays the same role as that of the step size of the Frank-Wolfe 
algorithm, we might wonder why SaGroW does not compute the optimal value using a 
line search. To the best of your knowledge, in this general non convex setting, there is no 
convergence guarantees towards a stationary point for a stochastic Frank-Wolfe algorithm 
that would make use of the optimal step. Moreover, it is worth noting that this optimal 
step is expensive ( O

(
N4

)
 complexity) to calculate without approximation. Considering an 

approximation would make the derivation of theoretical guarantees even more challenging.

�

(
G
(
T
)) ≤ E(T0) − E(T∗)

2S
+ B

√
2N

M
+

1

S

S−1∑

s=0

�slog(N)
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4.3 � Particular case: pointwise GW

We focus in this section on the special case of SaGroW where only one matrix C is sam-
pled (i.e., M = 1 ) at each iteration. This variant, called Pointwise Gromov Wasserstein 
(PoGroW), makes it possible to leverage a dedicated solver to reduce the algorithmic com-
plexity of GW.

When M = 1 , if we sample a position j, l from T, then we seek to minimize the follow-
ing problem:

As illustrated in Fig. 2, each point in X  (resp. Y ) is simply defined by its distance to xj 
(resp. yl ), as done in papers that define a distribution using a distance to a point (Gelfand 
et al., 2005; Sato et al., 2020). With a single feature per point, Problem (11) can be solved 
very efficiently in O(N log(N)) like a 1D OT problem: the two lists of distances can be 
sorted and matched. With non-convex losses, this sorting approach is only an approxima-
tion. PoGroW can be seen as a natural GW extension of Sliced Wasserstein where each 
point is described by its distance to a chosen “anchor” (instead of a position on a line). 
Recall that the output of Problem (11) is a transport plan. If needed for the application at 
hand, the GW value can be computed in O

(
N2

)
 (see Sect. 4.5).

In summary, PoGroW has the same low complexity as Sliced Gromov Wasser-
stein (Vayer et al., 2019b) but it overcomes its main limitations: PoGroW is naturally invar-
iant to rotation; it returns a transport plan; it approximates the actual GW distance; it works 
with graphs.

4.4 � A KL regularization‑based variant

As the transport plan T is a distribution and most GW algorithms progressively update T, 
an interesting idea is to encourage the next plan T ′ to be close (in terms of KL divergence) 
to the current estimate T. This idea, already used in Xu et al., (2019b) based on Xie et al., 
(2020), can be applied to our SaGroW algorithm: we name this approach SaGroWKL and 
describe it below.

In Algorithm 1, we used partial updates to explore the transport plan space while encour-
aging the new value of T to be close to the preceding one, as reflected in line 6. We sug-
gest here a slight modification, consisting in using a Kullback Leibler (KL) regularization 
between T and T ′ in line 5 and removing line 6. This allows to account, in a natural way, for 

(11)min
T �∈�ab

I,K∑

i,k=1

L(CX(xi, xj), C
Y(yk, yl))T

�
ik
.

Fig. 2   Intuition behind PoGroW 
when j, l = 0, 1 are sampled from 
T: only the distances to x0 in X  
(on the left) and to y1 in Y (on 
the right) characterize a pair, 
and then T ′ can be computed in 
O(N logN) like in 1D OT
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the requirement for T and T ′ to stay close to each other during the optimization. This leads to 
the following sampled optimization problem,

which can be rearranged into,

This regularization allows to take advantage of the Sinkhorn-Knopps solver (Cuturi, 2013) 
as it is similar to Eq. (3) with a cost function modified to take into account the current prior 
T. Even if � is high, the optimization might lead to a solution close to the edge of the poly-
tope with enough iterations which is not the case with a classical entropy regularization 
without prior. The time complexity does not increase as it is still O

(
(P +M)N2

)
 . As this 

regularization is not specific to our method, we will also use it for EGW during the experi-
ments to allow a fair comparison. On the other hand, note that this regularization cannot be 
used with PoGroW as it currently does not seem possible to solve 1D entropy-regularized 
OT in O(Nlog(N)) (Cuturi et al., 2019). Note also that the convergence Theorem 1 does not 
hold anymore with this regularization.

4.5 � Efficient computation the GW distance from a transport plan

This section introduces and evaluates a low-complexity high-accuracy method for the esti-
mation of E(T) . Indeed, while SaGroW and PoGroW provide important complexity improve-
ments, one might argue that they only find a good transport plan T and do not provide a value 
for E(T) . An exact computation of E(T) has a O

(
N4

)
 time complexity, and it would dominate 

the complexity of our algorithms in applications where E(T) is required, for example when 
GW is used as a dissimilarity measure between graphs. Additionally, having an efficient way 
of estimating E(T) opens the door to selecting the best transport plan among a set of plans, 
e.g., obtained by varying the hyper-parameters or the random seed of an algorithm.

We address this issue in this section. Similar to Eq. (9), we propose to interpret the sums in 
the definition of E(T) as the expectation of a random variable � (this time real-valued instead 
of matrix-valued, so with a quadruple sum), with ℙ(� = Lijkl) = TijTkl:

Instead of simply sampling this expectation, we propose to stratify by each index i, k to 
improve the quality of the estimate. Let Ui be the event “i is chosen for the first dimension 
of L ” and U′

k
 be the event “k is chosen for the third dimension of L ”. Based on the marginal 

a and using the law of total expectation, �(�) can be rewritten as:

(12)min
T �∈�ab

⟨
1

M

M∑

m=1

Cm, T �

⟩
+ �KL(T �||T),

(13)min
T �∈�ab

⟨
1

M

M∑

m=1

Cm − �log(T), T �

⟩
+ �H(T �).

(14)�(�) =

I,I,K,K∑

i,j,k,l=1

LijklTijTkl.

(15)𝔼(�) =

I,K∑

i,k=1

ℙ(Ui ∩ U�
k
)𝔼(�|Ui ∩ U�

k
) =

I,K∑

i,k=1

aiak𝔼(�|Ui ∩ U�
k
).
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For each (i,  k), the conditional expectation is approximated using M samples of a ran-
dom variable Xik , defined by ℙ(Xik = Lijkl) = ℙ(� = Lijkl|Ui ∩ U�

k
) = TijTkl . Finally, 

�̂ =
∑

ik aiak
1

M

∑M

m=1
Xm
ik

 defines an unbiased estimate of the GW distance which 
can be computed in O

(
MN2

)
 (details about the variance estimate are provided in the 

Appendix A.3).
As shown in Fig. 3 (left), the prediction is perfect for a sparse transport plan ( � = 0 ), 

while still being almost perfect and much better than a naive sparse approximation of 
the OT plan as � increases. Fig.  3 (right) confirms that this approximation is clearly 
faster than the exact computation which becomes quickly intractable as N grows.

Having at our disposal an efficient method for estimating E(T) , we can now fully 
compare, in Table 1, the complexity of the state of the art methods with that of SaGroW 
and PoGroW, for the general case of an arbitrary loss function. From this table, we 
have evidence that SaGroW allows a drastic reduction of the algorithmic complexity of 
EGW . On the other hand, PoGroW fully benefits from the 1D projections. But unlike 
SGW, it provides a transport plan and does approximate the original GW problem.

Fig. 3   Estimated value of E(T) as sparsity decreases due to an increasing � regularization in EGW (left) 
and evolution of the time required for its estimation as N grows (right). The absolute loss is used in these 
experiments and the distributions take the form of two graphs generated using a gaussian random partition 
graph (Brandes et al., 2003). For a given � and N , the same T (obtained using EGW ) is passed to the three 
considered methods: Real) an exact one which computes completely E(T) , Sampled) our sampling method 
described in Sect. 4.5, and, Sparse) a sparse approximation which keeps only the 2N largest values of T and 
sets the other entries to 0. The mean and 2 standard deviations over 10 runs are displayed on both figures. 
When the standard deviation is not visible, it corresponds either to a deterministic method or a value very 
close to 0.

Table 1   Complexity of each 
method with an arbitrary loss 
function, with S iterations, P 
Sinkhorn iterations, N points in 
the dataset and M matrix samples

Note that the complexity can be different for specific loss functions

Methods GW 
approxima-
tion

Transport Plan E(T) Total

EGW Yes S(P + N2)N2 N4 S(P + N2)N2

SaGroW Yes S(P +M)N2 N2 S(P +M)N2

S-GWL Yes Unknown SN2 Unknown
SGW No Unavailable SN2 SN2

PoGroW Yes SN log(N) N2 N2
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5 � Experiments

In this section,4 we first compare different GW methods on both their speed and their accu-
racy. We use here the term accuracy to express the capability of the methods to minimize 
E(T). Indeed, as the exact (optimal) GW distance is unknown for a given dataset (solving 
this problem is known to be NP-hard), the best method will be the one with the smallest 
value of E(T) . Then, we analyze the impact of the hyperparameters, illustrating that our 
approach covers a range of very good trade-offs between speed and accuracy. Using a real 
graph-classification task, we finally illustrate why being able to solve GW for various loss 
functions is important.

5.1 � General setup and methods

We compare SaGroWKL and PoGroW with: (I) EGW  (Peyré et  al., 2016; II) EGWKL , a 
KL regularized version of EGW described in Xu et al., (2019b); (III) EMD-GW, which is 
similar to EGW0 , but uses the OT solver of (Bonneel et al.,, 2011) as the Sinkhorn algo-
rithm  (Cuturi, 2013) cannot handle a null value for � ; (IV) S-GWL  (Xu et  al., 2019a), 
adapted for arbitrary loss functions using the optimizer of Wright (1996) to update the 
barycenter; (V) SGW when the points are available, with an adaptation to arbitrary losses; 
(VI) the uniform transport plan, used as a baseline.

While Sect. 5.3 will detail the impact of the hyperparameters, the next section reports, 
for each method, the results obtained by the set of parameters with the lowest GW estima-
tion. To take into account the stochasticity of some methods the GW estimation for each 
hyperparameter set is taken on average over 10 runs. � is chosen among {0.001, 0.005, 
0.01, 0.005, 0.1} for EGW and EGWKL , and in {0.001, 0.01, 0.1, 1, 10, 100} for S-GWL. 
To have comparable sets of hyperparameters, we fix some of our parameters: in PoGroW, 
a step of � = 0.8 , and in SaGroW, the number of samples M = 10 and a KL regularization 
� = 1 . Experiments in the Appendices B.5 and B.6 show that: SaGroW is much less sensi-
tive to � than EGW and � = 0.8 is a reasonable choice. The number of iterations S is chosen 
among {10, 100, 500, 1000} to obtain a reasonable accuracy-speed trade-off.

This experiment compares the quality of the transport plan and the computational time 
of the methods for an increasing number of points N . Each method minimizes Problem (5) 
and returns a transport plan T (besides SGW, see below). In order to assess the quality of 
this transport plan, E(T) is then computed exactly. Notably, our GW distance approxima-
tion (see Sect. 4.5) is not used in this first experiment. The mean and standard deviation of 
E(T) over ten runs are reported.

The loss L chosen here is the absolute loss in order to show the capacity of our methods 
to deal with any arbitrary loss function. We remind that EGW , S-GWL and SGW are much 
faster (with speeds that are comparable to our approach) for some specific losses, such as 
the square loss (see Appendix B.2 and Sect. 5.4).

To include SGW (which needs points to project) in this comparative study, a first dataset 
uses � and � that are composed of N points sampled from two different mixtures of gauss-
ians. Details about the generation of the datasets are available in the Appendix B.1.

4  The code to reproduce all the experiments, figures and tables is available in the GitHub https://​github.​
com/​Hv0nn​us/​Sampl​ed-​Gromov-​Wasse​rstein

https://github.com/Hv0nnus/Sampled-Gromov-Wasserstein
https://github.com/Hv0nnus/Sampled-Gromov-Wasserstein
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5.2 � Speed and accuracy of the GW estimate

Figure 4 shows, in a log-log representation, that EGW and EMD-GW become quickly 
intractable when the number of points increases and that S-GWL is slightly faster. We 
exclude EGWKL for the clarity of the figure as it has a computational time similar to 
EGW . SaGroW, PoGroW and SGW behave better, with a quadratic complexity (linear 
slope of 2 in log-log) but with different multiplicative factors (offsets in the log-log 
plot).

Figure 5 reports the quality of the obtained GW value. Comparing SGW to other meth-
ods is complicated as it does not return a transport plan, nor aims at computing an approxi-
mation of the GW distance. We thus report the distance it computes and also the same 
rescaled by a factor 25. With rescaling, we see that SGW seems to behave more like the 
uniform transport plan than like the GW methods (which produce better-than-uniform 
plans). While all other methods predict very similar GW distances, EGW-based methods 
have often the best accuracy. However, when N reaches 1000 points, we can observe inter-
esting behaviors: EGW is not able to provide any result, PoGroW is the fastest with a lesser 

Fig. 4   Computational time of various methods to compute the distance between samples from two mixtures 
of gaussians. The mean and the standard deviation over 10 runs are reported

Fig. 5   GW distance estimation between samples from two mixtures of gaussians. The mean and standard 
deviation over 10 runs are reported for the stochastic methods
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accuracy than S-GWL, and SaGroW provides the best value while being much faster than 
S-GWL.

In a second series of experiments, we make use of graphs that are generated using a 
gaussian random partition graph (Brandes et al., 2003). On this more difficult dataset, we 
see in Fig. 6 that SaGroW is very competitive with the best method EGWKL while being 
able to scale to more than 200 nodes, which is the limit for all EGW-based methods. With 
more nodes, SaGroW is as accurate as S-GWL but remains much faster and scalable (com-
putation times are similar to the ones from the first dataset). In this experiment, a key factor 
of success seems to be the KL regularization, used in EGWKL , S-GWL and SaGroW. This 
can explain why PoGroW stays close to the uniform baseline.

5.3 � Hyperparameters analysis

We now focus on the impact of the numbers of iterations S and samples M , showing that 
these allow our approach to cover a variety of trade-offs between speed and accuracy. More 
experiments (in the Appendix B) consider other parameters such as different loss functions 
or dataset size. We also study, in this experiment, the impact of the � parameter of other 
methods.

Figure 7 shows that increasing the number of iterations S yields a strong improvement 
for SaGroW, independently of the number of samples M . Interestingly, the accuracy of 
SaGroW is similar regardless the value of M . This remark supports the key assumption of 
this paper that the entire computation of the expectation is not needed. The standard devia-
tion displayed in Fig. 7 shows that most runs provide similar GW distances, with enough 
iterations. However, there is a high variance with less iterations which tends to highlight 
that the different runs of SaGroW take different paths during the optimization. As shown in 
Fig. 8, the speed of EGW and S-GWL does not vary much with � but this parameter needs 
to be chosen carefully for those methods to reach a good accuracy.

On Fig. 9 we can see that PoGroW is even faster than SaGroW: it can provide a reason-
able approximation in a second, compared to the three hours required by EGW . Because 
PoGroW does not resort to a KL regularization, it is more impacted by stochasticity: two 
runs can yield very different results. This can be used advantageously by keeping the plan 
that gives the lowest GW among ten runs (crosses on Fig. 9). The combination of SaGroW 
and PoGroW allows to obtain a good trade-off between speed and accuracy.

Fig. 6   GW distance estimation between synthetic graphs  (Brandes et  al., 2003). The mean and standard 
deviation over 10 runs are reported for the stochastic methods
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Beyond the algorithmic advantages shown above, one last key question remains: is it 
useful, in an application, to compute the GW distance for other losses than the widely used 
square loss?

5.4 � Graph classification

We illustrate here the usefulness of using different loss functions in a context of graph clas-
sification. We take the FIRSTMM-DB graph dataset (Neumann et al., 2013) which is the 
one with the biggest average nodes number (1377) over the database of (Kersting et  al., 
2016). Each of the 41 graphs of the dataset describes an object from one of the 11 classes 

Fig. 7   Impact of the number of sample M and the number of iterations S for SaGroW on the GW distance 
estimation and computational time, for two sets of 500 points sampled from two mixtures of gaussians. The 
mean and standard deviation over 10 runs are display

Fig. 8   Impact of the Kullback-Leiber regularization � for EGW and S-GWL on the GW distance estimation 
and computational time, for two sets of 500 points sampled from two mixtures of gaussians
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(cup, knife, etc.). The distance matrix of each graph CX and CY is computed using the 
shortest path length, similarly to Mémoli (2011). For each method, we compute the pair-
wise GW distance matrix. Finally, a 1-Nearest-Neighbor classifier is used to predict the 
class of each graph (using a leave-one-graph-out scheme).

Section 5.2 showed that EGW , EGWKL and S-GWL are very slow with arbitrary loss 
functions on graphs (with around 1000 nodes). Therefore, we use for them the square loss 
to allow them to be competitive from a time complexity perspective. We consider ten val-
ues for the entropic regularization, � ∈ [10−4, 102] . SGW is excluded as it is unable to han-
dle graphs. For our methods, we set � = 0.1 for SaGroW and � = 0.8 for PoGroW and keep 
M = 1 , S = 100 for both methods. However, ten different loss functions L are tested, nota-
bly |CX

ij
− CY

kl
|p for different values of p ∈ [0.5, 3].

The results are reported in Table  2. Looking at SaGroW, we see that the classical 
square loss ( p = 2 ) is outperformed, e.g., by the absolute loss ( p = 1 ) which yields a 

Fig. 9   Impact of the number of iterations S for PoGroW on the GW distance estimation and computational 
time, for two sets of 500 points sampled from two mixtures of gaussians. The mean and standard deviation 
over 10 runs are display. To take advantage of the large stochasticity, the minimum over 10 runs is also 
display

Table 2   Classification accuracy 
and computation time of various 
methods on a 11-class graph 
classification task

In this summary table, only the hyperparameters yielding the best 
classification accuracy are reported, for each considered method

Methods Accuracy Time (s)

S-GWL5 0.44 23.4
EGWKL

0.005
0.24 41.1

EMD-GW 0.37 16.6
EGW0.001 0.22 36.2
Uniform 0.07 0.1
SaGroWp=1 0.49 11.6
SaGroWp=2 0.39 12.7
PoGroWp=2 0.39 0.5



2168	 Machine Learning (2021) 110:2151–2186

1 3

better classification accuracy. Beyond that, the ability of SaGroW to handle arbitrary losses 
allows it to get the best overall accuracy, across all the methods. The explanation can be 
that the L1 loss is more robust to outlier nodes, which might be important on this real data-
set. Note that while EGW and S-GWL are fast as they are computed with the square loss 
for L , SaGroW is still slightly faster. PoGroW has a competitive accuracy and even outper-
forms EGW while being very fast. The complete table with every hyperparameter run is 
available in the Appendix B.7.

While the goal of this experiment is to correctly classify graphs, we can still compare 
the GW distances obtained from the transport plans returned by all methods. This com-
parison only makes sense with the same (square) loss for all methods. Averaged over 412 
distances, SaGroW gets the lowest value of 336, followed by EMD-GW with 341. This 
highlights the fact that, on a real dataset, the stochasticity used by our method can lead to a 
better GW distance estimation.

6 � Conclusion

In this paper, we present both algorithmic and theoretical contributions to address the still 
open problem related to the calculation of the Gromov Wasserstein distance. We propose 
a method to reduce drastically the time complexity of GW for arbitrary loss functions. To 
do so, we tackle the bottleneck of the mostly used GW solver, namely EGW , by using a 
sampling strategy to efficiently approximate the costly sum of N2 matrices. Our SaGroW 
algorithm is supported with theoretical convergence guarantees to a stationary point in the 
general non-convex setting. We also introduce PoGroW, an algorithm which samples only 
one matrix and allows us to benefit from a very low complexity by using 1D OT. We show 
that PoGroW overcomes the main issues related to SGW. Experiments on synthetic data-
sets show that our method are tractable for a large number of points and offer a good trade-
off between speed and accuracy. Finally, a real world experiment on graph classification 
illustrates the interest of choosing different loss functions. In order to deal with potential 
outliers, we show that the absolute loss associated with SaGroW gives the highest classifi-
cation accuracy. We claim that this capacity to choose ad-hoc loss functions will push the 
state of the art in various graph applications by unlocking their use with large graphs.

Appendix A: Scalable GW optimization

A.1: Detailed derivations for the convergence

This section gives the (very) detailed derivations used to obtain the convergence properties 
of Sect. 4.2 of Algorithm 1 (from the paper).

Goal and context

First, let’s give a few reminders of the context and the final result. The proposed algorithm 
runs for S iterations, and averages M sampled cost matrices (obtained by sampling pairs of 
indices), at each iteration. We provide here a proof of convergence to a stationary point for 
any arbitrary loss L . Previous algorithms relied on having some particular loss L to be effi-
cient. When M = ∞ and � = 1 , the proposed algorithm is equivalent to EGW.
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We are interested in G(T)
def
=E(T , T) −minT � E(T , T �) . In a non convex setting, T is a sta-

tionary point of E(T) if and only if G(T) = 0 (Reddi et al., 2016). We recall the assumptions 
and notations:

–	 We suppose CX and CY symmetric. This assumption is notably satisfied if CX and CY 
are metrics.

–	 We define E(A,A�)
def
=E(A�,A) =

∑I

i,j=1

∑K

k,l=1
LijklAikA

�
jl

–	 We overload the notation if the two parameters are the same: E(A)
def
=E(A,A)

–	 We assume that 0 ≤ Lijkl ≤ B . This value B can be found in O
(
N2

)
 with any losses L 

that increase when |CX
ij

 - CY

kl
| increases, by looking at the extreme values of the two 

matrix CY and CX.

More precisely, the bound that we will prove here is the following (Theorem  1 of the 
paper):

Where T∗ is the optimal (unknown) solution of GW, i.e., T∗ = argmin
T∈�ab

E(T) and the expecta-

tion is taken on all the sampling done during the algorithm and on T .
The notation of the Algorithm 1 are slightly different in this appendix, as we make the 

distinction between T ′�
s

 and T ′
s
 . T ′�

s
 is the transport plan given by the OT-Sinkhorn solver, 

while T ′
s
 is the exact minimum transport plan.

Our proof is inspired by the Theorem 2 from Reddi et al., (2016) but we additionally 
consider the entropy regularization with notably the Lemma 1 which is specific to the OT 
problem. To give all details while trying to improve readability, we first prove some inter-
mediate results.

Necessary intermediate results

We first prove the following new lemma which quantifies the difference between the Was-
serstein distance with and without the entropy regularization, for a generic OT problem 
with a cost matrix C . Note that a related bound was proposed by Genevay et al., (2019) or 
Blondel et al., (2018) but include the entropy regularization while here we are only con-
cerned about the difference between the scalar product.

Lemma 1  Let T� (resp. T0 ) be the optimal solution of the a discrete OT problem with (resp. 
without) entropic regularization. We suppose the simplified case with N points in each 
empirical distribution and with uniform marginal distributions. We will note C the N × N 
cost matrix of this problem.

Proof  The positivity is obtained by definition of T0 (it minimizes ⟨C, T⟩ ). The right-hand 
side inequality can be derived as follows (where −H(T) denotes the entropy of T):

�

(
G
(
T
)) ≤

√
2B

(
E(T0) − E(T∗)

)
N

S
+ B

√
2N

M
+ � log(N).

(16)0 ≤ ⟨C, T�⟩ −
�
C, T0

� ≤ � log(N)
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Line 18 : by definition, T� minimizes ⟨C, T⟩ + �H(T) . Line 20 T0 is a permutation and T� is 
at worse (in terms of H() ) uniform.

	�  ◻

Interestingly this bound does not depend directly depend on C (still, C impacts the 
value of T0 , T� ). A scale increase of C will virtually reduce � in comparison, thus T� 
will be closer to T0 . Note that the bound can be adapted to the general case (arbitrary 
distributions), then the bound is −�(H(�) +H(�)) as we bound H(T0) by 0 and −H(T�) 
by −H(� × �).

Let (T , T �) ∈ �2
ab

 . We now derive several intermediate results with these arbitrary 
transport plans T and T ′ , in a simplified case when I = J = N (same number of points in 
each empirical distribution).

We start with a bound on the maximal distance between these transport plans (in 
term of Frobenius norm):

Line 23: the triangular inequality is used. Line 25: for doubly stochastic matrices, the high-
est Frobenius norm is obtained with a permutation (fewer and thus bigger values give a 
bigger norm), the permutation has N non-zero values equal to 1

N
.

(17)⟨C, T�⟩ −
�
C, T0

�
=⟨C, T�⟩ −

�
C, T0

�
+ �H(T�) − �H(T�)

(18)≤⟨C, T0
⟩
−
⟨
C, T0

⟩
+ �H(T0) − �H(T�)

(19)≤�H(T0) − �H(T�)

(20)≤� log(N−1) − � log(N−2)

(21)=� log(N)

(22)��T − T ���F =

�
‖T − T �‖2

F

(23)≤
�

‖T‖2
F
+ ‖T �‖2

F

(24)≤
√√√√

I,K∑

i,k=1

T2
ik
+

I,K∑

i,k=1

T �2
ik

(25)≤
√

N
(
1

N

)2

+ N
(
1

N

)2

(26)=

√
2

N
.
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For completeness, we prove that the gradient of E(T) is expressed in terms of T. We 
prove it with L symmetric, in the sense that Lijkl = Ljilk , which is implied if the cost 
matrices are symmetric. For all indices a, b in T, we have:

We can also prove that E is 2BN2-smooth, as follows:

(27)
�E

�Tab
(T) =

�

�Tab

I,I∑

i,j=1

K,K∑

k,l=1

LijklTik Tjl

(28)=
�

�Tab

(
Laabb T

2
ab
+

(
2
∑

cd≠ab
LacbdTcd

)
Tab

)

(29)= 2 LaabbTab + 2
∑

cd≠ab
LacbdTcd

(30)= 2
∑

cd

LacbdTcd

(31)∇E(T) = 2
∑

jl

L.j.lTjl

(32)=
∑

jl

(L.j.l + Lj.l.)Tjl in the case where L is not symmetric.

(33)‖‖∇E(T) − ∇E(T �)‖‖F =

‖‖‖‖‖‖
2
∑

jl

L.j.lTjl − 2
∑

jl

L.j.lT
�
jl

‖‖‖‖‖‖F

(34)=

‖‖‖‖‖‖
2
∑

jl

L.j.l

(
Tjl − T �

jl

)‖‖‖‖‖‖F

(35)=

√√√√√∑

ik

(
2
∑

jl

Lijkl

(
Tjl − T �

jl

))2

(36)=

��

ik

�
2⟨Li.k., T − T �⟩

�2

(37)≤
��

ik

�
2��Li.k.��F‖T − T �‖F

�2
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Line 37 uses the Cauchy–Schwarz inequality. Line 38 uses 0 ≤ Lijkl ≤ B.
The following Lemma 2 is the same as the one provided in Reddi et al., (2016) and will 

allow to start the proof.

Lemma 2  If f ∶ ℝ
d
⟶ ℝ is L-smooth, then for all x, y ∈ ℝ

d.

Proof of the theorem

Theorem  3  (Based on  (Reddi et  al., 2016)) For any Lijkl ∈ [0, 1] , for any distributions 
� and � with uniform weights a and b respectively, for any optimal solution T∗ of Prob-
lem (5), on average for the transport plan T  uniformly sampled from (Ts)s∈[[0,S−1]] , on aver-
age over all the samplings, the following bound holds:

Proof  Ts and T ′�
s

 are the transport plan obtain in the Algorithm 1. T �
s
= T �0

s
 is the solution 

without entropy regularization.
Let T̂ �

s
= argmin

T �
s
∈𝛱ab

⟨
T �
s
,∇E(Ts)

⟩
= argmax

T �
s
∈𝛱ab

⟨
T �
s
,−∇E(Ts)

⟩
 and �̂s the sum of matrices sam-

pled M times at iteration s.

(38)≤
�

4
�

jl

B2N2‖T − T �‖2
F

(39)≤ 2B

�
N4‖T − T �‖2

F

(40)≤ 2BN2‖‖T − T �‖‖F .

f (x) ≤ f (y) + ⟨∇f (y), x − y⟩ + L

2
‖x − y‖2

�

(
G
(
T
)) ≤

√
2B

(
E(T0) − E(T∗)

)
N

S
+ B

√
2N

M
+ � log(N).

(41)E(Ts+1) ≤ E(Ts) +
�
∇E(Ts), Ts+1 − Ts

�
+

2BN2

2
‖Ts+1 − Ts‖2

(42)≤ E(Ts) +
�
∇E(Ts), �(T

��
s
− Ts)

�
+ BN2‖�(T ��

s
− Ts)‖2

(43)≤ E(Ts) +
⟨
∇E(Ts), �(T

��
s
− Ts)

⟩
+ BN2�2

√
2

N

2

(44)= E(Ts) + �
⟨
2�̂s, T

��
s
− Ts

⟩
+ �

⟨
∇E(Ts) − 2�̂s, T

��
s
− Ts

⟩
+ BN2�2

√
2

N

2
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The line 41 uses the smoothness of E . The line 42 uses the definition of the update. The 
line 43 uses the bound between transports plans. The line 44 adds artificially the 2�̂s term. 
The line 45 adds artificially the T ′

s
 term. The line 46 separate two terms. The line 47 uses 

the Lemma 1 with �̂s as cost matrix and use the definition of T ′
s
 . The line 48 uses the fol-

lowing equalities,

The line 49 uses the definition of G(Ts) . The line 50 applies Cauchy Schwartz inequality 
and bound the difference between OT plan.

(45)

= E(Ts) + �
⟨
2�̂s, T

��
s
− Ts + T �

s
− T �

s

⟩
+ �

⟨
∇E(Ts) − 2�̂s, T

��
s
− Ts

⟩

+ BN2�2

√
2

N

2

(46)

= E(Ts) + �
⟨
2�̂s, T

�
s
− Ts

⟩
+ �2

⟨
�̂s, T

��
s
− T �

s

⟩
+ �

⟨
∇E(Ts) − 2�̂s, T

��
s
− Ts

⟩

+ BN2�2

√
2

N

2

(47)

≤ E(Ts) + 𝛼
⟨
2 �𝛬s, T̂

�
s
− Ts

⟩
+ 𝛼2𝜖 log(N) + 𝛼

⟨
∇E(Ts) − 2 �𝛬s, T

�𝜖
s
− Ts

⟩

+ BN2𝛼2

√
2

N

2

(48)

= E(Ts) + 𝛼
⟨
∇E(Ts), T̂

�
s
− Ts

⟩
+ 𝛼

⟨
∇E(Ts) − 2 �𝛬s, T

�𝜖
s
− T̂ �

s

⟩
+ 𝛼2𝜖 log(N)

+ BN2𝛼2

√
2

N

2

(49)= E(Ts) − 2𝛼G(Ts) + 𝛼
⟨
∇E(Ts) − 2 �𝛬s, T

�𝜖
s
− T̂ �

s

⟩
+ 𝛼2𝜖 log(N) + BN2𝛼2

√
2

N

2

(50)≤ E(Ts) − 2�G(Ts) +

�
2

N
�‖∇E(Ts) − 2�̂s‖ + �2� log(N) + BN2�2

�
2
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2
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⟩
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To bound the difference between the real expectation ∇E(Ts) and the sampling 2�̂s , 
the following result is needed. Let define M random variable, zm = L.jm.lm −

∑
jl L.j.lTjl . 

They have 0 mean and each zm are independent from each other. Moreover, 
‖zm‖ = ‖L.jm.lm −

∑
jl L.j.lTjl‖ ≤ √∑

ik B
2 = BN.

This result can be used directly on the bound, after averaging over all the sampling.

(55)�(‖∇E(Ts) − 2�̂s‖) = �(‖2
�

jl

L.j.lTjl −
2

M

M�

m=1

L.jm.lm‖)

(56)=
1

M
2�(‖

M�

m=1

zm‖)

(57)=
2

M

����
(�(‖

M�

m=1

zm‖))2

(58)≤ 2

M

����
�(‖

M�

m=1

zm‖2) Jensen Inequality

(59)=
2

M

����
M�

m=1

M�

r=1

�(⟨zm, zr⟩)

(60)=
2

M

����
M�

m=1

�(‖zm‖2)

(61)≤ 2

M

√√√√
M∑

m=1

�(B2N2)

(62)=
2

M

√√√√
M∑

m=1

B2N2

(63)=
2

M

√
MB2N2

(64)=
2BN√
M
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Thus,

We set sum over all s on both side.

We use the definition of T  for G(T) . Notice that the following line is correct only on aver-
age for the random variable T  . This part is not clearly specified in the original proof of 
Reddi et al., (2016). We use also the definition of T∗ for the second inequality.

We derive the function f (�) = E(T0)−E(T
∗)

2S�
+ B

√
2N

M
+ � log(N) + BN� with respect to �.

As E(T0) − E(T∗) ≥ 0 , the second derivative is positive, thus f is convex, therefore we have 
the minimum. We can replace � and find the final bound,

(65)
�(E(Ts+1)) ≤ �(E(Ts)) − 2��(G(Ts)) +

�
2

N
��(‖∇E(Ts) − 2�̂s‖) + �2� log(N)

+ BN2�2

�
2

N

2

(66)≤ �(E(Ts)) − 2��(G(Ts)) +

�
2

N
�
2BN√
M

+ �2� log(N) + BN2�2

�
2

N

2

(67)

2��(G(Ts)) ≤ �(E(Ts)) − �(E(Ts+1)) + 2

�
2

N
�
BN√
M

+ �2� log(N) + BN2�2

�
2

N

2

.

(68)

2�

S−1�

s=0

�(G(Ts)) ≤ E(T0) − �(E(TS−1)) + S2

�
2

N
�
BN√
M

+ S�2� log(N) + SBN2�2

�
2

N

2

(69)≤ E(T0) − �(E(TS−1)) + S2

�
2

N
�
BN√
M

+ S�2� log(N) + SBN2�2

�
2

N

2

(70)�(G(T)) ≤ E(T0) − �(E(TS−1))

2S�
+

�
2

N

BN√
M

+ � log(N) + BN2�

�
1

N

2

(71)≤ E(T0) − E(T∗)

2S�
+ B

√
2N

M
+ � log(N) + BN�

(72)
df

d�
(�) = 0 ⟺ −

E(T0) − E(T∗)

2S�2
+ BN = 0

(73)⟺
1

�2
=

2S

E(T0) − E(T∗)
BN

(74)⟺ � =

√
E(T0) − E(T∗)

2SBN
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	�  ◻

We will now prove the second theorem using the same proof.

Theorem  4  With the same notations as in Theorem  3 with the entropy �s that may now 
change along the iterations, when L yields a concave GW problem the following bound 
holds:

Proof  The first difference is line 68, the sum from 0 to S − 1 cannot be changed to S as �s 
may change along the iterations and is now a sum over 

∑S−1

s=0
 . The second difference is in 

Lemma 2, were the last term disappear as GW is concave. Thus, in line 71, as the last term 
is not present the optimal value of � is 1, which gives the proposed bound. 	�  ◻

A.2: A KL regularization‑based variant

In this section we will discuss the convergence of the KL variant. A related convergence 
proof is proposed in Xu et al., (2019b) were the authors aim at solving GW using a proxi-
mal points method,

However it does not cover our case were we optimize minT∈�ab
E(T , Tn) + �KL(T||Tn) at 

each iteration with the expectation approximated by a sampling. Without sampling, this 
optimization can be seen as a Majorization-Minization method (Sun et al., 2016),

(75)�(G(T)) ≤ E(T0) − E(T∗)

2S

√
E(T0)−E(T

∗)

2BSN

+ B

√
2N

M
+ � log(N) + BN

√
E(T0) − E(T∗)

2BSN

(76)

≤ E(T0) − E(T∗)

2S

√
2BSN

E(T0) − E(T∗)
+ B

√
2N

M
+ � log(N) +

√
(E(T0) − E(T∗))BN

2S

(77)≤
√

(E(T0) − E(T∗))BN

2S
+ B

√
2N

M
+ � log(N) +

√
(E(T0) − E(T∗))BN

2S

(78)≤
√

2(E(T0) − E(T∗))BN

S
+ B

√
2N

M
+ � log(N).

�

(
G
(
T
)) ≤ E(T0) − E(T∗)

2S
+ B

√
2N

M
+

1

S

S−1∑

s=0

�s log(N)

min
T∈�ab

E(T , T) + �KL(T||Tn).

(79)E(T) ≤ E(Tn) + ⟨∇E(Tn), T − Tn⟩ + 2BN2

2
‖T − Tn‖2

(80)≤ E(Tn) + ⟨∇E(Tn), T − Tn⟩ + BN2�T − Tn�2
1
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Were the first line is the line 41 in the proof of Theorem 3. The second line use the fact that 
the L2 norm is bigger than the L1 norm. The last line uses the Pinsker’s inequality.

While the last inequality seems to be a good starting point, we could not directly derive 
(or find in the literature) a bound that applies with sampling and the KL term (that makes 
the use of Sinkhorn-Knopps possible). Thus, while this interpretation seems interesting, 
the question of the convergence is left open and would need to be studied in a future work.

A.3: Approximating the Gromov Wasserstein distance

This section gives mathematical details for the estimation of the Gromov Wasserstein dis-
tance from a given transport plan. Our approach to compute the GW distance will take 
inspiration from the idea of sampling T ∈ �ab (i.e., with marginals a and b).

Let define a new random variable P(� = Lijkl) = TijTkl . This definition is not totally rig-
orous: two values Lijkl and Li′j′k′l′ may be equal, the actual probability is then the sum of the 
probabilities. The GW distance can now be seen as an expectation,

Instead of simply sampling this expectation, we propose to stratify by each index i, k to 
improve the quality of the estimator. Let Ui be the event “i is chosen for the first dimension 
of L ” and U′

k
 be the event “k is chosen for the third dimension of L ”. Using the rule of total 

expectation, the expectation can be transformed to,

For any (i, k) ∈ [[1,N]]2 , we denote as Xik the random variable defined by: 
ℙ(Xik = Lijkl) = ℙ(� = Lijkl|Ui ∩ U�

k
) . Thus, we use �̂ =

∑
ik aiak

1

M

∑M

m=1
Xm
ik

 to estimate 
the Gromov Wasserstein distance. This estimator is unbiased and comes with a tight esti-
mator of the standard deviation as shown on the Fig. 3 of the paper,

We recommend to take at least M = 2 , to have access to the standard deviation. Note that 
in theory we could only look at a sub-sample of the index i, k (

√
N log(N) instead of all the 

N points) , to have an approximation of the distance in N log(N) . This might be useful when 
coupled with Pointwise Gromov Wasserstein, however the predicted distance might be far 
from the real one without any standard deviation to quantify the error.

(81)≤ E(Tn) + ⟨∇E(Tn),T − Tn⟩ + BN2KL(T��Tn).

(82)
∑

ijkl

LijklTijTkl = �(�).

(83)𝔼(�) =
∑

ik

ℙ(Ui ∩ U�
k
)𝔼(�|Ui ∩ U�

k
)

(84)=
∑

ik

aiak�(�|Ui ∩ U�
k
).

(85)𝜎̂
�̃
=

√√√√√∑

ik

a2
i
a2
k

1

M − 1

M∑

m=1

(
Xm
ik
−

(
1

M

M∑

m�=1

Xm�

ik

))2

.
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Appendix B: Experiments

B.1: General setup and methods

We remind that the code to reproduce all the experiments, figures and tables is available in 
the GitHub repository: https://​github.​com/​Hv0nn​us/​Sampl​ed-​Gromov-​Wasse​rstein.

Gaussians mixtures

This section explains how the gaussians mixtures are created with a Gaussian Random Par-
tition Graph (Brandes et al., 2003) based on Stochastic Block Model (Holland et al., 1983). 
The Algorithm 2 describe how to sample N points. This algorithm will create some gauss-
ians separated from each other and some values will be sample from those gaussians.

For the experiment, the dimension space d is set to 10 and 20 for the distributions � and 
� . The Euclidean distance is used on both spaces to compute CX and CY.

Gaussian Random Partition Graph

For the second experiment, we generate graphs using a Gaussian Random Partition 
Graph  (Brandes et  al., 2003) with intra-cluster probability of 0.5, extra-cluster probabil-
ity of 0.1, the number of nodes in each cluster is sampled from a Gaussian with mean 
min(

N

2
, 200) and a variance of 5. The adjacency matrix of each graph is used for CX and 

CY . We set a and b to the uniform distribution.

B.2: Speed and accuracy of the GW estimate

We reproduce the figures available in the paper in Figs. 10 and 11. The left part of Fig. 11 
is omitted from the paper: it shows similar time complexity compared to the left part of 
Fig. 10. 

Figure 12 shows that the computation time iclearly different with the square loss. To 
facilitate the comparison, we keep, for every method, the same hyperparameter used for 
the absolute loss. Those parameters may not be optimal, especially S-GWL which seems to 
perform poorly. On the left Fig. 12, SGW is faster that PoGroW because the distance can 

https://github.com/Hv0nnus/Sampled-Gromov-Wasserstein
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be computed in O(N log(N)) , and the entire algorithm is efficiently parallelized. Because of 
its O

(
N2

)
 complexity, SaGroW is still faster than S-GWL and EGW for a high number of 

points.

B.3: Hyperparameter analysis

In this section, we plot figures similar to Figs. 7, 8 and 9 from the paper.
Figure 13 shows the difference between the square loss and the absolute one, to compare 

computational times. While our method remains the same, the other method improve their 
computational time.

Figure 14 shows similar expected behavior for a graphs dataset.
Figure 15 shows a very easy situations, where every method probably finds the right 

GW distance. In this case PoGroW is very competitive even for the square loss.
Figure 16 highlights the interest of our method even for a very small N (20 nodes in 

each graphs). In this case, SaGroW obtains the best transport plan for the square loss.

Fig. 10   Computational time (left) and GW distance estimation (right) between points sampled from mix-
tures of gaussians

Fig. 11   Computational time (left) and GW distance estimation (right) on synthetic graphs (Brandes et al., 
2003)

Fig. 12   Computational time (left) and GW distance estimation (right) between sampled points from mix-
tures of gaussians with the square loss
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Fig. 13   Similar to the Figs. 7, 8 and 9 in the paper. (Left) Absolute loss. (Right) Square loss

Fig. 14   Hyperparameters analysis on a Stochastic Block Model dataset with 200 nodes for each graphs. 
(Left) Absolute loss. (Right) Square loss

Fig. 15   Hyperparameters analysis on a mixture of Gaussians with 200 points sampled for each distribu-
tions. (Left) Absolute loss. (Right) Square loss

Fig. 16   Hyperparameters analysis on a Stochastic Block Model dataset with only 20 nodes for each graphs. 
(Left) Absolute loss. (Right) Square loss
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Figure 17 (left) shows an interesting example when every methods seem stuck in the 
same local minima and S-GWL finds a better transport plan which is probably the global 
minima.

Lastly, Fig. 18 shows that even with 1000 iterations, SaGroW doesn’t seem to converge. 
The value of � is too high in this case and needed to be lowered to avoid too much itera-
tions. However, SaGroW still obtains a better plan than S-GWL for the absolute loss.

Small experiment on SaGroW without the KL regularization

In this experiment, we replace SaGroWKL by SaGroW and reproduce Figs. 7, 8 and 9 in 
the paper. We use � = 0.1 for this experiment and � = 0.8 . The Fig. 19 shows that the value 
of � = 0.1 is too high on this dataset. Section B.5 highlights the difficulty to chose a good 
value of entropy regularization while the KL regularization is much more robust to this 
choice.

As the number of sample increases, the performance of SaGroW tend to EGW0.1 , which 
is the left-most point. This behaviour is expected as SaGroW become similar to EGW 
when the expectation is completely computed. However, the performance improves slowly 
with the number of iterations. This might be due to the lack of memory from one iteration 
to the other, as the transport plan Ts may vary a lot between two iterations. This illustrates 
the advantage of the KL regularization which completely take into account the previous 
transport plan.

Fig. 17   Hyperparameters analysis on a mixture of Gaussians with 100 points sampled for each distribu-
tions. (Left) Absolute loss. (Right) Square loss

Fig. 18   Hyperparameters analysis on a Stochastic Block Model dataset with 1000 nodes for each graphs. 
(Left) Absolute loss. (Right) Square loss
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Small experiment on the entropy parameter

Table 3 shows that EGW is really sensitive to the entropy regularization, with only 4 val-
ues of � that give a Gromov Wasserstein distance different from 0.75. This value of 0.75 
corresponds to the uniform matrix. In contrast, due to the KL regularization instead of the 
classical entropy, SaGroWKL never returns the uniform matrix. Moreover, SaGroWKL gives 
a reasonable value for a large range of parameters (from 0.05 to 1).

The entropy regularization ensure to stay close to the uniform. Thus, for high value of � 
it will always stay close to the uniform. The KL regularization ensure than the next value 
will be close to the previous one. In such a case, with enough iteration we can still con-
verge to a local minima. This is intuition was given in Xu et  al., (2019b) based on Xie 
et al., (2020).

Small experiment on the ̨  parameter

Tables 4 and 5 analyze the impact of � and the number of iterations. The most important 
information is that a high value of � seems a good choice. A high value of � ensure to 

Fig. 19   Similar to the Figs. 7, 
8 and 9 in the paper, with 
SaGroWKL replaced by SaGroW

Table 3   Gromov Wasserstein 
estimation for different values 
of �

The dataset is composed of 2 graphs created with a Gaussian Random 
Partition Graph (Brandes et al., 2003) with 50 points each. The mean 
cluster size is set to 25 and the variance to 5. The probability of intra-
cluster connection is 0.5 while the inter-cluster is set to 0.1. The GW 
distances reported are averaged over 10 iterations. The absolute dis-
tance is used for L . The number of iteration of SaGroWKL is 1000 with 
one sample per iteration

� SaGroWKL
EGW

0.001 0.73 0.75
0.005 0.59 0.63
0.01 0.55 0.62
0.05 0.51 0.67
0.1 0.51 0.71
0.5 0.52 0.75
1 0.52 0.75
5 0.62 0.75
10 0.68 0.75
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always be close to the edge of the polytope, were the optimal value is assumed to be. For a 
concave problem (Table 5), the best value to choose is 1. In Table 4 the best value around 
0.75 - 0.9. Thus, it might not be very interesting to cross validate this parameter, and a 
value around 0.8 seems a reasonable choice.

On average, it is better to apply many iterations. This is especially true for small value 
of � were the GW distance changes very slowly. We see on this experiment, the limit of the 
convergence proof. In practice, we will never use a small value of � , even if the conver-
gence is ensured.

Graph classification

Table 6 gives the complete table of the graphs classification experiment. The best param-
eter taken for each of the method is not on the edge on the parameter range. Thus, a good 
parameter is found for each method. Notice that the performance of PoGroW are very simi-
lar for different value of power p. This can be explain by the fact that the transport plan 
found does not depend on the loss used. The 1D optimal transport plan is the same for 
all convex loss functions. For the case p = 0.5 , PoGroW does not find the perfect trans-
port plan at each iteration as we suppose the loss convex. For p = 1 the problem might 
be degenerated, many different transport plans can be optimal. We can suppose p slightly 
higher than one to avoid the problem. Caracciolo et al., (2020) proposes a bound for the 1D 
OT concave case.

Other losses than the absolute loss at power p have been tested. Only the exponential 
square (1 − e−(C

X−CY)2 ) has a reasonable accuracy.

Table 4   Gromov Wasserstein distance for PoGroW with different values of � and different number of itera-
tions

The dataset is composed of 2 graphs created with a Gaussian Random Partition Graph  (Brandes et  al., 
2003) with 50 points. The absolute distance is used for L

S∖� 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.99 0.999 1

1 74.87 74.87 74.82 74.63 74.03 73.07 72.33 71.82 71.77 71.76
10 74.87 74.82 74.73 74.52 74.88 74.69 72.28 71.84 71.80 71.79
100 74.82 74.35 73.36 73.94 74.67 68.34 68.76 71.91 71.93 71.94
1000 74.37 73.76 72.90 73.32 73.09 72.12 70.62 72.97 73.01 70.69

Table 5   Gromov Wasserstein distance for PoGroW with different values of � and different number of itera-
tions

The dataset is composed of 2 samples of 50 points of mixtures of gaussians. The absolute distance is used 
for L

S∖� 0.001 0.01 0.1 0.25 0.5 0.75 0.9 0.99 0.999 1

1 166.88 166.87 166.28 163.53 154.03 138.40 126.08 117.62 116.73 116.63
10 166.83 166.37 163.81 160.98 117.23 85.41 85.27 85.24 79.84 79.84
100 166.48 163.31 105.36 90.42 137.56 76.93 79.02 73.80 73.64 73.62
1000 163.38 134.57 86.59 80.47 79.43 78.28 77.45 77.14 77.11 77.11
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Table 6   Complete table of the 
classification experiment in the 
paper

Dataset Accuracy GW Distance Time (s)

S-GWL0.005 0.1 400 14.7
S-GWL0.01 0.1 400 13.9
S-GWL0.05 0.1 400 13.9
S-GWL0.1 0.1 400 12.6
S-GWL0.5 0.17 390 12.0
S-GWL1 0.29 374 11.0
S-GWL5 0.44 362 23.4
S-GWL10 0.41 377 27.8
S-GWL50 0.41 374 34.1
S-GWL100 0.39 372 33.2
EGW0.0001 0.07 430 0.1
EGW0.0005 0.07 429 4.5
EGW0.001 0.22 412 36.2
EGW0.005 0.22 375 42.6
EGW0.01 0.12 383 25.1
EGW0.05 0.15 408 6.2
EGW0.1 0.12 420 2.0
EGW0.5 0.07 429 0.3
EGW1 0.07 429 0.3
EGWKL

0.0001
0.07 430 0.1

EGWKL

0.0005
0.07 429 0.1

EGWKL

0.001
0.15 419 0.2

EGWKL

0.005
0.24 375 41.1

EGWKL

0.01
0.12 383 25.8

EGWKL

0.05
0.15 408 7.1

EGWKL

0.1
0.12 420 2.4

EGWKL

0.5
0.07 429 0.4

EGWKL

1
0.07 429 0.4

EMD-GW 0.37 341 16.6
SaGroWp=0.5 0.41 12.3
SaGroWp=1 0.49 11.6
SaGroWp=1.5 0.49 13.6
SaGroWp=2 0.39 336 12.7
SaGroWp=2.5 0.37 12.3
SaGroWp=3 0.27 11.8
SaGroW  (1 − e−|C

X−CY|) 0.05 0.7

SaGroW  (1 − e
−

|CX−CY |
10 )

0.05 0.8

SaGroW  (1 − e−(C
X−CY)2 ) 0.27 13.9

SaGroW  (1 − e
(CX−CY )2

100 )
0.05 0.8

PoGroWp=0.5 0.37 0.5
PoGroWp=1 0.37 0.5
PoGroWp=1.5 0.37 0.5
PoGroWp=2 0.39 373 0.5
PoGroWp=2.5 0.32 0.6
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