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Abstract
Modelling exchangeable relational data can be described appropriately in graphon theory. 
Most Bayesian methods for modelling exchangeable relational data can be attributed to 
this framework by exploiting different forms of graphons. However, the graphons adopted 
by existing Bayesian methods are either piecewise-constant functions, which are insuffi-
ciently flexible for accurate modelling of the relational data, or are complicated continuous 
functions, which incur heavy computational costs for inference. In this work, we overcome 
these two shortcomings by smoothing piecewise-constant graphons, which permits con-
tinuous intensity values for describing relations, without impractically increasing compu-
tational costs. In particular, we focus on the Bayesian Stochastic Block Model (SBM) and 
demonstrate how to adapt the piecewise-constant SBM graphon to the smoothed version. 
We first propose the Integrated Smoothing Graphon (ISG) which introduces one smoothing 
parameter to the SBM graphon to generate continuous relational intensity values. Then, 
we further develop the Latent Feature Smoothing Graphon (LFSG), which improves the 
ISG, by introducing auxiliary hidden labels to decompose the calculation of the ISG inten-
sity and enable efficient inference. Experimental results on real-world data sets validate the 
advantages of applying smoothing strategies to the Stochastic Block Model, demonstrating 
that smoothing graphons can greatly improve AUC and precision for link prediction with-
out increasing computational complexity.

Keywords Bayesian methods · Exchangeable relational data · Graphon

1 Introduction

Exchangeable relational data (Nowicki and Snijders, 2001; Ishiguro et al., 2010; Schmidt 
and Mørup, 2013), such as tensor data  (Zhang, 2019; Pensky, 2019) and collabora-
tive filtering data  (Luo et  al., 2016; Zhang et  al., 2019; Li et  al., 2009), are commonly 
observed in many real-world applications. In general, exchangeable relational data describe 
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the relationship between two or more nodes  (e.g.  friendship linkages in social networks; 
user-item rating matrices in recommendation systems; and protein-to-protein interac-
tions in computational biology), where exchangeability refers to the phenomenon that the 
joint distribution over all observed relations remains invariant under node permutations. 
Techniques for modelling exchangeable relational data include node partitioning to form 
“homogeneous blocks”  (Nowicki and Snijders, 2001; Kemp et  al., 2006; Roy and Teh, 
2009), graph embedding methods to generate low-dimensional representations (Pang et al., 
2013; Bouzas et al., 2015; Dutta and Sahbi, 2019), and optimization strategies to minimize 
prediction errors (Nikolaidis et al., 2012; Wang et al., 2019).

Graphon theory (Orbanz, 2009; Orbanz and Roy, 2014; Lloyd et al., 2012) has recently 
been proposed as a unified theoretical framework for modelling exchangeable relational 
data. In graphon theory, each relation from a node i to another node j is represented by 
an intensity value generated by a graphon function, which maps from the corresponding 
coordinates of the node pair in a unit square, (u(1)

i
, u

(2)

j
) , to an intensity value in a unit inter-

val. Many existing Bayesian methods for modelling exchangeable relational data can be 
described using graphon theory with various graphon functions. Fig. 1 illustrates several 
typical graphon functions, including the Stochastic Block Model (SBM) (Nowicki and Sni-
jders, 2001; Kemp et al., 2006), the Mondrian Process Relational Model (MP-RM) (Roy 
and Teh 2009), the Rectangular Tiling Process Relational Model (RTP-RM) (Nakano et al., 
2014), and the Gaussian Process Prior Relational Model (GP-RM) (Orbanz 2009).

The simplest of these graphon functions is the regular-grid piecewise-constant graphon 
(Fig.  1, left). Generally, it is constructed from two-independent partition processes in a 
two-dimensional space. The resulting orthogonal crossover between these dimensions pro-
duces a regular grid partition in the space. Typical regular-grid partition models include 
the SBM (Nowicki and Snijders, 2001) and its infinite states variant, the Infinite Relational 
Model (IRM) (Kemp et al., 2006). The SBM uses a Dirichlet distribution (or Dirichlet pro-
cess for the IRM) to independently generate a finite  (or infinite for the IRM) number of 
segments in each dimension.

The Mondrian process relational model (MP-RM; Fig. 1, centre-left) (Roy et al., 2007; 
Roy and Teh, 2009; Roy, 2011) is a representative model which generates k-d tree-struc-
tured piecewise-constant graphons. In general, the Mondrian process recursively generates 

Fig. 1  Visualisation of Bayesian graphon-construction methods for modelling exchangeable relational data. 
From left to right: the Stochastic Block Model (SBM); the Mondrian Process Relational Model (MP-RM); 
the Rectangular Tiling Process Relational Model  (RTP-RM) and the Gaussian Process Prior Relational 
Model (GP-RM). For any pair of node coordinates (u(1)

i
, u

(2)

j
) the relation intensity is mapped from the unit 

square to a unit interval using a graphon function (denoted g1,… , g4 ), where a darker colour observed in 
the unit square represents a higher mapped intensity in the unit interval
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axis-aligned cuts in the unit square and partitions the space in a hierarchical fashion known 
as a k-d tree. The tree-structure is regulated by attaching an exponentially distributed cost 
to each axis-aligned cut, so that the tree-generation process terminates when the accumu-
lated cost exceeds a budget value. The Binary Space Partitioning-Tree process relational 
model (BSP-RM) (Fan et al., 2018, 2019) also generates tree-structured partitions. The dif-
ference between the BSP-RM and the MP-RM is that the BSP-RM uses two dimensions to 
form oblique cuts and thus generate convex polyhedron-shaped blocks. These oblique cuts 
concentrate more on describing the inter-dimensional dependency and can produce more 
efficient space partitions.

The Rectangular Tiling process relational model  (RTP-RM; Fig.  1, centre-
right) (Nakano et al., 2014) produces a flat partition structure on a two-dimensional array 
by assigning each entry to an existing block or a new block in sequence, without violat-
ing the rectangular restriction of the blocks. By relaxing the restrictions of the hierarchical 
or regular-grid structure, the RTP-RM aims to provide more flexibility in block genera-
tion. However, the process of generating blocks is quite complicated for practical use. As a 
result, while the hierarchical and regular-grid partition models can be used for continuous 
space and multi-dimensional arrays (after trivial modifications), the RTP-RM is restricted 
to (discrete) arrays only.

The Rectangular Bounding process relational model (RBP-RM) (Fan et al., 2018) uses a 
bounding strategy to generate rectangular blocks in the space. In contrast to the previously 
described cutting strategies, the RBP-RM concentrates more on the important regions of 
the space and avoids over-modelling sparse and noisy regions. In the RBP-RM, the number 
of possible intensities is equivalent to the number of blocks, which follows a Poisson distri-
bution and is almost certainly finite.

The Gaussian process relational model (GP-RM; Fig. 1, right) (Lloyd et al., 2012) uses 
a prior over a random function in the unit square to form a continuous graphon. In this way 
it can potentially generate desired continuous intensity values via the graphon function. 
However, the computational cost of the GP-RM is the same as that of the Gaussian pro-
cess, which scales to the cubic of the number of nodes (n).

These existing models can be broadly classified into two categories. The first category, 
which includes the SBM, MP-RM, RTP-RM and RBP-RM models, uses node-partitioning 
strategies to construct the relational model. By partitioning the set of nodes into groups 
along node co-ordinate margins, blocks can be constructed from these marginal groups that 
partition the full-dimensional co-ordinate space according to a given construction method 
(Fig.  1). These models then assume that the relation intensity for node pairs is constant 
within each block. That is, the graphon function that generates intensity values over node 
co-ordinate space is constructed in a piecewise-constant manner. However, such piecewise-
constant graphons can only provide limited modelling flexibility with a fixed and constant 
number of intensity values (i.e. equivalent to the number of blocks). As a result, they are 
restricted in their ability to model the ground-truth well. The second category of relational 
models, which includes the GP-RM, aims to address this limitation as the graphon func-
tion can provide continuous intensity values. However, the computational complexity for 
estimating this graphon function is proportional to the cubic of the number of nodes, which 
makes it practically non-viable for medium or large sized datasets.

In this paper, we propose to apply a smoothing procedure to piecewise-constant 
graphons to form smoothing graphons, which will naturally permit continuous inten-
sity values for describing relations without impractically increasing computational costs. 
As the Stochastic Block Model is one of the most popular Bayesian methods for mod-
elling exchangeable relational data, we focus on developing smoothing strategies within 
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the piecewise-constant SBM graphon framework. In particular, we develop two variant 
smoothing strategies for the SBM: the Integrated Smoothing Graphon (ISG) and the Latent 
Feature Smoothing Graphon (LFSG).

• ISG: In contrast to existing piecewise-constant graphons, which determine the intensity 
value based only on the block within which a node pair resides, the ISG alternatively 
calculates a mixture intensity for each pair of nodes by taking into account the intensi-
ties of all other blocks. The resulting mixture graphon function is constructed so that its 
output values are continuous.

• LFSG: This strategy introduces auxiliary pairwise hidden labels to decompose the cal-
culation of the mixture intensity used in the ISG, in order to enable efficient inference. 
In addition, the introduction of these labels allows each node to belong to multiple 
groups in each dimension (e.g. a user might interact with different people by playing 
different roles in a social network), which provides more modelling flexibility com-
pared with the ISG (and existing piecewise-graphons) where each node is assigned to 
one group only.

Note that while we develop the ISG and LFSG for SBM-based graphons, our smoothing 
approach can be applied easily to other piecewise-constant graphons. The main contribu-
tions of our work are summarised as follows:

• We identify the key limitation of existing piecewise-constant graphons and develop 
a smoothing strategy to flexibly generate continuous graphon intensity values, which 
might better reflect the reality of a process.

• We develop the ISG smoothing strategy for the SBM to demonstrate how piecewise-
constant graphons can be converted into smoothing graphons.

• We improve on the ISG by devising the LFSG, which achieves the same objective of 
generating continuous intensity values but without sacrificing computation efficiency. 
Compared with the ISG where each node belongs to only one group, the LFSG allows 
each node to belong to multiple groups (e.g.  so that the node plays different roles in 
different relations), and thereby also providing a probabilistic interpretation of node 
groups.

• We evaluate the performance of our methods on the task of link prediction by compar-
ing with the SBM and other benchmark methods. The experimental results clearly show 
that the smoothing graphons can achieve significant performance improvement over 
piecewise-constant graphons.

2  Preliminaries

2.1  Graphon theory

The Aldous–Hoover theorem (Hoover, 1979; Aldous, 1981) provides the theoretical foun-
dation for modelling exchangeable multi-dimensional arrays  (i.e.  exchangeable relational 
data) conditioned on a stochastic partition model. A random 2-dimensional array is called 
separately exchangeable if its distribution is invariant under separate permutations of rows 
and columns.
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Theorem 1  (Orbanz and Roy, 2014; Lloyd et al., 2012): A random array (Rij) is separately 
exchangeable if and only if it can be represented as follows: there exists a random measur-
able function F ∶ [0, 1]3 ↦ {0, 1} such that (Rij)

d
=

(
F(u

(1)

i
, u

(2)

j
, �ij)

)
 , where {u(1)

i
}i, {u

(2)

j
}j 

and {�ij}i,j are two sequences and an array of i.i.d.  uniform random variables in [0,  1], 
respectively.

Many existing Bayesian methods for modelling exchangeable relational data can be rep-
resented as in Theorem 1, using specific forms of the mapping function F. For instance, 
as illustrated in Fig.  1, given the uniformly distributed node coordinates (u(1)

i
, u

(2)

j
) , 

the SBM corresponds to F being a regular-grid constant graphon, in which the parti-
tions along each dimension are crossed over to form the blocks; the MP-RM character-
izes an F being a k-d tree-structured constant graphon, in which the blocks are hierarchi-
cally aligned; the RTP-RM assumes an F being an arbitrary rectangle constant graphon, 
in which the blocks are floor-plan aligned; and the GP-RM lets the F perform a continu-
ous two-dimensional function. While taking different forms, these graphon functions 
commonly map from pairs of node coordinates in a unit square to intensity values in a 
unit interval. For the above piecewise-constant graphons, we can write the function F as 
F(u

(1)

i
, u

(2)

j
�{�k,□k}) =

∑
k �k ⋅ 111((u

(1)

i
, u

(2)

j
) ∈ □k) , where □k is the kth block and �k 

refers to the intensity variable of □k . As shown in Fig. 1, the darker colour for the pair 
of node coordinates indicates the higher intensity in the interval, which corresponds to a 
larger probability of observing or generating the relationship between the pair of nodes.

2.2  Piecewise‑constant graphons and their limitations

Many alternative piecewise-constant graphons can be implemented to model exchangeable 
relational data R, where R is a binary adjacency matrix which can be either directed (asym-
metric) or undirected (symmetric). Here we consider the more complicated situation where 
R is a n × n asymmetric matrix with Rji ≠ Rij (the extension of our method to the sym-
metric case is straightforward). For any two nodes in R, if node i is related to node j then 
Rij = 1 , otherwise Rij = 0.

We take the SBM as an illustrative example. In a two-dimensional SBM, there 
are two distributions generating the groups, ���(1),���(2) ∼ Dirichlet(���1×K) , where K 
is the number of groups and ���1×K is the K-vector concentration parameter. Each 
node i ∈ {1,… , n} is associated with two hidden labels z(1)

i
, z

(2)

i
∈ {1,… ,K} , and 

{z
(1)

i
}i ∼ Categorical(���(1)), {z

(2)

i
}i ∼ Categorical(���(2)) for i = 1,… , n . Hence, z(1)

i
 and z(2)

i
 

denote the particular groups that node i belongs to in two dimensions, respectively. (That 
is, z(1)

i
 is the group of node i when i links to other nodes, and z(2)

i
 is the group of node i 

when other nodes link to it.) The relation Rij from node i to node j is then generated based 
on the interaction between their respective groups z(1)

i
 and z(2)

j
.

Let BBB be a K × K matrix, where each entry Bk1,k2
∈ [0, 1] denotes the probability of gen-

erating a relation from group k1 in the first dimension to group k2 in the second dimension. 
For k1, k2 = 1,… ,K,Bk1,k2

∼ Beta(�0, �0) , where �0, �0 are hyper-parameters for 
{Bk1,k2

}k1,k2 . That is, we have P(Rij = 1|z(1)
i
, z

(2)

j
,BBB) = B

z
(1)

i
,z
(2)

j

.
Now, consider the SBM from the graphon perspective (Fig. 1; left). Let ���(1),���(2) be 

group (or segment) distributions of the two dimensions in a unit square respectively. 
The generation of hidden labels z(1)

i
 for node i and z(2)

j
 for node j proceeds as follows: 

Uniform random variables u(1)
i

 and u(2)
j

 are respectively generated in the first and second 
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dimensions. Then, z(1)
i

 and z(2)
j

 can be determined by checking in which particular seg-
ments of ���(1) and ���(2) , u(1)

i
 and u(2)

j
 are located respectively. Formally, we have:

where (���(1))−1(u(1)
i
) and (���(2))−1(u(2)

j
) respectively map u(1)

i
 and u(2)

j
 to particular segments of 

���(1) and ���(2).
A regular-grid partition (⊞ ) can be formed in the unit square by combining the seg-

ment distributions ���(1),���(2) in two dimensions. Each block in this regular-grid partition 
is presented in a rectangular shape. Let L(1)

k
=
∑k

k�=1
�
(1)

k�
 and L(2)

k
=
∑k

k�=1
�
(2)

k�
 be the 

accumulated sum of the first k elements of ���(1) and ���(2) respec-
tively  (w.l.o.g. L(1)

0
= L

(2)

0
= 0, L

(1)

K
= L

(2)

K
= 1 ). Use □k1,k2

= [L
(1)

k1−1
, L

(1)

k1
] × [L

(2)

k2−1
, L

(2)

k2
] to 

represent the (k1, k2) th block in the unit square of [0, 1]2 , such that 
⋃

k1,k2
□k1,k2

= [0, 1]2 . 
Then, an intensity function defined on the pair (ui, uj) can be obtained by the piecewise-
constant graphon function

where 111(A) = 1 if A is true and 0 otherwise, and where Bk1,k2
∈ [0, 1] is the intensity of the 

(k1, k2) th block. We term (2) the SBM-graphon. Thus, the generative process of the SBM-
graphon can be described as: 

1. For k1, k2 = 1,… ,K , generate Bk1,k2
∼ Beta(�0, �0) , where �0, �0 are hyper-parameters;

2. Generate the segment distributions ���(1),���(2) via Eq. (1) and form the partition (⊞ ) 
according to combinations of ���(1),���(2) in the unit square;

3. Uniformly generate the 1st dimension coordinates {u(1)
i
}n
i=1

 and the 2nd dimension coor-
dinates {u(2)

i
}n
i=1

 for all nodes;
4. For i, j = 1,… , n

(a) Calculate the intensity g(u(1)
i
, u

(2)

j
) according to Eq. (2) based on the node coordi-

nates (u(1)
i
, u

(2)

j
);

(b) Generate Rij ∼ Bernoulli (g(u
(1)

i
, u

(2)

j
)).

Alternatively, if considering the latent labels  (z(1)
i
, z

(2)

j
 ) for nodes i and j, then from 

Eq. (1) and the deterministic relations between z(1)
i
, z

(2)

j
 and ���(1)

i
, u

(1)

i
,���

(2)

i
, u

(2)

i
 , the inten-

sity value g(u(1)
i
, u

(2)

j
) in step 4.(a) is the same as B

z
(1)

i
,z
(2)

j

 . As a result, step 4 in the above 
generative process can be equivalently written as 

4. For i, j = 1,⋯ , n , 

(a) Generate the latent labels (z(1)
i
, z

(2)

j
 ) via Eq. (1);

(b) Generate Rij ∼ Bernoulli

(
B
z
(1)

i
,z
(2)

j

)
.

(1)
���(1),���(2) ∼ Dirichlet(���1×K), u

(1)

i
, u

(2)

j
∼ Unif[0, 1]

z
(1)

i
= (���(1))−1(u

(1)

i
), z

(2)

j
= (���(2))−1(u

(2)

j
),

(2)g
(
u
(1)

i
, u

(2)

j

)
=

∑
k1,k2

111((u
(1)

i
, u

(2)

j
) ∈ □k1,k2

) ⋅ Bk1,k2
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The SBM-graphon has several limitations. To begin with, the SBM-graphon function 
(Eq. (2)) is piecewise-constant. That is, the generated intensities for node pairs are dis-
crete and the number of different intensity values is limited to the number of blocks 
in the partition ( ⊞ ). Consequently, this leads to an over-simplified description when 
modelling real relational data, which can result in at least two issues. On the one hand, 
as long as two nodes belong to the same segment in one dimension, their probability of 
generating relations with another node are the same even if the distance between the two 
nodes in that dimension is quite large. Conversely, given two nodes that are close in one 
dimension but belong to two adjacent segments, their probability of generating relations 
with another node could be dramatically different, depending on the respective block 
intensities (e.g., Bk1,k2

).
The second limitation of the SBM-graphon is that it determines the intensity value 

for a pair of nodes by considering only the block ( □k1,k2
 ) in which (ui, uj) resides. How-

ever, the nodes relations with other nodes, especially neighbouring nodes in adjacent 
blocks, might also be expected to have a certain influence on the generation of the target 
relation, if one considers the relational data collectively. As a result, perhaps it could be 
beneficial to consider the interactions that naturally exist among all blocks when gener-
ating the relation Rij.

The third limitation of the SBM-graphon is that it provides latent information of node 
clustering as a side-product through the hidden labels {z(1)

i
, z

(2)

i
}n
i=1

 . However, the clustering 
information might not be ideal because each node is assigned to only one cluster in each 
dimension. That is, when considering the outgoing relations from node i, it is assumed that 
node i consistently plays one single role in any relation with other nodes. In fact, in practice 
a node might play different roles by participating in different relations with different nodes. 
As a result, it would be more useful and flexible to allow a node to belong to multiple clus-
ters in each dimension.

To address the limitations of piecewise-constant graphons (and in particular, the SBM-
graphon), we propose a smoothing strategy to enable piecewise-constant graphons to pro-
duce continuous intensity values. The proposed smoothing graphons naturally consider 
interactions between the partitions and allow each node to play multiple roles in different 
relations.

3  Main models

3.1  The integrated smoothing graphon (ISG)

In order to improve on the limitations of the piecewise-constant graphon we first develop 
the Integrated Smoothing Graphon  (ISG), based on the SBM-graphon construction. The 
piecewise-constant nature of the SBM-graphon is created through the use of an indicator 
function in (2) that selects only the particular block accommodating the target node pair. 
Accordingly, we replace the indicator function with an alternative that can produce contin-
uous intensity values. Moreover, to capture the interaction between all blocks, we construct 
the smoothing graphon function to generate the intensity value as a summation over all 
block intensities, weighted by the importance of each block. Let F□k1,k2

(u
(1)

i
, u

(2)

j
) be the 

weight of the block □k1,k2
 with respect to (u(1)

i
, u

(2)

j
) ∈ [0, 1]2 . The mixture intensity 

g
(
u
(1)

i
, u

(2)

j

)
 , used to determine the Rij , can then be represented as
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where 
∑

k1,k2
F□k1,k2

(u
(1)

i
, u

(2)

j
) = 1.

The ISG generative process can be summarised as:
1)∼ 3) The block intensities (BBB ), graphon partition (⊞ ) and two-dimensional coordinates 

( {u(1)
i
, u

(2)

i
}n
i=1

 ) are generated as for the SBM-graphon; 

4. For i, j = 1,⋯ , n , 

(a) Calculate the mixture intensity g
(
u
(1)

i
, u

(2)

j

)
 according to (3) for the node coordi-

nates (u(1)
i
, u

(2)

j
);

(b) Generate Rij ∼ Bernoulli

(
g
(
u
(1)

i
, u

(2)

j

))
.

As a consequence, while the SBM-graphon determines the relation intensity based only on 
the single block in which (u(1)

i
, u

(2)

j
) resides, the ISG computes a mixture intensity as a 

weighted (and normalised) sum of all block intensities. That is, instead of assigning a 
weight of 1 for one particular block and weights of 0 for all other blocks, the ISG weights 
the importance of each block with respect to the pair of node coordinates (u(1)

i
, u

(2)

j
) . As 

long as the weighting function F□k1,k2

(u
(1)

i
, u

(2)

j
) is continuous, it follows that the mixture 

intensity (3) is also continuous. The intensity function (3) then becomes a smoothing gra-
phon function.

The ISG allows the mixture intensity to take any value between the minimum and maxi-
mum of all block intensities. As a result, the ISG provides more modelling flexibility com-
pared to the SBM-graphon, where only limited discrete intensity values (equivalent to the 
number of blocks) are available to describe relations.

3.2  Construction of the mixture intensity

To ensure that the graphon function (3) is continuous, we consider an integral-based 
weighting function of the form

 where f (x − u) is a univariate derivative function. Beyond the continuity requirement, 
f (x − u) and F□k1,k2

(u
(1)

i
, u

(2)

j
) should satisfy the following three conditions: 

1. f (x − u) is non-negative;
2. f (x − u) increases with decreasing distance (i.e. |x − u| ) between x and the correspond-

ing coordinate u. This condition means that the closer the block □k1,k2
 is to the pair of 

node coordinates (u(1)
i
, u

(2)

j
) , the larger the weight that will be assigned to the block. The 

maximum weight value is achieved when |x − u
(1)

i
| = 0 and |x − u

(2)

j
| = 0;

3. The total weight of all blocks remains invariant regardless of different partitioning of 
the unit space. That is, F□k1,k2

(u
(1)

i
, u

(2)

j
) = F□�

k1,k2

(u
(1)

i
, u

(2)

j
) + F□��

k1,k2

(u
(1)

i
, u

(2)

j
) , where 

(3)g
(
u
(1)

i
, u

(2)

j

)
=

∑
k1,k2

F□k1,k2

(u
(1)

i
, u

(2)

j
) ⋅ Bk1,k2

,

(4)F□k1,k2

(u
(1)

i
, u

(2)

j
) ∝ ∫

L
(1)

k1

L
(1)

k1−1

f (x − u
(1)

i
)dx ⋅ ∫

L
(2)

k2

L
(2)

k2−1

f (x − u
(2)

j
)dx
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□′
k1,k2

,□′′
k1,k2

 are sub-boxes of □k1,k2
 such that □k1,k2

= □�
k1,k2

∪□��
k1,k2

 and 
□�

k1,k2
∩□��

k1,k2
= �.

It is also expected that F□ k1,k2

(u
(1)

i
, u

(2)

j
) can be normalised over all the K2 community 

pairs as 
∑

k1,k2
F□ k1,k2

(u
(1)

i
, u

(2)

j
) = 1.

There are many candidate functions satisfying these conditions, such as Gaussian or 
Laplace probability density functions. For ease of computation and convenience of inte-
gration, we use the scaled Laplace density (with location parameter � = 0 ) as the deriv-
ative function f�(x − u) . We leave other function choices for future work. In particular, 

we define f�(x − u) =
�

2

e−�|x−u|

G�(1−u)−G�(−u)
 , where G𝜆(x − u) =

{
1

2
e𝜆(x−u); (x − u) < 0

1 −
1

2
e−𝜆(x−u); (x − u) ≥ 0

 . 

We then have ∫ Lk1
Lk1−1

f�(x − u)dx =
G�(Lk1

−u)−G�(Lk1−1
−u)

G�(1−u)−G�(−u)
 . As a result, for relation Rij and cor-

responding node coordinates (u(1)
i
, u

(2)

j
) , the normalised weight F□k1,k2

(u
(1)

i
, u

(2)

j
) of the 

(k1, k2) th block □k1,k2
 contributing to the mixture intensity of Rij is given by

Proposition 1 
∑

k1,k2
F□k1,k2

(u
(1)

i
, u

(2)

j
) = 1.

Proof    

  ◻

Figure 2 (left) illustrates the function curves of f�(x − u) for u = 0.3 and Fig. 2 (right) 
shows the resulting one-dimensional mixture of intensities under varying scale param-
eter values � = 0.25, 25 and 250. It is easily observed that, when � is smaller, both the 
curves of the derivative function and the mixture intensity become flatter and smoother. 
Conversely, for larger � , the mixture intensity values (generated for the coordinate 0.3) 
become more discrete. Bottom row of Fig. 2 visualizes the mixture intensities obtained 
by applying the ISG to the SBM under the same three � values.
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Proposition 2 � controls the smoothness of the graphon, with � → ∞ recovering the piece-
wise-constant graphon, and � → 0 resulting in a globally constant graphon.

Proof Using L’Hôpital’s rule, when � → 0 , we have

Thus, we get F□k1,k2

(u
(1)

i
, u

(2)

j
) = (L

(1)

k1
− L

(1)

k1−1
)(L

(2)

k2
− L

(2)

k2−1
) , which is unrelated to the coor-

dinate of (u(1)
i
, u

(2)

j
) . The graphon is a globally constant graphon.

We have three different cases when � → ∞ : case (1), L(1)
k1

> L
(1)

k1−1
> u

(1)

i
 , we have

(7)

lim
�→0

G�(L
(1)
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(1)

i
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=
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i
− (L
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(1)

i
)

1 − u
(1)

i
+ u

(1)

i

= L
(1)

k1
− L

(1)

k1−1
.

Fig. 2  Top row: the influence of the � parameter on the Laplace probability density function with coordi-
nate located at u = 0.3 (left), and the corresponding mixture intensities for {ui}ni=1 (right). Different colors 
represent different settings of � . The gray dotted lines represent segment division in one dimension with 
𝜃𝜃𝜃 = (0.15, 0.27, 0.08, 0.5)⊤ ∼ Dirichlet(1, 1, 1, 1) . Bottom row: visualizations of the Integrated Smoothing 
Graphon under the Stochastic Block Model for different values of � . Darker shading represents higher gra-
phon intensity
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case (2), L(1)
k1−1

< L
(1)

k1−1
< u

(1)

i
 , we have

case (3), L(1)
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< u
(1)

i
< L

(1)

k1−1
 , we have

That is, F□k1,k2

(u
(1)

i
, u

(2)

j
) = 1 if and only if the coordinate (u(1)

i
, u

(2)

j
) locates in the (k1, k2) th 

block. Thus, this smoothing graphon only becomes piecewise-constant when � → ∞ .  
 ◻

Accordingly, we refer to � as the smoothing parameter.

3.3  Latent feature smoothing graphon (LFSG) with probabilistic assignment

While the ISG addresses the limitations of the SBM-graphon by generating continuous 
intensity values, its graphon function (3) indicates that all blocks are involved in calculat-
ing the mixture intensity for generating individual relations. Accordingly, the additive form 
for evaluating the mixture intensity makes it difficult to form efficient inference schemes 
for all random variables. To improve inferential efficiency we introduce auxiliary pair-
wise latent labels {sij}nj=1 (associated with node i) and {rij}ni=1 (associated with node j) for 
individual relations {Rij}

n
i,j=1

 , where sij, rij ∈ {1,… ,K} are the sender and receiver effects 
respectively. The {sij}nj=1 and {rij}ni=1 are sampled from the respective node categorical dis-
tributions in their corresponding dimensions using normalised weights as probabilities. In 
particular
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where Fk(u) =
G�(Lk−u)−G�(Lk−1−u)

G�(1−u)−G�(−u)
 is the normalised weight of segment k in the dimension of 

coordinate u. For each relation from node i to node j ( Rij ), the hidden label sij denotes the 
group that node i belongs to (in the 1st dimension) and rij denotes the group that node j 
belongs to (in the 2nd dimension). Through the introduction of the two labels, the final 
intensity in determining Rij can be obtained similarly to the Mixed Membership Stochastic 
Block Model (MMSB) (Airoldi et al., 2009):

Note that since both {sij}nj=1 and {rij}nj=1 are n-element arrays, each node has the potential 
to belong to multiple segments, rather than the single segment under the SBM-graphon. 
When participating in different relations, each outgoing node i (incoming node j) can fall 
into different segments, which means that each node can play different roles when taking 
part in different relations. Note that assuming expectations over the hidden labels sij and rij , 
results in the same intensity as for the ISG, so that

We term this approach the Latent Feature Smoothing Graphon (LFSG). Its generative pro-
cess is described as follows:

1) ∼ 3) The block intensities (BBB ), graphon partition (⊞ ) and 2-dimensional coordinates 
( {u(1)

i
, u

(2)

i
}n
i=1

 ) are generated as for the SBM-graphon; 

4. For i = 1,⋯ , n , calculate the hidden label distributions in each dimension, FFF(1)
(u

(1)

i
) and 

FFF(2)
(u

(2)

i
) , where FFF(1)

(u
(1)

i
) = (F

(1)

1
(u

(1)

i
),… ,F

(1)

K
(u

(1)

i
));

5. For i, j = 1,⋯ , n , 

(a) Generate the hidden labels sij ∼ FFF(1)
(u

(1)

i
), rij ∼ FFF(2)

(u
(2)

j
) following (8)

(b) Generate Rij ∼ Bernoulli

(
Bsij,rij

)
.

Within the LFSG, � can provide additional insight into the latent structures, in that it indi-
cates the extent to which nodes belong to multiple communities. Larger (smaller) values 
of � indicate that nodes are likely to belong to fewer (more) communities. The number of 
communities for the LFSG models can be determined using similar strategies as for the 
SBM and ISG model.

Comparing the LFSG and the MMSB The MMSB model is another notable Bayesian 
method for modelling exchangeable relational data. In contrast to other graphon methods, 
the MMSB model allows each node i to have a group distribution FFFi , which follows a Dir-
ichlet distribution. To form the relation between any two nodes i, j, a latent label pair con-
sisting of a sender and a receiver (sij, rij) is first generated via sij ∼ Categorical(FFFi) , and 
rij ∼ Categorical(FFFj) . The relation Rij can then be generated based on the intensity of the 
block BBB formed by group sij and group rij : Rij ∼ Bernoulli(Bsij,rij

) . Our proposed LFSG 
model shares similarities with the MMSB model, since both of them use group distribu-
tions to represent individual nodes and the likelihood generation method is the same. How-
ever, there are key differences. These are: (1) The priors for the group distributions are dif-
ferent. In the MMSB model, the group distributions of all nodes are generated 
independently from a Dirichlet distribution, whereas in the LFSG model, the group distri-
butions are highly dependent, since all are determined by the same partition structure and 

(9)P(Rij = 1|sij, rij,BBB) = Bsij,rij
.

(10)�sij,rij

[
P(Rij = 1|sij, rij,BBB)

]
= g

(
u
(1)

i
, u

(2)

j

)
.
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nodes coordinates (see Eq. 5); (2) The MMSB model requires nK parameters to form the 
group distributions, while the LFSG model requires only 2(n + K) parameters.

The LFSG model naturally fits within the graphon framework. The MMSB model can 
also be made to fit within the graphon framework in two ways. Firstly, by considering the 
group distributions ���i ∈ [0, 1]D in the K-dimensional hypercube instead of the unit inter-
val. Secondly, noting that the minimal condition on the function F under general graphon 
theory is that F is measurable, applying a transformation from [0, 1] to [0, 1]K means that 
the MMSB model can also fit within the graphon framework on the unit square.

The graphical models for implementing the ISG within the SBM (referred to as the ISG-
SBM), as well as for implementing the LFSG within the SBM (referred to as the LFSG-
SBM) are illustrated in Fig. 3. The main difference between the two models – the introduc-
tion of the pairwise hidden labels sij and rij for generating each relation Rij – allows the 
LFSG-SBM to enjoy the following advantages over the ISG-SBM:

• The aggregated counting information of the hidden labels enables efficient Gibbs sam-
pling of the block intensities BBB . In the ISG (or SBM), the block intensity BBB is inferred 
through each node’s latent label, while BBB is inferred through the senders and receivers 
for each relation in the LFSG (or MMSB). Since the numbers of senders and receivers 
are larger than the number of latent labels for nodes, i.e. N2 > N , the inference on BBB 
under the LFSG (or MMSB) is likely better than under the ISG (or SBM).

• Calculation involving F□ is instead reduced to calculation involving Fk(u) , avoiding the 
inclusion of all blocks when calculating the mixture intensity.

• Because each node is allowed to belong to different groups when linking to other nodes, 
permitting differences in the natures of those links, the group distribution F(u) is then 
easily interpretable as the group membership distribution for that node. For example, a 
higher membership degree in group k indicates the node is more important or active in 
group k.

Model identifiability In a similar manner to the MMSB model, the LFSG model also miti-
gates issues of identifiability by relating the number of blocks to the low-rank property 

(a) (b)

Fig. 3  The graphical model for a the ISG-SBM and b the LFSG-SBM. (a) The weights of the blocks F□ are 
first calculated by using the partition ⊞ , node coordinates U and smoothing parameter � . Then the F□ and 
block intensities BBB are integrated together to generate the exchangeable relations R. (b) The weight F for 
each node is individually generated using the partition ⊞ , node coordinates U and the smoothing parameter 
� , based on the auxiliary hidden labels s, r for the node pair relationship. Then s, r are used to generate the 
exchangeable relational, R, together with the block intensities BBB
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of the edge probability matrix. In this respect, the LFSG model can be regarded as a 
“restricted” version of the MMSB model (see above), in that while the group distributions 
in the LFSG are highly dependent, those in the MMSB model are independently generated. 
In our simulations we did not encounter any parameter non-identifiability. However, we 
note that the number of parameters in the LFSG model is smaller than that of the MMSB 
model (i.e. 2(n + K) < nK for K ≥ 3 and a moderate value of n), and so the LFSG model 
may perform better than the MMSB model in overcoming issues of non-identifiability.

3.4  Extensions to other piecewise‑constant graphons

The major difference between the construction of the existing piecewise-constant graphons 
is the generation process of partitions  (⊞ ; Fig. 1). As a result, our smoothing approach, 
while described for the SBM-graphon, can be straightforwardly applied to other piecewise-
constant graphons. For example, to apply the ISG to other piecewise-constant graphons, we 
can similarly calculate a mixture intensity as a weighted sum of the intensities of all exist-
ing blocks. When the partitioned blocks are rectangular-shaped (as for e.g.  the MP-RM, 
RTP-RM and RBP-RM), the intensity for each can be computed by independently inte-
grating the derivative function over two dimensions. If the partitioned blocks are shaped 
as convex-polygons (as for e.g.  the Binary Space Partitioning-Relational Model  (BSP-
RM) Fan et al., 2018), the intensity can be generated via integrating the derivative function 
over the polygon.

Nonparametric methods for Stochastic Block Models In addition to the above Bayesian 
models, there are a number of nonparametric approaches for implementing stochastic block 
models. These approaches differ in terms of statistical accuracy and computational com-
plexity, and include likelihood-based methods (Amini et al., 2013; Bickel and Chen, 2009; 
Celisse et al., 2012; Choi et al., 2012; Zhao et al., 2012), moment-based methods (Anand-
kumar et al., 2013), convex optimization methods (Chen et al., 2012), and spectral cluster-
ing methods (Balakrishnan et al., 2011; Fishkind et al., 2013; Rohe et al., 2011; Sarkar and 
Bickel, 2015). These approaches typically aim to produce consistent parameter point esti-
mators, rather than full posterior distributions on the model parameters as considered here.

4  Inference
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We present a Markov Chain Monte Carlo  (MCMC) algorithm for posterior model infer-
ence, with detailed steps for the ISG and the LFSG models as illustrated in Algorithms 1 
and 2 respectively. In general, the joint distribution over the hidden labels {sij, rij}ni,j=1 , pair-
wise node coordinates {u(1)

i
, u

(2)

i
}n
i=1

 , group distributions ���(1),���(2) , the block intensities BBB 
and the smoothing parameter � is:

where m
(1)

ik
=
∑n

j=1
111(sij = k),m

(2)

ik
=
∑n

j=1
111(rji = k),N

(1)

k1 ,k2
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∑
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111(Rij = 1),N

(0)

k1 ,k2
=
∑
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111(Rij = 0) . In 

this joint distribution, we have set the following prior distributions for the variables: 
sij ∼ Categorical(FFF(u

(1)

i
|���(1), �)) , Bk1,k2

∼ Beta(�0, �0) , ���(1) ∼ Dirichlet(���1×K) . We let 
� ∼ Gamma(0.1, 0.1) follow a vague Gamma distribution, where Gamma(a, b) is a Gamma 
distribution with mean a/b and variance a∕b2

The details for updating each parameter in the ISG and LFSG MCMC algorithms are listed 
below.

Updating {u(1)
i
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(2)
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}n
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 : Independent Metropolis-Hastings steps can be used to update the 
variables u(1)
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i
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i
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be updated in parallel. In our simulations we found that �u = �u = 1 gave good sampler 
performance.

Updating ���(1),���(2): A random-walk Metropolis-Hastings step can be used to update ���(1) , 
and ���(2) . For ���(1) or ���(2) we draw a proposed sample ���∗ ∼ Dirichlet(���1×K) from a Dirichlet dis-
tribution with concentration parameters ���1×K . We accept the proposal ���∗ for w.l.o.g. ���(1) with 
probability min(1, ����(1) ) , where

where Diri(���|���) denotes the Dirichlet density with concentration parameter ��� evaluated 
at ��� . A similar update can be implemented for ���(2) . Both ���(1) and ���(2) can be updated in 
parallel.

Updating BBB: The conjugacy between the prior and the conditional likelihood for BBB means 
that we can update BBB via a Gibbs sampling step. Specifically, each entry Bk1,k2

 can be updated 
in parallel via

Updating {sij, rij}ni,j=1: The posterior distribution of sij is a categorical distribution, where 
the probability of sij = k is

 and from which sij can be straightforwardly updated ( rij can be updated in a similar way). 
Each of the 2n parameters can be updated in parallel.

Updating �: A Metropolis-Hastings step can be used to update � . We use the random 
walk Metropolis-Hastings algorithm to propose a new value of �∗ and accept it with prob-
ability min(1, ��) , where

4.1  Computational complexities

Table 1 compares the per-iteration computational complexities of sampling from the ISG 
and the LFSG models against representative existing models, including the SBM, the 
MMSB and the GP-RM. The ISG algorithm requires a computational complexity of O(K) 
to sample each coordinate u(1)

i
 ( u(2)

i
) (Eq.12), resulting in a total of O(NK) for all the coordi-

nates; it needs a complexity of O(NK) to sample ���(1) (���(2)) (Eq.13); it needs a complexity of 
O(n2K2) to sample all the block intensities BBB (Eq.14) and a complexity of O(NK) to sample 
� (Eq.16). In particular, it requires a computational complexity of O(n2K2) to calculate the 
intensity for generating the relations {Rij}

n
i,j=1

 , since the calculation of the mixture intensity 
for each relation involves a pair of coordinates (giving a total of n2 ) and all of the block 
intensities (which is K2).

The computational complexity for the LFSG is similar to that of the ISG, as it needs a 
complexity of O(NK) to sample all coordinates, O(NK) to sample all partitions and O(NK) 
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to sample � . The LFSG has a complexity of O(n2K) to sample all the latent labels (Eq.15) 
and K2L to sample all the block intensities.

However, the uncoupling strategy applied in the LFSG lowers this cost dramatically to 
O(K2L) , where L is the number of positive links (i.e. Rij = 1 ) observed in the data (Table 2 
enumerates L for each data set analysed below). Note that the mixture intensity computa-
tion cost of the LFSG is the same as that of both the SBM and the MMSB. As a result, the 
continuous intensities of the LFSG compared to the discrete intensities of the SBM are 
achieved without sacrificing computation complexity. In contrast, the computational cost 
of computing the mixture intensity for the GP-RM is O(n3) (Rasmussen, 2003), which is 
the highest among these methods, even though it can also provide continuous intensities. 
Regarding the complexity of sampling the labels, both the LFSG and the MMSB provide 
multiple labels for each node and incur the same cost of O(n2K) . However, while the SBM 
requires a smaller cost of O(nK) for label sampling, it only allows a single label for each 
node.

5  Experiments

We now evaluate the performance of the ISG-SBM and the LFSG-SBM on real-world 
data sets, comparing them with four state-of-the-art methods: the SBM, the MP-RM, the 
MMSB and GP-RM. We implement posterior simulation for the SBM and the MMSB 
using Gibbs sampling and a conditional Sequential Monte Carlo algorithm(Andrieu et al., 
2010; Lakshminarayanan et al., 2015; Fan et al., 2019) for the MP-RM. We used 10 000 
iterations for each sampling algorithm, retaining the final 5 000 iterations as post-burn-in 
draws from the posterior. Inspection of AUC and precision-value trace-plots indicated that 
5 000 iterations were more than enough to ensure sampler convergence.

5.1  Data sets

We examine six real-world exchangeable relational data sets: Delicious (Zafarani and Liu, 
2009), Digg Zafarani and Liu (2009), Flickr Zafarani and Liu (2009), Gplus Leskovec 
and Mcauley (2012), Facebook Leskovec and Mcauley (2012), and Twitter Leskovec and 
Mcauley (2012). To construct the exchangeable relational data matrix we extract the top 
1 000 active nodes based on node interaction frequencies, and then randomly sample 500 
nodes from these top 1 000 nodes to form the 500 × 500 interaction binary matrix. Table 2 
summarizes the number of positive links (L) and the corresponding sparsity ( S% ), which 
is defined as the ratio of the number of positive links to the total number of links, for each 
dataset.

Table 1  Per-iteration model 
complexity comparison (n is 
the number of nodes, K is the 
number of communities and L is 
the number of positive links)

Model Intensity computation Label sampling

SBM O(K2L) O(nK)

ISG O(K2n2) –
LFSG O(K2L) O(n2K)

MMSB O(K2L) O(n2K)

GP-RM O(n3) –
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5.2  Experimental setting

The hyper-parameters for each method are set as follows: for the SBM, LFSG-SBM, ISG-
SBM, MMSB and MP-RM, the hyper-parameters �0, �0 used in generating the block inten-
sities are set as �0 = S%, �0 = 1 − S% , where S% refers to the sparsity shown in Table 2, 
such that the block intensity has an expectation equivalent to the sparsity of the exchangea-
ble relational data; for the SBM, LFSG-SBM, ISG-SBM and MMSB, we set the group dis-
tribution of ��� as Dirichlet(1111×4) . Hence, the number of groups in each dimension in these 
models is set as 4, with a total of 16 blocks generated in the unit square; for the MP-RM, 
the budget parameter is set to 3, which suggests that approximately (3 + 1) × (3 + 1) 
blocks would be generated. We use the generative processes of the corresponding models 
to initialize their random variables, as independent and random initialisation of these ran-
dom variables would make the MCMC algorithm take a longer sequence of iterations to 
converge.

5.3  Link prediction performance

The performance of each model in the task of link prediction is shown in Fig. 4, which 
reports both the average area under the curve of the receiver operating characteristic (AUC) 
and the precision-recall (Precision). The AUC denotes the probability that the model will 
rank a randomly chosen positive link higher than a randomly chosen zero-valued link. The 
precision is the average ratio of correctly predicted positive links to the total number of 
predicted positive links. Higher values of AUC and precision indicate better model per-
formance. For each dataset, we vary the ratio of training data from 10% to 90% and use the 
remainder for testing. The training/test data split is created in rows. In particular, we take 
the same ratio of training data from each row of the relational matrix, so that each node 
shares the same amount of training data. It is noted that the heterogeneity of the nodes’ 
degrees might make this choice sample more 1-valued links from higher degree nodes and 
might thus produce a systematic bias in the results.

From Fig. 4, both the AUC and precision of all models improves as the amount of train-
ing data increases. The trend generally becomes steady when the proportion is larger than 
0.3, indicating the amount of data required to fit a model with a ∼16-block complexity.

Except for the Facebook data, we can see that the AUC and precision of both the ISG-
SBM and the LFSG-SBM are better than for the piecewise-constant graphon models 
(i.e.  the SBM and MP-RM) and the continuous graphon model  (i.e. GP-RM). The pro-
posed smoothing graphons typically achieve similar performance to the MMSB, demon-
strating that the smoothing graphon strategy is useful for improving model performance. 
For the Facebook dataset, the SBM seems to perform better than the smoothing graphon-
based models. This is examined in greater detail in the next section.

Figure  5 shows the relationships between the AUC performance and the number of 
blocks for the LFSG-SBM and the MMSB. In general, there are two stages for the behav-
iour of AUC values. Initially, the AUC values increase as the number of blocks becomes 
larger, possibly due to the enlarged model representation capability; then, the AUC val-
ues start to decline, even when the number of blocks continues to increase, possibly due 
to overfitting. We can see that the AUC values of the LFSG-SBM are usually better than 
those of the MMSB when the number of blocks is larger. That is, the LFSG-SBM is per-
forms better than the MMSB on with respect to overfitting.
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We additionally compare model performance with the neighborhood smoothing nonpar-
ametric method of Zhang et al. (2017), which uses a neighborhood smoothing to avoid the 
concept of blocks in the model. We implement this model using the R package graphon, 
using 90%∕10% of the data as training/testing data. The resulting link prediction perfor-
mance is shown in Table 3. When compared with the results in Fig. 4, it is easy to see that 
the LFSG and ISG models have stronger performance.

5.4  Graphon and hidden label visualisation

In addition to the quantitative analysis, we visualise the generated graphons and hid-
den labels under the LFSG-SBM on all six data sets in Figs. 6 and 7. It is noted all these 

Fig. 4  Average area under the curve receiver operating characteristic (AUC) and the precision recall (Pre-
cision) under the Stochastic Block Model  (SBM, blue line), Mixed-membership Stochastic Block 
Model (MMSB, orange line), Mondrian Process-Relational Model (MP-RM, green line), Gaussian Process-
Relational Model (GP-RM, red line), Latent Feature Smoothing Graphon on the SBM (LFSG, purple line) 
and Integrated Smoothing Graphon on the SBM (ISG, brown line) for each of the Delicious, Digg, Face-
book, Flickr, Gplus and Twitter datasets, under different proportions of training data (x-axis).
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visualizations are based on single draws from the posterior distribution. In particular, these 
figures are created by re-ordering the nodes based on their estimated latent coordinates 
which depend on a particular posterior draw. For each dataset, we visualise the result-
ing mixture intensities for one posterior sample, with the learned posterior mean of the 
smoothing parameter � , based on using 90% training data. We observe that the displayed 
graphon intensities exhibit smooth transitions between blocks for each dataset, highlight-
ing that continuous, rather than discrete, mixture intensity values are generated under the 
smoothing graphon. The transition speed of the intensity between blocks is influenced by 
the smoothing parameter � – a larger value of � leads to a less smooth graphon, and a 
smaller value of � to a smoother graphon – similar to that observed in Fig. 2.

In Fig.  6, for each dataset, we also display the posterior proportions of the pairwise 
hidden labels sij (top right) and rij (bottom right) for each node. Here the x-axis indicates 
different nodes (sorted by the label probabilities) and the y-axis displays the posterior mean 
of label probabilities (each label represented by a different colour). For each node i on the 
x-axis, more colours observed on the y-axis indicates a greater diversity of groups associ-
ated with that node, which in turn represents a higher potential for that node to belong to 
different groups when interacting with other nodes. In other words, the larger the tendency 
away from vertical line transitions between groups in these plots, the larger the number of 
nodes belonging to multiple groups.

Compared with the value of the smoothing parameter � learned on the other four data 
sets, the values of � estimated from the Facebook and Twitter datasets are larger. Further, 

Fig. 5  AUC performance of the LFSG-SBM and the MMSB under different numbers ( K2 ) of blocks (in 
each dimension) for the Delicious, Digg, Facebook, Flickr, Gplus and Twitter datasets

Table 2  Dataset summary 
information (S(%) is the sparsity 
of the positive links.)

Dataset L S(%) Dataset L S(%)

Delicious 10, 775 4.31 Gplus 76, 575 30.63
Digg 25, 943 10.38 Facebook 54, 476 21.79
Flickr 49, 524 19.81 Twitter 24, 378 9.75
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the visualisations of the hidden labels for these two data sets are partitioned by almost 
straight horizontal lines, which suggests that only one label is a realistic possibility for 
most of the nodes. This could explain why both the AUC and precision values of the ISG-
SBM and the LFSG-SBM are less competitive compared with those of the SBM on these 
two datasets (Fig. 4). Here, the SBM assigns each node to exactly one group only, which 
aligns well with the ground-truth for these two datasets.

Another explanation for the performance on the Facebook and Twitter datasets is that 
we can recover the SBM if and only if � = ∞ . For any finite value of the smoothing param-
eter � , it is impossible to have any posterior mass on the SBM. To this end, we might repa-
rameterise by mapping � to (0,∞) → (0, 1) (e.g. via � → 1 − e−� ) such that we are able to 
place substantial posterior mass close to 1. Since this mapping would permit model fitting 
arbitrarily close to the SMB, we would then expect the ISG-SBM and LFSG-SBM models 
to perform similarly to or better than the SBM, even for the Facebook and Twitter datasets.

Figure  8 illustrates one sample partition drawn from their posterior distribution. 
As the black dots represent observed linkages, we can clearly see the pattern where 
they merge to form dense blocks. Furthermore, the dense regions in the partitions on 
the Facebook and Twitter datasets show clearer rectangular box shapes than those for 
the other datasets. This phenomenon is consistent with Fig. 6, in which the smoothing 
parameter � is larger for these two datasets. For other datasets, the dense regions are 
not confined to regular shapes, and accordingly may be better modelled by our method.

6  Conclusion

In this paper, we have introduced a smoothing strategy to modify conventional piecewise-
constant graphons in order to increase their continuity. Through the introduction of a single 
smoothing parameter � , we first developed the Integrated Smoothing Graphon (ISG) that 
addressed the key limitation of existing piecewise-constant graphons which only generate a 
limited number of discrete intensity values. To improve the computational efficiency of the 
ISG and to allow for the possibility of each node’s belonging to multiple groups, we further 
developed the Latent Feature Smoothing Graphon (LFSG) by the introduction of auxiliary 
hidden labels. Our experimental results verify the effectiveness of this smoothing strategy 
in terms of greatly improved AUC and precision scores in the task of link prediction. The 
visualisations of the generated graphons and the posterior hidden label summaries further 
provide an intuitive understanding of the nature of the smoothing mechanism for the given 
dataset.

Table 3  Performance of neighborhood smoothing method of Zhang et al., (2017) with 90%/10% training/
testing data, for each real world dataset

Dataset Delicious Digg Facebook Flickr Gplus Twitter

AUC 0.853 0.833 0.941 0.912 0.893 0.907
Precision 0.129 0.373 0.752 0.769 0.863 0.473
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Fig. 6  Visualisation of mixture intensity from one posterior draw, the posterior mean of smoothing param-
eter � and pairwise hidden labels on the Delicious, Digg, Flickr, Gplus, Facebook and Twitter datasets when 
implementing the Latent Feature Smoothing Graphon within the Stochastic Block Model. There are three 
figures for each dataset. Left: the grey level in the unit square illustrates the predicted mixture intensity 
for each relation (darker = higher intensity), the dotted lines indicate the related partition (⊞ = 𝜃𝜃𝜃(1) × 𝜃𝜃𝜃(2) ). 
Right: the different colours represent the different values of the latent labels sij (right top) and rij (right bot-
tom), with the y-axis indicating different nodes (sorted by the ratio of the labels) and the x-axis showing the 
proportion of different labels for each node
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Fig. 7  Partition structure visualisations on the Delicious, Digg, Flickr, Gplus, Facebook and Twitter data-
sets when implementing the Latent Feature Smoothing Graphon within the Stochastic Block Model. Black 
dots refers to the observed linkages. We re-arrange the row and column indexes based on the nodes’ coor-
dinates and these visualisations reflect the observed relational data matrix after the index re-arrangements

Fig. 8  The coordinates of all the nodes visualisations on the Delicious, Digg, Flickr, Gplus, Facebook and 
Twitter datasets when implementing the Latent Feature Smoothing Graphon within the Stochastic Block 
Model. Black dots refers to the observed linkages. We re-arrange the row and column indexes based on the 
nodes’ coordinates and these visualisations reflect the observed relational data matrix after the index re-
arrangements
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