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Abstract
Neural network quantization enables the deployment of large models on resource-con-
strained devices. Current post-training quantization methods fall short in terms of accuracy 
for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we 
study the effect of quantization on the structure of the loss landscape. We show that the 
structure is flat and separable for mild quantization, enabling straightforward post-training 
quantization methods to achieve good results. We show that with more aggressive quanti-
zation, the loss landscape becomes highly non-separable with steep curvature, making the 
selection of quantization parameters more challenging. Armed with this understanding, we 
design a method that quantizes the layer parameters jointly, enabling significant accuracy 
improvement over current post-training quantization methods. Reference implementation is 
available at https:// github. com/ ynahs han/ nn- quant izati on- pytor ch/ tree/ master/ lapq.

Keywords Convolutional neural networks · Post-training quantization

1 Introduction

Deep neural networks (DNNs) are a powerful tool that have shown unmatched perfor-
mance in various tasks in computer vision, natural language processing and optimal 
control, to mention only a few. The high computational resource requirements, how-
ever, constitute one of the main drawbacks of DNNs, hindering their massive adoption 
on edge devices. With the growing number of tasks performed on edge devices, e.g., 
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smartphones or embedded systems, and the availability of dedicated custom hardware 
for DNN inference, the subject of DNN compression has gained popularity.

One way to improve DNN computational efficiency is to use lower-precision repre-
sentation of the network, also known as quantization. Most of the literature on neural 
network quantization involves training either from scratch (Bethge et al. 2019; Jin et al. 
2019) or performing fine-tuning on a pre-trained full-precision model (Yang et al. 2019; 
Hubara et  al. 2017). While training is a powerful method to compensate for accuracy 
loss due to quantization, it is both resource consuming and requires access to the data 
the model was trained on, which is not always available. Thus, it is often desirable to be 
able to quantize the model without training. These methods are commonly referred to as 
post-training quantization and usually require only a small calibration dataset. Unfor-
tunately, current post-training methods are not very efficient, and most existing works 
only manage to quantize parameters to the 8-bit integer representation (INT8).

In the absence of a training set, these methods typically aim at minimizing the local 
error introduced during the quantization process (e.g., round-off errors). A popular 
approach to minimizing this error has been to clip the tensor outliers. This means that peak 
values will incur a larger error, but, in total, this will reduce the distortion introduced by 
the limited resolution (Lee et  al. 2018; Banner et  al. 2018; Zhao et  al. 2019). However, 
these schemes suffer from two fundamental drawbacks.

Firstly, it is hard or even impossible to choose an optimal metric for the network perfor-
mance based on the tensor level quantization error. In particular, even for the same task, 
similar architectures may favor different objectives. Secondly, the noise in earlier layers 
might be amplified by successive layers, creating a dependency between quantizaton errors 
of different layers. This cross-layer dependency makes it necessary to jointly optimize the 
quantization parameters across all network layers; however, current methods optimize them 
separately for each layer. Figure 1 plots the challenging loss surface of this optimization 
process.

Below, we outline the main contributions of the present work along with the organiza-
tion of the remaining sections.

• First we consider current layer-by-layer quantization methods where the quantization 
step size within each layer is optimized to accommodate the dynamic range of the 
tensor while keeping it small enough to minimize quantization noise. Although these 
methods optimize the quantization step size of each layer independently of the other 
layers, we observe strong interactions between the layers, explaining their suboptimal 
performance at the network level.

• Accordingly, we consider network quantization as a multivariate optimization problem 
where the layer quantization step sizes are jointly optimized to minimize the cross-
entropy loss. We observe that layer-by-layer quantization identifies solutions in a small 
region around the optimum, where degradation is quadratic in the distance from it. We 
provide analytical justification as well as empirical evidence showing this effect.

• Finally, we propose to combine layer-by-layer quantization with multivariate quadratic 
optimization. Our method is shown to significantly outperform state-of-the-art methods 
on two different challenging tasks and six DNN architectures.

The rest of the paper is organized as follows: Sect. 2 reviews the related work, Sect. 3 stud-
ies the properties of the loss function of the quantized network, Sect.  4 describes a pro-
posed method,  Sect. 5 provides the experimental results, and  Sect. 6 concludes the paper.
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2  Related work

Quantization is a long-studied topic in computer science. In classical digital signal process-
ing, the goal of quantization is usually to minimize some kind of distortion of the signal 
(Max 1960; Berger 1972; Lloyd 1982). In neural networks, however, the goal is to maxi-
mize some performance metric of the network, rather then distortion of the weights and 
activations. For example, Hou et al. (2016); Hou and Kwok (2018) have shown that we can 
utilize the Hessian of the loss to improve quantization of the CNNs.

The approaches to neural network quantization can be divided into two major categories 
(Krishnamoorthi 2018): quantization-aware training, which introduces the quantization at 
some point during the training, and post-training quantization, where the network weights 
are not optimized during the quantization. The recent progress in quantization-aware train-
ing has allowed the realization of results comparable to a baseline for as low as 2–4 bits per 
parameter (Baskin et al. 2018; Zhang et al. 2018; Gong et al. 2019; Yang et al. 2019; Jin 
et al. 2019) and show decent performance even for single bit (binary) parameters (Liu et al. 
2019; Peng and Chen 2019; Kim et al. 2020). The major drawback of quantization-aware 
methods is the necessity for a vast amount of labeled data and high computational power. 
Consequently, post-training quantization is widely used in existing embedded hardware 
solutions. Most work that proposes hardware-friendly post-training schemes has only man-
aged to get to 8-bit quantization without significant degradation in performance or requir-
ing substantial modifications in existing hardware.

Lin et al. (2015) proposed to use SQNR-optimal quantization, using Gaussian assump-
tion to implement efficient post-training quantization. Moreover, using the approxima-
tion of SQNR of the whole network, they were able to find optimal allocation of different 
bitwidth to CNN layers. Zhao et al. (2017) enhanced the approach by utilizing robustness 
estimation (Fawzi et al. 2016).

Fig. 1  A visualization of the loss surface for the pair of layers using one batch of 512 images (ResNet18 on 
ImageNet). X and Y-axis are quantization ranges of those layers where we estimate the cross-entropy loss 
(z-axis). The colored dots mark the quantization range found by optimizing different p-norm metrics. Each 
layer quantized in a way that minimizes the p-norm distance between the quantized tensor to its original full 
precision counterpart (e.g., MSE distortion). a One can see high coupling between two quantization ranges, 
making layer-wise optimization sub-optimal. b A zoom-in of sub-figure (a) to the point where the optimal 
cross-entropy loss (red cross) clearly distinguished from the optimized p-norm solutions.
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Gong et al. (2018) have shown that min-max ( �∞ norm) as a threshold can be used 
for 8-bit quantization. It produces a small performance degradation and can be deployed 
efficiently on the hardware. Afterward, better schemes involving the choosing of the 
clipping value, such as minimizing the Kullback-Leibler divergence (Migacz 2017), 
assuming the known distribution of weights (Banner et al. 2018), or minimizing quanti-
zation MSE iteratively (Kravchik et al. 2019), were proposed.

Another efficient approach quantization is to change the distribution of the tensors, 
making it more suitable for quantization, such as equalizing the weight ranges (Nagel 
et al. 2019) or splitting outlier channels (Zhao et al. 2019).

Recent works noted that the quantization process introduces a bias into distributions 
of the parameters and attempt to correct this bias. Finkelstein et al. (2019) addressed a 
problem of MobileNet quantization. They claimed that the source of degradation was 
shifting in the mean activation value caused by inherent bias in the quantization pro-
cess and proposed a scheme for fixing this bias. Multiple alternative schemes for the 
correction of quantization bias were proposed, and those techniques are widely applied 
in state-of-the-art quantization approaches (Banner et al. 2018; Finkelstein et al. 2019; 
Nagel et al. 2019; Fang et al. 2020). In our work, we utilize the bias correction method 
developed by Banner et al. (2018).

While the simplest form of quantization applies a single quantizer to the whole tensor 
(weights or activations), finer quantization allows reduction of performance degrada-
tion. Even though this approach usually boosts performance significantly (Mellempudi 
et al. 2017; Banner et al. 2018; Fraser et al. 2018; Kravchik et al. 2019; Lee et al. 2018), 
it requires more parameters and special hardware support, which makes it unfavorable 
for real-life deployment.

One can achieve more powerful quantization by using more sophisticated ways to 
map values to a particular bin as clustering of the tensor entry values (Nayak et  al. 
2019), aka non-uniform quantization (Fang et  al. 2020). By allowing a more general 
quantizer, these approaches provide better performance than uniform quantization, as 
a drawback requires complex hardware support. Similarly to fine-grained quantization, 
they are less suitable for deployment on consumer-grade hardware. In current work, we 
focus on the case of the symmetric tensor-wise quantizer, which is easy to implement in 
the hardware.

To the best of our knowledge, our work is first to consider dependencies between lay-
ers in the post-training regime.

3  Loss landscape of quantized DNNs

In this section, we introduce the notion of separability of the loss function. We study the 
separability and the curvature of the loss function and show how quantization of DNNs 
affect these properties. Finally, we show that during aggressive quantization, the loss 
function becomes highly non-separable with steep curvature, which is unfavorable for 
existing post-training quantization methods. Our method addresses these properties and 
makes post-training quantization possible at low bit quantization.

We focus on uniform quantization with a fixed number of bits M for all layers and 
quantization step size Δ that maps a value x ∈ ℝ into a discrete representation,
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By constraining the range of x to [−c, c] (i.e., −xmin = xmax = c ), the connection between c 
and Δ is given by:

where we use odd number of bins so that one of the bins is mapped to zero. For example, if 
c = 1 and M = 4 , the step size is Δ =

1

7
 , and there are total of 15 possible quatization val-

ues: QΔ,M(x) ∈ {−1,−6∕7,… , 0, 1∕7,… , 1}.
In the case of activations, we limit ourselves to the ReLU function, which allows us to 

choose a quantization range of [0, c]. In such cases, the quantization step Δ is given by:

3.1  Separable optimization

Suppose the loss function of the network L depends on a certain set of variables (weights, 
activations, etc.), which we denote by a vector � . We would like to measure the effect of 
adding quantization noise to this set of vectors. In the following we show that for suffi-
ciently small quantization noise, we can treat it as an additive noise vector � , allowing 
coordinate-wise optimization. However, when quantization noise is increased, the degrada-
tion in one layer is associated with other layers, calling for more laborious non-separable 
optimization techniques. Since the quantization is emulated with an additive noise, the loss 
is smooth and thus can be expanded to Taylor series:

When the quantization error � is sufficiently small, higher-order terms can be neglected so 
that degradation ΔL can be approximated as a sum of the quadratic functions,

One can see from Eq. 7 that when quantization error ||�||2 is sufficiently small, the overall 
degradation ΔL can be approximated as a sum of N independent separable degradation 
processes as follows:

(1)QΔ(x) =
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On the other hand, when ||�||2 is larger, one needs to take into account the interactions 
between different layers, corresponding to the second term in Eq. 7 as follows:

where QIT refers to the quantization interaction term.
One can see that at fine-grained quantization when ||�||2 is small the overall degradation, 

ΔL , is additively separable and can be layer-wise optimized. However, for more aggressive 
quantization, the layer-wise optimization without taking into account interactions between lay-
ers (QIT) will lead to suboptimal results.

In Fig.  2 we provide a visualization of these interactions at 2, 3 and 4 bitwidth 
representations.

3.2  Curvature

We now analyze how the steepness of the curvature of the loss function with respect to the 
quantization step changes as the quantization error increases. We will show that at aggressive 
quantization, the curvature of the loss becomes steep, which is unfavorable for the methods 
that aim to minimize quantization error on the tensor level.

We start by defining a measure to quantify curvature of the loss function with respect to 
quantization step size Δ . Given a quantized neural network, we denote L(Δ1,Δ2,… ,Δn) the 
loss with respect to quantization step size Δi of each individual layer. Since L is twice differen-
tiable with respect to Δi we can calculate the Hessian matrix:

(8)ΔL ≈

n∑
i

�L

�vi
⋅ �i

(9)QIT =

n∑
i

n∑
j

�L

�vi�vj
�i ⋅ �j,

(10)H[L]ij =
�L

�Δi�Δj

.

(a) (b) (c)

Fig. 2  Visualization of the loss surface as a function of quantization ranges of two subsequent layers of 
ResNet18. At higher bit-width, with more fine-grained quantization 2c, the interactions between layers are 
relatively small, making layer-wise optimization possible. On the other hand, at lower bit-width 2a, with 
an increase of the quantization noise, the interactions between two layers become tangible. Due to the high 
coupling, the per layer (per axis) optimization results will entirely depend on the initial point and potentially 
sub-optimal.
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To quantify the curvature, we use Gaussian curvature (Goldman 2005), which is given by:

where Δ = (Δ1,Δ2,… ,Δn).
We calculated the Gaussian curvature at the point that minimizes the L2 norm of the 

quantization error and present them in Table 1. This means that the flat surface for 4 
bits, shown in Fig.  2, is a generic property of the fine-grained quantization loss and not 
of the specific layer choice. Similarly, we conclude that coarser quantization generally 
has steeper curvature than more fine-grained quantization.

Moreover, the Hessian matrix provides additional information regarding the coupling 
between different layers. As could be expected, adjacent off-diagonal terms have higher 
values than distant elements, corresponding to higher dependencies between clipping 
parameters of adjacent layers (the Hessian matrix is presented in Fig.  3).

When the curvature is steep, even small changes in quantization step size may change 
the results drastically. To justify this hypothesis experimentally, in Fig. 4, we evaluate 
the accuracy of ResNet-50 for five different quantization steps. We choose quantization 
steps which minimize the Lp norm of the quantization error for different values of p:

(11)K[L](Δ) =
det(H[L](Δ))

(||∇L(Δ)||2
2
+ 1)2

,

Table 1  Gaussian curvature, 
K[L

b bit
](Δ) , for various models 

and bit count.

Bit count ResNet-18 ResNet-50 Inception-V3

2 0.58 2.15 1.96
3 3.2 ⋅ 10−5 1.3 ⋅ 10−4 9.7 ⋅ 10−5

4 6.7 ⋅ 10−25 5.4 ⋅ 10−22 1.1 ⋅ 10−23

(a) (b)

Fig. 3  Absolute value of the Hessian matrix of the loss function with respect to quantization steps calcu-
lated over 15 layers of ResNet-18. Higher values at a diagonal of the Hessian at 2-bit quantization suggest 
that the minimum is sharper than at 4 bits. Non-diagonal elements provide an indication of the coupling 
between parameters of different layers: closer layers generally exhibit stronger interactions.
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While at 4-bit quantization, the accuracy is almost not affected by small changes in the 
quantization step size, at 2-bit quantization, the same changes shift the accuracy by more 
than 20%. Moreover, the best accuracy is obtained with a quantization step that minimizes 
L3.5 and not the MSE, which corresponds to L2 norm minimization.

3.3  Hessian of the loss function

To estimate dependencies between clipping parameters of different layers, we analyze the 
structure of the Hessian matrix of the loss function. The Hessian matrix contains the sec-
ond-order partial derivatives of the loss L(Δ) , where � is a vector of quantization steps:

In the case of separable functions, the Hessian is a diagonal matrix. This means that the 
magnitude of the off-diagonal elements can be used as a measure of separability. In Fig. 3 
we show the Hessian matrix of the loss function under quantization of 4 and 2 bits. As 
expected, higher dependencies between quantization steps emerge under more aggressive 
quantization.

4  Loss aware post‑training quantization

In the previous section, we showed that the loss function L(Δ) , with respect to the quanti-
zation step size Δ , has a complex, non-separable landscape that is hard to optimize. Now 
we suggest a method to overcome this difficulty. Our optimization process involves three 
consecutive steps.

In the first phase, we find the quantization step Δp that minimizes the Lp norm of the 
quantization error of the individual layers for several different values of p. Then, we per-
form quadratic interpolation to approximate an optimum of the loss with respect to p. 
Finally, we jointly optimize the parameters of all layers acquired on the previous step 
by applying a gradient-free optimization method (Powell 1964). The pseudo-code of the 
whole algorithm is presented in Algorithm 1. Figure 8 provides the algorithm visualization.

(12)ep(Δ) = (||QΔ(X) − X||p)1∕p.

(13)H[L]ij =
�L

�Δi�Δj

.

Fig. 4  Accuracy of ResNet-50 
quantized to 2 and 4 bits, respec-
tively. Quantization steps are 
chosen such that they minimize 
the Lp norm of the quantization 
error for different values of p.
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4.1  Layer‑wise optimization

Our method starts by minimizing the Lp norm of the quantization error of weights and acti-
vations in each layer with respect to clipping values, defined in  Eq. 12.

Given a real number p > 0 , the set of optimal quantization steps 
Δp = {Δ1p

,Δ2p
,… ,Δnp

} , according to Eq.  12, minimizes the quantization error within 
each layer. In addition, optimizing the quantization error allows us to get Δp in the vicinity 
of the optimum Δ∗ . Different values of p result in different quantization step sizes Δp , 
which are optimal under the Lp metric due to the trade-off between clipping and quantiza-
tion error (Fig. 7).

4.2  Quadratic approximation

Assuming a quantization step size Δ in the vicinity of the optimal quantization step Δ∗ , the 
loss function can be approximated with a Taylor series as follows:

where �(Δ∗) is the Hessian matrix with respect to Δ . Since Δ∗ is a minimum, the first 
derivative vanishes and we acquire a quadratic approximation of L,

Our method exploits this quadratic property for optimization. Figures  5,6a demonstrates 
empirical evidence of such a quadratic relationship for ResNet-18 and ResNet-50 around the 

(14)L(Δ) − L(Δ∗) = (Δ∗ − Δ)⊤∇L(Δ∗)+

(15)+
1

2
(Δ∗ − Δ)⊤�(Δ∗)(Δ∗ − Δ)+

(16)+O(||Δ∗ − Δ||3),

(17)ΔL = L(Δ) − L(Δ∗) ≈
1

2
(Δ∗ − Δ)⊤�(Δ∗)(Δ∗ − Δ)

(a) (b)

Fig. 5  Loss of ResNet-18 quantized with different quantization steps. The orange line shows quadratic 
interpolation: a with respect to the distance from optimal quantization step Δ∗ and b on the trajectory 
defined by Lp norm minimization.
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Fig. 6  Accuracy of ResNet-18 
and ResNet-50 quantized to 2 
bits with respect to layer wise 
optimization of different Lp 
norms. Accuracy with respect to 
p has approximately quadratic 
form.

Fig. 7  The Lp norm of the 
quantization error generated by 
optimizing for different values 
of p according to Eq. 12. For 
different Lp metrics, the optimal 
quantization step is different.
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optimal quantization step Δ∗ obtained by our method. First, we sample a few data points {Δp} 
to get number of samples of L(Δ) (orange points in Fig. 8). Empirically we found that 10 
points are enough for a good approximation as can be seen in Fig. 5. Then, we use the prior 
quadratic assumption to approximate the minimum of the L on that trajectory by fitting a 
quadratic function f(p) to the sampled Δp . Finally, we minimize f(p) and use the optimal quan-
tization step size Δp∗ as a starting point for a gradient-free joint optimization algorithm, such 
as Powell’s method (Powell 1964), to minimize the loss and find Δ∗.

4.3  Joint optimization

By minimizing both the quantization error and the loss using quadratic interpolation, we get a 
better approximation of the global minimum Δ∗ . Due to steep curvature of the minimum, how-
ever, for a low bitwidth quantization, even a small error in the value of Δ leads to performance 
degradation. Thus, we use a gradient-free joint optimization, specifically a Powell’s method 
(Powell 1964), to further optimize Δp∗.

At every iteration, we optimize the set of parameters, initialized by Δp∗ . Given a set 
of linear search directions D = {d1, d2,… , dN} , the new position Δt+1 is expressed by the 
linear combination of the search directions as following Δt +

∑
i �idi . The new displace-

ment vector 
∑

i �idi becomes part of the search directions set, and the search vector, which 
contributed most to the new direction, is deleted from the search directions set. Powell’s 

Fig. 8  Intuition about the LAPQ algorithm in two dimensions. The visualization shows the loss as a func-
tion of quantization ranges of two layers on synthetic data. Yellow dots correspond to the quantization step 
size {Δp} , which minimizes the Lp norm of the quantization error. {Δp} build a trajectory in the vicinity 
of the minimum Δ∗ . The optimal quantization step size on that trajectory Δp∗ is used as a starting point 
for a joint optimization algorithm (Powell’s). Vectors {d

1
, d

2
, d

3
} demonstrate the first iteration of Powell’s 

method that approaches the global minimum Δ∗ (Color figure online).
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Table 2  Comparison with 
other methods on ResNet-18, 
ResNet-50, and MobileNet V2. 
MMSE refers to minimization 
of MSE. W refers to the weights 
bitwidth and A to the activations 
bitwidth.

Bold values indicate best result in each category

Model W/A Method Accuracy(%)

ResNet-18 32 / 32 FP32 69.7
LAPQ (Ours) 69.4

8 / 8 DFQ Nagel et al. (2019) 69.7
MMSE 69.0
LAPQ (Ours) 68.8
DUAL Kravchik et al. (2019) 68.38
ACIQ Banner et al. (2018) 65.528

8 / 4 MMSE 68.0
LAPQ (Ours) 66.3
ACIQ Banner et al. (2018) 52.476

8 / 3 MMSE 63.3
LAPQ (Ours) 60.3
ACIQ Banner et al. (2018) 4.1
KLD Migacz (2017) 31.937

4 / 4 MMSE 43.6
LAPQ (Ours) 68.1

4 / 32 MMSE 68
LAPQ (Ours) 42.2

3 / 3 MMSE 1.1
ResNet-50 32 / 32 FP32 76.1

LAPQ (Ours) 74.8
DUAL Kravchik et al. (2019) 73.25
ACIQ Banner et al. (2018) 68.92

8 / 4 MMSE 74.0
LAPQ (Ours) 70.8
ACIQ Banner et al. (2018) 51.858

8 / 3 MMSE 66.3
LAPQ (Ours) 70.0
ACIQ Banner et al. (2018) 3.3
KLD Migacz (2017) 46.19

4 / 4 MMSE 36.4
LAPQ (Ours) 45.5

3 / 3 MMSE 0.2
MobileNet v2 32 / 32 FP32 71.8

LAPQ (Ours) 71.6
8 / 8 DFQ Nagel et al. (2019) 71.2

MMSE 71.6
LAPQ (Ours) 59.4

4 / 32 MMSE 47.6
LAPQ (Ours) 52.2

4 / 4 MMSE 26.0
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Table 3  Comparison with other 
methods on ResNet-101 and 
Inception-V3. MMSE refers to 
minimization of MSE. W refers 
to the weights bitwidth and A to 
the activations bitwidth.

Bold values indicate best result in each category

Model W/A Method Accuracy(%)

ResNet-101 32 / 32 FP32 77.3
LAPQ (Ours) 73.6
DUAL Kravchik et al. (2019) 74.26
ACIQ Banner et al. (2018) 66.966

8 / 4 MMSE 72.0
LAPQ (Ours) 65.7
ACIQ Banner et al. (2018) 41.46

8 / 3 MMSE 56.7
LAPQ (Ours) 59.2
ACIQ Banner et al. (2018) 1.5
KLD Migacz (2017) 49.948

4 / 4 MMSE 9.8
LAPQ (Ours) 7.6

3 / 3 MMSE 0.1
Inception-V3 32 / 32 FP32 77.2

LAPQ (Ours) 75.2
DUAL Kravchik et al. (2019) 73.06
ACIQ Banner et al. (2018) 66.42

8 / 4 MMSE 74.3
LAPQ (Ours) 64.4
ACIQ Banner et al. (2018) 31.01

8 / 3 MMSE 54.1
LAPQ (Ours) 38.6
ACIQ Banner et al. (2018) 0.5
KLD Migacz (2017) 1.84

4 / 4 MMSE 2.2
LAPQ (Ours) 4.5

8 / 2 MMSE 3

Table 4  Hit rate of NCF-1B 
applying our method, LAPQ, and 
MMSE. W refers to the weights 
bitwidth and A to the activations 
bitwidth.

Bold values indicate best result in each category

Model W/A Method Hit rate(%)

NCF 1B 32/32 FP32 51.5
32/8 LAPQ (Ours) 51.2

MMSE 51.1
8/32 LAPQ (Ours) 51.4

MMSE 33.4
8/8 LAPQ (Ours) 51.0

MMSE 33.5



3258 Machine Learning (2021) 110:3245–3262

1 3

method (Powell 1964) is quadratically convergent (Brent 2013). In practice, in our experi-
ments it converges in a few hundreds of iterations. For further details, see Algorithm 1.

Table 5  Accuracy of ResNet-18 
with different initializations 
for the joint optimization. LW 
refers to only applying layer-wise 
optimization for p = 2 . LW 
+ QA refers to the proposed 
initialization that includes layer-
wise optimization and quadratic 
approximation. W refers to the 
weights bitwidth and A to the 
activations bitwidth.

W / A Method Accuracy (%)

Initial Joint

4 / 4 Random 0.1 7.8
LW 43.6 57.8
LW + QA 54.1 60.3

32 / 2 Random 0.1 0.1
LW 33 50.3
LW + QA 48.1 50.7

Table 6  Effect of applying bias 
correction on top of LAPQ 
for ResNet-18, ResNet-50 
and MobileNet-V2. LAPQ 
significantly outperforms naive 
minimization of the mean 
square error (MSE). Notice the 
importance of bias correction on 
MobileNet-V2. W refers to the 
weights bitwidth and A to the 
activations bitwidth.

W A ResNet-18 ResNet-50 MobileNet-V2

LAPQ
32 4 68.8% 74.8% 65.1%
32 2 51.6% 54.2% 1.5%
4 32 62.6% 69.9% 29.4%
4 4 58.5% 66.6% 21.3%
LAPQ + bias correction
4 32 63.3% 71.8% 59.4%
4 4 60.3% 70.0% 52.2%
FP32 69.7% 76.1% 71.8%

Fig. 9  Accuracy of ResNet-18 
for different sized calibration sets 
at various quantization levels.
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5  Experimental results

In this section we conduct extensive evaluations and offer a comparison to prior art of the 
proposed method on two challenging benchmarks, image classification on ImageNet and a 
recommendation system on NCF-1B. In addition, we examine the impact of each part of 
the proposed method on the final accuracy. In all experiments we first calibrate the optimal 
clipping values on a small held-back calibration set using our method and then evaluate the 
validation set.

5.1  ImageNet

We evaluate our method on several CNN architectures on ImageNet. We select a calibra-
tion set of 512 random images for the optimization step. The size of the calibration set 
defines the trade-off between generalization and runtime (the analysis is given in 5.3). Fol-
lowing the convention (Baskin et al. 2018; Yang et al. 2019), we do not quantize the first 
and last layers.

Many successful methods of post-training quantization perform finer parameter assign-
ment, such as group-wise (Mellempudi et  al. 2017), channel-wise (Banner et  al. 2018), 
pixel-wise (Fraser et al. 2018), or filter-wise (Kravchik et al. 2019) quantization, requiring 
special hardware support and additional computational resources. Finer parameter assign-
ment appears to provide definite improvement, independently of the underlying methods 
used, but requires more complex and resource-demanding hardware. In contrast with those 
approaches, our method performs layer-wise quantization, which is simple to implement 
on any hardware that supports low precision integer operations. Thus, we do not include 
the methods with finer assignment in our comparison study. We apply bias correction, as 
proposed by Banner et al. (2018), on top of the proposed method. In Tables 2, 3 and 7 we 
compare our method with several other layer-wise quantization methods, as well as the 
minimal MSE baseline. In most cases, our method significantly outperforms all the com-
peting methods, showing acceptable performance even for 4-bit quantization.

Table 7  Comparison with other 
methods.

Bold values indicate best result in each category

Model W/A Method Accuracy(%)

ResNet-18 32 / 32 FP32 69.7
8 / 2 LAPQ (Ours) 51.6

ACIQ Banner et al. (2018) 7.07
ResNet-50 32 / 32 FP32 76.1

LAPQ (Ours) 54.2
8 / 2 ACIQBanner et al. (2018) 2.92

LAPQ (Ours) 71.8
4 / 32 OCS Zhao et al. (2019) 69.3

ResNet-101 32 / 32 FP32 77.3
LAPQ (Ours) 29.8

8 / 2 ACIQ Banner et al. (2018) 3.826
LAPQ (Ours) 66.5

4 / 32 MMSE 18
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5.2  NCF‑1B

In addition to the vision models, we evaluated our method on a recommendation system 
task, specifically on a Neural Collaborative Filtering (NCF) (He et al. 2017) model. We use 
mlperf1implementation to train the model on the MovieLens-1B dataset. Similarly to the 
ImageNet, the calibration set of 50k random user/item pairs is significantly smaller than 
both the training and validation sets.

In Table 4 we present results for the NCF-1B model compared to the MMSE method. 
Even at 8-bit quantization, NCF-1B suffers from significant degradation when using the 
naive MMSE method. In contrast, LAPQ achieves near baseline accuracy with 0.5% degra-
dation from FP32 results.

5.3  Ablation study

Initialization The proposed method comprises of two steps: layer-wise optimization and 
quadratic approximation as the initialization for the joint optimization. In Table 5, we show 
the results for ResNet-18 under different initializations and their results after adding the 
joint optimization. LAPQ suggest a better initialization for the joint optimization.

Bias correction
Prior research (Banner et  al. 2018; Finkelstein et  al. 2019) has shown that CNNs are 

sensitive to quantization bias. To address this issue, we perform bias correction of the 
weights as proposed by Banner et al. (2018), which can easily be combined with LAPQ, 
in all our CNN experiments. In Table 6 we show the effect of adding bias correction to the 
proposed method and compare it with MMSE. We see that bias correction is especially 
important in compact models, such as MobileNet.

Calibration set size Calibration set size reflects the balance between the running time 
and the generalization. To determine the required size, we ran the proposed method on 
ResNet-18 for various calibration set sizes and different bitwidths. As shown in Fig. 9, a 
calibration set size of 512 is a good choice to balance this trade-off.

6  Conclusion

We have analyzed the loss function of quantized neural networks. At low precision, the 
function is non-separable, with steep curvature, which is unfavorable for existing post-
training quantization methods. Accordingly, we have introduced Loss Aware Post-train-
ing Quantization (LAPQ), which jointly optimizes all quantization parameters by mini-
mizing the loss function directly. We have shown that our method outperforms current 
post-training quantization methods. Also, our method does not require special hardware 
support such as channel-wise or filter-wise quantization. In some models, LAPQ is the 
first to show compatible performance in 4-bit post-training quantization regime with 
layer-wise quantization, almost achieving a the full-precision baseline accuracy.
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