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Abstract
The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) is a 
heterogeneous meta ensemble for time series classification. HIVE-COTE forms its ensem-
ble from classifiers of multiple domains, including phase-independent shapelets, bag-of-
words based dictionaries and phase-dependent intervals. Since it was first proposed in 
2016, the algorithm has remained state of the art for accuracy on the UCR time series 
classification archive. Over time it has been incrementally updated, culminating in its cur-
rent state, HIVE-COTE 1.0. During this time a number of algorithms have been proposed 
which match the accuracy of HIVE-COTE. We propose comprehensive changes to the 
HIVE-COTE algorithm which significantly improve its accuracy and usability, present-
ing this upgrade as HIVE-COTE 2.0. We introduce two novel classifiers, the Temporal 
Dictionary Ensemble and Diverse Representation Canonical Interval Forest, which replace 
existing ensemble members. Additionally, we introduce the Arsenal, an ensemble of 
ROCKET classifiers as a new HIVE-COTE 2.0 constituent. We demonstrate that HIVE-
COTE 2.0 is significantly more accurate on average than the current state of the art on 112 
univariate UCR archive datasets and 26 multivariate UEA archive datasets.

Keywords  Time series classification · Multivariate time series · Heterogeneous 
ensembles · HIVE-COTE
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ROCKET	� Random Convolutional Kernel Transform
STC	� Shapelet Transform Classifier
EE	� Elastic Ensemble
TDE	� Temporal Dictionary Ensemble
SFA	� Symbolic Fourier Approximation
BOSS	� Bag of SFA Symbols
cBOSS	� Contractable BOSS
S-BOSS	� Spatial BOSS
WEASEL	� Word Extraction for Time Series Classification
CIF	� Canonical Interval Forest
DrCIF	� Diverse Representation CIF
TSF	� Time Series Forest
STSF	� Supervised TSF
RISE	� Random Interval Spectral Ensemble
CAWPE	� Cross-validation Accuracy Weighted Probabilistic Ensemble
DTW	� Dynamic Time Warping
MCB	� Multiple Coefficient Binning
IGB	� Information Gain Binning
LOOCV	� Leave One Out Cross-validation
catch22	� Canonical Time Series Characteristics
AUROC	� Area Under the Receiver Operating Characteristic
NLL	� Negative Log Likelihood
MSE	� Mean Squared Error
HPC	� High Performance Computing

1  Introduction

Time series classification (TSC) is the problem of predicting a discrete target variable from 
a (possibly multivariate) time series. TSC problems are seen in all areas of machine learn-
ing applications, including seizure detection (Chaovalitwongse et  al. 2006), earthquake 
monitoring (Arul and Kareem 2021), insect classification (Potamitis 2014) and predictive 
maintenance (Guillaume et al. 2020). The publication of the University of California, Riv-
erside (UCR) TSC archive resulted in an increased interest into algorithmic research for 
this type of problem. An experimental study, characterised as a bake off (Bagnall et  al. 
2017), facilitated the objective and reproducible comparison of learning algorithm perfor-
mance on the UCR archive. Since then, new classifiers have been proposed in the litera-
ture that have advanced the field by significantly outperforming those used in the bake off. 
There are currently four algorithms with reasonable claim to being state of the art for TSC 
based on experimentation on the recently expanded UCR archive (Dau et al. 2019). These 
are: the deep learning approach called InceptionTime (Fawaz et al. 2020); the tree based 
Time Series Combination of Heterogeneous and Integrated Embedding Forest (TS-CHIEF) 
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(Shifaz et al. 2020); the Random Convolutional Kernel Transform (ROCKET) (Dempster 
et al. 2020); and the heterogeneous meta-ensemble Hierarchical Vote Collective of Trans-
formation-based Ensembles (HIVE-COTE) (Lines et al. 2018), the latest version of which 
is called HIVE-COTE version 1.0 (HC1) (Bagnall et  al. 2020). We propose a new ver-
sion of HIVE-COTE that is significantly more accurate than all four current state-of-the-art 
algorithms. We call this classifier HIVE-COTE version 2.0, or HC2 for short. The critical 
difference diagram in Fig.  1 summarises the final results of HC2 against the four lead-
ing algorithms on 112 equal length UCR archives, using 30 stratified resamples on each 
dataset (more detail is provided in Sect. 5). The number associated with each algorithm 
is the average rank of the classifier on 112 UCR datasets and solid bars group classifiers 
between which there is no significant difference. HC2 is on average over 1% more accurate 
per problem than all of the current state of the art.

The key principle behind HIVE-COTE is that TSC problems are best approached by 
careful consideration of the data representation, and that with no expert knowledge to the 
contrary, the most accurate algorithm design is to ensemble classifiers built on different 
representations. The changes from HC1 to HC2 relate to the component classifiers and a 
redefinition of the underlying data representations used. HC2 contains four component 
classifiers: the dictionary based Temporal Dictionary Ensemble (TDE) (Middlehurst et al. 
2020b); the interval based Diverse Representation Canonical Interval Forest (DrCIF) (Mid-
dlehurst et al. 2020a); an adaptation of ROCKET we call the Arsenal and the latest version 
of the Shapelet Transform Classifier (STC) (Bostrom and Bagnall 2017). Each of these 
classifiers represents the best in class for a particular representation. Prototype versions of 
TDE and DrCIF have been presented at conferences and are novel contributions in their 
own right. Arsenal enhances ROCKET to produce better probability estimates. STC has 
enhanced usability options that help improve the functionality of the whole ensemble; HC2 
is now contractable (i.e. the classifier can be given a maximum run time), checkpointable 
(i.e. the classifier build can be resumed from a previous run) and works with multivariate 
time series classification (MTSC). A recent study (Ruiz et  al. 2021) concluded that that 
MTSC is at an earlier stage of development than univariate TSC. The only algorithms sig-
nificantly better than the standard TSC benchmark, one nearest neighbour with dynamic 
time warping (DTW), were HC1, ROCKET, InceptionTime and CIF (Middlehurst et  al. 

5 4 3 2 1

1.9643 HC2
3.1116 TS-CHIEF
3.2009 InceptionTime

3.2902HC1
3.433ROCKET

Fig. 1   Critical difference diagram for HC2 against the current state of the art on 112 UCR TSC problems. 
The average rank for each classifier is shown, and solid lines group classifiers between which there is no 
significant difference. It demonstrates that there is no difference between HC1 (Bagnall et al. 2020), Incep-
tionTime (Fawaz et  al. 2020), ROCKET (Dempster et  al. 2020) and TS-CHIEF (Shifaz et  al. 2020), but 
HC2 is significantly higher ranked than all of them. More details are given in Sect. 5
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2020a). HC2 is significantly more accurate than all these algorithms on the University of 
East Anglia (UEA) MTSC archive (Bagnall et al. 2018).

We investigate the effect of how HC estimates test error and the relative importance of 
each component of HC2 through an ablative study in Sect. 6. We show that there is high 
variability in performance between the components over datasets and that each component 
significantly improves the ensemble overall. We also assess alternative ensemble struc-
tures, including stacking and selection schemes, and conclude that the simple weighted 
structure using a tilted distribution, the Cross-validation Accuracy Weighted Probabilistic 
Ensemble (CAWPE) (Large et al. 2019b), is as good as much more complex approaches.

A common criticism of HC is its run time. This in part is due to out of date received 
wisdom relating to shapelet search. The initial shapelet search algorithms conducted a 
computationally expensive exhaustive search. This is not only unnecessary but results in 
over fitting. Recent versions of STC simply randomise the search. Nevertheless, a full run 
of HC2 is still computationally expensive on large problems and takes much longer than 
ROCKET. In Sect.  7 we explore the usability of HC2, including details of open source 
implementations and assess the performance and its components on two problems with 
very long series. Our results indicate that in general HC2 performance converges quickly, 
and that a contracted run time is sufficient to produce reasonable results in a controlled 
time. Finally, in Sect. 8 we conclude this study by identifying areas of future improvement 
for HIVE-COTE.

2 � Background

Time series classification (TSC) requires a training set of case pairs {x, y} with m real-
valued ordered observations and a discrete class label y from a range of c possible values. 
The objective is to create a function that maps from the space of possible input series to the 
space of possible class labels. This is achieved by using a training set of case pairs to build 
a model that can output either a predicted class value, or a predicted class distribution, for 
previously unseen series.

We restrict our attention to problems where series are the same length. In univariate 
TSC, x is a vector of m observations. The majority of research effort over the last decade 
has been into developing univariate TSC algorithms. Multivariate time series classification 
(MTSC) is an extension where the series are multidimensional and a single case is repre-
sented by a list of vectors over d dimensions and m observations, X =< x

1
, x

2
, ..., x

d
> , and 

x
k
=< x1,k, x2,k, ..., xm,k > . When indexing into a dataset, we denote the jth observation of 

the ith case in dimension k as xi,j,k.
One way of categorising algorithms is on the core data representation used. Distance 

based algorithms rely on elastic distance measures between two series. Dictionary based 
approaches are based on the frequency of recurring patterns, found through converting real 
valued time series into a sequence of discrete symbol words. Interval based algorithms 
derive features on intervals of series to find temporal features that may be otherwise 
obscured by irrelevant observations. Shapelet based approaches find phase independent 
discriminatory subseries.

The current approaches to time series classification that exploit one or more of these 
representations can be grouped into four categories: modular heterogeneous ensembles 
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where each module consists of a classifier built on a particular transformation type such as 
HIVE-COTE; tree based homogeneous ensembles where different data representations are 
embedded within the nodes of the tree Shifaz et al. (2020); deep learning algorithms where 
the representations are embedded in the network (Fawaz et al. 2019); and transformation/
convolution approaches that create massive new feature spaces that are parsed with a linear 
classifier (Dempster et al. 2020; Nguyen et al. 2019). The most effective algorithms exploit 
one or more representations. In the remainder of this background, we limit ourselves to 
describing the most accurate approaches. More complete reviews of TSC algorithms can 
be found in Bagnall et al. (2017, 2020).

HIVE-COTE 1.0 The original version of HIVE-COTE was first introduced in 2016 
(Lines et  al. 2016, 2018) and, at the time, was significantly more accurate on average 
than other known approaches (Bagnall et al. 2017) on the 85 datasets that were then the 
complete UCR archive (Dau et al. 2019). The first version of HIVE-COTE (later dubbed 
HIVE-COTE alpha), contained five constituent ensembles that each worked on features 
from different data transformation domains: the Elastic Ensemble (EE) (Lines and Bagnall 
2015); Shapelet Transform Classifier (STC) (Hills et al. 2014); Time Series Forest (TSF) 
(Deng et  al. 2013); Bag of Symbolic-Fourier-Approximation Symbols (BOSS) (Schäfer 
2015); and the Random Interval Spectral Ensemble (RISE) that was introduced alongside 
HIVE-COTE (Lines et al. 2018). Each module was encapsulated and built on the train data 
independently of the others. For new data, each module passes an estimate of class prob-
abilities to the control unit, which combines them to form a single prediction. It does this 
by weighting the probabilities of each module by an estimate of its testing accuracy formed 
from the training data.

The goal of HIVE-COTE alpha was to achieve the highest level of accuracy without 
concern for computational resources. This initial target has since lead to a perception that 
HIVE-COTE is very slow and does not scale well. A very simple restructure of HIVE-
COTE alpha was able to achieve the same level of accuracy in orders of magnitude less 
time; HIVE-COTE 1.0 (HC1) (Bagnall et al. 2020), was introduced to demonstrate its util-
ity and scalability. (HC1) is based on simple refinements and enchantments to the original 
HIVE-COTE alpha base constituents. HC1 dropped the distance based EE due to the high 
computational overhead. STC introduced binary shapelets and a randomised search con-
trolled by a time parameter. HC1 uses the Cross-validation Accuracy Weighted Probabil-
istic Ensemble (CAWPE) (Large et al. 2019b) ensemble structure. CAWPE uses an accu-
racy estimate of each classifier formed on the train data to weight the probabilities of each 
component. It constructs a tilted distribution through exponentiation using a parameter � to 
extenuate differences in classifiers. Each component’s weight is found through an internal 
estimate for each classifier if capable, else a ten-fold cross-validation of the training data is 
performed.

TS-CHIEF The Time Series Combination of Heterogeneous and Integrated Embed-
ding Forest (TS-CHIEF) (Shifaz et al. 2020) is the classifier most comparable to HIVE-
COTE. TS-CHIEF is made up of an ensemble of trees which embed distance, dictionary 
and spectral base features. A number of splitting criteria from each representation with 
randomly initialised parameters are considered at each node. The different types of split 
criteria are dictionary based splits based on BOSS, similarity based splits based on EE and 
interval based splits based on RISE. The core distinction is that the usage of base features 
is embedded in nodes of the tree rather than modularised through separate classifiers.
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InceptionTime (Fawaz et al. 2020) is a deep learning ensemble, combining five homo-
geneous residual networks incorporating inception modules (Szegedy et  al. 2015). An 
individual network is made up of two blocks of three Inception modules which maintain 
residual connections, followed by global average pooling and softmax layers. Each network 
in the ensemble is initialised with random weights for stability. It is the best deep learning 
approach for time series data to our knowledge, and represents deep learning for TSC in 
our experiments.

ROCKET the Random Convolutional Kernel Transform (ROCKET) (Dempster et  al. 
2020) produces a large number of summary stats using randomly initialised convolutional 
kernels, then selects informative ones using a linear classifier. A version of ROCKET is 
included in the HIVE-COTE 2.0 ensemble, so a more complete description of the algo-
rithm is provided in Sect. 3.3.

Other recent approaches focus on a single representation. Proximity Forest (Lucas et al. 
2019) is a tree ensemble that randomly chooses distance functions at each node. Super-
vised Time Series Forest (STSF) (Cabello et al. 2020) is an interval based tree ensemble 
that includes a supervised method for extracting intervals and uses summary statistics and 
spectral features. A number of extensions to the BOSS classifier have been made since the 
bake off in S-BOSS (Large et al. 2019a), cBOSS (Middlehurst et al. 2019) and WEASEL 
(Schäfer and Leser 2017a).

There have also been a range of algorithms proposed for MTSC (Ruiz et  al. 2021). 
Dynamic Time Warping with pointwise multivariate distance and a one nearest neighbour 
classifier, characterised as dependent dynamic time warping (DTW-D) (Shokoohi-Yekta 
et al. 2017), is the baseline for MTSC. ROCKET, InceptionTime and CIF have multivariate 
versions which are significantly more accurate.

3 � HIVE‑COTE 2.0 (HC2)

HIVE-COTE 2.0 replaces three of the four classifiers that make up HIVE-COTE 1.0. The 
component modules are: the shapelet based Shapelet Transform Classifier (Bostrom and 
Bagnall 2017); the convolution based ensemble of ROCKET classifiers we call the Arse-
nal; the dictionary based representation TDE; and the interval based DrCIF. An overview 
of the updated HC2 structure is displayed in Fig. 2.

Each component is trained independently and in addition to the final model, it is 
required to produce an estimate of its accuracy on unseen data. For new data, each module 
produces a probability estimate for each class. The controller constructs a tilted distribu-
tion through exponentiation (using � = 4 by default) to extenuate differences in classifiers 
and weighting with the accuracy estimate. Each module of HC2 contains new features and 
improvements over previous versions. These include novel algorithm improvements, mul-
tivariate extensions and contracting improvements. In addition, the method for estimating 
the accuracy from the train data has been improved. Generally, there are three ways of 
estimating test accuracy from train data. Firstly, the final model can be assessed directly on 
the train data. This is likely to be biased and over optimistic, particularly if some form of 
model selection has occurred without careful regularisation. Secondly, a cross-validation 
can be performed on the train data in addition to the final build. Whilst this will probably 
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be less biased (and generally pessimistic) it is time consuming. Thirdly, some form of hold-
out evaluation can be embedded in the full model build, such as bagging. HC1 uses a mix-
ture of approaches based on the classifier. HC2 adopts a standardised bagging approach, 
which is possible since all four classifiers in HC2 use ensembles. However, we found that 
whilst using out-of-bag performance produces acceptable estimates of test accuracy, the 
bagged classifiers themselves were significantly less accurate than those built on the full 
data. Hence, we adopted a hybrid approach. Rather than build 11 total models for ten-fold 
cross-validation or a single model using bagging, we construct one bagged model to esti-
mate accuracy for those that require it using out-of-bag error and a full model to predict 
new cases. Specifics on how each module generates its estimate and the impact of this 
design choice are discussed in Sect. 6.

HC2 can train each component concurrently. Even so, the components can be slow on 
large problems. Hence, we allow the user to configure HC2 so that it has a time contract. 
If contracted, each component ensemble simply builds as many base classifiers as it can 
in the time provided. This simple form of contracting is an adequate first fix. However, 
a problem does arise for very large data with short contracts: building a single ensemble 

STC TDE DrCIF

Performance 
Es
mate 82%

Prob Class 1 0.1

Prob Class 2 0.8

Prob Class 3 0.1

Predic�on 2

Prob Class 1 0.8

Prob Class 2 0.1

Prob Class 3 0.1

Predic�on 1

Prob Class 1 0.7

Prob Class 2 0.1

Prob Class 3 0.2

Predic�on 1

CAWPE
Alpha (α) = 4

Prob Class 1 0.824 x 0.1 + 0.594 x 0.8 + 0.74 x 0.3 + 0.584 x 0.7 = 0.29/(0.29+0.53+0.1)  = 0.32

Prob Class 2 0.824 x 0.8 + 0.594 x 0.1 + 0.74 x 0.6 + 0.584 x 0.1 =  0.53/(0.29+0.53+0.1)  = 0.58

Prob Class 3 0.824 x 0.1 + 0.594 x 0.1 + 0.74 x 0.1 + 0.584 x 0.2 =  0.1  /(0.29+0.53+0.1)  = 0.1

Predic�on argmax(0.32, 0.58, 0.1)

Predic
on: Class 2
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Unknown Test Case
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Prob Class 1 0.3

Prob Class 2 0.6

Prob Class 3 0.1

Predic�on 2
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Fig. 2   An overview of the ensemble structure of HIVE-COTE 2.0 for a three class problem. Each module 
is trained independently and produces an estimate of the probability of membership of each class for unseen 
data. The control unit (CAWPE) combines these probabilities, weighted by an estimate of the quality of the 
module found on the train data
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member may exceed the contract. It would be better for the components to self configure 
when this is likely, by, for example, subsampling cases or series. HC2 is threaded but cur-
rently, the components themselves are not. Given they are all ensembles of independent 
base classifiers, it is in principle easy to do so. This and the inevitable move onto GPU is 
part of our future work plan.

3.1 � Temporal dictionary ensemble (TDE)

HIVE-COTE alpha contains the dictionary based classifier BOSS (Schäfer 2015), which 
was updated to cBOSS (Middlehurst et al. 2019) in HC1. HC2 uses the Temporal Diction-
ary Ensemble (TDE) (first introduced in Middlehurst et al. (2020b)), which draws on more 
recent work on dictionary classifiers (Large et  al. 2019a; Schäfer and Leser 2017a) and 
includes several novel features. Dictionary based approaches aim to capture the repetitions 
of patterns as discriminatory features rather than solely their presence. These approaches 
commonly adapt the bag-of-words model used in other domains such as signal processing, 
computer vision and audio processing for time series data.

TDE is an ensemble of 1-NN classifiers that transforms each series into a histogram of 
word counts. A sliding window of length w is run along each series, and the subseries is 
discretised into a word of length l from an alphabet of size � . TDE transforms the window 
using the Symbolic Fourier Approximation (SFA) (Schäfer and Högqvist 2012) transform 
proposed for BOSS (Schäfer 2015). Distance between histograms is found using histogram 
intersection. In addition to word frequencies, TDE also captures the frequencies of bigrams 
found from non overlapping windows. Thus a transformed case includes a histogram of 
word counts and bigram counts for a given trio of parameters (w,l,� ). TDE also includes 
some spatial information by the utilisation of spatial pyramids (Lazebnik et al. 2006). This 
involves splitting a series into h levels each with 2v disjoint subseries, where v is the current 
pyramid level. Word counts are found for each subseries independently, then the result-
ing histograms are concatenated. The distance to histograms of deeper levels with smaller 
spatial areas in the series are weighted higher than global similarity. Bigrams are only 
recorded for the first level consisting of the full series. The SFA transform requires a set of 
breakpoints when creating words. The method of generating these breakpoints b is selected 
between Multiple Coefficient Binning (MCB) (Schäfer 2015) and Information Gain Bin-
ning (IGB) (Schäfer and Leser 2017a). Windows can optionally be normalised during the 
transform with the p parameter.

The TDE ensemble is filtered into s total classifiers from k candidates. The accuracy 
of each candidate is estimated using leave-one-out cross-validation (LOOCV), with the 
highest s being retained. Diversity is achieved through altering the parameters (w,l,h,b,p) 
for each new classifier and a 70% sampling of the train data. The first 50 classifiers use 
randomly selected parameters, while those after are selected using a Gaussian processes 
regressor. For unseen parameter sets, a prediction of accuracy is made using the parameters 
of previously built classifiers, with the highest predicted accuracy being chosen for the next 
classifier build. New cases are classified with a weighted majority vote, using the expo-
nential accuracy weights from CAWPE (Large et al. 2019b). Table 1 shows the range from 
which individual classifier parameters are subsampled, with m being the series length. The 
ensemble build process for TDE is described in Algorithm 1. When it comes to replacing 
BOSS in the HIVE-COTE ensemble, TDE was the only dictionary based approach to sig-
nificantly improve the ensemble’s accuracy (Middlehurst et al. 2020b). Using cBOSS and 
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S-BOSS as replacements was found to show no significant difference in accuracy, while 
WEASEL was significantly worse.

We introduce the capability for multivariate time series classification to TDE by making 
a number of additions to the individual classifier. WEASEL also has a multivariate version, 
WEASEL-MUSE (Schäfer and Leser 2017b), which shares similarities with our extension. 
Current dictionary approaches are noticeably memory intensive due to the requirement to 
store multiple transformed versions of the original data. WEASEL-MUSE can become 
unusable due to this issue, with over 500GB of memory required on some datasets (Ruiz 
et al. 2021). We aim to mitigate this issue with the TDE multivariate extension.

For each dimension we extract words using the same process for univariate series, with 
each dimension having their own set of breakpoints. Words from different dimensions are 
stored separately in each cases bag. For many multivariate time series, some dimensions 
hold little or redundant information. Additionally, for problems with many dimensions 
storing the words extracted from each can cause significant memory issues. As such, prior 
to creating any bags we take a subsample of dimensions based on an accuracy estimate. We 
find this estimate using LOOCV on bags created from disjoint windows rather an a slid-
ing one. Any dimension with an accuracy estimate less than 85% of the highest accuracy 
is not retained for this classifier. Additionally, we set a limit of 20 maximum dimensions 
retained for each classifier, keeping those with the highest accuracy. To reduce the memory 
impact of saving features from multiple dimensions, we do not record bigrams for multi-
variate datasets. The build process for the individual classifiers used in TDE is displayed in 
Algorithm 2.

Figure 3 provides evidence to support our claim that TDE is the most accurate purely 
dictionary based algorithm. It shows the results of a comparison of dictionary based clas-
sifiers on test accuracy performance on the UCR datasets. TDE is significantly more accu-
rate than WEASEL and S-BOSS, which in turn are more accurate than BOSS and cBOSS.

5 4 3 2 1

2.1415 TDE
2.8868 WEASEL
2.9717 S-BOSS

3.4387cBOSS
3.5613BOSS

Fig. 3   Results of five dictionary based classifiers on 106 of the UCR datasets. The missing datasets are: 
ElectricDevices; FordA; FordB; HandOutlines; Non-InvasiveFetalECGThorax1; and NonInvasiveFeta-
lECGThorax2. These are missing due to the long run time of S-BOSS and WEASEL. cBOSS samples 250 
parameter sets and has an ensemble size of 50. WEASEL � is set to 2

Table 1   Parameter ranges for 
TDE base classifier selection

Parameter Range

Word lengths l = {16, 14, 12, 10, 8}

Window lengths w = {10…m}

Normalise p = {true, false}

Alphabet size � = {4}

No.pyramid levels h = {1, 2, 3}

Breakpoints b = {MCB, IGB}
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3.2 � Diverse representation canonical interval forest (DrCIF)

The Diverse Representation Canonical Interval Forest (DrCIF) is an interval based ensem-
ble and an extension of its prototype version, the Canonical Interval Forest (CIF) (Mid-
dlehurst et al. 2020a). Interval based classifiers extract phase-dependent subseries, aiming 
to find discriminatory features over different intervals. For time series of length m there 
are m(m − 1)∕2 possible intervals that can be extracted. The original interval based classi-
fier, the Time Series Forest (Deng et al. 2013), is a component of HC1. It selects multiple 
intervals for each decision tree base classifier, then concatenates derived features (mean, 
standard deviation and slope) to form a diverse training set for each ensemble member. The 
other interval based classifier in HC1, RISE, selects a single interval for each base classi-
fier, then derives spectral features (periodogram and auto-regressive terms) over the single 
interval. DrCIF replaces both these interval based classifiers, combining and enhancing 
both feature spaces. It draws on recent ideas presented in the STSF interval based classi-
fier (Cabello et al. 2020) and the feature set method defined as the canonical time series 
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characteristics (catch22) (Lubba et al. 2019). The catch22 features are a set of 22 features 
designed for time series data filtered from the 7658 features available in the highly com-
parative time series analysis (hctsa) toolbox (Fulcher and Jones 2017). After a pruning pro-
cess, the catch22 features were derived from a clustering and filtering of the 7658 hctsa 
features based on accuracy, scalability and interpretability.

The base classifier for DrCIF is a simple information gain based tree used in TSF, called 
the time series tree (Deng et al. 2013). Features from the tree are derived from multiple 
intervals taken from the base series, the first order difference series and the periodograms 
of the whole series. Intervals from each are randomly selected. Seven basic summary sta-
tistics are part of a pool of possible features extracted from an interval of any one of the 
three representations. These are: the mean; standard-deviation; slope; median; inter-quar-
tile range; min; and max. DrCIF adds the catch22 features to this selection of summary 
statistics to form a candidate pool of 29 features. a out of the 29 features available are 
randomly selected for each tree. For each of the 3 representations, k phase dependent inter-
vals with randomly selected positions and lengths are extracted. The selected features are 
then calculated from each interval. These features are concatenated into a 3 ⋅ k ⋅ a length 
vector for each series, and the new dataset is used to build the tree. Diversity is achieved 
by providing each base classifier with different intervals and a different subset of the 29 
features. Generally, we select k as a function of the representation series length rm. Each 
representation will differ in its length, with the periodogram being half the size of the base 
series and the differences having one less value. As such it is likely the number of intervals 
selected for each representation will differ. For multivariate data, DrCIF randomly selects 
the dimension used for each interval. Replacing TSF with CIF in HIVE-COTE Alpha has 
been shown to significantly improve the classifier on univariate data (Middlehurst et  al. 
2020a). The build process and the default parameter values for the DrCIF ensemble is 
described in Algorithm 3. Figure 4 demonstrates that DrCIF represents a new best in class 
interval based classifier.

Fig. 4   Critical difference 
diagram for five interval based 
classifiers on 112 UCR datasets. 
Each classifier builds 500 trees. 
TSF and CIF extract sqrt(m) 
intervals per tree. CIF subsam-
ples 8 attributes per tree

5 4 3 2 1

1.6696 DrCIF
2.5223 CIF
2.808 STSF

3.7098RISE
4.2902TSF
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3.3 � The arsenal: a ROCKET ensemble

The Random Convolutional Kernel Transform (ROCKET) (Dempster et al. 2020) uses a 
large number of randomly parameterised convolution kernels applied to each case. As each 
kernel is applied to a series, the max value and proportion of positive values are recorded 
and concatenated into a feature vector. These features are then used to build a linear ridge 
regression classifier with built in cross-validation to select the alpha parameter.

For each kernel generated, the parameters are selected from the following spaces: The 
length, l, is selected such that, l ∈ {7, 9, 11} ; the value of each weight, wi , is randomly sam-
pled from a normal distribution ∼ N(0, 1) , and are then mean centered; bias b is sampled 
from a uniform distribution ∼ U(−1, 1) ; dilation, a, is sampled from an exponential scale 
up to series length; the binary decision to pad the series p is chosen with equal probability, 
if true the series is zero padded at the start and end equally such that middle element of the 
kernel is applied to every point in the input series. Stride is always set to 1. For multivari-
ate datasets, each kernel is assigned a random number of randomly selected dimensions. 
The kernel for the multivariate case is still one dimensional, but with weighting being dif-
ferent for each dimension. The max and proportion of positive values is calculated across 
all selected dimensions.

ROCKET is a very fast classifier that has state-of-the-art accuracy, and we believe it 
is the most important recent development in the field. It represents a different class of 
approach, and as such is a candidate for assimilation into the collective. However, an 
issue arises when trying to include ROCKET in HIVE-COTE: the ridge regressor used 
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by ROCKET is hard to configure to produce useful probability values for each class when 
making predictions. The CAWPE ensemble structure of HIVE-COTE uses weighted prob-
abilities, and relies on classifiers to produce a distribution representative of the classifiers 
strength of belief in predictions. One solution would be to replace the ridge regressor with 
a classifier that does produce representative probability estimates. However, our experi-
mentation with suitable replacement classifiers did not yield a candidate algorithm that was 
as accurate as the ridge regressor for ROCKET.

To solve this problem, the version of ROCKET we use in HIVE-COTE is an ensemble 
of smaller ROCKET classifiers. We refer to this fusillade of ROCKETs as the Arsenal. 
New cases are classified using the CAWPE exponential weighted majority vote, with the 
weights obtained from the ridge regression classifiers cross-validation. Arsenal is slower to 
build than ROCKET, but its improved probabilities make it a better candidate for HC2. The 
build process for Arsenal is described in Algorithm 4.

3.4 � Shapelet transform classifier (STC)

Shapelets are phase independent subseries found in the training data. The STC approach 
to classification using shapelets is to construct a pipeline where the search for high qual-
ity shapelets is followed by a transformation where the new features represent distances 
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to retained shapelets. A rotation forest (Rodriguez et al. 2006) is constructed on the trans-
formed features. The shapelet transform is highly configurable: it can use a range of sam-
pling/search techniques in addition to alternative quality measures. We present the default 
settings and direct the interested reader to the tsml code. The original shapelet based 
algorithms performed an exhaustive search of all possible shapelets. This of course is very 
slow. However, subsequent work (Bostrom and Bagnall 2017) identified that exhaustive 
search can actually lead to over fitting and is never necessary. Instead, we randomly search 
for shapelets for a given amount of time, which is now a parameter (defaults to one hour). 
Our version of STC is essentially the same as that used for HC1 (Bagnall et al. 2020), so 
we direct the interested reader there for more details. The multivariate version searches 
dimensions independently and is the same version used in the MTSC bake off (Ruiz et al. 
2021).

4 � Experimental structure

We perform our univariate time series experiments on 112 of the 128 datasets from the 
UCR time series archive (Dau et al. 2019). We exclude datasets containing series of une-
qual length or missing values, as we do not want an algorithm’s aptitude for these cases 
to alter results and most implementations are not set up to handle these kinds of data. We 
additionally remove the Fungi data, which only provides a single train case for each class 
label. Being unable to properly process data with single case classes is a general limita-
tion for approaches which rely on cross-validation or train accuracy estimates. We use the 
data as presented by the archive. We do not automatically z-normalise the data. The deci-
sion on whether to normalize is delegated to the classifier modules for each representation, 
which handle it differently. For example, TDE follows BOSS and has normalisation as a 
parameter, whereas STC always normalises since it also normalises all shapelets. DrCIF 
does not normalise, since some of its structure summary features measure scale and vari-
ance. For our multivariate experiments we use all 26 equal length datasets of the 30 total 
from the UEA multivariate time series archive (Bagnall et al. 2018). For each dataset we 
present performance as an average over 30 resamples. Both archives provide a default split 
into train and test sets which we use for the first resample. The remaining 29 are randomly 
resampled from the original split in a stratified manner. We seed each classifier and data 
resample using the fold index to ensure out results are reproducible.

All of our non-deep learning experiments were run using the Java tsml toolkit imple-
mentations. For deep learning approaches we use Python sktime companion package 
sktime-dl.1 The configuration for each algorithm is provided in Table 2.

Our experiments using algorithms from tsml were conducted on the UEA high perfor-
mance computing (HPC) cluster. Each job consists of a single dataset, classifier, fold evalu-
ation and runs on a single core. Due to limits on the cluster, a job has a maximum run time 
of seven days. The maximum memory allowance provided by the cluster stands at 500GB.
sktime-dl experiments were performed on desktops GPUs, one with a Titan XP and 

one with 4 Titan X Pascals. Each job is run on a single GPU with each GPU running only 
one job at a time. There is no time limit for running these jobs. However, they are limited 
by the GPU memory of 12GB per card.

1  https://​github.​com/​sktime/​sktime-​dl.

https://github.com/sktime/sktime-dl
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We evaluate classifier performance using accuracy, area under the receiver operating 
characteristic (AUROC) and negative log-likelihood (NLL). This means we can assess 
classifiers based on predictive performance, ranking predictions and probability estimates. 
For problems with more than two classes, one-versus-many AUC is averaged over the class 
values, weighted by class value frequency.

To compare the scores averaged over 30 resamples of two classifiers for multiple data-
sets, we use a pairwise Wilcoxon signed-rank test. For multiple classifiers over multiple 
datasets we use an adaptation of the critical difference diagram (Demšar 2006), replacing 
the post-hoc Nemenyi test with a comparison of all classifiers using pairwise Wilcoxon 
signed-rank tests, and cliques formed using the Holm correction recommended by (García 
and Herrera 2008; Benavoli et al. 2016).

5 � Results

We have conducted extensive experimentation and produced a high volume of results. 
There is marginal utility in having massive tables of results. Instead, we present summa-
rised results and have put the raw results and all of the summary analysis on the accompa-
nying website.2 Details of how to reproduce the results, or some subset of results, are given 
on the website and the code walk through on the tsml github.

5.1 � Performance on the UCR archive of 112 univariate TSC problems

Our core result is that HC2 is significantly better than the current state of the art on 
the 112 UCR equal length datasets. Figure  1 in the Introduction shows the accuracy 

Table 2   Classifier configurations for our experiments where m is the series length, d is the number of 
dimensions and rm is the lengths of DrCIF representations

Algorithm Configuration

TDE 250 parameter sets sampled, 50 max ensemble size
DrCIF 500 trees, 4+(sqrt(rm)*sqrt(d))/3 intervals per representation, 10 attributes per tree, rm/2 

max interval length
Arsenal 2,000 kernels per classifier, 25 ensemble size
STC 1 hour Shapelet Transform train time contract, 200 Rotation Forest trees
ROCKET 10,000 kernels
HIVE-COTE 1.0 � of 4
HIVE-COTE 2.0 � of 4
TS-CHIEF 500 trees, 5 EE splitters, 100 RISE splitters, 100 BOSS splitters
InceptionTime Epochs 1500, batch size 64, learning rate 1e − 3 and halved after no improvement for 50 

epochs.
Two residual blocks each with three Inception modules with kernel sizes per module [10, 

20, 40] plus bottleneck filters for all conv layers of 32
CIF 500 trees, sqrt(m)*sqrt(d) intervals, 8 attributes per tree, m/2 max interval length
DTW_D Full warping window

2  www.​times​eries​class​ifica​tion.​com/​HC2.​php.

http://www.timeseriesclassification.com/HC2.php
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performance of HC2 versus the four baseline approaches. Figures 5, 6 and 7 shows the 
critical difference diagrams for accuracy, NLL and AUROC for HC2, its four compo-
nents and the four state-of-the-art algorithms. They demonstrate that HC2 is signifi-
cantly better than its components and the four benchmarks using all three metrics. For 
accuracy (Fig. 5), STC and TDE form the lowest clique. DrCIF is between these and the 
current state of the art, which contains Arsenal. ROCKET is the worst for probability 
estimates (Fig. 6), since it only produces 0/1 estimates. The better probability estimates 
of Arsenal justify our design decision, since HC weights distributions not predictions. 
TDE is surprisingly good at probabilistic prediction. The poor probability estimates of 
HC1 highlights one source of improvement in HC2. HC1 does much better at AUROC 
(Fig. 7), whereas Arsenal does much worse, indicating further calibration may benefit 
the Arsenal.

Figure 8 shows the accuracy scatter plots of HC2 against each of baseline classifiers and 
Table 3 summarises the differences in test accuracy between HC2 and the four baselines.

We observe that there is lower variance between HC1 and HC2, but that HC2 con-
sistently outperforms HC1 with an average accuracy of more than 1%. The variation 
in difference to HC2 is greater with the other three classifiers, in particular ROCKET. 
The median difference is lower than the mean in all cases. This suggests skew, which 
supports the core hypothesis that the heterogenous ensemble can compensate for the 

Fig. 5   Test accuracy critical 
difference diagram for nine 
classifiers, averaged over 30 
resamples for each of the 112 
UCR problems

9 8 7 6 5 4 3 2 1

2.5313 HC2
4.5223 TS-CHIEF
4.6964 HC1
4.8125 InceptionTime
4.8839 ROCKET

4.942Arsenal
5.4777DrCIF
6.2857TDE
6.8482STC

Fig. 6   Test negative log likeli-
hood critical difference diagram 
for nine classifiers, averaged over 
30 resamples for each of the 112 
UCR problems

9 8 7 6 5 4 3 2 1

2.9107 HC2
4.3304 TDE

4.5 Arsenal
4.9732 InceptionTime

5 TS-CHIEF
5.2321DrCIF
5.3571STC
6.2143HC1
6.4821ROCKET

Fig. 7   The area under the 
receiver operator curve critical 
difference diagram for nine 
classifiers, averaged over 30 
resamples for each of the 112 
UCR problems
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2.1027 HC2
3.3884 HC1
3.6563 TS-CHIEF
4.2723 DrCIF
4.4107 InceptionTime

5.4598STC
5.4866TDE
7.4732Arsenal
8.75ROCKET
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shortcomings of its components. It also suggests that HC2 has a higher representational 
power, in that it can find a more diverse set of features.

Accuracy is not the only consideration. Table 4 summarises the run time and memory 
requirements for the classifiers compared in Fig. 8. There are a few caveats to these results. 
Firstly, all of the results except InceptionTime are run in a single thread on a CPU. Thus 
InceptionTime time experiments are not really directly comparable, since it runs on a GPU. 
ROCKET and HC2 are forced to run in a single thread, despite being threadable. The 
times for the HC2 components are without the time to estimate performance, but these are 
included in the HC2 times. Memory is the maximum memory used throughout the run, as 
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Fig. 8   Scatter plots of HIVE-COTE 2.0 against each of the baseline classifiers

Table 3   Summary of the differences between HC2 and the benchmarks

A negative value means the HC2 is better

Classifier Mean (%) Median (%) Max (%) Min (%) StDev (%) HC2 Wins HC2 Loses

TS-CHIEF − 1.36 − 0.41 − 22.99 5.50 3.64 77 29
InceptionTime − 1.69 − 0.37 − 31.04 9.46 5.13 74 32
HC1 − 1.06 − 0.69 − 10.47 6.33 2.10 82 25
ROCKET − 2.49 − 0.72 − 76.31 3.64 7.92 97 11
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obtained from the Java garbage collector, and should be considered approximate. We are 
not set up to measure the maximum memory used with InceptionTime in practice, but we 
know it did not exceed 12GB, because that was the memory available on the GPU. Since 
the run times are sequential, we also use the sequential memory for HC1 and HC2. These 
would be higher if the classifier were threaded, but of course the run time would be much 
lower.

With this in mind, we can make the following observations. ROCKET lives up to its 
name and can build models on all 112 data in under 3 hours, even when not threaded. If 
speed is the main criteria, ROCKET is a good starting point in any analysis. STC is the 
slowest component, but this is caused by the configuration rather than an inherent problem: 
STC defaults to a one hour shapelet search or a full evaluation of the shapelet search if this 
will take less than an hour. For the very small problems, it takes a lot longer than the other 
algorithms (although still less than an hour). HC2 is faster than HC1, primarily because of 
improvements to STC and the change in classifiers. TS-CHIEF is the slowest algorithm by 
far, and seems to scale less well than the others. On the slowest five problems (HandOut-
lines, NonInvasiveFetalECGThorax1 and 2, SemgHandMovementCh2 and EthanolLevel), 
it takes ten times longer than HC2, but the difference is minimal on smaller problems. 
All of the classifiers are within reasonable bounds for memory. TS-CHIEF has the high-
est memory requirement, with a max requirement of 26GB on HandOutlines. As with run 
time, it seems to scale worse than the others. HC2 requires more memory than HC1, but 
it is is not unreasonable. ROCKET has a worse max memory case (ElectricDevices) than 
Arsenal. Overall, ROCKET tends to use less memory than Arsenal but appears to scale 
worse for larger datasets with many cases. Arsenal uses a smaller amount of kernels for 
each individual classifier, meaning that each transformed set of data is smaller in size and 
discarded before the next is built. ROCKET on the other hand must transform using its 
larger amount of kernels at a single point. Figure 9 summarises the accuracy and run time 
results by plotting the log of the train time against the rank.

5.2 � Performance on the UEA archive of 26 multivariate TSC problems

A bake off of TSC algorithms (Ruiz et al. 2021) using the MTSC UEA archive found three 
algorithms (that could complete all 26 data sets) were significantly more accurate than 
DTW-D. These were ROCKET, HC1 and CIF. We have repeated these experiments with 

Table 4   Run time and memory 
requirements to train single 
resample of 112 UCR problems

The median of 30 runs is taken for each dataset

Algorithm Total (h) Average (min) Max Mem (MB)

ROCKET 2.85 1.53 4349
Arsenal 27.91 14.95 1683
DrCIF 45.40 24.32 920
TDE 75.41 40.40 6565
InceptionTime 86.58 46.38 –
STC 115.88 62.08 4219
HC2 340.21 182.26 6677
HC1 427.18 228.84 4876
TS-CHIEF 1016.87 544.75 26,052
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HC2. Figures 10, 11 and 12 show that HC2 is significantly better than DTW-D, ROCKET, 
HC1 and CIF on the 26 datasets for accuracy, NLL and AUROC.
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Fig. 9   A comparison of classifiers in terms of accuracy rank and train time. The time and accuracy are aver-
aged over 112 UCR problems. The train time is on a log scale

Fig. 10   Test accuracy critical 
difference diagram for five classi-
fiers, averaged over 30 resamples 
for each of the 26 UEA MTSC 
problems
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Fig. 11   Test negative log likeli-
hood critical difference diagram 
for five classifiers, averaged over 
30 resamples for each of the 26 
UEA MTSC problems
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Fig. 12   The area under the 
receiver operator curve critical 
difference diagram for five classi-
fiers, averaged over 30 resamples 
for each of the 26 UEA MTSC 
problems
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Figure 13 shows the accuracy scatter plots and Table 5 summarises the differences of 
HC2 against the benchmarks. We think these results strongly support the assertion that 
HC2 represents a new state of the art for multivariate time series classification.

6 � Inside HC2: an ablative study

We address the question of why HC2 works so well, and evaluate design decisions made 
in the change from HC1 to HC2. HC1 uses cross-validation to estimate the test accuracy 
from the train data for each component. HC2 modules are all ensembles, and so it was 
natural to attempt to use bagging and the resulting out-of-bag error estimate to speed up 
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Fig. 13   Scatter plots of HIVE-COTE 2.0 against each of the baseline classifiers

Table 5   Summary of the differences between HC2 and the benchmarks

A negative value means the HC2 is better

Classifier Mean (%) Median (%) Max (%) Min (%) StDev (%) HC Wins HC Loses

ROCKET − 2.52 − 0.64 − 31.65 4.73 6.75 19 5
CIF − 1.71 − 1.58 − 21.21 12.43 5.56 19 7
HC1 − 2.25 − 1.92 − 11.27 3.44 3.30 20 6
DTW-D − 8.22 − 4.66 − 48.94 4.87 11.39 23 3
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HIVE-COTE training. However, whilst this produces good estimates of the test accuracy, 
the models were less accurate on unseen data for every module. Hence, we made the deci-
sion to fit a separate bagging model for the estimation stage for those that need it, thus pro-
viding an order of magnitude speed up compared to cross-validation. DrCIF and Arsenal 
both create separate models with bagging to generate their estimates. STC builds a new 
Rotation Forest model with bagging for its estimate, but uses the same transformed shape-
let data for both. TDE naturally takes a 70% subsample when creating its ensemble, as such 
a new model is not required to generate its out-of-bag error. However, we were concerned 
that these estimates may be biased and/or not consistent. Table 6 summarises the distri-
butions of the differences between estimated and observed test accuracy for HC2 and its 
components.

Whilst there is small bias for each component, HC2 ensemble method compensates 
for this and has the lowest average deviation (and MSE deviation) between estimated 
and observed test accuracy. This is due to the averaging ensemble effect, and the biasing 
effect of reusing estimates from the components: a full nested cross-validation estimate 
would be computationally demanding and is not necessary. STC is the only component 
that is over optimistic. This is to be expected. STC performs a random search on the 
whole train data then bags rotation forest. This introduces bias, and is a possible area for 

Table 6   Summary of the 
difference between estimated and 
observed test accuracy for HC2 
and its components

A positive figure means that the classifier is overestimating accuracy 
from the train data

Classifier Mean (%) Median (%) Min (%) Max (%) MSE (%)

DrCIF − 2.15 − 0.93 − 46.78 9.64 0.40
Arsenal − 1.17 − 0.40 − 23.13 9.23 0.15
STC 1.24 0.78 − 55.54 26.88 0.86
TDE − 1.14 − 0.77 − 18.89 10.02 0.14
HC2 0.47 0.11 − 19.81 19.17 0.13
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UCR datasets
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future improvement. The min and the max show that there are some very large differences 
between estimate and observed. These primarily arise in problems where there are very 
few cases per class, such as PigAirwayPressure, PigCVP and PigArtPressure, which each 
have only two cases per class. Every classifier underestimates the test accuracy by over 
10% on these problems. Figure 14 shows the difference in the test accuracy estimate and 
actual plotted against the log of the train set size for HC2. The picture is not conclusive, but 
it could be argued that the variance of the difference is decreasing, which is encouraging 
evidence for the consistency of the HC estimate.

Another benefit of accurate estimates from the train data is that they can be used to 
compare classifiers with a Texas Sharpshooter plot (Batista et  al. 2014). These compare 
two classifiers by comparing the ratio of estimates from the train data with those of the 
test data to form a kind of contingency table. Computing train estimates through cross-
validation for TS-CHIEF and InceptionTime is unpractical due to run times. However, it is 
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Table 7   Possible variants of HC2 components

Component HC-1 HC-2 HC-3 HC-4 HC-5 HC-6 HC-7 HC-8 HC-9 HC-10

DrCIF X X X X X X
Arsenal X X X X X X
STC X X X X X X
TDE X X X X X X



3234	 Machine Learning (2021) 110:3211–3243

1 3

easy with ROCKET, since it is so fast. Figure 15 shows the plot for ROCKET versus HC2. 
Using the train estimates would lead to the correct decision of choosing HC2 on 94 of the 
112 datasets.

The next issue is to quantify what impact each component has on the overall perfor-
mance. Ignoring single component variants (which are presented in Fig. 5), there are 11 
possible combinations, identified as HC-1 to HC-10 in Table 7, with the eleventh being the 
Full HC2, referred to as just HC2 elsewhere. Figure 16 shows the relative performance of 
the 11 possible variants. The two component models (HC-1 to HC-6) form a clear clique, 
followed by another clique of three component versions. However, the full four component 
classifier is significantly more accurate than all of the other variants. This demonstrates 
that each element contributes to the overall whole.

6.1 � Ensembling methods

In extending HC1 into HC2, the two main factors are what representations should be included 
in the ensemble, and how the predictions drawn from each representation should be com-
bined. Here we investigate the latter. HC1 uses the CAWPE ensembling scheme, which was 
found to be the best combination method for small sets of diverse classifiers across two dif-
ferent dataset archives with limited domain specialisation or prior knowledge (Large et al. 
2019b). It was also shown that it improved HC1’s performance relative to the previous simple 
majority voting. With updated components, which may be more or less specialised into their 
own representation formats with different degrees of overlap in their expertise, does this still 
hold true, or would a different scheme be better? We compare various ensemble selection and 
stacking schemes to assess whether a more complex scheme than CAWPE could improve 
HC2. To avoid suspicions of overfitting, we make it clear that we performed this analysis 
after generating the results presented in Sect. 5 using the design we selected a priori.

For context, we also compare to the individual model selection schemes of picking the 
best classifier per dataset resample based on the train estimates, and picking the best based 
on the test data (i.e. cheating) as an oracle scheme. In general, a reasonable ensembling 
scheme will on average perform somewhere between these two landmarks across arbitrarily 

Fig. 16   Critical difference 
diagram for 11 variants of HIVE-
COTE 2.0 described in Table 7. 
Full HC2 contains all four 
components and is referred to as 
simply HC2 elsewhere

11 10 9 8 7 6 5 4 3 2 1

3.8661 Full HC2
5.0848 HC-8
5.2054 HC-10
5.3214 HC-7
5.375 HC-9

5.9196 HC-3
6.7991HC-5
6.9375HC-2
7.0179HC-4
7.2232HC-1
7.25HC-6

Fig. 17   Critical difference 
diagram comparing different 
ensemble schemes to default 
HC2 over the 112 univariate 
archive datasets

6 5 4 3 2 1

1.7902 HC2-Oracle
2.442 HC2

3.4821 HC2-RandF3.9821HC2-ES
4.4955HC2-PB
4.808HC2-FS
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large dataset spaces. Combining the predictions of the classifier pool has a beneficial aver-
aging effect by accounting for the imperfections of performance estimation mechanisms 
from the train data. However, they may have an overly conservative averaging effect com-
pared to looking at test performance to pick the best.

Figure 17 summarises our comparison of alternate ensembling schemes over the HC2 
components. HC2-Oracle cheats by picking the single best component based on test accu-
racy, while HC2-PB picks the best based on the train estimate of test accuracy. HC2-FS 
executes a forward selection of components per dataset, ranking the train estimates and con-
tinuing to include components into the ensemble in order while the ensemble’s own train 
estimate continues to improve. HC2-ES uses ensemble selection per dataset as described 
in (Caruana and Niculescu-Mizil 2004), which selects and weights components based on 
a repeated bagging with replacement strategy. Lastly, HC2-RandF stacks a random forest 
classifier onto the meta-data of the components’ predicted probability distributions.

We can see that, unsurprising, the oracle selection scheme is still the best on average, and 
that perfectly selecting the best representation per dataset would still be better than combin-
ing them. If there is enough training data to produce reliable train estimates that are unbi-
ased and have very low variance, this may be achievable in practice. However, the reality 
on our data is that picking the best on the train data (HC-PB) is significantly worse than 
HC2 and HC2-Oracle. It is worth stressing that selecting the single best component on test 
accuracy is not always the best. In accordance with the original hypothesis for HIVE-COTE, 
there are 31 datasets where combining representations is outright better than picking the 
best, even with perfect hindsight of stochastic differences brought about by resampling.

For many problems, discriminatory features may exist in multiple domains. This is often 
counter to received wisdom, it is always tempting to think a single type of model is the best 
approach. HC2 can discover complex interactions between domains. Figure 18 compares 
the ranks of HC2 (with its default CAWPE) and its individual constituents in isolation. 
HC2 is in fact best or tied for best on 57 of the 112 datasets, and rarely if ever ranked worse 
than second. This shows that beyond the requirement for perfect domain knowledge being 
required to beat ensembling on average, on many individual datasets more representations 
increase the accuracy outright.

Otherwise, Fig. 17 shows that using the CAWPE scheme over the HC2 components is 
significantly better than the alternatives on average. Most popular ensemble schemes in the 
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Fig. 18   Histograms of ranks between HC2 and its components over the 112 univariate datasets
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literature assume a large pool of potentially homogeneous classifiers. We have a small pool 
of heterogeneous classifiers, and evidence from these experiments and an extensive study 
on standard classification problems (Large et al. 2019b) suggest that CAWPE is the best 
ensemble scheme for this scenario.

HC2 has a single parameter, the weighing factor � . We set � to four when first develop-
ing the CAWPE algorithm with the UCI datasets and have kept it the same to avoid the 
danger of parameter selection bias. However, it is worthwhile considering how sensitive 
HC2 is to this parameter. We evaluated HC2 for � = {1, 2,… , 10}. We found that in fact 
� = 8 is the best overall, but that there was very little difference between all values greater 
than three.

Finally, we explore the effect of using Arsenal instead of ROCKET within HC2. Fig-
ure  19 shows both versions of ROCKET and three versions of HC2, two with a single 
version of both included in the ensemble and one containing a version of Arsenal where 
the probability of the predicted class is set to 1 rather than generated through the ensem-
ble (Ar1H). Arsenal makes no improvement over default ROCKET in terms of accuracy, 
and Arsenal using the same method for generating probabilities as ROCKET makes no 
improvement in HC2. However, the HC2 version including an unaltered Arsenal is signifi-
cantly better. Even with probabilities estimated through the votes of a small sized ensem-
ble, a large difference is made over having none at all in HIVE-COTE.

To investigate the type of datasets that most benefit from using Arsenal rather than 
ROCKET, we looked at the datasets where HC2-Arsenal is on average more accurate than 
HC2-ROCKET by more than 0.5%, but where we do not see the same difference in the dif-
ference between Arsenal and ROCKET. Twenty two data sets fulfill this criteria. These 22 
have, on average, more class values than the other 90 datasets. The mean number of classes 
for the 22 HC-Arsenal winners is 16.22 (median 6.5), whereas for the rest the mean is 6.34 
(median 3). The 22 are also on average longer. The mean series length for the 22 is 860, 
whereas for the rest it is 480.

7 � HC2 usability

All our code is open source and our experiments are simple to reproduce. Two implemen-
tations of HC2 are available in toolkits we help maintain and develop. tsml3 is a Java 
based time series toolkit compatible with Weka and our primary development platform for 
TSC. We also implement our algorithms in sktime,4 a Python based time series toolkit 

5 4 3 2 1

1.6607 HC2-Arsenal
2.5938 HC2-ROCKET
2.7634 HC2-Ar1H

3.9241ROCKET
4.058Arsenal

Fig. 19   Critical difference diagram for both versions of ROCKET and versions of HIVE-COTE using them 
on 112 UCR datasets. HC2-Ar1H represents HIVE-COTE using the Arsenal classifier with probabilities 
generated in the same way as ROCKET

3  https://​github.​com/​uea-​machi​ne-​learn​ing/​tsml.
4  https://​github.​com/​alan-​turing-​insti​tute/​sktime.

https://github.com/uea-machine-learning/tsml
https://github.com/alan-turing-institute/sktime
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compatible with scikit-learn. Where possible, we have verified the consistency of results 
in both toolkits. Both offer an easy to use interface, and we have provided example code 
on the website associated with this paper. All datasets are available in a format directly 
usable in tsml and sktime, and we have also provided details of how to recreate all our 
experiments.

Table 4 shows that when run sequentially, HC2 is slower than the current state of the 
art, particularly ROCKET. If speed is more important than a small accuracy gain, this is an 
argument against using HC2. HC2 is simply not designed to be trained in seconds, and we 
would not recommend its use in scenarios where models need to trained incredibly quickly. 
However, we have designed HC2 so that the run time can be controlled by the user through 
a time contract. We make the assumption that when time is a serious constraint, the prob-
lem must be fairly large. There are only five problems where a sequential build of HC2 
would take more than half a day with a single processor run. The list of problems, and the 
time taken by TS-CHIEF, InceptionTime and ROCKET, are listed in Table 8. ROCKET is 
very fast, InceptionTime hard to compare to and TS-CHIEF is similar to HC2 on average 
but is unpredictable. If we run HC2 with a four hour contract on these problems we achieve 
98% of the final accuracy, and if we run it for 12 hours we achieve 99% of the full build 
accuracy. If a reasonable model on bigger problems is required in hours, then contract-
ing HC2 offers a good solution. However, if the problem is truly large, then all TSC have 
usability issues. TS-CHIEF can require massive amounts of memory and/or time and the 
memory usage of ROCKET can rapidly increase with the number of cases used.

For genuinely large data where HC2 may takes weeks for a full run, it is worthwhile 
considering how long it would take to converge. With many algorithms, it is often the case 
that most of the gain in accuracy is made relatively quickly. On large datasets this can 
equate to days of processing that contributes relatively little to the overall performance. 
Furthermore, a practitioners concern may not be accuracy and an understanding of the 

Table 8   Train times in hours 
on problems where a sequential 
run of HC2 takes longer than 12 
hours

Problem Rocket InceptionTime TS-CHIEF Hc1 HC2

ElectricDevices 0.43 6.15 7.94 56.80 54.55
Crop 0.22 4.37 4.59 73.54 28.41
FordB 0.19 6.06 43.33 19.33 24.67
FordA 0.19 6.01 40.88 20.25 23.52
HandOutlines 0.23 7.11 166.76 7.77 18.53

Table 9   Table showing 
the attributes of the large 
datasets used in checkpointing 
experiments

FruitFlies InsectSound

Train Size 17,255 25,000
Test Size 17,256 25,000
No. Classes 3 10
Series Length 5000 15,883
Total size (Gb) 2.44 14.75
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evolution of performance over time provides a foundation on which paramerterisation deci-
sions can be made.

In this Section we comment on the evolution of accuracy over time for each of the HC2 
components. Experiments were run on 2 large datasets, described in Table 9. The datasets 
used are notoriously problematic for complex approaches. This is typically because inter-
nal transforms are sensitive to series length, number of cases or both. These datasets were 
deliberately chosen to explore the limitations of the HC2 constituents.

In order to overcome the imposed runtime limitations on the UEA HPC cluster a check-
pointing mechanism was utilised to periodically save an approaches state during the train-
ing phase. This allowed both the continuation of training beyond what would usually be 
feasible, via reloading and continuing training from the saved point, and the opportunity 
to assess the approach at each saved state, via invoking the test phase after reloading the 
saved state. Figures 20 and 21 show how relative accuracy changes with respect to time 

Table 10   Table showing both 
accuracy achieved by last 
checkpoint and variance in 
accuracy between first and 
last checkpoint for each HC2 
constituent on the FruitFlies 
dataset

Accuracy Variance Constituents

TDE 0.8016 − 0.0822 20
STC 0.8901 − 0.0431 N/A
DrCIF 0.9278 − 0.1084 65
Arsenal 0.6433 − 0.0131 25

Table 11   Table showing both 
accuracy achieved by last 
checkpoint and variance in 
accuracy between first and 
last checkpoint for each HC2 
constituent on the InsectSound 
dataset

Accuracy Variance Constituents

TDE 0.2746 − 0.0735 14
STC 0.7357 − 0.1509 N/A
DrCIF – – –
Arsenal 0.2951 − 0.0313 10

Fig. 20   Accuracy as a function of train time for HC2 components on the FruitFlies dataset
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for the FruitFlies and InsectSound datasets. Each data point shows the relative difference 
of the accuracy achieved at each checkpoint with respect to the last checkpoint recorded. 
Tables 10 and 11 present the real accuracy achieved with the last checkpoint processed, 
the variance in accuracy between the first and last recorded checkpoint, and the number of 
constituents built in by the last checkpoint.

Figures 20 and 21 show the accuracy of DrCIF, STC and TDE follow a similar trend 
with respect to time. In the case of these approaches accuracy increases quickly as the 
number of constituents present increases, before reaching the point of diminishing returns. 
For these approaches 80% of the accuracy achieved is done so in less than 50% of the 
train time used by the last recorded checkpoint. The Arsenal approach does not follow this 
trend and instead the total variance in accuracy throughout the training period is not as 
pronounced. Also, the changes in accuracy appear to be more erratic with additional con-
stituents producing decreases in accuracy as well as increases.

Furthermore, of the 8 combinations presented only the Arsenal approach on the Fruit-
Flies dataset was able to complete. In most cases the outstanding experiments were prohib-
ited by inflation in the time taken to test. Checkpointing during the test phase is not imple-
mented and as a result the entire test process is subject to a hard time limit of 7 days. This 
effected STC and DrCIF on the FruitFlies dataset and STC and TDE on the InsectSounds 
dataset. Aditionally, the Arsenal approach was limited by its memory requirement on the 
InsectSounds dataset, for which we are limited to 700Gb.

8 � Conclusion

HIVE-COTE version 2.0 is a meta ensemble of four very different classifiers, each of 
which is designed to capture different discriminatory features. It represents a new state 
of the art in terms of time series classification, significantly outperforming the previ-
ous best on both univariate and multivariate problems in terms of accuracy. Our abla-
tive study showed that HC2 is better than any one of its constituents, and that each 
component makes a significant contribution to the overall performance. We believe its 
strength lies in the fact that many problems have discriminatory features in multiple data 

Fig. 21   Accuracy as a function of train time for HC2 components on the InsectWingbeat dataset
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domains; a shapelet might be indicative of one class value, whereas a repeating pattern 
may characterise another. HC2 uses a simple yet highly effective ensemble scheme to 
combine this information which we demonstrated was significantly better than alterna-
tives such as stacking or a selection strategy.

HC2’s weakness is that it does not scale well to very large problems. We showed that 
for problems with thousands of series of length in the tens of thousands, build times can 
be excessive, but that with contacting an estimate be obtained at least. We note that the 
current state of the art has similar limitations. Even ROCKET, which is by far the fastest 
algorithm, can struggle to scale in terms of memory with increasing number of cases.

There is room for further improvement with HC2. The STC design remains the same 
in HC1 and HC2, and we believe there are ways it could be improved. Contracting 
could be enhanced so that components could produce bespoke estimates of the time, 
and reconfigure themselves more intelligently to make best use of the available run 
time. Individual components could be threaded. Variability in estimates from the train 
data could be incorporated into ensemble process, and weights per case might improve 
predictions.

Over the last six years we have developed COTE classifiers using the UCR data sets 
for evaluation. There is a danger that we have simply overfit the archives. We believe the 
diversity and number of datasets used, and the repeated resampling, make this unlikely. 
However, it is a genuine concern, in particular for future development. We are compil-
ing new datasets for both archives, and once this process is complete we will repeat all 
experiments with new data. However, we need to wait until the new archive datasets are 
publicly available to avoid any suspicion of selection bias. Hence, we classify this as 
future work.

HC2 is available in two open source toolkits and has improved usability features such 
as contracting, which allow the user to specify an approximate maximum run time. Our 
experiments are easily reproducible, and an accompanying website contains complete 
results and more information on how to use HC2.
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