
Vol.:(0123456789)

Machine Learning (2022) 111:871–893
https://doi.org/10.1007/s10994-021-06072-w

1 3

Online strongly convex optimization with unknown delays

Yuanyu Wan1,2 · Wei‑Wei Tu3 · Lijun Zhang1 

Received: 10 May 2021 / Revised: 24 July 2021 / Accepted: 22 September 2021 /
Published online: 3 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
We investigate the problem of online convex optimization with unknown delays, in which
the feedback of a decision arrives with an arbitrary delay. Previous studies have presented
delayed online gradient descent (DOGD), and achieved the regret bound of O(

√

D) by only
utilizing the convexity condition, where D ≥ T is the sum of delays over T rounds. In this
paper, we further exploit the strong convexity to improve the regret bound. Specifically, we
first propose a variant of DOGD for strongly convex functions, and establish a better regret
bound of O(d log T) , where d is the maximum delay. The essential idea is to let the learn-
ing rate decay with the total number of received feedback linearly. Furthermore, we extend
the strongly convex variant of DOGD and its theoretical guarantee to the more challenging
bandit setting by combining with the classical (n + 1)-point and two-point gradient estima-
tors, where n is the dimensionality. To the best of our knowledge, this is the first work that
solves online strongly convex optimization under the general delayed setting.

Keywords  Online optimization · Strongly convex · Unknown delays · Bandit

1  Introduction

Online convex optimization (OCO) is a prominent paradigm for sequential decision mak-
ing, which has been successfully applied to many tasks such as portfolio selection (Blum
and Kalai , 1999; Agarwal et al. , 2006) and online advertisement (McMahan et al. ,

Editors: Yu-Feng Li, Mehmet Gönen, Kee-Eung Kim.

 *	 Lijun Zhang
	 zhanglj@lamda.nju.edu.cn

	 Yuanyu Wan
	 wanyy@lamda.nju.edu.cn

	 Wei‑Wei Tu
	 tuweiwei@4paradigm.com

1	 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023,
China

2	 Pazhou Lab, Guangzhou 510330, China
3	 4Paradigm Inc., Beijing 100000, China

http://orcid.org/0000-0002-5138-3182
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06072-w&domain=pdf

872	 Machine Learning (2022) 111:871–893

1 3

2013; He et al. , 2014). At each round t, a player selects a decision �t from a convex set
X ⊆ ℝ

n , where n is the dimensionality. Then, an adversary chooses a convex loss func-
tion ft(�) ∶ X ↦ ℝ , and incurs a loss ft(�t) to the player. The performance of the player is
measured by the regret RT =

∑T

t=1
ft(�t) −min�∈X

∑T

t=1
ft(�) , which is the gap between the

cumulative loss of the player and an optimal fixed decision. Online gradient descent (OGD)
proposed by Zinkevich (2003) is a standard method for minimizing the regret. For convex
functions, Zinkevich (2003) showed that OGD attains an O(

√

T) regret bound. If the func-
tions are strongly convex, Hazan et al. (2007) proved that OGD can achieve a better regret
bound of O(logT) . The O(

√

T) and O(logT) bounds have been proved to be minimax opti-
mal for convex and strongly convex functions, respectively (Abernethy et al. , 2008).

However, the standard OCO assumes that the loss function ft(�) is revealed to the player
immediately after making the decision �t , which does not account for the possible delay
between the decision and feedback in various practical applications. For example, in online
advertisement, the decision is about the strategy of serving an ad to a user, and the feed-
back required to update the decision usually is whether the ad is clicked or not (McMahan
et al. , 2013). But, after seeing the ad, the user may take some time to give feedback. More-
over, there may not exist a button for the negative feedback, which is not determined unless
the user does not click the ad after a sufficiently long period (He et al. , 2014).

To address the above challenge, Quanrud and Khashabi (2015) proposed delayed OGD
(DOGD) for OCO with unknown delays, and attained the O(

√

D) regret bound, where
D ≥ T is the sum of delays over T rounds. Similar to OGD, in each round t, DOGD queries
the gradient ∇ft(�t) , but according to the delayed setting, it will be received at the end of
round t + dt − 1 where dt ≥ 1 is an unknown integer. By the same token, gradients queried
in previous rounds may be received at the end of round t, and DOGD updates the deci-
sion �t with the sum of received gradients. Recently, Li et al. (2019) further considered the
bandit setting, in which only the function value is available to the player. They proposed
delayed bandit gradient descent (DBGD) with O(

√

D) regret bound. Specifically, DBGD
queries each function ft(�) at n + 1 points, and approximates the gradient by applying the
(n + 1)-point gradient estimator (Agarwal et al. , 2010) to each received feedback. At the
end of round t, different from DOGD that only updates the decision �t once, DBGD repeat-
edly updates the decision �t with each approximate gradient.

While DOGD and DBGD can handle unknown delays for the full information and ban-
dit settings respectively, it remains unclear whether the strong convexity of loss functions
can be utilized to achieve a better regret bound. We notice that Khashabi et al. (2016) have
tried to exploit the strong convexity for DOGD, but failed because they discovered mis-
takes in their proof. In this paper, we provide an affirmative answer by proposing a vari-
ant of DOGD for strongly convex functions, namely DOGD-SC, which achieves a regret
bound of O(d log T) , where d is the maximum delay. To this end, we refine the learning rate
used in the original DOGD with a new one that decays with the total number of received
feedback linearly, which is able to exploit the strong convexity. For a small d = O(1) , our
O(d log T) regret bound is significantly better than the O(

√

D) regret bound established by
only using the convexity condition.

Furthermore, we extend our DOGD-SC and its theoretical guarantee to the bandit set-
ting. First, for the bandit setting with unknown delays, we combine DOGD-SC with the
(n + 1)-point gradient estimator (Agarwal et al. , 2010), and also obtain a regret bound of
O(d log T) for strongly convex functions, which is better than the O(

√

D) regret bound of
DBGD (Li et al. , 2019). Moreover, in each round, our method only updates the decision
once with the sum of approximate gradients, which could be more efficient than DBGD.
Second, if each delayed feedback is time-stamped when it is received, we show that

873Machine Learning (2022) 111:871–893	

1 3

combining DOGD-SC with the two-point gradient estimator (Agarwal et al. , 2010) is suf-
ficient to achieve an expected regret bound of O(d log T) for strongly convex functions,
which requires significantly less information than the (n + 1)-point gradient estimator.

2 � Related work

In this section, we briefly review the related work about OCO with delayed feedback, in
which the feedback for the decision �t is received at the end of round t + dt − 1.

2.1 � The standard OCO

If dt = 1 for all t ∈ [T] , OCO with delayed feedback is reduced to the standard OCO, in
which various algorithms have been proposed to minimize the regret under the full infor-
mation and bandit settings (Shalev-Shwartz , 2011; Hazan , 2016; Zhang et al. , 2018; Wan
et al. , 2021a). In the full information setting, by using the gradient of each function, the
standard OGD achieves O(

√

T) and O(logT) regret bounds for convex (Zinkevich , 2003)
and strongly convex functions (Hazan et al. , 2007), respectively. Moreover, adaptive vari-
ants of OGD have also been proposed for convex (Duchi et al. , 2011) and strongly convex
functions (Wang et al. , 2020), which can enjoy data-dependent regret bounds. For the ban-
dit setting, Flaxman et al. (2005) first proposed to approximate the gradient by querying
the function at one point, and established an expected regret bound of O(T3∕4) for convex
functions. Later, Agarwal et al. (2010) improved the expected regret bound of using the
one-point gradient estimator to O(T2∕3 log1∕3 T) for strongly convex functions. Further-
more, they proposed to approximate the gradient by querying the function at two points or
n + 1 points, and showed that combining OGD with these multi-point gradient estimators
can attain O(

√

T) and O(logT) regret bounds for convex and strongly convex functions,
respectively.

2.2 � OCO with fixed and known delays

To handle the case that each feedback arrives with a fixed and known delay d, i.e., dt = d
for all t ∈ [T] , Weinberger and Ordentlich (2002) divide the total T rounds into d subsets
T1,⋯ , Td , where Ti = {i, i + d, i + 2d,⋯} ∩ [T] for i = 1,⋯ , d . Over rounds in the subset
Ti , they maintain an instance Ai of a base algorithm A . If the base algorithm A enjoys a
regret bound of RA(T) for the standard OCO, Weinberger and Ordentlich (2002) showed
that their method attains a regret bound of dRA(T∕d) . By setting the base algorithm A as
OGD, the regret bounds could be O(

√

dT) for convex functions and O(d log T) for strongly
convex functions, respectively. However, since this method needs to maintain d instances
in total, the space complexity is d times as much as that of the base algorithm. By contrast,
Langford et al. (2009) proposed a more efficient method by simply performing the gradi-
ent descent step with a delayed gradient, and also achieved the O(

√

dT) and O(d log T)
regret bounds for convex and strongly convex functions, respectively. Moreover, Shamir
and Szlak (2017) combined the fixed delay with the local permutation setting, in which
the order of the functions can be modified by a distance of at most M. When M ≥ d , they
improved the regret bound to O(

√

T(1 +
√

d2∕M)) for convex functions.

874	 Machine Learning (2022) 111:871–893

1 3

2.3 � OCO with arbitrary but time‑stamped delays

Several previous studies considered another delayed setting, in which each feedback could be
delayed by arbitrary rounds, but is time-stamped when it is received. Specifically, Mesterharm
(2005) focused on the online classification problem, and analyzed the bound for the number
of mistakes. Joulani et al. (2013) further proposed to solve OCO under this delayed setting by
extending the method of Weinberger and Ordentlich (2002). However, similar to Weinberger
and Ordentlich (2002), the method proposed by Joulani et al. (2013) needs to maintain multi-
ple instances of a base algorithm, which could be prohibitively resource-intensive. Recently,
if each delay dt grows as o(t�) for some known 𝛾 < 1 , Héliou et al. (2020) employed the one-
point gradient estimator (Flaxman et al. , 2005) to propose a new method for the bandit set-
ting, and established an expected regret bound of Õ(T3∕4 + T2∕3+𝛾∕3) for convex functions.

2.4 � OCO with unknown delays

Furthermore, Quanrud and Khashabi (2015) considered a more general delayed setting, in
which each feedback could be delayed arbitrarily and the time stamp of each feedback could
also be unknown, and proposed an efficient method called DOGD. The main idea of DOGD
is to query the gradient ∇ft(�t) at each round t, and update the decision �t with the sum of
those gradients queried at the set of rounds Ft = {k|k + dk − 1 = t} . Different from Joulani
et al. (2013), DOGD enjoys the O(

√

D) regret bound without any assumption about delays,
where D ≥ T is the sum of delays over T rounds. Khashabi et al. (2016) tried to improve the
regret bound of DOGD for strongly convex functions, but did not provide a rigorous analysis.
Recently, Li et al. (2019) proposed DBGD to handle the bandit setting. In each round t, DBGD
queries the function ft(�) at n + 1 points, and repeatedly updates the decision �t with each
approximate gradient computed by applying the (n + 1)-point gradient estimator (Agarwal et al.
, 2010) to each feedback received from the set of rounds Ft = {k|k + dk − 1 = t} . DBGD also
attains a regret bound of O(

√

D) , but needs to update the decision |Ft| times in each round t.
If the feedback of each decision �t is the entire loss function ft(�) , Joulani et al. (2016)

provided an algorithmic framework for extending a base algorithm to the delayed setting. By
combining the proposed framework with adaptive online algorithms (McMahan and Streeter
, 2010; Duchi et al. , 2011), they improved the O(

√

D) regret bound to a data-dependent one.
If the decision set is unbounded and the order of the received feedback keeps the same as the
case without delay, an adaptive algorithm and the data-dependent regret bound for the delayed
setting were already presented by McMahan and Streeter (2014). In the worst case, these data-
dependent regret bounds would reduce to O(

√

D) or O(
√

dT) where d is the maximum delay,
which cannot benefit from the strong convexity.

Although there are many studies about OCO with unknown delays, it remains unclear
whether the strong convexity can be utilized to improve the regret bound. This paper provides
an affirmative answer by establishing the O(d log T) regret bound for strongly convex functions.

3 � Main results

In this section, we first present DOGD-SC, a variant of DOGD for strongly convex functions,
which improves the regret bound. Then, we extend our DOGD-SC to the bandit setting by com-
bining with the (n + 1) point gradient estimator. Finally, we show that if each delayed feedback
is time-stamped, the two-point gradient estimator can also be incorporated into our DOGD-SC.

875Machine Learning (2022) 111:871–893	

1 3

3.1 � DOGD‑SC with improved regret

Following previous studies (Shalev-Shwartz , 2011; Hazan , 2016), we introduce some com-
mon assumptions.

Assumption 1  Each loss function ft(�) is L-Lipschitz over X  , i.e., for any �, � ∈ X  ,
�ft(�) − ft(�)� ≤ L‖� − �‖ , where ‖ ⋅ ‖ denotes the Euclidean norm.

Assumption 2  Each loss function ft(�) is �-strongly convex over X  , i.e., for any �, � ∈ X  ,
ft(�) ≥ ft(�) + ∇ft(�)

⊤(� − �) +
𝛽

2
‖� − �‖2.

Assumption 3  The radius of the convex decision set X is bounded by R, i.e.,
‖�‖ ≤ R,∀� ∈ X .

To handle OCO with unknown delays, DOGD (Quanrud and Khashabi , 2015) arbitrarily
chooses �1 from X in the initial round. In each round t, it queries the gradient �t = ∇ft(�t) , and
then receives the gradient queried in the set of rounds Ft = {k|k + dk − 1 = t} . If |Ft| = 0 ,
DOGD keeps the decision unchanged as �t+1 = �t . Otherwise, it updates the decision with the
sum of gradients received at this round as

where �X(�) = argmin �∈X‖� − �‖ for any vector � is the projection operation. According
to Quanrud and Khashabi (2015), DOGD attains a regret bound of O(

√

D) by using a con-
stant learning rate �t = 1∕(L

√

T + D) for all t ∈ [T] , where D ≥ T is the sum of delays and
can be estimated on the fly via the standard “doubling trick” (Cesa-Bianchi and Lugosi,
2006).

However, the constant learning rate cannot utilize the strong convexity of loss functions. In
the standard OCO where Ft = {t} for any t ∈ [T] , Hazan et al. (2007) have established the
O(logT) regret bound for �-strongly convex functions by setting �t = 1∕(�t) . A significant
property of the learning rate is that the inverse of �t is increasing by the modulus of the strong
convexity of ft(�) per round, i.e., 1

�t+1
−

1

�t
= � . Inspired by this property, we initialize 1

�0
= 0

and update it as

where |Ft|� is the modulus of the strong convexity of
∑

k∈Ft
fk(�).

�t+1 = �X

(

�t − �t

∑

k∈Ft

�k

)

1

�t+1
=

1

�t
+ |Ft|�

876	 Machine Learning (2022) 111:871–893

1 3

Algorithm 1 DOGD-SC
1: Initialization: Choose an arbitrary vector x1 ∈ X and set h0 = 0
2: for t = 1, 2, · · · , T do
3: Query gt = ∇ft(xt)
4: ht = ht−1 + |Ft|β

5: xt+1 =






ΠX



xt −
1
ht k∈Ft

gk



 if |Ft| > 0

xt otherwise
6: end for

Let ht = 1∕�t for t = 0,⋯ , T  . The detailed procedures for strongly convex functions
are summarized in Algorithm 1, which is named as DOGD for strongly convex func-
tions (DOGD-SC). Let d = max{dt|t = 1,⋯ , T} denote the maximum delay. We estab-
lish the following theorem regarding the regret of Algorithm 1.

Theorem 1  Under Assumptions 1, 2, and 3 , Algorithm 1 satisfies

Remark 1  From Theorem 1, the regret bound of Algorithm 1 is on the order of O(d log T) ,
which is better than the O(

√

D) regret bound established by Quanrud and Khashabi (2015)
as long as d <

√

D∕ log T  . Moreover, if d = O(1) , our O(d log T) regret bound is on the
same order as the O(logT) bound for OCO without delay. We note that Khashabi et al.
(2016) have tried to use the strong convexity by setting �t =

2

�t|Ft|
 . However, in this way,

there could exist some rounds such that (t + 1)|Ft+1| ≤ t|Ft| and

 which makes the proof of their Theorem 3.1 problematic.

Remark 2  In Theorem 1, we have assumed that the decision set X is bounded. However, in
OCO without delay, Hazan et al. (2007) established the O(logT) regret bound without the
boundedness of X  . Therefore, it is natural to ask whether our Theorem 1 can be extended
to the unconstrained setting with X = ℝ

n . To answer this question, we first note that Hazan
and Kale (2012) have shown that for a �F-strongly convex function F(�) ∶ X → ℝ and
�∗ = argmin �∈XF(�) , it holds that

In the unconstrained setting, let F(�) =
∑T

t=1
f (�) and �∗ = argmin �∈ℝnF(�) . Moreo-

ver, without the boundedness of X  , Assumption 1 and 2 cannot hold together. Therefore,
we first assume that there exists a constant L1 such that ‖∇ft(�)‖ ≤ L1 for all t ∈ [T] and
Assumption 2 holds. Then, by applying (1), we have

RT ≤

(

6�RL +
5L2

2

)

d

�
(1 + ln T).

1

�t+1
−

1

�t
=

�

2
((t + 1)|Ft+1| − t|Ft|) ≤ 0,

(1)
�F

2
‖� − �∗‖2 ≤ F(�) − F(�∗),∀� ∈ X.

877Machine Learning (2022) 111:871–893	

1 3

where the first inequality is due to the fact that F(�) is �T-strongly convex, the second ine-
quality is due to the convexity of F(�) , and the last inequality is due to ‖∇F(�)‖ ≤ L1T  .
The above inequality implies that ‖�∗‖ ≤

2L1

�
 , i.e., the fixed optimal decision belongs to a

ball X� =
{

2L1

�
�
|

|

|

� ∈ B
n
}

 , where Bn denotes the unit Euclidean ball centered at the origin
in ℝn . Therefore, the player only needs to select decisions from the ball X′ , and we can
reduce the unconstrained problem to a constrained problem over X′ . Then, to apply Theo-
rem 1, we need to assume that each ft(�) is L-Lipschitz over X′ , where L is a constant and
L ≥ L1 . Finally, by assuming that ‖∇ft(�)‖ ≤ L1 for all t ∈ [T] , Assumption 2 holds, and
ft(�) is L-Lipschitz over X′ for all t ∈ [T] , it is not hard to verify that performing Algo-
rithm 1 over X′ ensures

where the first inequality is derived by applying Theorem 1 to loss functions that are L-Lip-
schitz and �-strongly convex over X′ . The above result implies that the regret bound for the
unconstrained setting is also on the order of O(d log T).

Remark 3  Note that in our Algorithm 1 and Theorem 1, we assume that the modulus �
of the strong convexity is known, which plays a key role in achieving our regret bound.
We would like to emphasize that this assumption is commonly utilized in previous work
(Hazan et al. , 2007; Shalev-Shwartz et al. , 2007). Moreover, it is reasonable, because in
many machine learning tasks, the strong convexity is determined by the manually designed
regularization. One classical example is the support vector machine problem with the regu-
larization �

2
‖�‖2 (Shalev-Shwartz et al. , 2007).

3.2 � The extension to the bandit setting with unknown delays

To handle the bandit setting, following previous studies (Agarwal et al. , 2010; Saha and
Tewari , 2011), we further introduce two assumptions, as follows.

Assumption 4  There exists a constant r such that rBn ⊆ X .

Assumption 5  Each loss function ft(�) is �-smooth over X  , i.e., for any �, � ∈ X  ,
ft(�) ≤ ft(�) + ∇ft(�)

⊤(� − �) +
𝛼

2
‖� − �‖2.

In the bandit setting, since only the function value is available to the player instead of the
gradient, the problem becomes more challenging. Fortunately, Agarwal et al. (2010) have pro-
posed to approximate the gradient by querying the function at two points and n + 1 points.

‖� − �∗‖2 ≤
2(F(�) − F(�∗))

𝛽T
≤

∇F(�)⊤(� − �∗)

𝛽T

≤
‖∇F(�)‖‖� − �∗‖

𝛽T
≤

2L1‖� − �∗‖

𝛽

RT =

T
∑

t=1

ft(�t) −

T
∑

t=1

ft(�
∗) =

T
∑

t=1

ft(�t) −min
�∈X�

T
∑

t=1

ft(�)

≤

(

12L1L +
5L2

2

)

d

�
(1 + lnT) ≤

29dL2

2�
(1 + ln T)

878	 Machine Learning (2022) 111:871–893

1 3

To avoid the cost of querying the function many times, one may prefer to adopt the two-point
gradient estimator. However, as discussed by Li et al. (2019), the two-point gradient estima-
tors would fail in the bandit setting with unknown delays, because it requires the time stamp of
each feedback, which could be unknown.

As a result, we utilize the (n + 1)-point gradient estimator (Agarwal et al. , 2010) to han-
dle the bandit setting with unknown delays. To this end, we need to make three changes for
our Algorithm 1. First, at each round t, the player queries the function ft(�) at n + 1 points
�t, �t + ��1,⋯ , �t + ��n , instead of querying the gradient ∇ft(�t) . In this way, the feedback
arrives at the end of round t is

{

{fk(�k + ��i)}
n
i=0

|k + dk − 1 = t
}

 , where �0 is defined as the
zero vector. According to the (n + 1)-point gradient estimator, we can approximate the gradi-
ent ∇fk(�k) as

for k ∈ Ft . Therefore, the second change is to update �t with the sum of gradients estimated
from the feedback. Note that our Algorithm 1 only needs to ensure �t ∈ X  , because we only
query the gradient ∇ft(�t) . However, in the bandit setting, we utilize the (n + 1)-point gradi-
ent estimator, which needs to query the value of ft(�) at points �t, �t + ��1,⋯ , �t + ��n . As
a result, we further need to ensure that �t + ��1,⋯ , �t + ��n ∈ X  . To satisfy this require-
ment, following Agarwal et al. (2010), the third change is to limit �t in a subset of the origi-
nal decision set X  , which is defined as

for some 0 < 𝛿 < r . Under Assumption 4, for any � ∈ X� and � ∈ S
n , it is not hard to ver-

ify that � + �� ∈ X  , where Sn is the unit sphere. Combining the second and third changes,
we update the decision as �t+1 = 𝛱X𝛿

�

�t −
1

ht

∑

k∈Ft
�̃k

�

 , if |Ft| > 0 . Note that computing
�̃k and

∑

k∈Ft
�̃k does not require the time stamp of each feedback.

Algorithm 2 DOGD-SCn+1

1: Input: A parameter δ > 0
2: Initialization: Choose an arbitrary vector x1 ∈ Xδ and set h0 = 0
3: for t = 1, 2, · · · , T do
4: Query ft(xt), ft(xt + δe1), · · · , ft(xt + δed)
5: ht = ht−1 + |Ft|β

6: xt+1 =






ΠXδ



xt −
1
ht k∈Ft

g̃k



 if |Ft| > 0

xt otherwise
where g̃k = 1

δ
n
i=1(fk(xk + δei)− fk(xk))ei

7: end for

�̃k =
1

𝛿

n
∑

i=1

(fk(�k + 𝛿�i) − fk(�k))�i

X� = (1 − �∕r)X = {(1 − �∕r)�|� ∈ X}

879Machine Learning (2022) 111:871–893	

1 3

Algorithm 3 DOGD-SC2

1: Input: A parameter δ > 0
2: Initialization: Choose an arbitrary vector x1 ∈ Xδ and set h0 = 0
3: for t = 1, 2, · · · , T do
4: Sample ut ∼ Sn and query ft(xt + δut), ft(xt − δut)
5: ht = ht−1 + |Ft|β

6: xt+1 =






ΠXδ



xt −
1
ht

k∈Ft

g̃k



 if |Ft| > 0

xt otherwise
where g̃k = n

2δ (fk(xk + δuk)− fk(xk − δuk))uk

7: end for

We summarize the detailed procedures in Algorithm 2, and it is named as a bandit vari-
ant of DOGD-SC with n + 1 queries per round (DOGD-SCn+1 ). Since there are n + 1 deci-
sions selected in each round, we establish the following theorem regarding the average
regret of Algorithm 2.

Theorem 2  Let � =
c lnT

T
 , where c > 0 is a constant such that 𝛿 < r . Under Assump-

tions 1, 2, 3, 4, and 5 , Algorithm 2 ensures

According to Theorem 2, the regret bound of our Algorithm 2 is also on the order of
O(d log T) , which is better than the O(

√

D) regret bound of DBGD (Li et al. , 2019) as long
as d <

√

D∕ log T  . Furthermore, in each round t, DBGD updates |Ft| times to obtain �t+1 ,
which is more expensive than our Algorithm 2.

3.3 � The extension to the bandit setting with time‑stamped delays

In the previous section, we have proposed an algorithm for the bandit setting with unknown
delays, which requires n + 1 queries per round. To reduce the number of queries, we fur-
ther combine our DOGD-SC with the two-point gradient estimator (Agarwal et al. , 2010),
which is able to handle the case where the time stamp of each delayed feedback is known.

According to the two-point gradient estimator, in each round t ∈ [T] , the player queries
ft(�) at two points �t + ��t and �t − ��t , where �t ∈ X� and �t is uniformly at random sam-
pled from the unit sphere Sn.

After receiving the feedback
{

{

fk(�|k + ��k), fk(�k − ��k)
}

|

|

|

k + dk − 1 = t
}

 , we can
approximate the gradient ∇fk(�k) by computing

for any k ∈ Ft , which needs to use the time stamp k to match the random vector �k with the
feedback

{

fk(�k + ��k), fk(�k − ��k)
}

 . Then, we update �t with the sum
∑

k∈Ft
�̃k.

1

n + 1

T
∑

t=1

n
∑

i=0

ft(�t + ��i) −min
�∈X

T
∑

t=1

ft(�) ≤ O(d logT).

�̃k =
n

2𝛿
(fk(�k + 𝛿�k) − fk(�k − 𝛿�k))�k

880	 Machine Learning (2022) 111:871–893

1 3

The detailed procedures are outlined in Algorithm 3, which is named as a bandit variant of
DOGD-SC with two queries per round (DOGD-SC2 ). Following previous studies (Flaxman
et al. , 2005; Saha and Tewari , 2011; Wan et al. , 2020), we further assume that the adversary
is oblivious (i.e., all loss functions are chosen beforehand), and establish the following theo-
rem regarding the expected regret of Algorithms 3.

Theorem 3  Let �t,1 = �t + ��t , �t,2 = �t − ��t , and � =
c lnT

T
 , where c > 0 is a constant such

that 𝛿 < r . Under Assumptions 1, 2, 3, and 4 , Algorithm 3 ensures

Theorem 3 implies that if each delayed feedback is time-stamped, querying two points per
round is sufficient to achieve a regret bound of O(d log T) in expectation, which requires sig-
nificantly less information than querying n + 1 points.

4 � Theoretical analysis

In this section, we provide all the proofs for our theoretical guarantees.

4.1 � Proof of Theorem 1

According to Algorithm 1, there could exist some feedback that arrives after the round T
and is not used to update the decision. However, it is useful for the analysis. Therefore, for
t ∈ [T + 1, T + d − 1] , we also define Ft = {k|k + dk − 1 = t} , and perform a virtual update
as

Then, for any t ∈ [T + d − 1] , we define

We also define t� = t + dt − 1 for any t ∈ [T] and s = min
{

t|t ∈ [T + d − 1], |Ft| > 0
}

 . It
is easy to verify that

Let �∗ = argmin �∈X

∑T

t=1
ft(�) . We have

�

[

1

2

T
∑

t=1

2
∑

i=1

ft(�t,i) −min
�∈X

T
∑

t=1

ft(�)

]

≤ O(d log T).

ht = ht−1 + �Ft�𝛽, �t+1 =

⎧

⎪

⎨

⎪

⎩

𝛱X

�

�t −
1

ht

�

k∈Ft

�k

�

if �Ft� > 0,

�t otherwise.

(2)��
t+1

=

⎧

⎪

⎨

⎪

⎩

�t −
1

ht

�

k∈Ft

�k if �Ft� > 0,

�t otherwise.

(3)∪T+d−1
t=s

Ft = ∪T+d−1
t=1

Ft = [T] and Fi ∩ Fj = �,∀i ≠ j.

881Machine Learning (2022) 111:871–893	

1 3

where the first inequality is due to Assumption 2, and the last inequality is due to
∇ft(�t)

⊤(�t − �t�) ≤ ‖∇ft(�t)‖‖�t − �t�‖ ≤ L‖�t − �t�‖.
To upper bound the right side of (4), we introduce the following lemma.

Lemma 1  Under Assumptions 1 and 3 , for any � ∈ X  , Algorithm 1 ensures

Combining (4) with Lemma 1, we have

According to the definition of ��
t+1

 , for any t ∈ [T + d − 1] , it holds that

Moreover, since �t+1 = �X(�
�
t+1

) , for any � ∈ X  , we have

Then, it is not hard to verify that

where the second inequality is due to (7), the equality is due to (6), and the last inequality
is due to

Substituting (8) into (5), we have

(4)

RT =

T
�

t=1

ft(�t) −

T
�

t=1

ft(�
∗)

≤

T
�

t=1

�

∇ft(�t)
⊤(�t − �∗) −

𝛽

2
‖�t − �∗‖2

�

=

T
�

t=1

�

∇ft(�t)
⊤(�t� − �∗) −

𝛽

2
‖�t − �∗‖2

�

+

T
�

t=1

∇ft(�t)
⊤(�t − �t�)

≤

T
�

t=1

�

∇ft(�t)
⊤(�t� − �∗) −

𝛽

2
‖�t − �∗‖2

�

+

T
�

t=1

L‖�t − �t�‖

T
�

t=1

�

∇ft(�t)
⊤(�t� − �) −

𝛽

2
‖�t − �‖2

�

≤

T
�

t=1

3𝛽R‖�t − �t�‖ +

T+d−1
�

t=s

d�Ft�L
2

2ht
.

(5)RT ≤(3�R + L)

T
�

t=1

‖�t − �t�‖ +

T+d−1
�

t=s

d�Ft�L
2

2ht
.

(6)
∑

k∈Ft

∇fk(�k) = ht(�t − ��
t+1

).

(7)‖�t+1 − �‖ ≤ ‖��
t+1

− �‖.

(8)

‖�t� − �t‖ ≤

t�−1
�

i=t

‖�i+1 − �i‖ ≤

t�−1
�

i=t

‖��
i+1

− �i‖

=

t�−1
�

i=max(t,s)

‖

∑

k∈Fi
∇fk(�k)‖

hi
≤

t�−1
�

i=max(t,s)

�Fi�L

hi

(9)
�

�

�

�

�

�

�

k∈Fi

∇fk(�k)

�

�

�

�

�

�

≤

�

k∈Fi

‖∇fk(�k)‖ ≤ �Fi�L.

882	 Machine Learning (2022) 111:871–893

1 3

Furthermore, we introduce the following lemma.

Lemma 2  Algorithm 1 ensures

Applying Lemma 2, we have

We complete this proof with |Fs| ≥ 1.

4.2 � Proof of lemma 1

First, according to t� = t + dt − 1 for any t ∈ [T] , we have

where the second equality is due to (3), and the last equality is due to k + dk − 1 = t for any
k ∈ Ft.

Substituting (6) into (10), we have

RT ≤
(

3�RL + L2
)

T
∑

t=1

t�−1
∑

i=max(t,s)

|Fi|

hi
+

T+d−1
∑

t=s

d|Ft|L
2

2ht
.

T
∑

t=1

t�−1
∑

i=max(t,s)

|Fi|

hi
≤ 2d

T+d−1
∑

t=s

|Ft|

ht
and

T+d−1
∑

t=s

|Ft|

ht
≤

1

�

(

1 + ln
T

|Fs|

)

.

RT ≤
(

3�RL + L2
)

2d

T+d−1
∑

t=s

|Ft|

ht
+

T+d−1
∑

t=s

d|Ft|L
2

2ht

≤

(

6�RL +
5L2

2

)

d

�

(

1 + ln
T

|Fs|

)

.

(10)

T
∑

t=1

∇ft(�t)
⊤(�t� − �) =

T
∑

t=1

∇ft(�t)
⊤(�t+dt−1 − �)

=

T+d−1
∑

t=s

∑

k∈Ft

∇fk(�k)
⊤(�k+dk−1 − �)

=

T+d−1
∑

t=s

∑

k∈Ft

∇fk(�k)
⊤(�t − �)

883Machine Learning (2022) 111:871–893	

1 3

where the third equality is also due to (6), the first inequality is due to (7) and (9), and the
last equality is due to ht =

∑t

i=s
�Fi�� for any t ∈ [s, T + d − 1].

Moreover, due to (3), we have

According to Assumption 3, for any �k ∈ X  , it holds that

Combining with (11) and (12), we have

(11)

T
�

t=1

∇ft(�t)
⊤(�t� − �)

=

T+d−1
�

t=s

ht(�t − ��
t+1

)⊤(�t − �)

=

T+d−1
�

t=s

ht

2

�

‖�t − �‖2 − ‖��
t+1

− �‖2 + ‖�t − ��
t+1

‖

2
�

=

T+d−1
�

t=s

ht

2

�

‖�t − �‖2 − ‖��
t+1

− �‖2 +
‖

∑

k∈Ft
∇fk(�k)‖

2

h2t

�

≤

T+d−1
�

t=s

�

ht

2

�

‖�t − �‖2 − ‖�t+1 − �‖2
�

+
�Ft�

2L2

2ht

�

≤

T+d−1
�

t=s+1

‖�t − �‖2
�

ht

2
−

ht−1

2

�

+

T+d−1
�

t=s

�Ft�
2L2

2ht
+

hs

2
‖�s − �‖2

=

T+d−1
�

t=s

�Ft�𝛽

2
‖�t − �‖2 +

T+d−1
�

t=s

�Ft�
2L2

2ht

T
�

t=1

�

2
‖�t − �‖2 =

T+d−1
�

t=s

�

k∈Ft

�

2
‖�k − �‖2.

(12)

‖�t − �‖2 =‖�t − �k‖
2 + ‖�k − �‖2 + 2(�t − �k)

⊤(�k − �)

≤‖�t − �k‖
2 + ‖�k − �‖2 + 2‖�t − �k‖‖�k − �‖

≤6R‖�t − �k‖ + ‖�k − �‖2.

884	 Machine Learning (2022) 111:871–893

1 3

Since 1 ≤ dk ≤ d , it is easy to verify that for any t ∈ [T + d − 1] and k ∈ Ft,

which implies that

where the first equality is due to k + dk − 1 = t for any k ∈ Ft , and the last equality is due
to (3) and t� = t + dt − 1 for any t ∈ [T].

4.3 � Proof of lemma 2

Since 1 + d1 − 1 = d1 ≤ d and s = min
{

t|t ∈ [T + d − 1], |Ft| > 0
}

 , we note that s ≤ d .
If s ≥ T  , we have

where the second inequality is due to t� = t + dt − 1 ≤ T + d − 1 , and the last inequality is
due to d ≥ s ≥ T .

Otherwise, we have s < T and

(13)

T
�

t=1

�

∇ft(�t)
⊤(�t� − �) −

𝛽

2
‖�t − �‖2

�

≤

T+d−1
�

t=s

�Ft�𝛽

2
‖�t − �‖2 +

T+d−1
�

t=s

�Ft�
2L2

2ht
−

T+d−1
�

t=s

�

k∈Ft

𝛽

2
‖�k − �‖2

≤

T+d−1
�

t=s

�Ft�𝛽

2
‖�t − �‖2 +

T+d−1
�

t=s

�Ft�
2L2

2ht

+

T+d−1
�

t=s

�

k∈Ft

𝛽

2

�

−‖�t − �‖2 + 6R‖�t − �k‖
�

=

T+d−1
�

t=s

�

k∈Ft

3𝛽R‖�t − �k‖ +

T+d−1
�

t=s

�Ft�
2L2

2ht
.

(14)t − d + 1 ≤ k = t − dk + 1 ≤ t and |Ft| ≤ t − (t − d + 1) + 1 = d

T
�

t=1

�

∇ft(�t)
⊤(�t� − �) −

𝛽

2
‖�t − �‖2

�

≤

T+d−1
�

t=s

�

k∈Ft

3𝛽R‖�t − �k‖ +

T+d−1
�

t=s

d�Ft�L
2

2ht

=

T+d−1
�

t=s

�

k∈Ft

3𝛽R‖�k+dk−1 − �k‖ +

T+d−1
�

t=s

d�Ft�L
2

2ht

=

T
�

t=1

3𝛽R‖�t − �t�‖ +

T+d−1
�

t=s

d�Ft�L
2

2ht

(15)
T
∑

t=1

t�−1
∑

i=max(t,s)

|Fi|

hi
≤

T
∑

t=1

t�
∑

i=s

|Fi|

hi
≤

T
∑

t=1

T+d−1
∑

i=s

|Fi|

hi
≤ d

T+d−1
∑

i=s

|Fi|

hi

885Machine Learning (2022) 111:871–893	

1 3

where the second inequality is due to
t� = t + dt − 1 ≤ T + d − 1 and t� = t + dt − 1 ≤ t + d − 1 . Combining (15) and (16), we
complete the proof for the first inequality in Lemma 2.

Then, we continue to prove the second inequality in Lemma 2 with the following
lemma.

Lemma 3  Let a1 > 0 and a2,⋯ , am ≥ 0 be real numbers and let f ∶ (0,+∞) ↦ [0,+∞) be
a nonincreasing function. Then

Let f (x) =
1

x
 and ai = |Fs+i−1| for any i ∈ [T + d − s] . Then, we have

a1 +⋯ + aT+d−s =
∑T+d−1

t=s
�Ft� = T  . Because of ht =

∑t

i=s
�Fi�� for any t ∈ [s, T + d − 1] ,

we have

where the first inequality is due to Lemma 3.

4.4 � Proof of lemma 3

Lemma 3 is inspired by Lemma 14 in Gaillard et al. (2014), which provides the bound
∑m

i=2
aif (a1 +⋯ + ai−1) ≤ f (a1) + ∫

a1+⋯+am
a1

f (x)dx for a2,⋯ , am ∈ [0, 1] . It is not hard to
prove Lemma 3 by slightly modifying the proof of Lemma 14 in Gaillard et al. (2014) to
deal with

∑m

i=1
aif (a1 +⋯ + ai) , instead of

∑m

i=2
aif (a1 +⋯ + ai−1) . We include the proof

for completeness.
Let si = a1 +⋯ + ai for any i ∈ [m] . Then, for any i = 2,⋯ ,m , we have

aif (si) = ∫
si
si−1

f (si)dx ≤ ∫
si
si−1

f (x)dx , where the inequality is due to the fact that f(x) is a non-
increasing function.

Then, we have
∑m

i=1
aif (si) = a1f (a1) +

∑m

i=2
aif (si) ≤ a1f (a1) + ∫

sm
s1

f (x)dx.

(16)

T
∑

t=1

t�−1
∑

i=max(t,s)

|Fi|

hi
≤

T
∑

t=1

t�
∑

i=max(t,s)

|Fi|

hi
=

s−1
∑

t=1

t�
∑

i=s

|Fi|

hi
+

T
∑

t=s

t�
∑

i=t

|Fi|

hi

≤

s−1
∑

t=1

T+d−1
∑

i=s

|Fi|

hi
+

T
∑

t=s

t+d−1
∑

i=t

|Fi|

hi

=

s−1
∑

t=1

T+d−1
∑

i=s

|Fi|

hi
+

d−1
∑

i=0

T+i
∑

t=s+i

|Ft|

ht

≤

s−1
∑

t=1

T+d−1
∑

i=s

|Fi|

hi
+

d−1
∑

i=0

T+d−1
∑

t=s

|Ft|

ht

=(s − 1 + d)

T+d−1
∑

t=s

|Ft|

ht
≤ 2d

T+d−1
∑

t=s

|Ft|

ht

m
∑

i=1

aif (a1 +⋯ + ai) ≤ a1f (a1) +
�

a1+⋯+am

a1

f (x)dx.

T+d−1
∑

t=s

|Ft|

ht
=

1

�

T+d−s
∑

i=1

aif (a1 +⋯ + ai) ≤
1

�

(

1 +
�

T

|Fs|

1

x
dx

)

=
1

�

(

1 + ln
T

|Fs|

)

886	 Machine Learning (2022) 111:871–893

1 3

4.5 � Proof of theorem 2

This proof is inspired by the work of Agarwal et al. (2010), which combined the (n + 1)

-point gradient estimator with OGD, and proved the average regret bound in the non-
delayed setting. In this paper, we combine the (n + 1)-point gradient estimator with our
DOGD-SC, and prove the average regret bound in the general delayed setting.

According to Assumption 1, for any i = 1,⋯ , n , we have
ft(�t + ��i) ≤ ft(�t) + L‖��i‖ ≤ ft(�t) + L� , which implies that

for any � ∈ X  , where the last inequality is due to Assumption 3.
Then, we only need to upper bound

∑T

t=1
ft(�t) −

∑T

t=1
ft((1 − �∕r)�) . To this end, we

start by defining �t(�) = ft(�) + (�̃t − ∇ft(�t))
⊤� , where �̃t is defined in Algorithm 2. It is

easy to verify that �t(�) is also �-strongly convex, and ∇�t(�t) = �̃t . Therefore, Algorithm 2
is actually performing Algorithm 1 on the functions 𝓁1(�),⋯ ,𝓁T (�) over the decision set
X�.

Before applying Theorem 1, we introduce the following lemma.

Lemma 4  (Lemma 4 in Li et al. (2019)) If f (�) ∶ X ↦ ℝ is L-Lipschitz and �
-smooth, for any � ∈ X� , it holds that ‖�̃‖ ≤

√

nL and ‖�̃ − ∇f (�)‖ ≤

√

n𝛼𝛿

2
 , where

�̃ =
1

𝛿

∑n

i=1
(f (� + 𝛿�i) − f (�))�i.

Under Assumptions 1 and 5 , Lemma 4 shows

which implies that ‖∇�t(�)‖ ≤ ‖∇ft(�)‖ + ‖�̃t − ∇ft(�t)‖ ≤ L +
√

n𝛼𝛿

2
.

Define L̃ = L + (
√

n𝛼𝛿∕2) . Applying Theorem 1 to the functions 𝓁1(�),⋯ ,𝓁T (�) , for
any � ∈ X  , we have

Furthermore, for any � ∈ X  , we have

(17)

1

n + 1

T
�

t=1

n
�

i=0

ft(�t + ��i) −

T
�

t=1

ft(�)

≤

T
�

t=1

ft(�t) +

T
�

t=1

nL�

n + 1
−

T
�

t=1

ft(�)

≤

T
�

t=1

ft(�t) −

T
�

t=1

(ft((1 − �∕r)�) − L�‖�‖∕r) + TL�

≤

T
�

t=1

ft(�t) −

T
�

t=1

ft((1 − �∕r)�) +
TLR�

r
+ TL�

(18)
‖�̃t‖ ≤

√

nL and ‖�̃t − ∇ft(�t)‖ ≤

√

n𝛼𝛿

2

(19)

T
∑

t=1

�t(�t) −

T
∑

t=1

�t((1 − 𝛿∕r)�) ≤

T
∑

t=1

�t(�t) − min
��∈X𝛿

T
∑

t=1

�t(�
�)

≤

(

6𝛽RL̃ +
5L̃2

2

)

d

𝛽
(1 + ln T).

887Machine Learning (2022) 111:871–893	

1 3

where the last inequality is due to (18), (19), and Assumption 3.
Combining with (17), for any � ∈ X  , we have

where the last inequality is due to � =
c lnT

T
.

4.6 � Proof of theorem 3

This proof is similar to that of Theorem 2. We first introduce the �-smoothed version of a
function f (�) and the corresponding properties. For a function f (�) , its �-smoothed version
is defined as f̂ (�) = ��∼Bn [f (� + 𝛿�)] and satisfies the following two lemmas.

Lemma 5  (Lemma 1 in Flaxman et al. (2005)) Let 𝛿 > 0 and Sn denote the unit sphere in
ℝ

n . We have ∇f̂ (�) = ��∼Sn

[

n

𝛿
f (� + 𝛿�)�

]

.

Lemma 6  (Lemma 2.6 of Hazan (2016) and Lemma 6 of Wan et al. (2021b)) Let
f (�) ∶ ℝ

n
→ ℝ be �-strongly convex and L-Lipschitz over a convex and compact set

X ⊂ ℝ
n . Then, f̂ (�) is �-strongly convex over X� , |f̂ (�) − f (�)| ≤ 𝛿L for any � ∈ X� , and

f̂ (�) is L-Lipschitz over X�.

Let � be an arbitrary vector in the set X and �̂ = (1 − 𝛿∕r)� . We have

T
�

t=1

ft(�t) −

T
�

t=1

ft((1 − 𝛿∕r)�)

=

T
�

t=1

�t(�t) −

T
�

t=1

�t((1 − 𝛿∕r)�) +

T
�

t=1

(�̃t − ∇ft(�t))
⊤(�t − (1 − 𝛿∕r)�)

≤

T
�

t=1

�t(�t) −

T
�

t=1

�t((1 − 𝛿∕r)�) +

T
�

t=1

‖�̃t − ∇ft(�t)‖‖�t − (1 − 𝛿∕r)�‖

≤

�

6𝛽RL̃ +
5L̃2

2

�

d

𝛽
(1 + lnT) +

T
�

t=1

√

n𝛼𝛿R

1

n + 1

T
�

t=1

n
�

i=0

ft(�t + 𝛿�i) −

T
�

t=1

ft(�)

≤

�

6𝛽RL̃ +
5L̃2

2

�

d

𝛽
(1 + lnT) +

T
�

t=1

√

n𝛼𝛿R +
TLR𝛿

r
+ TL𝛿

≤

�

6𝛽RL̃ +
5L̃2

2

�

d

𝛽
(1 + lnT) +

√

nc𝛼R ln T +
cLR lnT

r
+ cL lnT = O(d logT)

888	 Machine Learning (2022) 111:871–893

1 3

where the first inequality is due to Assumption 1, the second inequality is due to Assump-
tion 3, and the last inequality is due to Lemma 6.

Then, we only need to upper bound
∑T

t=1
f̂t(�t) −

∑T

t=1
f̂t(�̂) . Similar to the proof of Theo-

rem 2, we define �t(�) = f̂t(�) + (�̃t − ∇f̂t(�t))
⊤� , where �̃t is defined in Algorithm 3.

According to Lemma 5, we have

where the second equality is due to the fact that the distribution of �t is symmetric.
Then, we have ��t

[�̃t − ∇f̂t(�t)] = 0 , which implies that

Therefore, we only need to derive an upper bound of
∑T

t=1
�t(�t) −

∑T

t=1
�t(�̂).

According to the definition of �t(�) , it is easy to verify that ∇�t(�t) = �̃t . Moreover, from
Lemma 6, f̂t(�) is �-strongly convex, which implies that �t(�) is also �-strongly convex.
Therefore, Algorithm 3 is actually performing Algorithm 1 on the functions 𝓁1(�),⋯ ,𝓁T (�)
over the decision set X�.

Before using Theorem 1, we need to prove that �t(�) is also Lipschitz. From Lemma 6,
f̂t(�) is L-Lipschitz. So, for any �, � ∈ X� , it is not hard to verify that

where the last inequality is due to ‖∇f̂t(�t)‖ ≤ L and

(20)

1

2

T
�

t=1

2
�

i=1

ft(�t,i) −

T
�

t=1

ft(�)

=
1

2

T
�

t=1

(ft(�t + 𝛿�t) + ft(�t − 𝛿�t)) −

T
�

t=1

ft(�)

≤
1

2

T
�

t=1

(ft(�t) + L‖𝛿�t‖ + ft(�t) + L‖𝛿�t‖) −

T
�

t=1

(ft(�̂) − L𝛿‖�‖∕r)

≤

T
�

t=1

ft(�t) −

T
�

t=1

ft(�̂) + LT𝛿 +
RLT𝛿

r

≤

T
�

t=1

(f̂t(�t) + 𝛿L) −

T
�

t=1

(f̂t(�̂) − 𝛿L) + LT𝛿 +
RLT𝛿

r

=

T
�

t=1

f̂t(�t) −

T
�

t=1

f̂t(�̂) + 3LT𝛿 +
RLT𝛿

r

��t
[�̃t] =��t

[

n

2𝛿
(ft(�t + 𝛿�t) − ft(�t − 𝛿�t))�t

]

=��t

[

n

𝛿
ft(�t + 𝛿�t)�t

]

= ∇f̂t(�t)

(21)�

[

T
∑

t=1

(f̂t(�t) − f̂t(�̂))

]

= �

[

T
∑

t=1

(�t(�t) − �t(�̂))

]

.

��t(�) − �t(�)� ≤�f̂t(�) − f̂t(�)� + �(�̃t − ∇f̂t(�t))
⊤(� − �)�

≤L‖� − �‖ + ‖�̃t − ∇f̂t(�t)‖‖� − �‖

≤(L + ‖�̃t‖ + ‖∇f̂t(�t)‖)‖� − �‖

≤(2L + Ln)‖� − �‖

889Machine Learning (2022) 111:871–893	

1 3

Let L̃ = 2L + Ln . Since �t(�) is �-strongly convex and L̃-Lipschitz. Applying Theorem 1 to
the functions 𝓁1(�),⋯ ,𝓁T (�) , we have

Combining (20), (21), (22), and � =
c lnT

T
 , we have

‖�̃t‖ =
n

2𝛿
�ft(�t + 𝛿�t) − ft(�t − 𝛿�t)� ≤

n

2𝛿
L‖2𝛿�t‖ = nL.

(22)
T
∑

t=1

(�t(�t) − �t(�̂)) ≤

(

6𝛽RL̃ +
5L̃2

2

)

d

𝛽
(1 + ln T).

0 200 400 600 800 1000
10-1

100

101

102

0 200 400 600 800 1000
10-1

100

101

102

(a) Low Delayed Setting (b) High Delayed Setting

Fig. 1   Comparisons of our DOGD-SC against OGD-SC and DOGD

0 200 400 600 800 1000
10-1

100

101

102

0 200 400 600 800 1000
10-1

100

101

102

(a) Low Delayed Setting (b) High Delayed Setting

Fig. 2   Comparisons of our DOGD-SC
n+1 and DOGD-SC

2
 against DBGD

890	 Machine Learning (2022) 111:871–893

1 3

which completes this proof.

5 � Experiments

In this section, we conduct numerical experiments to verify the performance of our DOGD-
SC and its bandit variants for strongly convex functions.

The experimental setup is inspired by Li et al. (2019). In each round t, the player
chooses a decision �t from the unit ball X = {� ∈ ℝ

10
�‖�‖ ≤ 1} , which satisfies Assump-

tion 3 with R = 1 and Assumption 4 with r = 1 . Then, the loss function is generated as
ft(�) = ‖�‖2 + �⊤

t
� where each element of �t is uniformly sampled from [−1, 1] . Since

∇ft(�) = 2� + �t , we have ‖∇ft(�)‖ ≤ 2‖�‖ + ‖�t‖ ≤ 2 +
√

10 for any � ∈ X  , which
implies that each function ft(�) satisfies Assumption 1 with L = 2 +

√

10 . We also note that
each function ft(�) is 2-strongly convex and 2-smooth, which satisfies Assumptions 2 and 5
, respectively. We set T = 1000 , and consider two cases: the low delayed setting, in which
the delays are periodically generated with length 2, 3, 2, 1, 4, 1, 3, and the high delayed set-
ting, in which the delays are periodically generated with length 20, 30, 20, 10, 40, 10, 30.
In the low delayed setting, the maximum delay is d = 4 = O(1) . In the other setting, the
maximum delay d = 40 is on the order of O(

√

T).
We compare our DOGD-SC against online gradient descent for strongly con-

vex functions (OGD-SC) (Hazan et al. , 2007) and DOGD (Quanrud and Khashabi
, 2015), and compare our DOGD-SCn+1 and DOGD-SC2 against DBGD (Li et al. ,
2019). Specifically, OGD-SC is implemented without delay, and other algorithms
are implemented with delayed feedback. The parameters of these algorithms are set
as what their theoretical results suggest. For OGD-SC, we set the learning rate as
�t = 1∕(�t) , where � = 2 in our experiments. For DOGD and DBGD, a constant learn-
ing rate � = 1∕(L

√

T + D) is used. Moreover, we set � = 1∕(T + D) for DBGD, and
� = lnT∕T for DOGD-SCn+1 and DOGD-SC2 . Furthermore, we initialize the decision
as �1 = �∕

√

10 for algorithms in the full information setting, and �1 = (1 − �)�∕
√

10
for algorithms in the bandit setting, where � denotes the vector with each entry equal
1. Due to the randomness of DOGD-SC2 , we run it 10 times and report the average
results.

�

[

1

2

T
∑

t=1

2
∑

i=1

ft(�t,i) −

T
∑

t=1

ft(�)

]

≤ �

[

T
∑

t=1

(f̂t(�t) − f̂t(�̂))

]

+ 3LT𝛿 +
RLT𝛿

r

= �

[

T
∑

t=1

(�t(�t) − �t(�̂))

]

+ 3LT𝛿 +
RLT𝛿

r

≤

(

6𝛽RL̃ +
5L̃2

2

)

d

𝛽
(1 + ln T) + 3LT𝛿 +

RLT𝛿

r

=

(

6𝛽RL̃ +
5L̃2

2

)

d

𝛽
(1 + ln T) + 3cL ln T +

cRL ln T

r
= O(d logT)

891Machine Learning (2022) 111:871–893	

1 3

Figure 1 shows the cumulative loss for OGD-SC, DOGD, and our DOGD-SC. We
find that in both low and high delayed settings, our DOGD-SC is better than DOGD.
Moreover, in the low delayed setting, the performance of our DOGD-SC is sig-
nificantly better than DOGD, and close to OGD-SC. These results confirm that our
DOGD-SC can utilize the strong convexity to achieve better regret. Figure 2 shows
the cumulative loss for DBGD, DOGD-SCn+1 , and DOGD-SC2 . In both low and high
delayed settings, our DOGD-SCn+1 and DOGD-SC2 are better than DBGD. Although
DOGD-SC2 is worse than DOGD-SCn+1 , which is reasonable because DOGD-SC2 only
queries two points per round, instead of n + 1 points queried by DOGD-SCn+1.

6 � Conclusion and future work

In this paper, we consider the problem of OCO with unknown delays, and present a
variant of DOGD for strongly convex functions called DOGD-SC. According to our
analysis, it enjoys a better regret bound of O(d log T) for strongly convex functions. Fur-
thermore, we extend our DOGD-SC and its theoretical guarantee to the bandit setting
by combining with the classical (n + 1)-point and two-point gradient estimators. Experi-
mental results verify the performance of DOGD-SC and its bandit variants for strongly
convex functions.

An open question is whether our results can be extended to exponentially concave (exp-
concave) functions. We note that in the standard OCO, Hazan et al. (2007) have proposed
online Newton step to achieve an O(n logT) regret bound for exp-concave functions. More-
over, it is also appealing to investigate whether the maximum delay d in our regret bounds
can be replaced with the average delay

∑T

t=1
dt∕T  , which could be smaller than d.

Author Contributions  All authors contributed to the study conception and design. Formal analysis was per-
formed by Yuanyu Wan and Lijun Zhang. The experiments were performed by Yuanyu Wan. The first draft
of the manuscript was written by Yuanyu Wan, and all authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript. Lijun Zhang acquired the funding, and was
responsible for the research activity planning and execution.

Funding  This work was partially supported by National Natural Science Foundation of China (61921006,
61976112), and Jiangsu Science Foundation (BK20200064).

Data availability and material/Code availability  Synthetic data and source code are available in https://​
github.​com/​wanyy​nju/​MLJ21.

Declarations 

 Conflict of interest  The authors have no conflicts of interest to declare that are relevant to the content of this
article.

References

Abernethy, J. D., Bartlett, P. L., Rakhlin, A., & Tewari, A. (2008). Optimal stragies and minimax lower
bounds for online convex games. In Proceedings of the 21st annual conference on learning theory (pp.
415–424).

https://github.com/wanyynju/MLJ21
https://github.com/wanyynju/MLJ21

892	 Machine Learning (2022) 111:871–893

1 3

Agarwal, A., Hazan, E., Kale, S., & Schapire, R. E. (2006). Algorithms for portfolio management based on
the Newton method. In Proceedings of the 23rd international conference on machine learning (pp.
9–16).

Agarwal, A., Dekel, O., & Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-
point bandit feedback. In Proceedings of the 23rd annual conference on learning theory (pp. 28–40).

Blum, A., & Kalai, A. (1999). Universal portfolios with and without transaction costs. Machine Learning,
35(3), 193–205.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge University Press.
Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research, 12, 2121–2159.
Flaxman, A. D., Kalai, A. T., & McMahan, H. B. (2005). Online convex optimization in the bandit setting:

Gradient descent without a gradient. In Proceedings of the 16th annual ACM-SIAM symposium on
discrete algorithms (pp. 385–394).

Gaillard, P., Stoltz, G., & van Erven, T. (2014). A second-order bound with excess losses. In Proceedings of
the 27th annual conference on learning theory (pp. 176–196).

Hazan, E. (2016). Introduction to online convex optimization. Foundations and Trends in Optimization,
2(3–4), 157–325.

Hazan, E., & Kale, S. (2012). Projection-free online learning. In Proceedings of the 29th international con-
ference on machine learning (pp. 1843–1850).

Hazan, E., Agarwal, A., & Kale, S. (2007). Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2), 169–192.

He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., & Candela, J.
Q. (2014). Practical lessons from predicting clicks on ads at facebook. In Proceedings of the 8th inter-
national workshop on data mining for online advertising (pp. 1–9).

Héliou, A., Mertikopoulos, P., & Zhou, Z. (2020). Gradient-free online learning in games with delayed
rewards. In Proceedings of the 37th international conference on machine learning (pp. 4172–4181).

Joulani, P., György, A., & Szepesvári, C. (2013). Online learning under delayed feedback. In Proceedings of
the 30th international conference on machine learning (pp. 1453–1461).

Joulani, P., György, A., & Szepesvári, C. (2016). Delay-tolerant online convex optimization: Unified analy-
sis and adaptive-gradient algorithms. In Proceedings of the 30th AAAI conference on artificial Intel-
ligence (pp. 1744–1750).

Khashabi, D., Quanrud, K., & Taghvaei, A. (2016). Adversarial delays in online strongly-convex optimiza-
tion. arXiv:​16050​6201v1.

Langford, J., Smola, A. J., & Zinkevich, M. (2009). Slow learners are fast. Advances in Neural Information
Processing Systems, 22, 2331–2339.

Li, B., Chen, T., & Giannakis, G. B. (2019). Bandit online learning with unknown delays. In Proceedings of
the 22nd international conference on artificial Intelligence and statistics (pp. 993–1002).

McMahan, H. B., & Streeter, M. (2010). Adaptive bound optimization for online convex optimization. In
Proceedings of the 23rd conference on learning theory (pp. 244–256).

McMahan, H. B., & Streeter, M. (2014). Delay-tolerant algorithms for asynchronous distributed online
learning. Advances in Neural Information Processing Systems, 27, 2915–2923.

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L., Phillips, T., Davydov, E.,
Golovin, D., Chikkerur, S., Liu, D., Wattenberg, M., Hrafnkelsson, A. M., Boulos, T., & Kubica, J.
(2013). Ad click prediction: a view from the trenches. In Proceedings of the 19th ACM SIGKDD inter-
national conference on knowledge discovery and data mining (pp. 1222–1230).

Mesterharm, C. (2005). On-line learning with delayed label feedback. In Proceedings of the 16th interna-
tional conference on algorithmic learning theory (pp. 399–413).

Quanrud, K., & Khashabi, D. (2015). Online learning with adversarial delays. Advances in Neural Informa-
tion Processing Systems, 28, 1270–1278.

Saha, A., & Tewari, A. (2011). Improved regret guarantees for online smooth convex optimization with
bandit feedback. In Proceedings of the 14th international conference on artificial intelligence and sta-
tistics (pp. 636–642).

Shalev-Shwartz, S. (2011). Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2), 107–194.

Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007). Pegasos: Primal estimated subgradient solver for SVM.
In Proceedings of the 24th international conference on machine learning (pp. 807–814).

Shamir, O., & Szlak, L. (2017). Online learning with local permutations and delayed feedback. In Proceed-
ings of the 34th international conference on machine learning (pp. 3086–3094).

http://arxiv.org/abs/160506201v1

893Machine Learning (2022) 111:871–893	

1 3

Wan, Y., Tu, W. W., & Zhang, L. (2020). Projection-free distributed online convex optimization with O(
√

T)
communication complexity. In Proceedings of the 37th international conference on machine learning
(pp. 9818–9828).

Wan, Y., Tu, W. W., & Zhang, L. (2021a). Strongly adaptive online learning over partial intervals. Science
China Information Sciences.

Wan, Y., Wang, G., & Zhang, L. (2021b). Projection-free distributed online learning with strongly convex
losses. arXiv:​21031​1102

Wang, G., Lu, S., Cheng, Q., Tu, W. W., & Zhang, L. (2020). Sadam: A variant of adam for strongly convex
functions. In International conference on learning representations (pp. 1–21).

Weinberger, M. J., & Ordentlich, E. (2002). On delayed prediction of individual sequences. IEEE Transac-
tions on Information Theory, 48(7), 1959–1976.

Zhang, L., Lu, S., & Zhou, Z. H. (2018). Adaptive online learning in dynamic environments. Advances in
Neural Information Processing Systems, 31, 1323–1333.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent. In Pro-
ceedings of the 20th international conference on machine learning (pp. 928–936).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/210311102

	Online strongly convex optimization with unknown delays
	Abstract
	1 Introduction
	2 Related work
	2.1 The standard OCO
	2.2 OCO with fixed and known delays
	2.3 OCO with arbitrary but time-stamped delays
	2.4 OCO with unknown delays

	3 Main results
	3.1 DOGD-SC with improved regret
	3.2 The extension to the bandit setting with unknown delays
	3.3 The extension to the bandit setting with time-stamped delays

	4 Theoretical analysis
	4.1 Proof of Theorem 1
	4.2 Proof of lemma 1
	4.3 Proof of lemma 2
	4.4 Proof of lemma 3
	4.5 Proof of theorem 2
	4.6 Proof of theorem 3

	5 Experiments
	6 Conclusion and future work
	References

