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Abstract
Label noise is now a common problem in many applications, which may lead to significant 
learning performance degeneration. To deal with the label noise, Active Label Correction 
(ALC) was proposed to query the true labels for a small subset of instances. As the true 
labels costs can be high, the focus of ALC is to maximally improve the learning perfor-
mance with minimal query costs. Existing ALC methods mainly proceed by querying the 
most likely mislabeled instances, or using criteria derived from standard active learning. 
In this paper, we focus on deep neural network models and show that due to their intrinsic 
memorization effect, the true labels of a large proportion of mislabeled instances can be 
correctly predicted with early stopped training, even under severe noise. Inspired by this, 
we propose to train deep label noise learning models robustly with dual ALC (DALC): on 
one hand, we select the most useful instances for classifier improvement and query their 
true labels from external experts; on the other hand, due to the active data sampling bias, 
the label noise model estimation can be highly biased, which may in turn hurt the classifier 
learning. To alleviate this issue, we propose to identify the instances that are most likely 
predicted with true labels by the classifier, and take the predictions as their true labels. 
By integrating the two sources of true labels, we experiment on multiple benchmark data-
sets with various label noise rate and show the effectiveness of the proposed DALC on 
both the classification accuracy and the label noise model estimation. The code is available 
at https://​github.​com/​lilyl​isy/​mlj21​DALC. 
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1  Introduction

With the advancement of deep learning on many domains, datasets are becoming bigger 
and bigger. However, in many real-world applications, obtaining large scale accurate labels 
is often infeasible due to the high cost or labeling difficulty, thus extensive data come along 
with noisy labels. For example, web crawling images with automatic label extractions 
(Krause et al., 2016; Xiao et al., 2015), crowdsourcing annotated tasks (Horvitz, 2007; Li 
et al., 2021), and data poisoning (Steinhardt et al., 2017). Inspiring studies have shown that 
label noise can significantly degenerates the performance of learning models (Angluin & 
Laird, 1987; Zhang et al., 2016), thus label noise robust algorithms have attracted much 
attention in recent years.

Recent researches have investigated acquiring true labels for some of the training instances, 
such that the generalization performance can be increased. As the cost of true labels can be 
high, e.g., through additional measurements or human experts, Active Label Correction (ALC) 
has been proposed from the active learning perspective (Kremer et al., 2018; Nallapati et al., 
2009; Rebbapragada et al., 2012; Samel & Miao, 2018; Urner et al., 2012). Similar to stand-
ard active learning, ALC involves querying the true labels for a subset of training instances 
through human interaction. Unlike standard active learning, which acquires labels for unla-
beled instances, for ALC, the training data are all labeled with a certain number of errors.

Early ALC works (Nallapati et al., 2009; Rebbapragada et al., 2012) focused themselves 
on detecting the mislabeled instances and re-labeling, without considering label noise mod-
eling, which however is supposed to be easier to estimate with relatively small number of 
instances and can correct the noise. Following works (Kremer et al., 2018; Samel & Miao, 
2018; Urner et al., 2012) remedied this by incorporating a label noise model, and adopt-
ing the active selection strategies derived from standard active learning, e.g., maximum 
expected model change (Kremer et  al., 2018), uncertainty (Samel & Miao, 2018; Urner 
et al., 2012). A common limitation of these methods is that, as the true labels are not que-
ried uniformly at random, the label noise model estimation can be seriously biased, which 
in turn would lead to inferior performance. Besides, these methods do not yet exploit the 
intrinsic fitting characteristics of deep learning models.

Taking the widely adopted transition matrix noise model as an example. Formally, let 
Y denote the clean label, Ȳ  denote the noisy label, X the instance, the transition matrix 
is defined as, Tij(x) = P(Ȳ = j|Y = i,X = x) , which represents the transition probabilities 
that clean labels flip into noisy labels. As T(x) is generally hard to learn, current state-of-
the-art methods typically assume that T is class-dependent and instance independent, i.e., 
P(Ȳ = j|Y = i,X = x) = P(Ȳ = j|Y = i) . Transition matrix plays an essential role in build-
ing classifier-consistent algorithm in label noise learnig, i.e., by using the transition matrix 
T and noisy class posterior P(Ȳ = j|X = x) (which can be estimated using noisy data), the 
clean class posterior P(Y = j|X = x) can be inferred with strong theoretical ground (Han 
et al., 2018; Natarajan et al., 2013; Patrini et al., 2017).

Figure 1 shows an illustrative example of learning deep neural network classifiers with 
forward loss correction via leveraging transition matrix (Patrini et al., 2017). The experi-
ment is conducted on CIFAR-10 with 40% symmetric label errors.1 (a)–(b) show the 

1  The experimental details can be found in the experiments setting in Sect.  4.1.



1105Machine Learning (2022) 111:1103–1124	

1 3

estimation errors of the transition matrix, when 5% training instances are queried with true 
labels and used for transition matrix estimation. The true labels are queried by random 
sampling and uncertainty sampling (largest entropy) respectively. The error is calculated 
by |T − T̂|∕T  , with T̂  and T as the estimated and groundtruth transition matrix. It can be 
seen that due to the data sampling bias, the transition matrix estimation error of uncertainty 
query is severely larger than that of the random strategy.

Figure 1c demonstrates the fitting characteristics of the deep neural network classifier 
on noisy data. Note that in this case, we have not use ALC, i.e., no extra true labels are 
used in training. It demonstrates the prediction loss distribution of the learned classifier on 
the training instances. For better illustration, we split the training instances into four groups 
based on their training labels and the classifier’s predictions: c-labeled (m-labeled) means 
the training instances are correctly labeled (mislabeled), c-predicted (w-predicted) means 
the classifier’s predictions are correct (wrong) with respect to their groundtruth labels. 
With early stopped training, it can be seen that, (1) the losses of the correctly labeled 
instances are much smaller than that of the mislabeled ones, (2) rather inspiring, for a large 
proportion of mislabeled instances, although their training labels are wrong, the classifier 
can correctly predict their true labels.

The results of Fig. 1c can be explained by the critical memorization effects of deep neu-
ral networks found by Arpit et al. (2017), i.e., deep neural networks tend to memorize and 
fit easy (clean) patterns first, and then gradually overfit hard (noisy) patterns. This phenom-
enon has inspired early stopping (Li et al., 2020) and small-loss tricks (Han et al., 2018; 
Jiang et al., 2018) to combat with noisy labels, which respectively avoid overfitting noisy 
labels to some degree by ending training early, and treat the small-loss instances as clean 
instances and only back propagates them to update the model parameters. However, such 
memorization effects are rarely leveraged in ALC to help select the most helpful instances 
with low query cost.

Motivated by the above phenomena, in this paper, we propose our Dual Active Label 
Correction (DALC) approach for deep label noise learning, which try to learn an accurate 
dnn classifier as well as low biased noise model with less labeling cost. In a high level, we 
introduce true labels iteratively for some selected instances, and then conduct learning. For 
the truly labeled instances and noisy labeled instances, we respectively use normal cross 
entropy loss, and forward corrected cross entropy loss via leveraging the transition matrix 

(a) (b) (c)

Fig. 1   Illustrative experimental results on CIFAR-10 with symmetric label noise ratio 40% as an example. 
a, b are respectively the estimation errors of the transition matrix with 5% training instances with true labels 
queried by random and uncertainty strategies, which are calculated as |T − T̂|∕T  , with T̂  denoting the esti-
mated transition matrix, T the groundtruth transition matrix. c is the cross entropy loss distribution of the 
dnn classifier on all training instances without active true label query when trained early stopped
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noise model. Specifically, different from existing ALC methods, our DALC framework 
proposes to select instances to get true labels from external human experts as well as from 
the internal classifier prediction. For the external experts labeling, we propose an uncer-
tainty query strategy to select instances with most uncertain label prediction to query their 
true labels. The most uncertain instances are supposed to contribute most to improving the 
classifier. For the internal classifier labeling, we propose one confidence query strategy to 
identify instances that are most likely correctly predicted, and use the classifier’s prediction 
as the true label. The confidence query strategy leverages the memorization effects of deep 
neural networks with early stopped training. Combing the two sources of instances, the 
transition matrix estimation bias induced by the uncertainty strategy can be alleviated. In 
comparison with the small-loss tricks which tend to select correctly labeled instances, we 
empirically show that the confidence strategy can also detect and re-correct noisy labels.

The rest of the paper is organized as follows. In Sect. 2, we give a brief review of related 
work. Then, we formulate our problem and propose the DALC method. Section 4 reports 
several empirical results on a number of label-noise learning benchmark data. Finally, we 
give a conclusion in Sect. 5.

2 � Related work

Label noise is not new in the machine learning field, whose study can be dated back to the 
work of Angluin and Laird (1987), which discussed the possibility of learning algorithms 
to cope with incorrect training data. Since then, with the ubiquitous noisy and imperfect 
labels or annotations in real world environment, designing noise robust learning models 
has become urgent. According to whether the learned classifier is statistically consistent, 
i.e., whether the classifier guarantees to converge to the optimal classifier trained on the 
clean labels, existing label noise learning algorithms can be roughly categorized into two 
groups: statistically inconsistent methods and statistically consistent ones. Many state-
of-the-art approaches with statistically inconsistent classifiers are specifically designed 
through some heuristic, e.g., reliable example filtering (Han et al., 2018; Jiang et al., 2018; 
Li et al., 2020; Ren et al., 2018), robust losses (Liu & Guo, 2020; Ma et al., 2020; Zhang 
& Sabuncu, 2018), label correction (Reed et al., 2014; Tanaka et al., 2018), and regulariza-
tion (Li et al., 2017, 2020; Liu et al., 2020).

The classifier consistent algorithms basically introduce a noise transition matrix which 
models the probabilities of clean labels flipping into noisy labels, and build up the relation-
ship between the latent true labels and observed noisy labels (Goldberger & Ben-Reuven, 
2017; Natarajan et al., 2013; Patrini et al., 2017). For such line of work, the major concern 
is how to effectively estimate the transition matrix and leverage the estimated matrix to 
combat with the label noise. Liu and Tao (2016) proposed to estimate the transition matrix 
through cross-validation, and then build an importance weighted loss function using the 
estimated matrix. As the computational complexity for the transition matrix estimation 
is prohibited for multi-class problems, this method only applies to binary classification. 
Goldberger and Ben-Reuven (2017), Sukhbaatar et  al. (2015) proposed to add an adap-
tation layer with different constraints after the softmax output layer of the classifier. The 
adaptation layer can be regarded as a transition matrix function. Treating the classifier and 
the transition matrix as components of the same network, the transition matrix and the 
classifier are estimated simultaneously in an end to end manner by back propagating the 
cross-entropy loss. Patrini et al. (2017) proposed to leverage the noise transition matrix to 
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conduct loss correction, such that training on the noisy labels via the corrected loss should 
be approximately equal to training on clean labels via the original loss. In Patrini et  al. 
(2017), two loss correction methods have been proposed, i.e., the forward correction and 
the backward correction, which respectively corrects the classifier’s predictions and the 
cross entropy loss by transition matrix. Empirically the backward correction method has 
been reported to perform worse than the forward method. As one state-of-the-art noisy 
label learning method, forward loss correction has been widely used as the base model of 
various following methods (Hendrycks et al., 2018; Xia et al., 2019; Yao et al., 2020). For 
a comprehensive understanding of the label noise learning field, we recommend the recent 
reviews (Frenay & Verleysen, 2014; Han et al., 2020; Song et al., 2020).

In this paper, we also adopt the forward loss correction method (Patrini et al., 2017) as 
our base model, and propose to actively select a small set of training instances to obtain 
their true labels to ensure robustness gains. Rebbapragada et al. (2012), Urner et al. (2012) 
seemed to be the earliest work exploring this idea, respectively formulated as active label 
correction and learning from weak teachers. Nallapati et al. (2009) shared the similar idea 
with Rebbapragada et al. (2012), which try to detect and re-label the mislabeled instances, 
and then conduct learning for classic statistical models such as logistic regression, svm on 
the cleaned data, without modeling and combating with the label noise during model train-
ing. Urner et al. (2012) assumed that the instances labels are likely to be correct in label-
homogeneous regions and deteriorate near classification boundaries, and analyzed the sam-
ple complexity of the setting. The most closely related work to us are Kremer et al. (2018), 
Samel and Miao (2018), which considered using deep neural network as learning model 
and incorporated a label noise model. Kremer et  al. (2018) adopted the active selection 
strategies derived from maximum expected model change, Samel and Miao (2018) used 
one margin measure defined as the discrepancy of the predicted label and the observed 
label. One common drawback of Kremer et al. (2018), Samel and Miao (2018) is that, they 
ignore the label noise model estimation bias which could be serious due to the active data 
sampling bias. They also ignored exploiting the intrinsic characteristics of deep learning 
models to help reduce this bias and further save labeling cost.

Note that there are also some other label noise learning methods which leverage clean 
labels for neural network pretrain or knowledge distillation or transition matrix estimation, 
e.g., (Hendrycks et al., 2018; Li et al., 2017; Ren et al., 2018; Veit et al., 2017; Xiao et al., 
2015). Whereas these work assume readily available clean labels, which is different from 
our active label correction concern.

3 � The proposed approach

We use X ⊂ ℝ
d to denote the instance space, Y = {1, 2,… ,C} to denote the label space, 

x ∈ X  to denote one specific instance and y ∈ Y to denote one specific label value. With X, 
Y denoting the random variables, we use P(X, Y) to represent the ground-truth joint prob-
ability distribution over the instance label pairs (x, y). In label noise learning, rather than 
ground-truth labels, a training set D = {(xi, ȳi)

N
i=1

} with noisy labels ȳ drawn from a cor-
rupted label probability distribution P(Ȳ|X) is given. Here we use Ȳ  to denote the corrupted 
label. The learning target is to learn the mapping from X to Y for the ground-truth joint 
distribution P(X, Y), i.e., predicting the true label y for any given instance x ∈ X .
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In the following, we will first introduce the key concept of noise transition matrix, then 
the forward loss correction base model we used as our noisy label learning model, and then 
propose our dual active label correction (DALC) approach.

3.1 � Transition matrix

Definition 1  (Noise transition matrix van Rooyen & Williamson, 2017) Suppose that the 
observed label ȳ is noisy i.i.d. drawn from a corrupted distribution P(Y|x), where features 
are intact. Meanwhile, there exists a corruption process, transitioning from the latent clean 
label y to the observed noisy label ȳ . Such corruption process can be approximately mod-
eled via a label transition matrix T, where Tij = P(Ȳ = j|Y = i).

From the definition, the (i,  j)-th entry Tij = P(Ȳ = j|Y = i) represents the probability that 
instance x belonging to class i having a noisy class label j. Thus the following import equation 
between the noisy label posterior P(Ȳ|X) and the clean label posterior P(Y|X) can be induced 
as:

Based on Eq. (1), it can be seen that the clean label posterior P(Y|X) can be inferred by 
using the T and the noisy label posterior P(Ȳ|X) . This equation has been widely used in 
label noise domain to learn statistically consistent classifiers. That is to say, the classifier 
learned by using the noisy labels ȳ will asymptotically converges to the optimal classifier 
defined on the clean label y (Natarajan et al., 2013; Patrini et al., 2017; Xia et al., 2019; 
Yao et al., 2020).

Note that here a simplified assumption is made that the noise transition matrix T is only 
class-dependent, i.e., T(x)ij = Tij for any x. While in practice the noise pattern can be more 
complex, this simplification makes T to be identifiable under mild conditions and has been 
shown to be rather effective in capturing aspects of the label noise and guiding learning by 
vast works. Next, we introduce the forward loss correction model proposed by Patrini et al. 
(2017) as our base learning model, which is one state of the art noisy label learning method 
and base model of a variety of works (Hendrycks et al., 2018; Kremer et al., 2018; Xia et al., 
2019; Yao et al., 2020).

3.2 � Forward loss correction base model

Loss correction is an important branch in label noise learning via leveraging the transition 
matrix. The aim of loss correction is that, training on noisy labels via the corrected loss should 
be approximately equal to training on clean labels via the original loss.

Using the deep neural network as learning model, Patrini et al. (2017) introduced the for-
ward loss correction technique, which corrects the network predictions by the transition matrix 
T. Using g(x;�) to denote the softmax output of the deep neural network classifier g(⋅) for 
some instance x with parameter �:

The noisy label prediction f(x) is derived with the transition matrix as:

(1)P(Ȳ = j|X = x) =

C∑

i=1

TijP(Y = i|X = x;𝜃).

(2)g(x;𝜃) = P̂(Y|X = x) ≈ P(Y|X = x).
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Given the noisy data (xi, ȳi) , a specific loss function � , e.g., the cross entropy loss we used 
in our paper, the network parameter � and the transition matrix T, the forward correction 
loss �→ is defined as:

For the forward loss correction defined in Eq. 4, Patrini et al. (2017) gives a formal theo-
retical guarantee w.r.t the clean data distribution as following:

Theorem  1  (Forward Correction, Theorem  1 in Patrini et  al. 2017) Suppose that the 
label transition matrix T with Tij = P(Ȳ = j|Y = i) is non-singular. Given loss � and net-
work parameter � , the minimizer of the corrected loss �→ under the noisy distribution is the 
same as the minimizer of the original loss � under the clean distribution:

Theorem 1 shows that the noise transition matrix plays an essential role in the loss 
correction model, whose estimation quality will signficantly impact the learning perfor-
mance. Patrini et  al. (2017) originally proposed one heuritic approach to estimate the 
transition matrix, and then minimize the corrected loss in Eq. (4) over all instances to 
learn the neural network classifier with transition matrix fixed. They first train a neural 
network on the noisy data D = {(xi, ȳi)

N
i=1

} , then use this network to get the noisy class 
posterior prediction P̂(Ȳ = i|X = x) for each instance x. For each class i, they identify 
the set of instances Ai with largest P̂(Ȳ = i|X = x) as truely belonging to class i, i.e., 
P̂(Y = i|X = x) ≈ 1 , and then estimate the transition matrix using the following equa-
tion, which is derived from Eq. (1):

Algorithm 1 summarizes the process of the forward loss correction algorithm. From Eq. 
(6), it can be seen that the transition matrix estimation depends on the subset of data Ai 
with clean labels. Actually, a number of statistically consistent methods (Goldberger & 
Ben-Reuven, 2017; Hendrycks et  al., 2018; Patrini et  al., 2017; Sukhbaatar et  al., 2015; 
Xia et al., 2019; Yao et al., 2020) have been proposed mainly on how to better estimate the 
subset Ai and the transition matrix.

In this paper, we focus on actively selecting instances with clean labels. We emphasize 
that the data sampling bias of standard active strategies can lead to highly biased transi-
tion matrix estimation. E.g., when using the common uncertain strategy (largest entropy) to 
query clean labels, i.e., instances with most uncertain predictions g(x;𝜃) = P̂(Y|X = x) are 
selected, their noisy class posterior predictions f (x) = T⊤g(x;𝜃) = P̂(Ȳ|X = x) are inevita-
bly to be more uncertain with larger entropy. By Eq. (6), each row T̂i⋅ is computed as the 
average of P̂(Ȳ = j|X = x) for x ∈ Ai , meaning that the uncertain strategy would prefer T̂i⋅ 
with large entropy.

To alleviate this effect, we propose our dual active label correction method by incopo-
rating a subset of instances with most confident predictions g(x;�) , whose noisy class pos-
terior predictions f(x) tend to be confident with small entropy. Combing the two sources of 

(3)f (x) = T⊤g(x;𝜃) = P̂(Ȳ|X = x) ≈ P(Ȳ|X = x).

(4)�
→(xi, ȳi;𝜃) ∶= �(T⊤g(xi;𝜃), ȳi).

(5)argmin�xi,ȳi
�
→(xi, ȳi;𝜃) = argmin�xi,yi

�(xi, yi;𝜃).

(6)T̂ij =
1

Ai

∑

x∈Ai

P̂(Ȳ = j|X = x).



1110	 Machine Learning (2022) 111:1103–1124

1 3

instances, the transition matrix estimation bias is expected to be reduced. We will explain 
the details in the next subsection.

3.3 � The dual active label correction (DALC) framework

We use the forward loss correction model as our base learning model. During the train-
ing, DALC progressively queries the true labels of a subset of the training data, and 
feeds them into the model to update the transition matrix T and the neural network 
g(x;�) . The true labels come from two sources, i.e., from both external human experts 
and the internal classifier’s predictions. The instances for which the classifier is most 
uncertain are selected for querying true labels from human experts, which are supposed 
to be diffcult instances for the classifier. Considering that the active sampling bias may 
lead to serious transition matrix estimation error, which in turn would hurt the classi-
fier learning, we take advantage of the memorization effects of deep neural networks. 
Specifically, we propose one confidence measure to select instances that are most likely 
correctly predicted by the classifier, and use the predicions as their true labels.

In the following we will first explain the uncertainty and confidence measures, and 
then summarize the algorithm.

3.3.1 � The selection measures

Uncertainty Uncertainty is a commonly used measure in traditional active learn-
ing, which measures how uncertain the prediction of the current classifier is for some 
instance. With P̂(Y|X = x) denoting the label probability prediction of the classifier 
g(x;�) on some instance x, we propose two uncertainty criteria for the training instances.

•	 Largest Entropy The first is the commonly used unsupervised entropy measure. 
Instances with largest prediction entropy are supposed to be difficult for the classi-
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fier. We select them to query the true labels from the human experts. The entropy of 
the classifier prediction g(x;𝜃) = P̂(Y = i|X = x) for instance x is defined as: 

•	 Largest Loss As we have labels for the training data, the classifier’s prediction loss on 
each instance can be used as one uncertainty measure. Given one instance (x, ȳ) , the 
loss is computed between the classifier’s prediction g(x;�) and the given training label 
ȳ : 

 This measure coincides with the small-loss tricks and stems from the memorization 
effects of deep neural networks (Arpit et al., 2017), i.e., during the optimization pro-
cess, the deep neural networks tend to memorize and fit easy (clean) patterns first, and 
then gradually overfit hard (noisy) patterns. With early stopped training, the small loss 
and large loss instances can be respectively regarded as correctly labeled and misla-
beled instances. The large loss measure tends to detect the mislabeled instances and 
query their true labels.

Confidence To combat with the transition matrix estimation bias induced by the active 
sampling bias, and further save query cost, we propose to identify the most likely correctly 
predicted instances and use their predicions as the true labels. In parallel with the uncer-
tainty measure, we also make use of the entropy and loss defined in Eqs. (7) and (8) to get 
the confidence measure. Different from the external human query which select the most 
uncertain instances with largest entropy and largest loss, for the internal clasifier’s predic-
tion selection, the most confident instance predictions with least entropy and least loss are 
selected.

After define the uncertainty and confidence meansures, next we will introduce the selec-
tion and utilization details of queried true labels.

3.3.2 � The DALC algorithm

The main steps for the proposed DALC (Dual Active Label Correction) algorithm are sum-
marized in Algorithm 2. Before conducting the active data sampling, one initial classifier 
g(x;�) and the noisy label posterior estimation P̂(Ȳ|X) are obtained by using the forward 
loss correction method on D described in Algorithm 1. Then based on the predictions of 
g(x;�) , two subsets of most uncertain instances Ah (with largest entropy) and most con-
fident instances Ag (with smallest entropy or loss score) are selected according to their 
entropy or loss scores defined in Eqs. (7, 8). For each instance x ∈ Ah , its true label is 
queried from human experts; for each instances x ∈ Ag , the classifier’s prediction g(x;�) 
is used as its true label. Then we remove Ah ∪ Ag from D, and get two groups of instances 
Ah ∪ Ag and D respectively with true labels and noisy labels. After that, each entry of the 
transition matrix T̂ij is estimated using Eq. (6). The classifier g(x;�) is trained using loss 
�(g(xi;𝜃), ȳi) for instances belonging to Ah ∪ Ag and �→(xi, ȳi;𝜃) for instances belonging to 
D − Ah − Ag , i.e., the mixed loss defined as following:

(7)entropy(x) = −

C∑

i=1

g(x;�) ⋅ log g(x;�).

(8)loss(x) = �(g(x;𝜃), ȳ).
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The active process repeats until the the query budget is reached or the classifier obtains a 
specified performance.

Note that in Algorithm 2, our DALC algorithm employs the entropy score rather than 
the loss to measure the uncertainty. The loss score based uncertainty defined in Eq. (8) is 
actually the main movitation of Nallapati et al. (2009), Rebbapragada et al. (2012), whose 
target is detecting and relabeling the mislabeled instances, and then training the classic sta-
tistical learning models with cleaned data. However, as shown in Fig. 1c, or the deep neural 
networks, they are characterized by correctly predicting the true labels for noisy instances 
even with large loss. In the experiment, we will show more details about the effects of the 
loss score based uncertainty measures.

4 � Experiments

4.1 � Settings

Dataset We perform experiments on CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Kriz-
hevsky, 2009) and MNIST (LeCun et  al., 1998), which are commonly used benchmark 
dataset in label noise learning tasks. CIFAR-10 has 10 classes of images including 50, 000 

(9)�
m ∶=

∑

xi∈Ah∪Ag

�(g(xi;𝜃), yi) +
∑

xi∈D

�(T̂⊤g(xi;𝜃), ȳi).
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training images and 10, 000 test images. CIFAR- 100 also has 50, 000 training images and 
10, 000 test images, but 100 classes. MNIST has 10 classes of images including 60, 000 
training images and 10, 000 test images.

The original datasets contain clean data. To generate noisy labels, we corrupt the 
training data of each dataset according to a transition matrix T. We employ the sym-
metry flipping setting (van Rooyen et al., 2015), which models the most common label 
noise classification task by uniformly flipping the class of clean label into the other 
classes. For each data with true label i, its corrupted label is sampled from the cat-
egorical distribution parameterized by the ith row of T. We generates label noise from 
light to heavy at 40, 60, 80 corruptions fractions, which leads aroung 40% , 60% , 80% of 
instances to have noisy labels.

Network and optimization For fair comparison, we implement the methods follow-
ing the settings in Hendrycks et al. (2018). Specifically, for CIFAR-10 and CIFAR-100, 
we train a Wide Residual Network (Zagoruyko & Komodakis, 2016) of depth 40 and 
a widening factor of 2. We train for 75 epochs using SGD with Nesterov momentum 
and a cosine learning rate schedule (Loshchilov & Hutter, 2017). For MNIST, we use 
a 2-layer fully connected network with 256 hidden dimensions. The training is con-
ducted by using Adam for 10 epochs with batch size of 32 and a learning rate of 0.001. 
l2 weight decay regularization is used on all layers with � = 1 ∗ 10−6.

Baselines To assess the performance of the proposed DALC, we conduct compari-
sons for the following implementations:

•	 Random which randomly selects instances and query their true labels from human 
experts.

•	 Entropy which selects the most uncertain instances with the maximum entropy 
score according to Eq. (7), and query their true labels from human experts.

•	 Loss which selects the most uncertain instances with the maximum loss score 
according to Eq. (8), and query their true labels from external human experts.

•	 DALC-l which selects the most uncertain instances with the maximum entropy 
score according to Eq. (7), and query their true labels from human experts; also 
selects the most confident instances with the minimum loss score according to Eq. 
(8), and use the classifier’s prediction as their true labels.

•	 DALC-e which selects the most uncertain instances with the maximum entropy 
score according to Eq. (7), and query their true labels from human experts; also 
selects the most confident instances with the minimum entropy score according to 
Eq. (7), and use the classifier’s prediction as their true labels.

Except for the active study with label noise modeling consideration, we aslo compare 
with the Noise-agnostic estimator, i.e, which learns on the training data without mod-
eling the label noise and using the normal loss �:

With this comparison, we show the importance of label noise modeling. We examine the 
classification accuracy on the test set, and the discrepancy between the learned transition 
matrix T̂  and the true one T. To avoid the influence of randomness, we repeat the experi-
ments for 5 times and report the average results. We omit the standard deviations which 

(10)�
agnostic ∶=

∑

xi∈Ah∪Ag

�(g(xi;𝜃), yi) +
∑

xi∈D

�(g(xi;𝜃), ȳi).
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mainly vary in range [0.1%, 0.6%] for the test accuracy and [0.01,  0.1] for the transition 
matrix discrepancy due to the overflowed table format.

4.2 � Comparison for classification accuracy

Tables 1, 2 and  3 respectively show the classification accuracy of compared methods as 
the number of queried instances increases on CIFAR-10, CIFAR-100 and MNIST. Here 
the number denotes the number of queried true labels from external human experts, which 
makes a fair comparison between DALC and the random, entroy, loss baselines. As for 
the internal classifier prediction aquisition for DALC, a equal number of most confident 
instance are incoporated in the experiment for implementation simplicity.

Table 1   The classification accuracy on CIFAR-10, the best performance are bold

Noise (%) Model Strategy Percent of queried instances

5% 10% 15% 20% 25% 30%

40 Noise-agnostic Random 0.875 0.884 0.892 0.889 0.878 0.900
Entropy 0.881 0.896 0.910 0.922 0.925 0.924
Loss 0.860 0.862 0.866 0.870 0.884 0.901
DALC-l 0.895 0.910 0.917 0.925 0.927 0.933
DALC-e 0.890 0.908 0.922 0.929 0.931 0.934

Forward loss correction Random 0.889 0.898 0.904 0.910 0.910 0.916
Entropy 0.901 0.918 0.927 0.932 0.936 0.938
Loss 0.887 0.902 0.902 0.914 0.920 0.930
DALC-l 0.904 0.918 0.927 0.930 0.938 0.942
DALC-e 0.907 0.920 0.930 0.934 0.939 0.941

60 Noise-agnostic Random 0.827 0.835 0.800 0.783 0.796 0.852
Entropy 0.829 0.852 0.861 0.898 0.913 0.913
Loss 0.717 0.643 0.702 0.730 0.786 0.787
DALC-l 0.818 0.797 0.869 0.863 0.869 0.854
DALC-e 0.534 0.596 0.760 0.822 0.846 0.860

Forward loss correction Random 0.849 0.864 0.878 0.891 0.899 0.906
Entropy 0.881 0.895 0.906 0.920 0.927 0.932
Loss 0.840 0.847 0.854 0.867 0.878 0.891
DALC-l 0.864 0.892 0.910 0.923 0.932 0.934
DALC-e 0.872 0.900 0.914 0.924 0.934 0.939

80 Noise-agnostic Random 0.659 0.623 0.629 0.668 0.663 0.723
Entropy 0.683 0.638 0.777 0.845 0.860 0.871
Loss 0.717 0.643 0.702 0.730 0.786 0.787
DALC-l 0.624 0.429 0.624 0.730 0.757 0.776
DALC-e 0.534 0.596 0.760 0.822 0.846 0.860

Forward loss correction Random 0.806 0.839 0.860 0.878 0.888 0.902
Entropy 0.799 0.861 0.887 0.899 0.918 0.922
Loss 0.784 0.811 0.838 0.859 0.875 0.888
DALC-l 0.802 0.864 0.890 0.915 0.923 0.923
DALC-e 0.816 0.873 0.897 0.910 0.925 0.929
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First, we make a high level comparison between the noise-agnostic model and the for-
ward loss correction model. Except for the case of MNIST dataset, we can see a clear mar-
gin between the two models for almost all noise rates and active scenarioes i.e., the per-
formance of forward loss correction model easily dominate the noise-agnostic model. The 
MNIST dataset is kind of easy and relatively more robust to label noise. Even learning 
the neural network directly on the noisy training data with normal cross entropy loss can 
achieve satisfactory performance. Whereas for common complex datasets for which the 
effect of label noise can be severe, modeling the label noise is rather helpful.

Second, we compare between the entropy sampling strategy and the loss sampling 
strategy. On CIFAR-10, both for the noise-agnostic model and the forward loss correc-
tion model, the entropy baseline achieves much higher classification accuracy than the 
loss baseline. The underlying reason is due to the phenomenon that we have shown and 

Table 2   The classification accuracy on CIFAR-100, the best performance are bold

Noise (%) Model Strategy Percent of queried instances

5% 10% 15% 20% 25% 30%

40 Noise-agnostic Random 0.606 0.628 0.643 0.657 0.657 0.665
Entropy 0.625 0.644 0.668 0.678 0.694 0.703
Loss 0.609 0.632 0.652 0.666 0.683 0.704
DALC-l 0.633 0.667 0.686 0.689 0.702 0.716
DALC-e 0.632 0.663 0.674 0.697 0.709 0.713

Forward loss correction Random 0.640 0.670 0.679 0.691 0.701 0.708
Entropy 0.654 0.693 0.707 0.717 0.722 0.734
Loss 0.663 0.687 0.706 0.717 0.728 0.737
DALC-l 0.667 0.697 0.709 0.719 0.732 0.737
DALC-e 0.674 0.701 0.714 0.727 0.736 0.737

60 Noise-agnostic Random 0.511 0.543 0.587 0.580 0.610 0.624
Entropy 0.522 0.565 0.594 0.632 0.648 0.670
Loss 0.517 0.553 0.565 0.590 0.612 0.625
DALC-l 0.561 0.510 0.583 0.618 0.636 0.637
DALC-e 0.570 0.558 0.615 0.647 0.665 0.686

Forward loss correction Random 0.582 0.610 0.637 0.650 0.668 0.676
Entropy 0.556 0.629 0.651 0.673 0.690 0.695
Loss 0.578 0.619 0.647 0.670 0.685 0.698
DALC-l 0.585 0.633 0.656 0.682 0.696 0.713
DALC-e 0.584 0.639 0.670 0.691 0.704 0.716

80 Noise-agnostic Random 0.292 0.226 0.242 0.359 0.434 0.514
Entropy 0.282 0.309 0.340 0.396 0.481 0.582
Loss 0.300 0.334 0.380 0.434 0.496 0.545
DALC-l 0.081 0.131 0.226 0.354 0.377 0.424
DALC-e 0.144 0.190 0.350 0.460 0.513 0.541

Forward loss correction Random 0.305 0.475 0.554 0.596 0.621 0.650
Entropy 0.235 0.414 0.512 0.558 0.609 0.641
Loss 0.302 0.430 0.517 0.564 0.605 0.642
DALC-l 0.284 0.438 0.526 0.556 0.577 0.597
DALC-e 0.262 0.360 0.431 0.481 0.517 0.552
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explained in the introduction section, i.e., a number of mislabeled instances with large loss 
can be correctly predicted by the classifier. In this case, querying their true labels from the 
human experts are redundant and waste of labeling cost. This result can also be observed 
for CIFAR-100 with noise ratio 40% and 60% . When the noise ratio is as high as 80% for 
CIFAR-100, the accuracy of both the forward loss correction model and noise-agnostic 
model collapse, i.e., 0.136 and 0.206. In such case, the classifier is too weak to give good 
predictions, and the active sampling strategies are less effective than the random strategy. 
Due to the same reason, the loss sampling strategy performs better than the entropy strat-
egy. As the number of queried instances increase and the performance increases, e.g., 30% 
queried instances, the performance of entropy strategy becomes comparable. For the rela-
tively easy MNIST dataset, the two strategies are comparable.

Table 3   The classification accuracy on MNIST, the best performance are bold

Noise (%) Model Strategy Number of queried instances

18 54 90 126 162 180

40 Noise-agnostic Random 0.964 0.963 0.962 0.961 0.962 0.964
Entropy 0.962 0.962 0.962 0.962 0.964 0.964
Loss 0.959 0.963 0.963 0.963 0.967 0.961
DALC-l 0.962 0.960 0.962 0.964 0.962 0.964
DALC-e 0.961 0.966 0.963 0.962 0.963 0.960

Forward loss correction Random 0.961 0.964 0.966 0.971 0.966 0.969
Entropy 0.965 0.966 0.967 0.969 0.969 0.970
Loss 0.964 0.965 0.964 0.965 0.966 0.966
DALC-l 0.958 0.866 0.864 0.966 0.964 0.966
DALC-e 0.966 0.967 0.969 0.971 0.970 0.968

60 Noise-agnostic Random 0.949 0.949 0.951 0.948 0.946 0.950
Entropy 0.949 0.951 0.952 0.952 0.952 0.951
Loss 0.949 0.952 0.951 0.951 0.952 0.949
DALC-l 0.948 0.953 0.949 0.953 0.951 0.952
DALC-e 0.951 0.953 0.950 0.946 0.951 0.951

Forward loss correction Random 0.949 0.944 0.954 0.950 0.952 0.950
Entropy 0.906 0.920 0.952 0.954 0.957 0.955
Loss 0.916 0.950 0.951 0.954 0.958 0.950
DALC-l 0.925 0.935 0.854 0.939 0.949 0.955
DALC-e 0.951 0.956 0.956 0.956 0.958 0.959

80 Noise- agnostic Random 0.923 0.913 0.915 0.912 0.913 0.920
Entropy 0.906 0.912 0.907 0.922 0.917 0.929
Loss 0.913 0.913 0.912 0.912 0.910 0.915
DALC-l 0.914 0.919 0.917 0.917 0.918 0.910
DALC-e 0.917 0.915 0.905 0.899 0.908 0.905

Forward loss correction Random 0.906 0.909 0.919 0.922 0.925 0.927
Entropy 0.713 0.617 0.853 0.856 0.901 0.919
Loss 0.791 0.628 0.733 0.829 0.895 0.913
DALC-l 0.721 0.918 0.905 0.924 0.913 0.929
DALC-e 0.796 0.926 0.921 0.934 0.929 0.934
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Thirdly, we compare the proposed DALC approach with other baselines. It can be 
seen that combined with the forward loss correction model, except for the difficult case 
of CIFAR-100 with 80% noise ratio, for almost all the other cases, built on the entropy 
based uncertainty strategy, the DALC-e strategy enhanced with entropy based confidence 
sampling achieves the best performance. The DALC-l with loss based confidence sampling 
also achieves comparable performance. This validate the positive role of the internal active 
query strategy.

In the next subsection, we will demonstrate the specific contribution of the dual active 
label correction strategy to estimating high quality transition matrix.

4.3 � Comparison for estimating transition matrix

Figure 2 show the comparison between the estimation error of the three active sampling 
strategies: random, entropy and DALC. Note that the forward loss correction model is used 
for this experiment. The DALC is implemented using the entropy based confidence score, 
i.e., DALC-e. The estimation error is calculated using the relative L1 ratio, i.e., |T − T̂|∕T  , 
with T̂  denoting the estimated transition matrix, and T the groundtruth transition matrix.

It can be seen that in all cases, although the entropy sampling stratey achieves good 
performance for classification accuracy as shown in the last subsection, its estimation error 
is quite large compared with the random sampling strategy, almost two times the CIFAR-
10 and MNIST dataset. With our dual active sampling strategy, when the high confident 
predictions from the classifier are incoporated, the estimation error for transition matrix 
reduces significantly, almost the same as that of random sampling, and even lower in some 
cases, e.g., CIFAR-100 and MNIST with noise rate 40% , 60%.

This result tells us two things: (1) in the noisy label learning field, simply adopting the 
standard active sampling strategies can lead to highly biased noise model estimation; (2) 
we can take advantage of the high confidence instances to combat with bias. However, such 
aspects are rarely considered in previous active label correction work. We believe this point 
would be worthy of more attention.

In Fig. 3, we show the training and testing loss of DALC-e for noise ratio 40% , 60% and 
80% on CIFAR data during the training procedure. With early stopped 75 epochs training, 
DALC-e effectively converges without overfitting even for high noise ratio.

4.4 � Additional experiment results

This subsection introduces more experimental results to better help understand the pro-
posed DALC approach.

4.4.1 � Comparison to state‑of‑the‑art

Table  4 shows the test accuracy comparison with two state-of-the-art robust label noise 
learning methods DivideMix (Li et al., 2020), ELR (Liu et al., 2020) and their variants on 
CIFAR-10 and CIFAR-100. We report results for the symmetry flipping noise 40% , 60% , 
80%.

DivideMix (Li et  al., 2020) addresses noisy label learning in an iterative semi-super-
vised manner. It uses two networks to perform sample selection via a two-component 
mixture model (Arazo et  al., 2019), and applies the semi-supervised learning technique 
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(a)

(b)

(c)

Fig. 2   The estimation error of the transition matrix on CIFAR-10, CIFAR-100 and MNIST. Results for 
three different numbers of actively queried instances in noise rate 40% , 60% and 80% by random, entropy, 
and DALC are shown. The estimation error is calculated as |T − T̂|∕T  , with T̂  denoting the estimated transi-
tion matrix, T the groundtruth transition matrix



1119Machine Learning (2022) 111:1103–1124	

1 3

MixMatch (Berthelot et  al., 2019) with mixup data augmentation (Zhang et  al., 2018). 
It was shown by numerous works that using two networks and mixup data augmenta-
tion significantly help learning (Han et  al., 2018; Liu et  al., 2020; Ortego et  al., 2021). 
As our DALC approach falls in the iterative sample selection and learning process, but 
not enhanced with two networks and mixup data augmentation, we also compare with two 
variants of DivideMix: DivideMix w/o co-tr which uses one network and DivideMix w/o 
mixup which doesn’t use data augmentation.

We have run DivideMix and its variants using its official implementations, as the origi-
nal paper didn’t report results for noise level 40%, 60% . To get the best test performance 
during training, DivideMix adopts specific configurations for different noise ratios/noise 
types/datasets, which however are not publicly revealed. In this paper, we adopt the para-
metrization reported in Li et al. (2020) with default �u = 25 in the code. Results of ELR 
and ELR* (which uses cosine annealing learning rate for better performance) are take 

Fig. 3   The training and testing loss of DALC-e on CIFAR-10 and CIFAR-100 during the training epochs. 
Results for two different numbers of actively queried instances 5% and 20% in noise rate 40% , 60% and 80% 
are shown

Table 4   Test accuracy 
comparison on CIFAR-10 and 
CIFAR-100 with symmetry 
noises

Dataset CIFAR-10 CIFAR-100

Methods/noise ratio 40% 60% 80% 40% 60% 80%

DivideMix 0.942 0.945 0.932 0.757 0.704 0.551
DivideMix w/o co-tr 0.921 0.929 0.896 0.715 0.670 0.504
DivideMix w/o mixup 0.921 0.880 0.604 0.662 0.558 0.326
ELR 0.892 0.861 0.739 0.683 0.593 0.298
ELR* 0.914 0.889 0.807 0.684 0.601 0.303
DALC-e 10% 0.920 0.900 0.873 0.701 0.639 0.360
DALC-e 20% 0.934 0.924 0.910 0.727 0.691 0.481
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from Liu et  al. (2020). Motivated by the early-learning and memorization phenomena, 
ELR proposed a regularization term to implicitly prevent memorization of the false labels. 
The ELR+ variant in Liu et al. (2020) enhanced by using two networks and mixup is not 
used for fair comparison. Note that on CIFAR benchmarks, ELR/ELR* used 10% of clean 
training data as validation set to choose hyperparameters, and DivideMix and its variants 
report the best test performance, thus we regard DALC with 10% queried true labels as a 
fair comparison setting. We append results of DALC with 10%, 20% true labels in Table 4 
for clearer demonstration. It can be seen that while DivideMix performs the best, results 
of DivideMix w/o mixup data augmentation drop significantly, outperformed by DALC-e 
10% at a large margin. When 20% true labels are queried, DALC performs better than or is 
comparable with DivideMix w/o co-tr in most cases except on CIFAR-100 with 80% noise 
rate. ELR/ELR* are consistently inferior to DALC. It is believed that when combining the 
proposed DALC with two networks and data augmentation, we can achieve much more 
performance improvement. We leave this for future work.

4.4.2 � Pair flipping noise

Pair flipping noise models the fine-grained classification task where the class of clean 
label can flip into its adjunct class instead of far-away class. Existing label noise learn-
ing approaches normally studied this setting with relatively low noise rate (Li et  al., 
2020; Liu et  al., 2020), e.g., 40% , because theoretically the flipped classes cannot be 
distinguished without additional assumptions for noise larger than 50% . We show in this 
paper that, with properly modeled label noise process, e.g., the noise transition matrix, 
with a small number of instances with queried clean labels, the flipped classes can be 
identified. Thus the label noise model can be accurately estimated with rather good 
learning performance, even in high noise rate cases.

Table 5 shows the test accuracy results for pair flipping noise 40% , 60% , 80% on CIFAR-
10 and CIFAR-100. We have run DivideMix and ELR/ELR* using their official implemen-
tations for noise level 60%, 80% , and take the reported results for 40% from their papers. 
We have observed that for pair flipping noise, very few randomly selected clean instances 
are enough to identify the flipped classes and re-correct the estimated transition matrix, 
e.g., 10 instances for each class. Whereas different active sampling strategies make no 
much difference. Thus here we report results of selecting 10 instances for each class for 
Random and DALC-e strategies, and omit results of other active strategies.

It can be seen that DivideMix and ELR/ELR* fail to identify the flipped classes for high 
noise rate 60% and 80% , resulting in poor performance. However, with only 10 queried 

Table 5   Test accuracy 
comparison on CIFAR-10 and 
CIFAR-100 with pair flipping 
noises

Dataset CIFAR-10 CIFAR-100

Methods/noise ratio 40% 60% 80% 40% 60% 80%

DivideMix 0.934 0.596 0.509 0.721 0.295 0.005
ELR 0.901 0.578 0.576 0.733 0.009 0.003
ELR* 0.904 0.606 0.587 0.737 0.006 0.002
Random 10 0.934 0.934 0.922 0.733 0.731 0.719
DALC-e 10 0.933 0.929 0.924 0.728 0.722 0.717
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correctly labeled instances for each class, even with 80% noise ratio, on CIFAR-10, Ran-
dom achieves 0.922 test classification accuracy, which is only 0.019 absolute accuracy 
lower than the neural network classifier trained without label noise (0.941); on CIFAR-
100, Random achieves 0.719 test accuracy, 0.023 lower than the neural network classifier 
trained without label noise (0.742). The proposed active DALC-e performs quite close to 
Random.

4.4.3 � Realistic noise

We further corroborate the proposed method by considering the real-world dataset Cloth-
ing1M (Xiao et al., 2015), which contains 47, 570 clean labeled training data and 106 noisy 
labeled training data, with clean validation and test set respectively having 14,  313 and 
10, 526 images. For the training data, a subset of 24, 637 images are tagged with both clean 
and noisy labels. In this experiments, we use this subset for training, and report accuracy 
on the clean test data. A pre-trained ResNeXt-50 on ImageNet Xie et al. (2017) is used as 
our backbone network. We train for 10 epochs using SGD according to the 1cycle learning 
rate policy (Smith & Topin, 2018) with initial learning rate 0.1 and maximum learning rate 
0.01. For DivideMix, ELR and ELR*, their official implementations are used. Results for 
Random strategy and DALC-e with 10%, 20% true labels are reported. Table 6 shows the 
comparison results. Although DivideMix and ELR/ELR* use the additional 14, 313 clean 
validation data to get best performance, DALC-e consistently outperforms them and Ran-
dom strategy.

5 � Conclusion

In this paper, we consider the problem of deep label noise learning from the Active Label 
Correction (ALC) perspective, i.e., querying the true labels for some instances with mini-
mal query costs and maximally improving the learning performance. A common limitation 
of existing ALC work is that, they ignore the fact that due to the active data sampling bias, 
the label noise model estimation can be seriously biased. Besides, they do not yet exploit 
the intrinsic fitting characteristics of deep learning models. We found that due to the mem-
orization effect of deep neural networks, a large proportion of mislabeled instances with 
rather large loss can be correctly predicted, even under severe noise. Thus we propose one 
dual ALC (DALC) approach to select the most useful instances for classifier improvement 
and identify the most likely correctly predicted instances. The true labels of the two sources 
of instances are respectively queried from external human experts and the classifier predic-
tions. Experiments on multiple datasets show that the proposed dual active query strategy 
is effective for both classification accuracy and combating the noise model estimation bias.

Table 6   Test accuracy comparison on Clothing1M dataset

DivideMix ELR ELR* Random 10% Random 20% DALC-e 10% DALC-e 20%

0.644 0.589 0.62 0.602 0.652 0.662 0.699
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