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Abstract
We propose an approach for improving sequence modeling based on autoregressive nor-
malizing flows. Each autoregressive transform, acting across time, serves as a moving 
frame of reference, removing temporal correlations and simplifying the modeling of higher-
level dynamics. This technique provides a simple, general-purpose method for improving 
sequence modeling, with connections to existing and classical techniques. We demonstrate 
the proposed approach both with standalone flow-based models and as a component within 
sequential latent variable models. Results are presented on three benchmark video datasets 
and three other time series datasets, where autoregressive flow-based dynamics improve 
log-likelihood performance over baseline models. Finally, we illustrate the decorrelation 
and improved generalization properties of using flow-based dynamics.

Keywords  Autoregressive flows · Latent variable models · Sequence modeling

1  Introduction

Data often contain sequential structure, providing a rich signal for learning models of the 
world. Such models are useful for representing sequences (Li and Mandt 2018; Ha and 
Schmidhuber 2018) and planning actions (Hafner et  al. 2019; Chua et  al. 2018). Recent 
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advances in deep learning have facilitated learning sequential probabilistic models directly 
from high-dimensional data (Graves 2013), like audio and video. A variety of techniques 
have emerged for learning deep sequential models, including memory units (Hochreiter 
and Schmidhuber 1997) and stochastic latent variables (Chung et  al. 2015; Bayer and 
Osendorfer 2014). These techniques have enabled sequential models to capture increas-
ingly complex dynamics. In this paper, we explore the complementary direction, asking 
can we simplify the dynamics of the data to meet the capacity of the model? To do so, we 
aim to learn a frame of reference to assist in modeling the data.

Frames of reference are an important consideration in sequence modeling, as they can 
simplify dynamics by removing redundancy. For instance, in a physical system, the frame 
of reference that moves with the system’s center of mass removes the redundancy in dis-
placement. Frames of reference are also more widely applicable to arbitrary sequences. 
Indeed, video compression schemes use predictions as a frame of reference to remove tem-
poral redundancy (Oliver 1952; Agustsson et al. 2020; Yang et al. 2021). By learning and 
applying a similar type of temporal normalization for sequence modeling, the model can 
focus on aspects that are not predicted by the low-level frame of reference, thereby simpli-
fying dynamics modeling.

We formalize this notion of temporal normalization through the framework of autore-
gressive normalizing flows (Kingma et  al. 2016; Papamakarios et  al. 2017). In the con-
text of sequences, these flows form predictions across time, attempting to remove temporal 
dependencies (Srinivasan et al. 1982). Thus, autoregressive flows can act as a pre-process-
ing technique to simplify dynamics. We preview this approach in Fig. 1, where an autore-
gressive flow modeling the data (top) creates a transformed space for modeling dynam-
ics (bottom). The transformed space is largely invariant to absolute pixel value, focusing 
instead on capturing deviations and motion.

We empirically demonstrate this modeling technique, both with standalone autoregres-
sive normalizing flows, as well as within sequential latent variable models. While normal-
izing flows have been applied in sequential contexts previously, our main contributions are 

Fig. 1   Sequence modeling with autoregressive flows. Top: Pixel values (solid) for a particular pixel location 
in a video sequence. An autoregressive flow models the pixel sequence using an affine shift (dashed) and 
scale (shaded), acting as a frame of reference. Middle: Frames of the data sequence (top) and the result-
ing “noise” (bottom) from applying the shift and scale. The redundant, static background has been largely 
removed. Bottom: The noise values (solid) are modeled using a base distribution (dashed and shaded) pro-
vided by a higher-level model. By removing temporal redundancy from the data sequence, the autoregres-
sive flow simplifies dynamics modeling
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in (1) showing how these models can act as a general pre-processing technique to improve 
dynamics modeling, (2) empirically demonstrating log-likelihood performance improve-
ments, as well as generalization improvements, on three benchmark video datasets and 
time series data from the UCI machine learning repository. This technique also connects 
to previous work in dynamics modeling, probabilistic models, and sequence compression, 
enabling directions for further investigation.

2 � Background

2.1 � Autoregressive models

Consider modeling discrete sequences of observations, �1∶T ∼ pdata(�1∶T ) , using a probabil-
istic model, p�(�1∶T ) , with parameters � . Autoregressive models (Frey et al. 1996; Bengio 
and Bengio 2000) use the chain rule of probability to express the joint distribution over 
time steps as the product of T conditional distributions. These models are often formulated 
in forward temporal order:

Each conditional distribution, p𝜃(�t|�<t) , models the dependence between time steps. For 
continuous variables, it is often assumed that each distribution takes a simple form, such as 
a diagonal Gaussian: p𝜃(�t|�<t) = N(�t;�𝜃(�<t), diag (�

2
𝜃
(�<t))), where ��(⋅) and ��(⋅) are 

functions denoting the mean and standard deviation. These functions may take past obser-
vations as input through a recurrent network or a convolutional window (van  den Oord 
et  al. 2016a). When applied to spatial data (van  den Oord et  al. 2016b), autoregressive 
models excel at capturing local dependencies. However, due to their restrictive forms, such 
models often struggle to capture more complex structure.

2.2 � Autoregressive (sequential) latent variable models

Autoregressive models can be improved by incorporating latent variables (Murphy 2012), 
often represented as a corresponding sequence, �1∶T . The joint distribution, p�(�1∶T , �1∶T ) , 
has the form:

Unlike the Gaussian form, evaluating p𝜃(�t|�<t) now requires integrating over the latent 
variables,

yielding a more flexible distribution. However, performing this integration in practice is 
typically intractable, requiring approximate inference techniques, like variational inference 
(Jordan et al. 1998), or invertible models (Kumar et al. 2020). Recent works have param-
eterized these models with deep neural networks, e.g. (Chung et al. 2015; Gan et al. 2015; 

(1)p𝜃(�1∶T ) =

T∏

t=1

p𝜃(�t|�<t).

(2)p𝜃(�1∶T , �1∶T ) =

T∏

t=1

p𝜃(�t|�<t, �≤t)p𝜃(�t|�<t, �<t).

(3)p𝜃(�t|�<t) = � p𝜃(�t|�<t, �≤t)p𝜃(�≤t|�<t)d�≤t,
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Fraccaro et al. 2016; Karl et al. 2017), using amortized variational inference (Kingma and 
Welling 2014; Rezende et al. 2014). Typically, the conditional likelihood, p𝜃(�t|�<t, �≤t) , 
and the prior, p𝜃(�t|�<t, �<t) , are Gaussian densities, with temporal conditioning handled 
through recurrent networks. Such models have demonstrated success in audio (Chung et al. 
2015; Fraccaro et al. 2016) and video modeling (Xue et al. 2016; Gemici et al. 2017; Den-
ton and Fergus 2018; He et al. 2018; Li and Mandt 2018). However, as noted by Kumar 
et al. (2020), such models can be difficult to train with standard log-likelihood objectives, 
often struggling to capture dynamics.

2.3 � Autoregressive flows

Our approach is based on affine autoregressive normalizing flows (Kingma et  al. 2016; 
Papamakarios et al. 2017). Here, we continue with the perspective of temporal sequences, 
however, these flows were initially developed and demonstrated in static settings. Kingma 
et al. (2016) noted that sampling from an autoregressive Gaussian model is an invertible 
transform, resulting in a normalizing flow (Rippel and Adams 2013; Dinh et  al. 2015, 
2017; Rezende and Mohamed 2015). Flow-based models transform simple, base probabil-
ity distributions into more complex ones while maintaining exact likelihood evaluation. To 
see their connection to autoregressive models, we can express sampling a Gaussian ran-
dom variable using the reparameterization trick (Kingma and Welling 2014; Rezende et al. 
2014):

where �t ∼ N(�t;�, �) is an auxiliary random variable and ⊙ denotes element-wise multipli-
cation. Thus, �t is an invertible transform of �t , with the inverse given as

where division is element-wise. The inverse transform in Eq. 5, shown in Fig. 2, normalizes 
(hence, normalizing flow) �1∶T , removing statistical dependencies. Given the functional 
mapping between �t and �t in Eq.  4, the change of variables formula converts between 
probabilities in each space:

(4)�t = �𝜃(�<t) + �𝜃(�<t)⊙ �t,

(5)�t =
�t − �𝜃(�<t)

�𝜃(�<t)
,

Fig. 2   Affine autoregressive 
transform. Computational 
diagram for an affine autoregres-
sive transform Papamakarios 
et al. (2017). Each �t is an affine 
transform of �t , with the affine 
parameters potentially non-linear 
functions of �<t . The inverse 
transform, shown here, is capable 
of converting a correlated input, 
�1∶T , into an uncorrelated output, 
�1∶T
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By the construction of Eqs. 4 and 5, the Jacobian in Eq. 6 is triangular, enabling efficient 
evaluation as the product of diagonal terms:

where i denotes the observation dimension, e.g. pixel. For a Gaussian autoregressive 
model, the base distribution is p�(�1∶T ) = N(�1∶T ;�, �) . We can improve upon this simple 
set-up by chaining transforms together, i.e. parameterizing p�(�1∶T ) as a flow, resulting in 
hierarchical models.

2.4 � Related work

Autoregressive flows were initially considered in the contexts of variational infer-
ence (Kingma et  al. 2016) and generative modeling (Papamakarios et  al. 2017). These 
approaches are generalizations of previous approaches with affine transforms (Dinh 
et  al. 2015, 2017). While autoregressive flows are well-suited for sequential data, these 
approaches, as well as many recent approaches (Huang et  al. 2018; Oliva et  al. 2018; 
Kingma and Dhariwal 2018), were initially applied to static data, such as images.

Recent works have started applying flow-based models to sequential data. van den Oord 
et  al. (2018) and Ping et  al. (2019) distill autoregressive speech models into flow-based 
models. Prenger et  al. (2019) and Kim et  al. (2019) instead train these models directly. 
Kumar et al. (2020) use a flow to model individual video frames, with an autoregressive 
prior modeling dynamics across time steps. Rhinehart et al. (2018, 2019) use autoregres-
sive flows for modeling vehicle motion, and Henter et al. (2019) use flows for motion syn-
thesis with motion-capture data. Ziegler and Rush (2019) model discrete observations (e.g., 
text) by using flows to model dynamics of continuous latent variables. Like these recent 
works, we apply flow-based models to sequences. However, we demonstrate that autore-
gressive flows can serve as a general-purpose technique for improving dynamics models. 
To the best of our knowledge, our work is the first to use flows to pre-process sequences to 
improve sequential latent variable models.

We utilize affine flows (Eq. 4), a family that includes methods like NICE (Dinh et al. 
2015), RealNVP (Dinh et al. 2017), IAF (Kingma et al. 2016), MAF (Papamakarios et al. 
2017), and Glow (Kingma and Dhariwal 2018). However, there has been recent work in 
non-affine flows (Huang et al. 2018; Jaini et al. 2019; Durkan et al. 2019), which offer fur-
ther flexibility. We chose to investigate affine flows because they are commonly employed 
and relatively simple, however, non-affine flows could result in additional improvements.

Autoregressive dynamics models are also prominent in other related areas. Within the 
statistics and econometrics literature, autoregressive integrated moving average (ARIMA) 
is a standard technique (Box et  al. 2015; Hamilton 2020), calculating differences with 
an autoregressive prediction to remove non-stationary components of a temporal signal. 
Such methods simplify downstream modeling, e.g., by removing seasonal effects. Low-
level autoregressive models are also found in audio (Atal and Schroeder 1979) and video 
compression codecs (Wiegand et al. 2003; Agustsson et al. 2020; Yang et al. 2021), using 
predictive coding (Oliver 1952) to remove temporal redundancy, thereby improving 

(6)log p�(�1∶T ) = log p�(�1∶T ) − log
|||||
det

(
��1∶T

��1∶T

)|||||
.

(7)log
|||||
det

(
𝜕�1∶T

𝜕�1∶T

)|||||
=

T∑

t=1

∑

i

log 𝜎𝜃,i(�<t),
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downstream compression rates. Intuitively, if sequential inputs are highly predictable, it 
is far more efficient to compress the prediction error rather than each input (e.g., video 
frame) separately. Finally, we note that autoregressive models are a generic dynamics 
modeling approach and can, in principle, be parameterized by other techniques, such as 
LSTMs (Hochreiter and Schmidhuber 1997), or combined with other models, such as hid-
den Markov models (HMMs) (Murphy 2012).

3 � Method

We now describe our approach for improving sequence modeling. First, we motivate using 
autoregressive flows to reduce temporal dependencies, thereby simplifying dynamics. We 
then show how this simple technique can be incorporated within sequential latent variable 
models.

3.1 � Motivation: temporal redundancy reduction

Normalizing flows, while often utilized for density estimation, originated from data pre-
processing techniques (Friedman 1987; Hyvärinen and Oja 2000; Chen and Gopinath 
2001), which remove dependencies between dimensions, i.e., redundancy reduction (Bar-
low 1961). Removing dependencies simplifies the resulting probability distribution by 
restricting variation to individual dimensions, generally simplifying downstream tasks 
(Laparra et  al. 2011). Normalizing flows improve upon these procedures using flexible, 
non-linear functions (Deco and Brauer 1995; Dinh et  al. 2015). While flows have been 
used for spatial decorrelation (Agrawal and Dukkipati 2016; Winkler et al. 2019) and with 
other models (Huang et al. 2017), this capability remains under-explored.

Our main contribution is showing how to utilize autoregressive flows for temporal pre-
processing to improve dynamics modeling. Data sequences contain dependencies in time, 
for example, in the redundancy of video pixels (Fig. 1), which are often highly predictable. 
These dependencies define the dynamics of the data, with the degree of dependence quanti-
fied by the multi-information,

where H denotes entropy. Normalizing flows are capable of reducing redundancy, arriv-
ing at a new sequence, �1∶T , with I(�1∶T ) ≤ I(�1∶T ) , thereby reducing temporal dependen-
cies. Thus, rather than fit the data distribution directly, we can first simplify the dynamics 
by pre-processing sequences with a normalizing flow, then fitting the resulting sequence. 
Through training, the flow will attempt to remove redundancies to meet the modeling 
capacity of the higher-level dynamics model, p�(�1∶T ).

Example To visualize this procedure for an affine autoregressive flow, consider a one-
dimensional input over two time steps, x1 and x2 . For each value of x1 , there is a conditional 
density, p(x2|x1) . Assume that these densities take one of two forms, which are identical 
but shifted and scaled, shown in Fig. 3. Transforming these densities through their condi-
tional means, �2 = �

[
x2|x1

]
 , and standard deviations, �2 = �

[
(x2 − �2)

2|x1
]1∕2 , creates a 

normalized space, y2 = (x2 − �2)∕�2 , where the conditional densities are identical. In this 
space, the multi-information is

(8)I(�1∶T ) =
∑

t

H(�t) −H(�1∶T ),
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whereas I(x1;x2) > 0. Indeed, if p(xt|x<t) is linear-Gaussian, inverting an affine autoregres-
sive flow exactly corresponds to Cholesky whitening (Pourahmadi 2011; Kingma et  al. 
2016), removing all linear dependencies.

In the example above, �2 and �2 act as a frame of reference for estimating x2 . 
More generally, in the special case where �𝜃(�<t) = �t−1 and �(�<t) = � , we recover 
�t = �t − �t−1 = ��t . Modeling finite differences (or generalized coordinates (Friston 
2008)) is a well-established technique, (see, e.g. (Chua et al. 2018; Kumar et al. 2020)), 
which is generalized by affine autoregressive flows.

3.2 � Modeling dynamics with autoregressive flows

We now discuss utilizing autoregressive flows to improve sequence modeling, highlighting 
use cases for modeling dynamics in the data and latent spaces.

3.2.1 � Data dynamics

The form of an affine autoregressive flow across sequences is given in Eqs. 4 and 5, again, 
equivalent to a Gaussian autoregressive model. We can stack hierarchical chains of flows to 
improve the model capacity. Denoting the shift and scale functions at the mth transform as 
�m
�
(⋅) and �m

�
(⋅) respectively, we then calculate �m using the inverse transform:

After the final ( Mth ) transform, we can choose the form of the base distribution, p�(�M1∶T ) , 
e.g. Gaussian. While we could attempt to model �1∶T completely using stacked autoregres-
sive flows, these models are limited to affine element-wise transforms that maintain the 
data dimensionality. Due to this limited capacity, purely flow-based models often require 
many transforms to be effective (Kingma and Dhariwal 2018).

Instead, we can model the base distribution using an expressive sequential latent varia-
ble model (SLVM), or, equivalently, we can augment the conditional likelihood of a SLVM 
using autoregressive flows (Fig. 4a). Following the motivation from Sect. 3.1, the flow can 
remove temporal dependencies, simplifying the modeling task for the SLVM. With a single 
flow, the joint probability is

I(y1;y2) = �p(y1,y2)

[
log p(y2|y1) − log p(y2)

]
= 0,

(9)�m
t
=

�m−1
t

− �m
𝜃
(�m−1

<t
)

�m
𝜃
(�m−1<t )

.

(a) (b) (c) (d)

Fig. 3   Redundancy reduction. (a) Conditional densities for p(x2|x1) . (b) The marginal, p(x2) differs from 
the conditional densities, thus, I(x1;x2) > 0 . (c) In the normalized space of y, the corresponding densities 
p(y2|y1) are identical. (d) The marginal p(y2) is identical to the conditionals, so I(y1;y2) = 0. Thus, in this 
case, a conditional affine transform removed the dependencies
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where the SLVM distribution is given by

If the SLVM is itself a flow-based model, we can use maximum log-likelihood training. If 
not, we can resort to variational inference (Chung et al. 2015; Fraccaro et al. 2016; Marino 
et al. 2018). We derive and discuss this procedure in the Appendix.

3.2.2 � Latent dynamics

We can also consider simplifying latent dynamics modeling using autoregressive flows. 
This is relevant in hierarchical SLVMs, such as VideoFlow (Kumar et  al. 2020), where 
each latent variable is modeled as a function of past and higher-level latent variables. Using 
�
(�)
t  to denote the latent variable at the �th level at time t, we can parameterize the prior as

converting �(�)t  into �(�)t  using the inverse transform �(�)t = (�
(�)
t − �𝜃(�

(�)
<t ))∕�𝜃(�

(�)
<t ) . As 

noted previously, VideoFlow uses a special case of this procedure, setting �𝜃(�
(�)
<t ) = �

(�)

t−1
 

and �𝜃(�
(�)
<t ) = � . Generalizing this procedure further simplifies dynamics throughout the 

model.

(10)p�(�1∶T , �1∶T ) = p�(�1∶T , �1∶T )
|||||
det

(
��1∶T

��1∶T

)|||||

−1

,

(11)p𝜃(�1∶T , �1∶T ) =

T∏

t=1

p𝜃(�t|�<t, �≤t)p𝜃(�t|�<t, �<t).

(12)p𝜃(�
(�)
t |�(�)<t , �

(>�)
t ) = p𝜃(�

(�)
t |�(�)<t , �

(>�)
t )

||||||
det

(
𝜕�

(�)
t

𝜕�
(�)
t

)||||||

−1

,

(a) (b)

Fig. 4   Model diagrams. a An autoregressive flow pre-processes a data sequence, �1∶T , to produce a new 
sequence, �1∶T , with reduced temporal dependencies. This simplifies dynamics modeling for a higher-level 
sequential latent variable model, p�(�1∶T , �1∶T ) . Empty diamond nodes represent deterministic dependen-
cies, not recurrent states. b Diagram of the autoregressive flow architecture. Blank white rectangles repre-
sent convolutional layers (see Appendix). The three stacks of convolutional layers within the blue region are 
shared. cat denotes channel-wise concatenation
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4 � Evaluation

We demonstrate and evaluate the proposed technique on three benchmark video datasets: 
Moving MNIST (Srivastava et al. 2015a), KTH Actions (Schuldt et al. 2004), and BAIR 
Robot Pushing (Ebert et  al. 2017). In addition, we also perform experiments on several 
non-video sequence datasets from the UC Irvine Machine Learning Repository.1 Specifi-
cally, we look at an activity recognition dataset (activity_rec) (Palumbo et al. 2016), 
an indoor localization dataset (smartphone_sensor) (Barsocchi et  al. 2016), and a 
facial expression recognition dataset (facial_exp) (de  Almeida  Freitas et  al. 2014). 
Experimental setups are described in Sect. 4.1, followed by a set of analyses in Sect. 4.2. 
Further details and results can be found in the Appendix.

4.1 � Experimental setup

We empirically evaluate the improvements to downstream dynamics modeling from tem-
poral pre-processing via autoregressive flows. For data space modeling, we compare four 
model classes: (1) standalone affine autoregressive flows with one (1-AF) and (2) two 
(2-AF) transforms, (3) a sequential latent variable model (SLVM), and (4) SLVM with 
flow-based pre-processing (SLVM + 1-AF). As we are not proposing a specific architec-
ture, but rather a general modeling technique, the SLVM architecture is representative of 
recurrent convolutional video models with a single latent level (Denton and Fergus 2018; 
Ha and Schmidhuber 2018; Hafner et al. 2019). Flows are implemented with convolutional 
networks, taking in a fixed window of previous frames (Fig. 4b). These models allow us to 
evaluate the benefits of temporal pre-processing (SLVM vs. SLVM + 1-AF) and the ben-
efits of more expressive higher-level dynamics models (2-AF vs. SLVM + 1-AF).

To evaluate latent dynamics modeling with flows, we use the tensor2tensor library 
(Vaswani et  al. 2018) to compare (1) VideoFlow2 and (2) the same model with affine 
autoregressive flow latent dynamics (VideoFlow + AF). VideoFlow is significantly larger 
( 3× more parameters) than the one-level SLVM, allowing us to evaluate whether autore-
gressive flows are beneficial in this high-capacity regime.

To enable a fairer comparison in our experiments, models with autoregressive flow 
dynamics have comparable or fewer parameters than baseline counterparts. We note that 
autoregressive dynamics adds only a constant computational cost per time-step, and this 
computation can be parallelized for training and evaluation. Full architecture, training, and 
analysis details can be found in the Appendix. Finally, as noted by Kumar et al. (2020), 
many previous works do not train SLVMs with proper log-likelihood objectives. Our 
SLVM results are consistent with previously reported log-likelihood values (Marino et al. 
2018) for the Stochastic Video Generation model (Denton and Fergus 2018) trained with a 
log-likelihood bound objective.

1  https://​archi​ve.​ics.​uci.​edu/​ml/​index.​php.
2  We used a smaller version of the original model architecture, with half of the flow depth, due to GPU 
memory constraints.

https://archive.ics.uci.edu/ml/index.php
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4.2 � Analyses

Visualization In Fig. 1, we visualize the pre-processing procedure for SLVM + 1-AF on 
BAIR Robot Pushing. The plots show the RGB values for a pixel before (top) and after 
(bottom) the transform. The noise sequence is nearly zero throughout, despite large 
changes in the pixel value. We also see that the noise sequence (center, lower) is invariant 
to the static background, capturing the moving robotic arm. At some time steps (e.g. fourth 
frame), the autoregressive flow incorrectly predicts the next frame, however, the higher-
level SLVM compensates for this prediction error.

We also visualize each component of the flow. Figure  4b illustrates this for SLVM 
+ 1-AF on an input from BAIR Robot Pushing. We see that �� captures the static back-
ground, while �� highlights regions of uncertainty. In Fig. 6 and the Appendix, we pre-
sent visualizations on full sequences, where we see that different models remove varying 
degrees of temporal structure.

Temporal Redundancy Reduction To quantify temporal redundancy reduction, we eval-
uate the empirical correlation (linear dependence) between frames, denoted as corr, for the 
data and noise variables. We evaluate corr� and corr� for 1-AF, 2-AF, and SLVM + 1-AF. 
The results are shown in Fig. 5a. In Fig. 5b, we plot corr� for SLVM + 1-AF during training 
on KTH Actions. Flows decrease temporal correlation, with additional transforms yield-
ing further decorrelation. Base distributions without temporal structure (1-AF) yield com-
paratively more decorrelation. Temporal redundancy is progressively removed throughout 
training. Note that 2-AF almost completely removes temporal correlations ( |corr�| < 0.01 ). 
However, note that this only quantifies linear dependencies, and more complex non-lin-
ear dependencies may require the use of higher-level dynamics models, as shown through 
quantitative comparisons.

(a) (b)

Fig. 5   Decreased temporal correlation. a Affine autoregressive flows result in sequences, �1∶T , with 
decreased temporal correlation, corr� , as compared with that of the original data, corr� . The presence of 
a more powerful base distribution (SLVM) reduces the need for decorrelation. Additional flow transforms 
further decrease correlation (note: |corr�| < 0.01 for 2-AF). (b) For SLVM + 1-AF, corr� decreases during 
training on KTH Actions (Color figure online)

Fig. 6   Flow Visualization for SLVM + 1-AF on Moving MNIST (left) and KTH Actions (right)
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Performance Comparison Table 1 reports average test negative log-likelihood results on 
video datasets. Standalone flow-based models perform surprisingly well. Increasing flow 
depth from 1-AF to 2-AF generally results in improvement. SLVM + 1-AF outperforms 
the baseline SLVM despite having fewer parameters. As another baseline, we also consider 
modeling frame differences, �� ≡ �t − �t−1 , with SLVM, which can be seen as a special 
case of 1-AF with �� = �t−1 and �� = � . On BAIR and KTH Actions, datasets with sig-
nificant temporal redundancy (Fig. 5a), this technique improves performance over SLVM. 
However, on Moving MNIST, modeling �� actually decreases performance, presumably 
by creating more complex spatial patterns. In all cases, the learned temporal transform, 
SLVM + 1-AF, outperforms this hard-coded transform, SLVM + �� . Finally, incorporat-
ing autoregressive flows into VideoFlow results in a modest but noticeable improvement, 
demonstrating that removing spatial dependencies, through VideoFlow, and temporal 
dependencies, through autoregressive flows, are complementary techniques.

Results on Non-Video Sequence Dataset In Table  2, we report negative log-density 
results on non-video data in nats per time step. Note that log-densities can be positive or 
negative. Again, we see that 2-AF consistently outperforms 1-AF, which are typically on-
par or better than SLVM. However, SLVM + 1-AF outperforms all other model classes, 
achieving the lowest (best) log-densities across all datasets. With non-video data, we see 
that using the special case of modeling temporal differences (SLVM + �� ), performance is 
actually slightly worse than that of SLVM on all datasets. This, again, highlights the impor-
tance of using a learned pre-processing transform in comparison with hard-coded temporal 
differences.

Improved Samples The quantitative improvement over VideoFlow is less dramatic, as 
this is already a high-capacity model. However, qualitatively, we observe that incorpo-
rating autoregressive flow dynamics improves sample quality (Fig. 7). In these randomly 
selected samples, the robot arm occasionally becomes blurry for VideoFlow (red boxes) 
but remains clear for VideoFlow + AF.

Improved Generalization Our temporal normalization technique also improves generali-
zation to unseen examples, a key benefit of normalization schemes, e.g., batch norm (Ioffe 
and Szegedy 2015). Intuitively, higher-level dynamics are often preserved, whereas lower-
level appearance is not. This is apparent on KTH Actions, which contains a substantial 
degree of train-test mismatch, due to different identities and activities. NLL histograms 
on KTH are shown in Fig. 8, with greater overlap for SLVM + 1-AF. We also train SLVM 
and SLVM + 1-AF on subsets of KTH Actions. In Fig. 8c, we see that autoregressive flows 
enable generalization in the low-data regime, whereas SLVM becomes worse.

5 � Conclusion

We have presented a technique for improving sequence modeling using autoregressive 
flows. Learning a frame of reference, parameterized by autoregressive transforms, reduces 
temporal redundancy in input sequences, simplifying dynamics. Thus, rather than expand-
ing the model, we can simplify the input to meet the capacity of the model. This approach 
is distinct from previous works with normalizing flows on sequences, yet contains connec-
tions to classical modeling and compression. We hope these connections lead to further 
insights and applications. Finally, we have analyzed and empirically shown how autore-
gressive pre-processing in both the data and latent spaces can improve sequence modeling 
and lead to improved sample quality and generalization.
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The underlying assumption behind using autoregressive flows for sequence modeling 
is that sequences contain smooth or predictable temporal dependencies, with more com-
plex, higher-level dependencies as well. In both video and non-video data, we have seen 

(a)

(b)

Fig. 7   Improved Generated Samples. Random samples generated from (a) VideoFlow and (b) VideoFlow + 
AF, each conditioned on the first 3 frames. Using AF produces more coherent samples. The robot arm blurs 
for VideoFlow in samples 1 and 4 (red boxes), but does not blur for VideoFlow + AF (Color figure online)

Table 1   Quantitative 
comparison.

Average test negative log-likelihood (lower is better) in nats per 
dimension for Moving MNIST, BAIR Robot Pushing, and KTH 
Actions

M-MNIST BAIR KTH

1-AF 2.15 3.05 3.34
2-AF 2.13 2.90 3.35
SLVM ≤ 1.92 ≤ 3.57 ≤ 4.63

SLVM + �� ≤ 2.45 ≤ 3.07 ≤ 2.49

SLVM + 1-AF ≤ �.�� ≤ �.�� ≤ �.��

VideoFlow – 1.53 –
VideoFlow + AF – �.�� –
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improvements from combining sequential latent variable models with autoregressive 
flows, suggesting that such assumptions are generally reasonable. Using affine autoregres-
sive flows restricts our approach to sequences of continuous data, but future work could 
investigate discrete data, such as natural language. Likewise, we assume regularly sampled 
sequences (i.e., a constant frequency), however, future work could also investigate irregu-
larly sampled event data.

Appendix A: Lower bound derivation

Consider the model defined in Sect. 3.3, with the conditional likelihood parameterized with 
autoregressive flows. That is, we parameterize

yielding

The joint distribution over all time steps is then given as

(13)�t = �𝜃(�<t) + �𝜃(�<t)⊙ �t

(14)p𝜃(�t|�<t, �≤t) = p𝜃(�t|�<t, �≤t)
|||||
det

(
𝜕�t

𝜕�t

)|||||

−1

.

(a) (b) (c)

Fig. 8   Improved Generalization. The low-level reference frame improves generalization to unseen 
sequences. Train and test negative log-likelihood bound histograms for (a) SLVM and (b) SLVM + 1-AF 
on KTH Actions. (c) The generalization gap for SLVM + 1-AF remains small for varying amounts of KTH 
training data, while it becomes worse in the low-data regime for SLVM (Color figure online)

Table 2   Non-Video Quantitative 
Comparison.

 Average test log-likelihood (lower is better) in nats per time step on 
various non-video datasets

activity_rec smart-
phone_
sensor

facial_exp

1-AF 2.71 −7.46 −241

2-AF 2.06 −8.53 −259

SLVM ≤ 2.77 ≤ −5.21 ≤ −164

SLVM + �� ≤ 5.61 ≤ −4.02 ≤ −154

SLVM + 1-AF ≤ �.�� ≤ −�.�� ≤ −���
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To perform variational inference, we consider a filtering approximate posterior of the form

We can then plug these expressions into the evidence lower bound:

Finally, in the filtering setting, we can rewrite the expectation, bringing it inside of the sum 
(see Gemici et al. 2017; Marino et al. 2018):

Because there exists a one-to-one mapping between �1∶T and �1∶T , we can equivalently 
condition the approximate posterior and the prior on � , i.e.

Appendix B: Experiment details

Flow architecture

The affine autoregressive flow architecture is shown in Fig. 9. The shift and scale of the 
affine transform are conditioned on three previous inputs. For each flow, we first apply 4 
convolutional layers with kernel size (3, 3), stride 1, and padding 1 on each conditioned 
observation, preserving the input shape. The outputs are concatenated along the channel 

(15)p𝜃(�1∶T , �1∶T ) =

T∏

t=1

p𝜃(�t|�<t, �≤t)p𝜃(�t|�<t, �<t)

(16)=

T∏

t=1

p𝜃(�t|�<t, �≤t)
|||||
det

(
𝜕�t

𝜕�t

)|||||

−1

p𝜃(�t|�<t, �<t).

(17)q(�1∶T |�1∶T ) =
T∏

t=1

q(�t|�≤t, �<t).

(18)L ≡ �q(�1∶T |�1∶T )
[
log p�(�1∶T , �1∶T ) − log q(�1∶T |�1∶T )

]

(19)

= �q(�1∶T |�1∶T )

[
log

(
T∏

t=1

p𝜃(�t|�<t, �≤t)
|||||
det

(
𝜕�t

𝜕�t

)|||||

−1

p𝜃(�t|�<t, �<t)
)

− log

(
T∏

t=1

q(�t|�≤t, �<t)
)]

(20)= �q(�1∶T |�1∶T )

[ T∑

t=1

log p𝜃(�t|�<t, �≤t) − log
q(�t|�≤t, �<t)
p𝜃(�t|�<t, �<t)

− log
|||||
det

(
𝜕�t

𝜕�t

)|||||

]
.

(21)L =

T∑

t=1

�q(�≤t|�≤t)

[
log p𝜃(�t|�<t, �≤t) − log

q(�t|�≤t, �<t)
p𝜃(�t|�<t, �<t)

− log
|||||
det

(
𝜕�t

𝜕�t

)|||||

]
.

(22)L =

T∑

t=1

�q(�≤t|�≤t)

[
log p𝜃(�t|�<t, �≤t) − log

q(�t|�≤t, �<t)
p𝜃(�t|�<t, �<t)

− log
|||||
det

(
𝜕�t

𝜕�t

)|||||

]
.
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dimension and go through another 4 convolutional layers with kernel size (3, 3), stride 1, 
and padding 1. Finally, separate convolutional layers with the same kernel size, stride, and 
padding are used to output shift and log-scale. We use ReLU non-linearities for all convo-
lutional layers.

(a) (b)

(d) (e)

(c)

Fig. 9   SLVM Architecture. Diagrams are shown for the (a) approximate posterior, (b) prior, and (c) con-
ditional likelihood of the sequential latent variable model (SLVM). In (d) and (e) we show the approximate 
posterior and prior used with SLVM + AF, respectively. The conditional likelihood is the same architecture 
in both setups. Note: for SLVM + AF, we input �t into the approximate posterior encoder, rather than �t . 
conv denotes a convolutional layer, LSTM denotes a long short-term memory layer, fc denotes a fully-
connected layer, and t_conv denotes a transposed convolutional layer. For conv and t_conv layers, the 
numbers in parentheses respectively denote the number of filters, filter size, stride, and padding of the layer. 
For fc and LSTM layers, the number in parentheses denotes the number of units. SLVM contains one addi-
tional LSTM layer in both the approximate posterior and conditional prior
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Sequential latent variable model architecture

For sequential latent variable models, we use a DC-GAN (Radford et  al. 2015) encoder 
architecture (Fig. 9d), with 4 convolutional layers of kernel size (4, 4), stride 2, and pad-
ding 1 followed by another convolutional layer of kernel size (4, 4), stride 1, and no pad-
ding. The encoding is sent to one or two LSTM layers (Hochreiter and Schmidhuber 1997) 
followed by separate linear layers to output the mean and log-variance for q𝜙(�t|�≤t, �<t) . 
We note that for SLVM, we input �t into the encoder, whereas for SLVM + AF, we input 
�t . The architecture for the conditional prior, p𝜃(�t|�<t, �<t) , shown in Fig. 9e, contains two 
fully-connected layers, which take the previous latent variable as input, followed by one 
or two LSTM layers, and separate linear layers to output the mean and log-variance. The 
decoder architecture, shown in Fig. 9c, mirrors the encoder architecture, using transposed 
convolutions. In SLVM, we use two LSTM layers for modeling the conditional prior and 
approximate posterior distributions, while in SLVM + 1-AF, we use a single LSTM layer 
for each. We use leaky ReLU non-linearities for the encoder and decoder architectures and 
ReLU non-linearities in the conditional prior architecture.

Videoflow architecture

For VideoFlow experiments, we use the official code provided by Kumar et al. (2020) in the 
tensor2tensor repository (Vaswani et al. 2018). Due to memory and computational 
constraints, we use a smaller version of the model architecture used by Kumar et al. (2020) 
for the BAIR Robot Pushing dataset. We change depth from 24 to 12 and latent_
encoder_width from 256 to 128. This reduces the number of parameters from roughly 
67 million to roughly 32 million. VideoFlow contains a hierarchy of latent variables, with 
the latent variable at level l at time t denoted as �(l)t  . The prior on this latent variable is 
denoted as p𝜃(�

(l)
t |�(l)<t, �

(>l)
t ) = N(�

(l)
t ;�

(l)
t , diag((�

(l)
t )2)) , where �(l)

t  and �(l)
t  are functions of 

�
(l)
<t and �(>l)t  . We note that Kumar et al. (2020) parameterize �(l)

t  as �(l)
t = �

(l)

t−1
+ �̃

(l)

t
 , where 

�̃
(l)

t
 is the function. Kumar et al. (2020) refer to this as latent_skip. This is already a 

special case of an affine autoregressive flow, with a hard-coded shift of �(l)
t−1

 and a scale of 
� . We parameterize an affine autoregressive flow at each latent level, with a shift, �(l)

t  , and 
scale, � (l)

t
 , which are function of �(l)<t , using the same 5-block ResNet architecture as Kumar 

et al. (2020). In practice, these functions are conditioned on the variables at the past three 
time steps. The affine autoregressive flow produces a new variable:

which we then model using the same prior distribution and architecture as Kumar et  al. 
(2020): p𝜃(�

(l)
t |�(l)<t, �

(>l)
t ) = N(�

(l)
t ;�

(l)
t , diag((�

(l)
t )2)) , where �(l)

t  and �(l)
t  , again, are func-

tions of �(l)<t (or, equivalently �(l)<t ) and �(>l)t .

Non‑video sequence modeling architecture

We again compare various model classes in terms of log-likelihood estimation. We use 
fully-connected networks to parameterize all functions within the prior, approximate pos-
terior, and conditional likelihood of each model. All networks are 2 layers of 256 units 
with highway connectivity (Srivastava et  al. 2015b). For autoregressive flows, we use 

�
(l)
t =

�
(l)
t − �

(l)
t

� (l)
t

,
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ELU non-linearities (Clevert et al. 2015). For stability, we found it necessary to use tanh 
non-linearities in the networks for SLVMs (prior, conditional likelihood, and approximate 
posterior). In SLVMs, the prior is conditioned on �t−1 , the approximate posterior is condi-
tioned on �t−1 and �t , and the conditional likelihood is conditioned on �t . We use a latent 
space dimensionality of 16 for all SLVMs.

Training set‑up

We use the Adam optimizer Kingma and Ba (2015) with a learning rate of 1 × 10−4 to 
train all the models. For Moving MNIST, we use a batch size of 16 and train for 200, 000 
iterations for SLVM and 100, 000 iterations for 1-AF, 2-AF and SLVM + 1-AF. For BAIR 
Robot Pushing, we use a batch size of 8 and train for 200, 000 iterations for all models. For 
KTH Actions, we use a batch size of 8 and train for 90, 000 iterations for all models. Batch 
norm (Ioffe and Szegedy 2015) is applied to all convolutional layers that do not output 
distribution or affine transform parameters. We randomly crop sequences of length 13 from 
all sequences and evaluate on the last 10 frames. For AF-2 models, we crop sequences of 
length 16 in order to condition both flows on three previous inputs. For VideoFlow experi-
ments, we use the same hyper-parameters as Kumar et al. (2020) (with the exception of the 
two architecture changes mentioned above) and train for 100, 000 iterations (Table 3). 

Quantifying decorrelation

To quantify the temporal redundancy reduction resulting from affine autoregressive pre-
processing, we evaluate the empirical correlation between successive frames for the data 
observations and noise variables, averaged over spatial locations and channels. This is an 
average normalized version of the auto-covariance of each signal with a time delay of 1 
time step. Specifically, we estimate the temporal correlation as

Table 3   Number of parameters for each model on each dataset. Flow-based models contain relatively 
few parameters as compared with the SLVM, as our flows consist primarily of 3 × 3 convolutions with lim-
ited channels. In the SLVM, we use two LSTM layers for modeling the prior and approx. posterior distribu-
tion of the latent variable, while in SLVM + 1-AF, we use a single LSTM layer for each

Model 1-AF 2-AF SLVM SLVM + 1-AF

Moving Mnist 343k 686k 11, 302k 10, 592k
BAIR Robot Pushing 363k 726k 11, 325k 10, 643k
KTH Action 343k 686k 11, 302k 10, 592k
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where the term inside the expectation is

Here, x(i,j,k)t  denotes the image at location (i, j) and channel k at time t, �(i,j,k) is the mean of 
this dimension, and �(i,j,k) is the standard deviation. H, W,   and C respectively denote the 
height, width, and number of channels of the observations, and D denotes the dataset. We 
define an analogous expression for � , denoted corr�.

Appendix C: Illustrative example

To build intuition behind the benefits of temporal pre-processing (e.g., decorrelation) for 
downstream dynamics modeling, we present the following simple, kinematic example. 
Consider the discrete dynamical system defined by the following set of equations:

where �t ∼ N(�t;�,�) . We can express �t and �t in probabilistic terms as

(23)corr� ≡ 1

HWC
⋅

H,W,C∑

i,j,k

�
x
(i,j,k)
t ,x

(i,j,k)

t+1
∼D

[
�t,t+1(i, j, k)

]
,

(24)�t,t+1(i, j, k) ≡
(x

(i,j,k)
t − �(i,j,k))(x

(i,j,k)

t+1
− �(i,j,k))

(
�(i,j,k)

)2 .

(25)�t = �t−1 + �t,

(26)�t = �t−1 + �t,

(27)�t ∼ N(�t;�t−1 + �t−1,�),

Fig. 10   Motivating example. Plots are shown for a sample of �1∶T (left), �1∶T (center), and �1∶T (right). 
Here, �1∶T ∼ N(�1∶T ;�, �) , and � and � are initialized at 0. Moving from � → � → � via affine transforms 
results in successively less temporal correlation and therefore simpler dynamics
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Physically, this describes the noisy dynamics of a particle with momentum and mass 1, 
subject to Gaussian noise. That is, � represents position, � represents velocity, and � rep-
resents stochastic forces. If we consider the dynamics at the level of � , we can use the fact 
that �t−1 = �t−1 − �t−2 to write

Thus, we see that in the space of � , the dynamics are second-order Markov, requiring 
knowledge of the past two time steps. However, at the level of � (Eq. 28), the dynamics are 
first-order Markov, requiring only the previous time step. Yet, note that �t is, in fact, an aff-
ine autoregressive transform of �t because �t = �t − �t−1 is a special case of the general 
form �t−�𝜃 (�<t)

�𝜃 (�<t)
 . In Eq. 25, we see that the Jacobian of this transform is ��t∕��t = � , so, from 

the change of variables formula, we have p(�t|�t−1, �t−2) = p(�t|�t−1) . In other words, an 
affine autoregressive transform has allowed us to convert a second-order Markov system 
into a first-order Markov system, thereby simplifying the dynamics. Continuing this pro-
cess to move to �t = �t − �t−1 , we arrive at a representation that is entirely temporally 
decorrelated, i.e. no dynamics, because p(�t) = N(�t;�,�) . A sample from this system is 
shown in Fig. 10, illustrating this process of temporal decorrelation (Table 4) (Figs 11, 12, 
13 and 14).

Appendix D: Additional experimental results

(28)�t ∼ N(�t;�t−1,�).

(29)p(�t|�t−1, �t−2) = N(�t;�t−1 + �t−1 − �t−2,�).

Table 4   Training Quantitative 
Comparison.

Average training negative log-likelihood in nats per dim. for Moving 
MNIST, BAIR Robot Pushing, and KTH Actions

M-MNIST BAIR KTH

1-AF 2.06 2.98 2.95
2-AF 2.04 2.76 2.95
SLVM ≤ 1.93 ≤ 3.46 ≤ 3.05

SLVM + �� ≤ 2.47 ≤ 3.05 ≤ 2.46

SLVM + 1-AF ≤ �.�� ≤ �.�� ≤ �.��

VF – 1.50 –
VF + AF – �.�� –
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Additional qualitative results

Fig. 11   Autoregressive Flow Visualization on KTH Action. Visualization of the flow component for (a) 
standalone flow-based models and (b) sequential latent variable models with flow-based conditional likeli-
hoods for KTH Actions. From top to bottom, each figure shows (1) the original frames, �t , (2) the predicted 
shift, �𝜃(�<t) , for the frame, (3) the predicted scale, �𝜃(�<t) , for the frame, and (4) the noise, �t , obtained 
from the inverse transform

Fig. 12   SLVM w/ 2-AF Visualization on Moving MNIST. Visualization of the flow component for sequen-
tial latent variable models with 2-layer flow-based conditional likelihoods for Moving MNIST. From top 
to bottom on the left side, each figure shows (1) the original frames, �t , (2) the lower-level predicted shift, 
�1

𝜃
(�<t) , for the frame, 3) the predicted scale, �1

𝜃
(�<t) , for the frame. On the right side, from top to bottom, 

we have 1) the higer-level predicted shift, �2

𝜃
(�<t) , for the frame, (3) the predicted scale, �2

𝜃
(�<t) , for the 

frame and (4) the noise, �t , obtained from the inverse transform

Fig. 13   Generated Moving MNIST Samples. Sample frame sequences generated from a 2-AF model
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