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Abstract
Decision trees have favorable properties, including interpretability, high computational effi-
ciency, and the ability to learn from little training data. Learning a decision tree is known to 
be NP-complete. The researchers have proposed many greedy algorithms such as CART to 
learn approximate solutions. Inspired by the current popular neural networks, soft trees that 
support end-to-end training with back-propagation have attracted more and more attention. 
However, existing soft trees either lose the interpretability due to the continuous relaxation 
or employ the two-stage method of end-to-end building and then pruning. In this paper, 
we propose One-Stage Tree to build and prune the decision tree jointly through a bilevel 
optimization problem. Moreover, we leverage the reparameterization trick and proximal 
iterations to keep the tree discrete during end-to-end training. As a result, One-Stage Tree 
reduces the performance gap between training and testing and maintains the advantage of 
interpretability. Extensive experiments demonstrate that the proposed One-Stage Tree out-
performs CART and the existing soft trees on classification and regression tasks.

Keywords  Decision tree · Soft tree · End-to-end learning · Explainable AI

1  Introduction

Compared with currently popular neural networks, decision trees have several favora-
ble properties, such as good interpretability and high computational efficiency. In many 
practical ML (Machine Learning) applications (Chen & Guestrin, 2016; Ke et al., 2017; 
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Wu et  al., 2020; Li et  al., 2020), the decision tree has proven its worth and achieved 
great success.

A decision tree is a hierarchical structure for the supervised learning task, composed 
of internal nodes and leaf nodes. The parameters � of a decision tree can be divided 
into three parts: (1) internal parameters � , which decide the direction of each instance 
x by the router function s; (2) leaf parameters � , which are the prediction outputs of all 
leaves T  ; (3) architecture parameters � , which define the architecture of the tree. Then, 
an instance x is recursively directed to the left or right child of the internal node i by 
the router function s(x;�i) . When a leaf t is reached (i.e., �t = 0 ), the leaf parameter �t 
is used as the prediction. Traditionally, splitting rules are used to learn the node (i.e., 
internal and leaf) parameters (�, �) , and stopping rules are used to learn the architecture 
parameters �.

As shown in Fig. 1, decision trees can be divided into hard trees and soft trees. For 
the hard tree in Fig. 1a, the response at node i has the following recursive definition:

where �i ∈ {0, 1} , s ∶ x → {[1, 0]T , [0, 1]T} is an axis-parallel split with a one-hot vector 
�i , and L(i)/R(i) is the left/right child of node i. For example, CART (Breiman et al., 1984) 
greedily chooses the split feature and threshold by minimizing the Gini Index in the cur-
rent node. Furthermore, top-down pre-pruning and minimal cost-complexity post-pruning 
(Breiman et al., 1984) are used as the stopping rules to improve the tree’s generalization.

The greedy-based splitting and stopping rules in hard trees inevitably have the dis-
advantage of building sub-optimal decision trees. Moreover, despite the low empiri-
cal error, decision trees are easily overfitted (Kotsiantis, 2013). To improve learning 
through end-to-end training with back-propagation, soft trees (Norouzi et  al., 2015; 
Irsoy et al., 2014; Hehn et al., 2019) are proposed.

As shown in Fig. 1b, the soft tree relaxes the parameters � to be continuous, e.g., the 
discrete choices of � (i.e., whether to prune) and s (i.e., which path to route). Thus, the 
response at node i can be expressed as follows:

(1)fi(x;�) =

⎧⎪⎨⎪⎩

�i, if i is a leaf (i.e. �i = 0)

fL(i)(x;�), if s(x;�i) = [1, 0]T

fR(i)(x;�), if s(x;�i) = [0, 1]T

 

(a) (b)

Fig. 1   Overview of a hard tree (a) and a soft tree (b). a The dashed lines indicate the pruned nodes (i.e., 
�
i
= 0 ). The path where the instance x is routed is shown in purple. As two parts of the internal parameters 

�
i
 , w

i
 and b

i
 indicate the feature weight and the feature threshold respectively. b For the soft tree, the color 

transparency indicates the path probability
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where �i ∈ [0, 1] , and s ∶ x → [0, 1]2 is an oblique split with �i ∈ ℝ
d . Due to the continu-

ous characteristics, various techniques (e.g., Gradient Descent (Bottou, 2012; Mukkamala 
& Hein, 2017) and Regularization (Prechelt, 1998; Bousquet et al., 2004)) in deep learning 
can be used for end-to-end tree training.

However, designing effective soft trees is a challenging task. Soft Decision Tree (Irsoy 
et al., 2012; Norouzi et al., 2015) only considers the global optimization of node param-
eters (�, �) , omitting the architecture parameters � . Breiman et al. (1984) pointed out that 
tree quality depends more on good stopping rules than on splitting rules. That is, � is more 
crucial in some way. Budding Tree (Irsoy et al., 2014) considers the architecture param-
eters, but its randomly pruned nodes fail to bud. All of the above methods directly uti-
lize probabilistic trees when testing, which looses the interpretability of decision trees. 
End2End Tree (Hehn et  al., 2019) maintains a probabilistic tree for training and discre-
tizes it to a deterministic one for testing. However, there exists a performance gap after the 
discretization. Moreover, End2End Tree is a two-stage method that first learns the node 
parameters end-to-end and then searches � by the greedy algorithm.

In this work, we propose One-Stage Tree, which is, to our best knowledge, the first soft 
tree that maintains discretization during training. In contrast to the two-stage methods (e.g., 
CART and End2End Tree) of building and then pruning, we first formalize the joint search 
for node and architecture parameters as a bilevel optimization problem. Then, we keep the 
discretization of the path and architecture during training. Specifically, we directly sample 
leaves by the Gumbel Softmax to predict instances according to the path probability and 
propose an optimization strategy for discrete � via proximal iterations. Benefiting from the 
discretization, we directly find the closed-form optimal solution of � . Moreover, we reduce 
the performance gap and maintain interpretability.

Extensive experimental results on both classification and regression tasks reveal the 
effectiveness of One-Stage Tree. One-Stage Tree has a significant improvement over the 
most typical CART. Compared with the existing soft trees, One-Stage Tree achieves better 
performance on most datasets. Moreover, One-Stage Tree is competitive with other stand-
ard ML methods. The implementation of One-Stage Tree is publicly available on GitHub.1

To summarize, our main contributions can be highlighted as follows:

•	 We introduce One-Stage Tree to search the node and architecture parameters jointly 
through a bilevel optimization problem.

•	 The reparameterization trick and proximal iterations are leveraged to keep the tree dis-
crete during training. In this way, we can reduce the performance gap between training 
and testing and maintain interpretability.

•	 Extensive experimental results on both classification and regression tasks demonstrate 
that One-Stage Tree outperforms CART and the existing soft trees.

The rest of the paper is structured as follows: after introducing related work in soft trees 
(Sect. 2), we describe our approach in detail (Sect. 3). We then report experimental results 
on classification and regression datasets (Sect. 4) before concluding the paper (Sect. 5).

(2)fi(x;�) =
(
1 − �i

)
⋅ �i + �i ⋅ s

(
x;�i

)T [fL(i)(x;�)
fR(i)(x;�)

]

1  https://​github.​com/​Unkri​ble/​One-​Stage-​Tree.

https://github.com/Unkrible/One-Stage-Tree
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2 � Related work

2.1 � Soft tree

The decision tree is among the most popular machine learning algorithms, given its inter-
pretability and simplicity. First, due to the axis-parallel split of each internal node, the 
decision tree can learn from little training data and is easy to interpret. Then, benefiting 
from the hierarchical architecture, the decision tree is computationally efficient, with only 
O(log |I|) nodes needing to be visited out of all |I| internal nodes for a binary complete 
tree.

The decision tree structure depends on internal parameters � and router function s(x;�i) . 
The most typical one is the univariate discrete tree (Quinlan, 1986, 1996; Breiman et al., 
1984), also called hard tree, where ‖�i‖0 = 1 and ‖s(x;�i)‖0 = 1 . Hard Tree selects a sub-
path for instances according to a specific feature and threshold. In the multivariate tree 
(Irsoy et al., 2012; Norouzi et al., 2015; Irsoy et al., 2014; Hehn et al., 2019), which is also 
called soft tree, �i is a continuous variable and s(x;�i) defines an oblique split.

Soft Decision Tree (Irsoy et al., 2012) takes the sigmoid function as the router function 
and builds a multivariate dense tree whose prediction is contributed by leaves with differ-
ent probabilities. For Soft Decision Tree, s(x;�i) = [gi(x;�i), 1 − gi(x;�i)]

T , where 
gi(x;�i) =

1

1+exp (−�T
i
x)

 , routes instances to all its children with probabilities. Although it has 
a smoother fit and lower bias around the split boundaries, all the leaves’ paths are traversed. 
The computational overhead increases from O(log(|I|)) to O(|I|) , where I denotes the set of 
internal nodes.

Unlike Soft Decision Tree that only searches the splitting rule, Budding Tree (Irsoy 
et al., 2014) relaxes � and fits the tree architecture. The bud node i can be an internal node 
and a leaf at the same time according to �i . By gradient descent, Budding Tree splits and 
prunes the tree in the learning phase. However, �i will never be updated once it equals 0, 
which is called dying � problem.

Being aware of the benefits of discretization in terms of interpretability, End2End Tree 
(Hehn et al., 2019) proposes a multivariate discrete tree. End2End Tree is fully probabil-
istic at train time but becomes deterministic at test time after an annealing process. The 
performance gap between training and testing still exists. Moreover, the tree architecture is 
still searched greedily, with the risk of a sub-optimal architecture.

In this paper, we propose One-Stage Tree to build and prune the tree jointly. One-Stage 
Tree directly samples the leaf node as prediction and keeps the discretization of the archi-
tecture during training. We leverage the reparameterization trick and proximal iterations to 
optimize the multivariate discrete tree.

2.2 � Proximal algorithm

PA (Proximal Algorithm) (Parikh & Boyd, 2014) is a popular optimization technique for 
handling the following problem:

where f and g are closed proper convex, f is differentiable, and C is the feasible space. The 
crux of PA is the standard proximal step:

(3)min
x∈C

f (x) + g(x)
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proxC,�g(⋅) represents the standard proximal operator of g with scale parameter � con-
strained by C (Parikh & Boyd, 2014). In this form, we split the objective into two terms, 
one of which is differentiable. Since g can be extended-valued, it can be used to encode 
constraints on x.

In machine learning, PA is widely used to solve the continuously differentiable optimiza-
tion problem with a constraint C as minx f (x) where x ∈ C . Since g(x) = 0 , the proximal step 
is simplified to x(k+1) = proxC(x

(k) − �∇f (x(k))) . Due to its excellent theoretical guarantee and 
good empirical performance, it has been applied to many deep learning problems (e.g., net-
work binarization (Bai et al., 2018) and recommendation system (Yao et al., 2020)). Another 
variant of PA with lazy proximal step (Xiao, 2010) maintains two copies of x, i.e.,

Although it has no convergence guarantee in the non-convex case, it performs well empiri-
cally on deep learning tasks (Courbariaux et al., 2015; Hou et al., 2017).

3 � Methodology

In this section, we introduce One-Stage Tree, which is trained with the reparameterization 
trick and proximal iterations in an end-to-end manner.

3.1 � Problem formulation

Consider a supervised task with input space X ⊂ ℝ
d and output space Y ⊂ ℝ

c . Let D be the 
data distribution. We denote the training set sampled from D as Dtrain . The training set is 
also defined as {x1,… , xN} ⊂ X  with corresponding {y1,… , yN} ⊂ Y . Let l be a differenti-
able convex function that measures the difference between the prediction and the target. 
We denote the overall loss on a given dataset as L(�).

The soft tree relaxes the parameters � to be continuous, recursively calculates the prob-
ability s(x;�i) from an internal node i to its children, and finally gets the path probability 
�t(x;�, �) from the root to each leaf t. Let Path(t) be the node set from the root to leaf t. The 
path probability �t(x;�, �) is calculated as follows:

where � represents the 0-1 indicator function and L(i) denotes the left child of node i. If 
L(i) ∈ Path(t) is satisfied, the indicator function equals 1. For example, s(x;�i)0 indicates 
the probability of routing the left child. The response of the soft tree is the probability-
weighted sum of the leaf values.

After the continuous relaxation, the goal is to jointly learn the tree parameters and find the 
global optima, which can be optimized by gradient descent:

(4)
x(k+1) = proxC,𝜖g

�
x(k) − 𝜖∇f

�
x(k)

��

where 𝜖 > 0 and proxC,𝜖g(x) = argmin
z∈C

1

2
‖z − x‖2

2
+ 𝜖g(z)

(5)x(k+1) = x(k) − 𝜖∇f (x̄(k)) where x̄(k) = proxC(x
(k))

(6)�t(x;�, �) =
∏

i∈Path(t)

�i ⋅ s(x;�i)(1−�L(i)∈Path(t))

(7)f (x;�) =
∑

t∈T �t ⋅ �t(x;�, �)
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3.2 � One‑Stage Tree

Although the continuous relaxation allows the whole tree to be differentiable, soft trees 
have significant limitations: 

1.	 Interpretability Although the oblique split �i indicates feature importance, path prob-
abilities at large depths are difficult to interpret.

2.	 Performance The continuous architecture � needs to be discretized to {0, 1} at test time, 
resulting in inconsistent performance between training and testing.

Recall that in hard trees, the trees are all discrete when updating node parameters. Such 
discretization naturally alleviates the above limitations. Thus, we aim to search the differ-
entiable soft tree but keep discrete architectures and paths when updating the parameters. 
Like decision trees that use the validation set for pruning, we divide the training set into 
two parts (i.e., the training set and validation set) and minimize the following objective:

where Ltrain and Lval are the losses on the training and validation sets, respectively.
We call it One-Stage Tree because it keeps the discretization while simultaneously com-

pleting the two stages of building and pruning. The one-stage optimization is achieved by 
solving the bilevel optimization problem in Eq. (9). However, the problem of discretization 
remains. Specifically, the discretization in One-Stage Tree can be divided into two parts:

•	 Discretization of Probabilistic Path A discrete path routes an instance from 
root to a leaf. In soft trees, the paths are probabilistic and summed as prediction ∑

t∈T �t(x;�, �) ⋅ �t . To discretize the path, a straightforward idea is to sample a path 
as the prediction based on the probability. The Monte Carlo method (Metropolis and 
Ulam, 1949) can be used to estimate the expectation of the loss. We use the reparam-
eterization trick (Blum et al., 2015) to make it differentiable w.r.t � . To approximate 
the sampling estimator to the true expectation, we use the Gumbel Softmax (Maddison 
et al., 2014) for reparameterization.

•	 Discretization of Continuous Architecture The continuous relaxation of � unifies the 
forms of node and leaf. However, it makes the tree architecture difficult to interpret 
and leads to low computational efficiency caused by that all nodes need to be visited. 
To keep � discrete but differentiable, we propose an architecture optimization strategy 
via proximal iterations (Parikh & Boyd, 2014; Xiao, 2010), which is inspired by NAS 
(Neural Architecture Search (Liu et al., 2018; Yao et al., 2020)).

To summarize, as shown in Fig. 2, One-Stage Tree retains the advantages of hard trees 
as discrete inference models and improves learning through end-to-end training with 
back-propagation.

(8)�∗ = argmin
�

L(�) = argmin
�

∑
(x,y)∼D

l(f (x;�), y)

(9)
min
�

Lval(�
∗, �∗, �)

s.t. �∗, �∗ = argmin�,� Ltrain(�, �, �)

∀node i, �i ∈ {0, 1} and s ∶ x → {[0, 1]T , [1, 0]T}
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3.3 � Gumbel‑softmax path

The probabilistic path from the root to the leaf t lacks interpretability and leads to iterative 
optimization of the leaf parameters � . To discretize the probabilistic path, we express the 
router at node i as a random variable s(x;�i) ∼ q�i

(s|x) . Thus, a discrete path is sampled 
from a continuous distribution parameterized by � . In this way, we can explore the diver-
sity, where each instance can belong to different leaves, and exploit the best path with the 
highest probability. Traditionally, each instance belongs to a fixed leaf by the splitting rule, 
and each leaf calculates � by its instances (e.g., the average of labels in CART). Here, by 
sampling from the random variable when training, we explore the case that each instance 
can be held by different leaves in the optimization process. Moreover, we directly choose 
the path with the highest probability as exploitation when testing.

However, as a result of sampling, the loss cannot be propagated backward to � . To train 
� , we reparameterize the random variable s using a differentiable transformation g�i

(�, x) , 
where g is parameterized by �i and � is an (auxiliary) noise variable with independent mar-
ginal p(�).

Using the reparameterization trick, we can now form MC (Monte Carlo) estimates 
(Metropolis & Ulam, 1949) of the expectation of the loss, which is differentiable w.r.t. � , 
as follows:

(10)s(x;�i) = g�i
(�, x) with � ∼ p(�)

Fig. 2   Overview of One-Stage Tree. Each node i can be either an internal node (i.e., �
i
 is emphasized) or a 

leaf (i.e., �
i
 is emphasized) according to �

i
 . The path, where the instance x (including a bias term) is routed 

to, is shown in purple. Due to the discretization, x is routed to the left or right child at each node by s(x;�) 
and finally reaches the leaf as the prediction
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where M is the number of samples and �(m) ∼ p(�) . If L(i) ∈ Path(t) is satisfied, the indica-
tor function � equals 1 and the probability of routing the left child is g�i

(�, x)0.
Specifically, we choose to sample noise from Gumbel Distribution (Gumbel, 1954), which 

can smoothly approximate the expectation (Maddison et al., 2014; Jang et al., 2016). Corre-
spondingly, the Gumbel Softmax of g�i

(�, x) is expressed as follows:

� denotes the temperature of the Gumbel Softmax. In practice, the value of � can be empir-
ically set to 1.

3.4 � Architecture search via proximal iterations

Equation (9) implies a bilevel optimization problem with � as the upper-level variable and � 
as the lower-level variable. We also relax the discrete choice of whether to prune or not (i.e. 
�i ∈ [0, 1] ). As a result, � can be optimized w.r.t. its validation set performance by gradient 
descent.

Budding Tree (Irsoy et  al., 2014) propagates the error backwards from the root towards 
the leaves. fi denotes the response at node i (Eq.  (2)). Define pa(i) as the parent of node i and 
�i = �L∕�fi as the responsibility of node i. Deriving L w.r.t. �i , we have:

The detailed derivation of Eq. (13) can be found in “Appendix 1”. From Eq. (13), we can 
see that once the internal node is pruned (i.e., �i = 0 ), it will never be able to bud again 
because its gradient is 0, which we call dying � . Moreover, it is prohibitive to evaluate 
the gradient due to the expensive inner optimization argmin�,� Ltrain(�, �, �) . Following the 
commonly used method (e.g., meta learning (Finn et al., 2017) and NAS (Liu et al., 2018)), 
we use a one-step gradient approximation to the optimal internal parameter �∗ to improve 
efficiency. Thus, the gradient of the architecture parameter � is as follows:

(11)

�q�(s|x)[L(�)] = �q�(s|x)

[ ∑
(x,y)∼D

l(f (x;�), y)

]

= �p(�)

[ ∑
(x,y)∼D

l

(∑
t∈T

vt

∏
i∈Path(t)

�i ⋅ g�i
(�, x)(1−�L(i)∈Path(t)), y

)]

≈
1

M

M∑
m=1

∑
(x,y)∼D

l

(∑
t∈T

vt

∏
i∈Path(t)

�i ⋅ g�i
(�(m), x)(1−�L(i)∈Path(t)), y

)

(12)
g𝜔i

(𝜖, x)k =
eŝ(x;𝜔i)k∕𝜏

∑1

j=0
eŝ(x;𝜔i)j∕𝜏

where 𝜖 ∼ Gumbel(0), k ∈ {0, 1}, and ŝ(x;𝜔i)k = s(x;𝜔i)k + 𝜖

(13)

�L

��i
= �i

(
−�i +⋯

)

with �i =

{
�L

�fi
, if i is the root

�pa(i) × �i ×⋯ , if i is a child
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More specifically, the approximate procedure alternatively optimizes the node param-
eters (�, �) and the architecture parameters � . At step k, given the current architecture � (k) , 
we first calculate �(k+1) in closed-form (Sect. 3.5). Then, we obtain �(k+1) by descending 
∇�(k)Ltrain(�

(k), �(k+1), � (k)) with the step size � as a one-step optimization for w∗ under � (k) . 
Then, we update the architecture parameters � (k) so as to minimize the validation loss. The 
architecture gradient is given in Eq. (14). We omit the step-index k for brevity. �∗ denotes 
the optimal leaf values and �∗ denotes the internal parameters with a one-step gradient 
decent.

However, there exist two problems in solving Eq. (14). First, the evaluation of the sec-
ond-order derivative ∇2 is expensive due to a large number of parameters. Second, the con-
tinuous trick further leads to the performance gap caused by discretizing �i ∈ [0, 1] at train-
ing to {0, 1} at testing.

To address the two issues, we employ the variant of Proximal Algorithm (Yao et  al., 
2020) for optimizing � efficiently. Equivalently, we transform �i to a 2-d one-hot vector 
that indicates whether to prune or not, i.e., �i ∈ {[0, 1], [1, 0]} . Let the feasible space of 
� be C = {�� ∀i, ‖�i‖0 = 1 ∧ 0 ≤ �i,j ≤ 1} . We denote it as the intersection of two feasi-
ble spaces (i.e., C = C1 ∩ C2 ), where C1 = {�� ∀i, ‖�i‖0 = 1} and C2 = {�| ∀i, 0 ≤ �i,j ≤ 1} . 
With such a constrained form, we can apply the composition of lazy and standard proximal 
steps proposed in Yao et al. (2020).

Specifically, as shown in Eq.  (15), in each proximal iteration, we first get a discrete 
architecture 𝛾̄ constrained by C1 . Then, we derive gradients w.r.t 𝛾̄ and keep � to be opti-
mized as continuous variable but constrained by C2:

Algorithm 1 One-Stage Tree: End-to-End Tree Builder and Pruner
1: Initialize Tree Parameters θ = (ω, υ, γ) according to the constraints;
2: while not converged do
3: Get discrete architecture: γ̄(k) = proxC1

(γ(k)), where C1 = {γ| ∀i, ‖γi‖0 ≤ 1};
4: Update optimal leaves υ(k) in closed-form by Equation (17) with the training set;
5: Update ω(k) by the MC approximation of ∇ω(k)Eq

ω(k) (s|x)[Ltrain(ω(k), υ(k), γ̄(k))] with

Equation (11);
6: Update γ(k+1) = proxC2

(γ(k) − ε∇γ̄(k)Lval(ω(k+1), υ(k+1), γ̄(k))), where C2 =
{γ| ∀i, 0 ≤ γi ≤ 1};

7: end while
8: return Tree Parameters θ.

Algorithm 1 shows the overall workflow of One-Stage Tree that searches the architec-
ture parameters � via proximal iterations. In the k-th iteration, the architecture and node 
parameters are updated alternatively. As the lazy proximal step first projects � into the 
discrete feasible space C1 , we can obtain the discrete architecture 𝛾̄ (k) = proxC1 (𝛾

(k)) (Line 
3). Then, we calculate the optimal leaf value � in closed-form (Sect. 3.5) and update the 

(14)

∇�Lval(�
∗, �∗, �)

≈ ∇�Lval

(
� − �∇�Ltrain(�, �

∗, �), �∗, �
)

= ∇�Lval

(
��, �∗, �

)
− �∇2

� ,�
Ltrain(�, �

∗, �)∇��Lval

(
��, �∗, �

)

(15)𝛾 (k+1) = proxC2

(
𝛾 (k) − 𝜖∇𝛾̄ (k)Lval

(
𝛾̄ (k)

))
, where 𝛾̄ (k) = proxC1 (𝛾

(k))
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internal parameters � on the training dataset (Sect.  3.3) based on 𝛾̄ (k) (Lines 4-5). After 
forwarding � one-step as in Eq. (14), we optimize � (k) with the gradient derived from 𝛾̄ (k) as 
continuous variable and then project it into C2 (Line 6).

In each proximal iteration, we keep the architecture � discrete when training, which con-
tributes to reducing the performance gap caused by discretizing architecture from a contin-
uous one. Moreover, we can ignore the second-order derivative of small magnitude � ⋅ � 
because � will be projected into the discrete feasible space C1 in the next iteration, i.e., 
prox

(k+1)

C1
(prox

(k)

C2
(𝛾 (k) − 𝜖(∇𝛾̄ (k) − 𝜉∇2

𝛾̄ (k) ,𝜔(k)
∇𝜔(k+1) ))) ≈ prox

(k+1)

C1
(prox

(k)

C2
(𝛾 (k) − 𝜖∇𝛾̄ (k) )) . Thus, 

the computational efficiency of updating � can be significantly improved.

3.5 � Optimal leaves in closed‑form

Unlike multivariate dense trees (Irsoy et al., 2012, 2014) where leaf values are iteratively 
optimized by gradient descent, we can solve for � in closed-form due to the discretiza-
tion of path and architecture. The prediction f (x) is �t when �t(x) = 1 . Define (x, y) as an 
instance and It = {(x, y)|∀(x, y) ∼ D,�t(x;�, �) = 1} as the instance set of leaf t, the deriva-
tive of the loss function can be expressed as:

From Eq. (16), the optimal leaves are solved in closed-form by simply deriving l w.r.t. the 
tree prediction. Let �L∕��t = 0 , we show the optimal solution for the leaf values under the 
common MSE and CrossEntropy losses:

•	 MSE

•	 CrossEntropy with constraint 
∑c

i=0
fi = 1 (i.e., c is the number of classes, and the prob-

ability sum is 1): 

(16)

�L

��t
=
�
x,y

�l

�f

�f

��t
=
�
x,y

�l

�f

�
∑

t∈T �t ⋅ �t(x;�, �)

��t

=
�
x,y

�l

�f
�t(x;�, �) =

�
(x,y)∈It

�l

�f

Let l(y, f ) =
1

2
(y − f )2

∴
�L

��t
=

�
(x,y)∈It

�l

�f
=

�
(x,y)∈It

(f − y) =
�

(x,y)∈It

�
�t − y

�

Let
�L

��t
= 0 ∴�∗

t
=

∑
(x,y)∈It

y

�It�



1969Machine Learning (2022) 111:1959–1985	

1 3

In summary, the optimal solution for � under both MSE and CrossEntropy is:

3.6 � In‑depth discussion

Table 1 shows the characteristic comparison between One-Stage Tree and other tree mod-
els from both training and inference perspectives.

In the training phase, One-Stage Tree improves learning in an end-to-end manner. 
Unlike the existing soft trees, One-Stage Tree can achieve joint optimization for node and 
architecture parameters. Soft Decision Tree does not support the optimization of the archi-
tecture parameters. Due to the lack of any pruning strategy, Soft Decision Tree is easy to 
fall into overfitting. Budding Tree considers the search of the architecture parameters, but 
the dying � problem may occur. Compared to One-Stage Tree, End2End Tree is a two-stage 
method that first learns the node parameters end-to-end and then searches the architecture 
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Table 1   Characteristic comparison between One-Stage Tree and other tree models including hard tree and 
existing soft trees

Characteristic Training Inference

Joint � 
optimiza-
tion

End-to-End 
training �

Arch. � search Optimal � in 
closed-form

Discrete path Performance 
consistency

Hard Tree × × ✓ ✓ ✓ ✓

Soft Decision Tree × ✓ × × × ✓

Budding Tree ✓ ✓ Dying � × × ✓

End2End Tree × ✓ ✓ ✓ ✓ ×

One-Stage Tree ✓ ✓ ✓ ✓ ✓ ✓
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parameters greedily. Moreover, due to the discretization of path and architecture, One-
Stage Tree can efficiently solve � in closed form.

In the inference phase, One-Stage Tree can keep the same advantage of interpretability 
as hard trees due to maintaining discretization. Unlike End2End Tree, which transforms 
from the probabilistic tree to the deterministic one during inference, One-Stage Tree does 
not require the additional transformation and thus can reduce the performance gap between 
training and testing.

4 � Experiments

In this section, we conduct extensive experiments on public datasets to answer the follow-
ing research questions:

•	 RQ1 How effective is the proposed One-Stage Tree?
•	 RQ2 Is One-Stage Tree robust to hyperparameters?
•	 RQ3 How do different components of One-Stage Tree (e.g., Proximal Algorithm) con-

tribute to the performance?
•	 RQ4 How to reflect the interpretability of One-Stage Tree?

4.1 � Experimental setting

We use a total of 22 public datasets from OpenML,2 UCI repository,3 and Kaggle.4 There 
are 17 classification (C) datasets and 5 regression (R) datasets that have various numbers of 
features (5 to 57) and instances (100 to 30000).

Benefiting from soft trees, One-Stage Tree can be trained using tools from deep learn-
ing. We choose the Adam optimizer (Kingma & Ba, 2014) to train One-Stage Tree. The 
number of epochs is up to 200, the batch size is 32, and the learning rate is 0.01. The other 
hyperparameters of the Adam optimizer are all the same as default settings. EarlyStop-
ping (Prechelt, 1998), which monitors the validation loss, is used to prevent overfitting 
with patience of 15. Except for Sect. 4.3.1, the depths of all tree models are set to 6 for 
comparison.

We use MSE loss for regression tasks and CrossEntropy loss for classification tasks in 
all experiments. Moreover, to evaluate the trees, we use r2-score and accuracy for regres-
sion tasks and classification tasks respectively. For clarity, we multiply all metrics by 100 
in all tables.

Due to the bilevel optimization, One-Stage Tree splits the raw data as 6:2:2 
(train:validation:test) and uses the validation set for optimizing the architecture parameters 
(i.e., tree pruning). For the other methods (i.e., CART, Soft Decision Tree, and End2End 
Tree), the raw data is divided using a ratio of 8:2 (train:test). These methods do not require 
a validation set during training.

2  https://​www.​openml.​org.
3  https://​archi​ve.​ics.​uci.​edu/​ml/​index.​php.
4  https://​www.​kaggle.​com.

https://www.openml.org
https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com
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4.2 � Effectiveness of One‑Stage Tree (RQ1)

In this subsection, we demonstrate the effectiveness of One-Stage Tree.

4.2.1 � Comparison with trees

We compare One-Stage Tree on 22 datasets with the state-of-the-art and baseline tree 
methods, including: 

1.	 CART (Breiman et al., 1984): the most typical univariate discrete tree, which uses MSE 
for regression and Gini Index for classification as the splitting rules. We choose the 
widely-used sklearn.tree package5 to run CART.

Table 2   Comparison between One-Stage Tree, CART, and the existing soft trees on classification datasets 
from UCIrvine

Bold indicates the best
a The results obtained with the open-source code, Err. unknown bug when running the open-source code, 
Inst. is short for Instance, Feat. is short for Feature

Dataset Inst.∖Feat. CART​a Soft Decision Treea End2End Treea One-Stage Tree

PimaIndian 768∖7 75.97 ± 0.58 30.52 ± 0.00 68.54 ± 2.10  81.82 ± 0.92
SpectF 267∖44 58.52 ± 1.01  83.33 ± 0.00 82.32 ± 4.00 79.26 ± 1.55
German Credit 1001∖24 70.50 ± 0.22 29.00 ± 0.00 71.00 ± 0.00  75.70 ± 1.52
Ionosphere 351∖34 92.96 ± 1.00 66.58 ± 8.17 87.45 ± 3.86  93.24 ± 0.63
Credit Default 30000∖25 82.53 ± 0.01 21.62 ± 0.00 78.37 ± 0.03  82.74 ± 0.08
Messidor_features 1150∖19 59.74 ± 0.31 66.23 ± 3.86 59.07 ± 2.94  66.93 ± 1.36
Wine Quality Red 999∖12 58.31 ± 0.17 42.50 ± 14.76 51.90 ± 3.72  61.38 ± 0.68
Wine Quality White 4900∖12 50.41 ± 0.00 Err. 41.48 ± 0.78  53.82 ± 0.44
SpamBase 4601∖57 91.21 ± 0.05 75.53 ± 1.85 75.31 ± 6.70  93.25 ± 0.43
Credit-a 690∖6 79.71 ± 0.32 65.74 ± 6.14 67.26 ± 2.51  85.07 ± 0.83
Fertility 100∖9 80.00 ± 2.24 87.27 ± 4.10  90.00 ± 3.16  90.00 ± 0.00
Heaptitis 155∖6 65.81 ± 2.89 70.09 ± 2.54 64.81 ± 4.67  83.87 ± 3.23
Megawatt1 253∖37 81.96 ± 1.64 13.73 ± 0.00 86.27 ± 0.00  88.24 ± 2.77

Table 3   Comparison between One-Stage Tree and CART on regression datasets

Bold indicates the best
a The results obtained with the open-source code

Dataset Source Instances∖Features CART​a One-Stage Tree

Housing Boston UCIrvine 506∖13 61.55 ± 0.66  63.73 ± 2.49
Airfoil UCIrvine 1503∖5  74.00 ± 0.00 71.08 ± 2.18
Openml_589 OpenML 1000∖25 77.12 ± 0.32  79.44 ± 1.94
Openml_620 OpenML 1000∖25  74.83 ± 0.15 73.64 ± 1.87

5  https://​scikit-​learn.​org/​stable/.

https://scikit-learn.org/stable/
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2.	 Soft Decision Tree (Irsoy et al., 2012): a multivariate dense tree, of which all the paths 
to all the leaves contribute to the final prediction with different probabilities. It only 
supports classification tasks. We use the open-source code6 with most stars on GitHub 
to obtain the experimental results.

3.	 Budding Tree (Irsoy et al., 2014): a multivariate dense tree, which searches the tree 
architecture in the learning phase. It supports both classification and regression tasks.

4.	 End2End Tree (Hehn et al., 2019): the state-of-the-art multivariate discrete tree, which 
is fully probabilistic at the training phase but becomes deterministic after an annealing 
process at the testing phase. It is open-source7 and only supports classification tasks.

  
For the open-source methods including CART, Soft Decision Tree, and End2End Tree, 

we directly use the default hyperparameters in the open-source codes. To investigate the 
stability of the training process, we randomly select 5 random seeds and obtain the mean 
and standard deviation of the trees’ performance. Table  2 shows the comparison results 
between One-Stage Tree and the open-source methods including CART, Soft Decision 
Tree, and End2End Tree on classification datasets. Since Soft Decision Tree and End2End 
Tree do not support regression tasks, we only show the comparison results with CART in 
Table 3.

Moreover, since Budding Tree is not completely open-source, we directly use the avail-
able datasets and the experimental results reported in the original paper (Irsoy et al., 2014). 
To set up the same experimental setting, we separate 1/3 of the dataset as a test set to 
evaluate the final performance. The comparison results between One-Stage Tree and Bud-
ding Tree are shown in Table 4. According to the comparison results, we can observe that:

•	 The comparison results shown in Table 2 indicate that One-Stage Tree outperforms the 
existing tree methods and achieves the best performance in all but 1 case on classifica-
tion datasets.

Table 4   Comparison between One-Stage Tree, CART, and Budding Tree with the same experimental set-
ting in Irsoy et al. (2014)

Bold indicates the best
∗The results reported in the paper
a The results obtained with the open-source code

Tree Dataset Housing 
Boston

German Credit Magic Pima Indian Spam Base Ecoli Glass Yeast

Budding Tree∗ 78.20 68.70 86.30 67.10 91.40 83.56 53.78 59.31
CART​a 73.51 70.00 83.38 72.66 90.74 76.79 70.83 59.80
One-Stage 

Tree
80.80 70.06 85.61 78.52 93.09 79.46 62.60 58.59

6  https://​github.​com/​kimhc​6028/​soft-​decis​ion-​tree.
7  https://​github.​com/​tomsal/​endto​endde​cisio​ntrees.

https://github.com/kimhc6028/soft-decision-tree
https://github.com/tomsal/endtoenddecisiontrees
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•	 Besides the classification tasks, One-Stage Tree can also support regression tasks. As 
shown in Table 3, for regression datasets from different sources, One-Stage Tree out-
performs CART on 3/5 datasets.

•	 The comparison results shown in Table 4 demonstrate that One-Stage Tree outperforms 
Budding Tree and CART on 5/8 and 6/8 datasets respectively. Although CART and 
Budding Tree also search the node and architecture parameters in the training phase, 
One-Stage Tree shows better performance in learning the tree parameters �.

•	 For soft trees, end-to-end training based on gradient descent inevitably has a degree of 
randomness. Table 2 shows that One-Stage Tree has a smaller standard deviation on 
most datasets, achieving more stable performance compared to the existing soft trees.

4.2.2 � Statistical comparison

To further statistically evaluate the difference between the soft trees, we perform the Fried-
man test (Demšar, 2006), which is a non-parametric equivalent of the repeated-measures 
ANOVA. It is used to determine whether or not there is a statistically significant difference 
between the soft tree models.

For the comparison results in Table 2, we first calculate the Friedman statistic. Let rj
i
 be 

the rank of the j-th of k soft tree models (k = 4, i.e., CART, Soft Decision Tree, End2End 
Tree, and One-Stage Tree) on the i-th of N classification datasets. The Friedman test com-
pares the average ranks of models, Rj =

1

N

∑
i r

j

i
 . The null-hypothesis states that all the tree 

Table 5   p-values for each pairwise comparison using the Nemenyi post-hoc test for the soft tree models 
(Confidence level � = 0.05)

Bold indicates the statistically significant difference (i.e., p < 0.05)

CART​ Soft Decision Tree End2End Tree One-Stage Tree

CART​ 1.0000 0.5177 0.9000 0.0255
Soft Decision Tree 0.5177 1.0000 0.8162 0.0001
End2End Tree 0.9000 0.8162 1.0000 0.0046
One-Stage Tree 0.0255 0.0001 0.0046 1.0000

Fig. 3   Comparison between One-Stage Tree and other ML Methods on classification datasets
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models are equivalent and so their ranks Rj should be equal. We employ the scipy tool8 to 
calculate the Friedman statistic. The Friedman statistic is 19.837209 and the corresponding 
p-value is 0.00018. Since the p-value is less than 0.05, we can reject the null hypothesis 
that the performance is the same for all four types of soft trees. In other words, we have 
sufficient evidence to conclude that the trees lead to statistically significant differences in 
terms of performance. Since the p-value of the Friedman test is statistically significant, we 
perform the Nemenyi post-hoc test  (Nemenyi, 1963) to further determine exactly which 
trees have different means. Table 5 shows the p-values for each pairwise comparison. We 
can conclude that One-Stage Tree is significantly different from other trees for a confidence 
level of � = 0.05 . Additionally, according to the Friedman test, there is no significant dif-
ference for the three trees compared in Table 4.

For the regression tasks shown in Table  3, we perform Wilcoxon signed-rank 
test  (Demšar, 2006) to compare the two tree models statistically. The statistic is 5.0 and 
the corresponding p-value is 0.24886. Thus, there is no statistically significant difference 
between CART and One-Stage Tree in the regression tasks.

4.2.3 � Comparison with other standard ML methods

Moreover, we compare One-Stage Tree with other standard ML methods (i.e., XGBoost 
(Chen & Guestrin, 2016),9 Support Vector Machine,10 and Multi-Layer Perception11) 
for reference. In particular, a linear kernel for SVM is used. We use the open-source 

Fig. 4   Comparison between 
One-Stage Tree and other ML 
Methods on regression datasets

Table 6   Average Rank of 
One-Stage Tree and other ML 
Methods

Method Avg. Rank

XGBoost 1.63
One-Stage Tree 2.47
MLP 2.63
LinearSVM 3.26

9  https://​github.​com/​dmlc/​xgboo​st.
10  https://​github.​com/​scikit-​learn/​scikit-​learn/​tree/​main/​sklea​rn/​svm.
11  https://​github.​com/​scikit-​learn/​scikit-​learn/​tree/​main/​sklea​rn/​neural_​netwo​rk.

8  https://​github.​com/​scipy/​scipy.

https://github.com/dmlc/xgboost
https://github.com/scikit-learn/scikit-learn/tree/main/sklearn/svm
https://github.com/scikit-learn/scikit-learn/tree/main/sklearn/neural_network
https://github.com/scipy/scipy
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implementation of the above methods and perform grid search to select the best hyper-
parameters for the learners in each dataset. The hyperparameter search space can be seen 
in “Appendix 2”. Similarly, 5 randomly selected seeds are used to obtain the performance 
mean and standard deviation. Figures 3 and 4 show the performance comparison on the 
classification and regression datasets respectively. The mean performance is present in a 
bar chart with an error line (i.e., the standard deviation). MLP and SVM perform very poor 
on the dataset BikeShare DC due to the large range of regression values. Thus, we truncate 
their performance to 0 in Fig. 4. This also reflects the advantage of tree models that each 
leaf takes the mean value of its samples as the prediction output.

To present the comparison results clearly, we further calculate the average rank of each 
method in Table 6. Compared to other methods, One-Stage Tree outperforms traditional 
machine learning methods MLP and SVM. Although XGBoost ensembles 100 trees with 
a max depth of 6 via GBDT (Friedman, 2001), One-Stage Tree is still competitive on sev-
eral datasets. We also consider combining One-Stage Tree with ensemble learning methods 
such as bagging and boosting to further improve the performance in future work.

In summary, our proposed One-Stage Tree is effective for both classification and regres-
sion tasks and outperforms CART and the existing soft trees on most datasets. One-Stage 
Tree also shows good performance in comparison with other standard machine learning 
methods.

4.3 � Robustness of One‑Stage Tree (RQ2)

In this subsection, we evaluate whether One-Stage Tree is sensitive to the key hyperparam-
eters, i.e., the tree depth and the validation size � . We perform experiments on all classifi-
cation datasets with the same experimental setting as in RQ1.

4.3.1 � Tree depth

The size of tree depth ranges from 1 to 9. We run One-Stage Tree 5 times with differ-
ent random seeds and report the mean number of internal nodes per tree depth. As shown 
in Table  7, the optimization of the architecture parameters in One-Stage Tree is effec-
tive for tree pruning. At a depth of 9, One-Stage Tree can even prune 60% of the internal 
nodes. Despite the larger depth, trees may be pruned as shallow ones to avoid the risk of 
overfitting.

With the increase of the tree depth, the search space of the tree structure is growing. 
Meanwhile, the ability to find effective trees becomes crucial. Figure 5 shows the perfor-
mance curves of all tree models with respect to the tree depth. From Fig. 5, we can observe 
that:

Table 7   Mean number of internal nodes per tree depth

Depth 1 2 3 4 5 6 7 8 9

One-Stage Tree 1.0 2.6 7.0 14.9 21.9 44.0 59.6 129.3 187.4
Perfect Binary Tree 1 3 7 15 31 63 127 255 511
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•	 Due to the joint optimization of the node and architecture parameters, One-Stage Tree 
can achieve better performance than other tree models at different depths. Moreover, 
from a global perspective, the performance of One-Stage Tree increases with the tree 

(a) PimaIndian (b) SpectF (c) German Credit

(d) Ionosphere (e) Credit Default (f) Messidor features

(g) Wine Quality Red (h) Wine Quality White (i) SpamBase

(j) Credit-a (k) Fertility (l) Heaptitis

(m) Megawatt1

Fig. 5   Effect of tree depth
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depth. When the tree depth is 9, One-Stage Tree can still achieve performance improve-
ment on several datasets (e.g., Ionosphere and Wine Equality White).

•	 As the tree pruning is not supported, Soft Decision Tree can easily fall into overfitting. 
Especially at the larger depth, the performance of Soft Decision Tree may decrease dra-
matically.

•	 End2End Tree can achieve stable performance at different depths. However, as a two-
stage method of building and then pruning, it does not perform as well as One-Stage 
Tree.

•	 For the hard tree CART that greedily achieves building and pruning, the performance 
at a large tree depth may fall into local optimal. For example, at a depth of 9, the perfor-
mance of CART is even much worse than that at a depth of 1 on datasets such as SpectF 
and Hepatitis.

In summary, One-Stage Tree not only achieves stable performance at different tree 
depths but also achieves performance improvement as the tree depth increases. Moreo-
ver, considering that the best performance may be achieved at depth {5, 6, 7} , the uncer-
tainty in deep learning is worth noting. More regularization techniques need to be added 
to alleviate such problems in future work.

4.3.2 � Validation size

To evaluate the impact of the validation size, we use the same experimental setting as 
in RQ1 (e.g., depth of 6 and patience of 15). As shown in Table  8, the performance of 
One-Stage Tree remains stable with respect to the validation size. Moreover, the compari-
son results in Table 8 demonstrate that the optimal � increases as the number of features 
decreases. The validation size can be seen as a trade-off for the training of the internal 
and architecture parameters. As � grows, more instances are used to train the architecture 

Table 8   Comparison results of One-Stage Tree with different validation sizes �

Bold indicates the best

Dataset Features � = 0.05 � = 0.10 � = 0.15 � = 0.20 � = 0.25 � = 0.30

Credit-a 6 84.78 84.06 84.78 85.07 84.06 86.23
Heaptitis 6 77.42 80.65 77.42 83.87 80.65 77.42
PimaIndian 7 80.36 81.17 81.82 81.82 80.52 81.17
Fertility 9 90.00 88.75 86.25 90.00 88.75 86.25
Wine Quality Red 12 61.56 60.94 61.88 61.38 57.19 58.13
Wine Quality White 12 53.47 53.88 51.53 53.82 53.98 52.14
Messidor_features 19 71.00 70.13 70.13 66.93 67.97 68.83
German Credit 24 74.50 74.00 74.50 75.70 75.50 74.00
Credit Default 25 82.88 82.58 82.85 82.74 82.60 82.72
Ionosphere 34 91.20 89.08 94.01 93.24 92.86 91.55
Megawatt1 37 86.27 92.16 90.20 88.24 88.24 90.20
SpectF 44 74.07 79.63 77.31 79.26 75.93 72.69
SpamBase 57 92.73 93.70 93.49 93.25 93.49 93.05
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parameters � . At the same time, the internal parameters � is much less optimized. The 
number of the internal parameters is d (i.e., the number of features) times greater than the 
number of the architecture parameters. Thus, for the datasets with more features, training � 
requires more instances (i.e., the smaller �).

4.4 � Ablation study (RQ3)

In this subsection, we conduct experiments to check whether the discretization of One-
Stage Tree influences the performance gap. To validate the effectiveness of proximal itera-
tions, we propose two variants:

•	 Joint Tree which is a variant of One-Stage Tree without proximal iterations. Joint Tree 
optimizes the node and architecture parameters according to Eq. (8).

Fig. 6   Performance comparison between One-Stage Tree and Joint Tree (Bar chart shows the comparison in 
the test set, and line chart shows the comparison in the training set)

Table 9   Statistics (i.e., the 
number of top-ranked datasets 
for each tree) on the performance 
of One-Stage Tree, Joint Tree 
and Gumbel Tree (0.5 means 
that two tree models tie on the 
dataset)

One-Stage Tree Joint Tree Gumbel Tree

Classification Tasks
Train 0 13 0
Test 7.5 4 1.5
Regression Tasks
Train 0 5 0
Test 4 1 0
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•	 Gumbel Tree which is another variant of One-Stage Tree that discretizes the architec-
ture by the Gumbel Softmax in the outer minimization of Eq. (9).

	   The details of Gumbel Tree can be found in “Appendix 3”.

We perform the experiments on all classification and regression datasets used in RQ1 with 
the same experimental settings.

The performance comparison is presented in Fig. 6 and Table 9. In Fig. 6, the bar chart 
shows the performance on the test set to indicate the generalization of the trees, and the 
line chart shows the performance on the training set to represent the fit of the trees. The 
height difference between points and bars of the same color represents the performance gap 
of the tree between training and testing. For greater clarity, we count the number of top-
ranked datasets for each tree in Table 9.

Without dividing the validation set to optimize � , Joint Tree obtains a better fit on the 
training set in all datasets. However, One-Stage Tree achieves a significant performance 
improvement over Joint Tree on the test set. Compared with Joint Tree, One-Stage Tree 
reduces the fit to the training set and greatly improves the generalization ability on the 
test set. The performance gap between training and testing is indeed reduced by proximal 
iterations.

Additionally, from Fig. 6 and Table 9, we can see that One-Stage Tree performs much 
better than Gumbel Tree. Figure 6 shows that Gumbel Tree has the worst performance on 
the training set on most datasets, which indicates that Gumbel Tree is not fully trained. 
The main reason why the underfitting problem occurs in Gumbel Tree is that the Gum-
bel Softmax prefers to sample different architectures in the early stage of training. Since 
the internal parameters � and the architecture parameters � are optimized alternatively in 
Eq.  (9), sampling a significantly different architecture each time plays a negative impact 
on the one-step approximation of the optimal internal parameters �∗ . In contrast, One-
Stage Tree gradually optimizes the current architecture with a small difference to ensure 
the effectiveness.

Furthermore, as discussed in Sect. 4.2.2, we perform the Friedman test (Demšar, 2006) 
to compare One-Stage Tree with the two variants statistically. The Friedman statistic is 
14.2121 and the corresponding p-value is 0.00082. Since the p-value is less than 0.05, we 
conclude that the trees lead to statistically significant differences. Next, according to the 
Nemenyi post-hoc test, we further conclude that One-Stage Tree is significantly different 
from other two variants for a confidence level of � = 0.05.

Table 10   Factors for the 
interpretability of decision trees

Interpretability Hard Tree Soft Deci-
sion Tree

One-
Stage 
Tree

Routing Rule ✓ × ✓

Feature Importance ✓ × ✓

Node Instance Distribution ✓ × ✓

Node Impurity ✓ × ✓

Deterministic Predicted Value ✓ × ✓
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4.5 � Discussion of interpretability (RQ4)

The interpretability of hard trees helps to understand the mechanism of the tree model 
and explore the patterns of the dataset. In contrast to hard trees, One-Stage Tree cannot 
be transformed into several ’if-else’ rules based on features and thresholds. In One-Stage 
Tree, different instances may be routed based on different features at the same node. Thus, 
unlike hard trees, it is difficult to visualize One-Stage Tree. In Table 10, we summarize 
the factors for the interpretability of decision trees. Taking a tree of depth 6 trained on the 
dataset PimaIndian as an example, we discuss the interpretability of One-Stage Tree.

4.5.1 � Routing rule

Hard trees use a greedy algorithm to select a split feature at each node with a threshold. 
It can be seen that a hard tree learns rules from the dataset to route instances to different 
leaves for prediction. Such ’if-else’-based routing rules are dataset-wise, i.e., each node 
routes different instances based on the same feature in the inference phase. Thus, they are 
easy to be understood.

In One-Stage Tree, the routing rules are instance-wise. At the same node, the features 
contribute differently to the routing of different instances. In the inference phase, the path 
with the highest probability is chosen, which is equivalent to:

Fig. 7   Feature contribution of 3 different instances in Node0

Fig. 8   Feature importance of 
CART and One-Stage Tree in the 
dataset PimaIndian
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where �i ∈ ℝ
(d+1)×2 and �T

i,0
x means the logit that x is routed to the left node. Thus, 

|(�i,0,j − �i,1,j) ⋅ xj| can be viewed as the contribution of feature j at node i for the instance 
x . We visualize the contribution of each feature to the node router through a pie chart to 
obtain the instance-wise routing rules. As shown in Fig. 7a, b, different features (i.e., BMI 
and Age) make the major contribution to the two instances that are both routed to the right 
node. Meanwhile, in Fig. 7a, c, two instances are routed to different children mainly by the 
same feature BMI.

Since the traditional soft trees (e.g., Soft Decision Tree and Budding Tree) are proba-
bilistic, the instances are not directly routed to child nodes, which is difficult to interpret. 
Compared to probabilistic trees, One-Stage Tree directly routes an instance to a child node 
rather than weighting it by probabilities. Thus, One-Stage Tree is more interpretable.

4.5.2 � Feature importance

Feature importance is an important way to explore data patterns. For hard trees, feature 
importance is calculated as the decrease in node impurity weighted by the probability of 
reaching that node. One-Stage Tree also provides the feature importance to explore the 
dataset. Due to the same discrete architecture of hard trees, One-Stage Tree calculates fea-
ture importance in the same way but weights the decreased impurity by |�i,0,j − �i,1,j| for 
each feature j at node i.

In Fig. 8, we show the feature importance of One-Stage Tree and CART in the dataset 
PimaIndian. We observe that two features, i.e., Glucose and BMI, play an important role in 
both trees.

4.5.3 � Node instance distribution, node impurity, and predicted value

Benefiting from the discrete architecture, One-Stage Tree deterministically routes each 
instance to a leaf for prediction. As a result, the instance distribution and node impurity 
can be computed in the same way as for the hard tree. In Fig. 9, we show the instance 

(18)s(x;𝜔i) =

{
[1, 0]T , if (𝜔i,0 − 𝜔i,1)

T
x > 0

[0, 1]T , o.w.

(a) (b)

Fig. 9   Instance distribution in leaves of One-Stage Tree trained on the dataset PimaIndian
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distribution in two leaves of One-Stage Tree trained on the dataset PimaIndian. Further-
more, we can calculate the node impurity and other criteria according to the instance 
distribution.

4.6 � Discussion

Tabular data is generally dominated by tree models. One-Stage Tree can be seen as an 
attempt at deep learning on tabular data. Although One-Stage Tree inherits the advantages 
of the decision tree, it has the disadvantages of deep learning. For example, due to the use 
of gradient descent for optimization, the efficiency of constructing One-Stage Tree needs to 
be improved. Moreover, One-Stage Tree is a single decision tree. To achieve better perfor-
mance, we need to further construct a tree ensemble model based on One-Stage Tree. Due 
to the continuous nature, we can perform joint tuning on all trees.

5 � Conclusion and future work

In this work, we proposed One-Stage Tree, which retains the advantages of traditional deci-
sion trees as the inference model and improving learning through end-to-end training with 
back-propagation. Based on the continuous relaxation of soft trees, One-Stage Tree optimizes 
the node and architecture parameters jointly through a bilevel optimization problem. More-
over, One-Stage Tree leverages the reparameterization trick and proximal iterations to keep 
the tree discrete when training the continuous parameters. As a benefit, the performance gap 
between training and testing is reduced and the interpretability is maintained. The experimen-
tal results show that One-Stage Tree is effective on both classification and regression tasks and 
can outperform CART and the existing soft trees.

In the future, we plan to improve the efficiency of soft trees on GPU by parallelizing 
sequential decisions. Additionally, using ensemble methods such as bagging and boosting to 
build a forest of One-Stage Tree is also an important future work.

Appendix 1: Derivation of Equation (13) in budding tree

Similar to One-Stage Tree, Budding Tree (Irsoy et al., 2014) jointly optimizes the node and 
architecture parameters in the learning phase. Formally, for regression, given the training set 
Dtrain = {xm, ym}

N
i=m

 , the optimization objective of Budding Tree is as follows. For simplicity, 
we omit the regularization term on �i.

fr(x;�) denotes the response at the root node calculated using Eq. (2) recursively. Specifi-
cally, the response at node i is calculated as follows:

where �i ∈ [0, 1] denotes the architecture parameter. �i = 0 indicates that node i is a leaf.
Budding Tree employs stochastic gradient-descent (the error is computed with respect to 

a single instance x ) to solve Eq. (19). Next, we focus on the optimization of the architecture 

(19)min
�

L =
∑

(x,y)∼Dtrain

1

2
(fr(x;�) − y)2

fi(x;�) =
(
1 − �i

)
⋅ �i + �i ⋅

[
s
(
x;�i

)
0
⋅ fL(i)(x;�) + s

(
x;�i

)
1
⋅ fR(i)(x;�)

]
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parameters � . We omit � for brevity. Define pa(i) as the parent of node i and �i = �L∕�fi as the 
responsibility of node i, by deriving L w.r.t. �i , we have:

If node i is the root node, we can easily get �i = fi(x) − y according to Eq. (19). For other 
nodes, since fi(x) is calculated recursively, we can compute �i as follows:

In summary, we conclude that Eq. (13) holds based on Eqs. (20) and (21).

Appendix 2: Hyperparemeter search space of standard ML methods

To evaluate the performance of standard ML methods including MLP and SVM more accu-
rately, we perform hyperparameter optimization with grid search. The hyperparameter search 
space of MLP and SVM are as follows.

•	 MLP

•	 activation: tanh, relu, logistic
•	 solver: sgd, adam
•	 alpha (L2 penalty parameter): 10−4, 10−3, 10−2
•	 early stopping: true, false
•	 hidden layer sizes: 100, (100, 150), (50, 100, 100)

•	 LinearSVC (SVM for Classification)

•	 penalty: L1, L2
•	 loss: hinge, squared hinge
•	 dual: true, false
•	 tol: 10−5, 10−4, 10−3
•	 C (Regularization parameter): 1, 10, 100

•	 LinearSVR (SVM for Regression)

•	 dual: true, false
•	 loss: epsilon insensitive, squared epsilon insensitive
•	 tol: 10−5, 10−4, 10−3
•	 C (Regularization parameter): 1, 10, 100

Appendix 3: Details of gumbel tree

Gumbel Tree is a variant of One-Stage Tree that discretizes the tree architecture by the Gum-
bel Softmax instead of the lazy proximal step (Yao et al., 2020). Algorithm 2 shows the overall 
workflow of Gumbel Tree. As shown in Algorithm 2, both Gumbel Tree and One-Stage Tree 

(20)
�L

��i
=

�L

�fi(x)

�fi(x)

��i

= �i(−�i + s
(
x;�i

)
0
⋅ fL(i)(x) + s

(
x;�i

)
1
⋅ fR(i)(x))

(21)�i =
�L

�fpa(i)(x)

�fpa(i)(x)

�fi(x)
=

{
�pa(i) × �i × s

(
x;�i

)
0
, if i is the left child

�pa(i) × �i × s
(
x;�i

)
1
, if i is the right child
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solve the bilevel optimization problem in Eq. (9) by alternatively optimizing the node and 
architecture parameters. The main difference is the optimization strategy of the architecture 
parameters � (Line 3 and Line 6). The optimization processes of (�, �) (Line 4 and Line 5) are 
exactly the same as One-Stage Tree.

Unlike One-Stage Tree that searches the architecture parameters � via proximal itera-
tions, Gumbel Tree first obtains the discrete architecture 𝛾̄ (k) using the Gumbel Softmax (Line 
3)  (Maddison et  al., 2014). Based on the discrete architecture 𝛾̄ (k) , we further calculate the 
optimal leaf values in closed-form (Line 4) and update the internal parameters (Line 5) on 
the training set. After forwarding � one step, we optimize � (k) with gradient decent on the 
validation set (Line 6). Additionally, both Gumbel Tree and One-Stage Tree employ the early-
stopping mechanism to optimize the architecture parameters � . 

Algorithm 2 Gumbel Tree
1: Initialize Tree Parameters θ = (ω, υ, γ) according to the constraints;
2: while not converged do
3: Get discrete architecture: γ̄(k) = gumbel softmax(γ(k));

//The optimization processes of (ω, υ) are the same as One-Stage Tree.
4: Update optimal leaves υ(k) in closed-form by Equation (17) with the training set;
5: Update ω(k) by the MC approximation of ∇ω(k)Eq

ω(k) (s|x)[Ltrain(ω(k), υ(k), γ̄(k

Equation (11);
6: Update γ(k+1) = γ(k) − ε∇γ̄(k)Lval(ω(k+1), υ(k+1), γ̄(k));
7: end while
8: return Tree Parameters θ.
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