
Vol.:(0123456789)

Machine Learning (2022) 111:1205–1237
https://doi.org/10.1007/s10994-021-06098-0

1 3

Polynomial‑based graph convolutional neural networks
for graph classification

Luca Pasa1,2  · Nicolò Navarin1,2 · Alessandro Sperduti1,2

Received: 31 January 2021 / Revised: 22 July 2021 / Accepted: 8 October 2021 /
Published online: 9 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Graph convolutional neural networks exploit convolution operators, based on some neigh-
borhood aggregating scheme, to compute representations of graphs. The most common
convolution operators only exploit local topological information. To consider wider topo-
logical receptive fields, the mainstream approach is to non-linearly stack multiple graph
convolutional (GC) layers. In this way, however, interactions among GC parameters at dif-
ferent levels pose a bias on the flow of topological information. In this paper, we propose a
different strategy, considering a single graph convolution layer that independently exploits
neighbouring nodes at different topological distances, generating decoupled representa-
tions for each of them. These representations are then processed by subsequent readout
layers. We implement this strategy introducing the polynomial graph convolution (PGC)
layer, that we prove being more expressive than the most common convolution operators
and their linear stacking. Our contribution is not limited to the definition of a convolution
operator with a larger receptive field, but we prove both theoretically and experimentally
that the common way multiple non-linear graph convolutions are stacked limits the neu-
ral network expressiveness. Specifically, we show that a graph neural network architecture
with a single PGC layer achieves state of the art performance on many commonly adopted
graph classification benchmarks.

Keywords  Graph convolutional networks · Graph neural network · Deep learning ·
Structured data · Machine learning on graphs

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 *	 Luca Pasa
	 lpasa@math.unipd.it

	 Nicolò Navarin
	 nicolo.navarin@unipd.it

	 Alessandro Sperduti
	 alessandro.sperduti@unipd.it

1	 Department of Mathematics, University of Padua, Padua, Italy
2	 Human Inspired Technology Research Centre, University of Padua, Padua, Italy

http://orcid.org/0000-0002-3023-3046
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06098-0&domain=pdf

1206	 Machine Learning (2022) 111:1205–1237

1 3

1  Introduction

In the last few years, the definition of machine learning methods, particularly neural networks,
for graph-structured inputs has been gaining increasing attention in literature (Defferrard et al.
2016; Errica et al. 2020). In particular, graph convolutional networks (GCNs), based on the
definition of a convolution operator in the graph domain, are relatively fast to compute and
have shown good predictive performance. Graph convolutions (GC) are generally based on
a neighborhood aggregation scheme (Gilmer et al. 2017) considering, for each node, only its
direct neighbors. Stacking multiple GC layers, the size of the receptive field of deeper filters
increases (resembling standard convolutional networks). However, stacking too many GC lay-
ers may be detrimental on the network ability to represent meaningful topological informa-
tion (Li et al. 2018) due to a too high Laplacian smoothing. Moreover, in this way interactions
among GC parameters at different layers pose a bias on the flow of topological information,
as we will discuss in this paper. For these reasons, several convolution operators have been
defined in literature, differing from one another in the considered aggregation scheme. We
argue that the performance of GC networks could benefit by increasing the size of the recep-
tive fields, but since with existing GC architectures this effect can only be obtained by stacking
more GC layers, the increased difficulty in training and the limitation of expressiveness given
by the stacking of many local layers ends up hurting their predictive capabilities.

Consequently, the performances of existing GCNs are strongly dependent on the specific
architecture. Therefore, existing graph neural network performances are limited by (i) the
necessity to select a specific convolution operator, and (ii) the limitation of expressiveness
caused by large receptive fields being possible only stacking many local layers.

In this paper, we tackle both issues following a different strategy. We propose the polyno-
mial graph convolution (PGC) layer that independently considers neighbouring nodes at dif-
ferent topological distances (i.e. arbitrarily large receptive fields). We show that the PGC layer
is more general than most convolution operators in literature. As for the second issue, a single
PGC layer, directly considering larger receptive fields, can represent a richer set of functions
compared to the linear stacking of two or more graph convolution layers, i.e. it is more expres-
sive. Moreover, the linear PGC design allows to consider large receptive fields without incur-
ring in typical issues related to training deep networks. We developed the polynomial graph
convolutional network (PGCN), an architecture that exploits the PGC layer to perform graph
classification tasks. We empirically evaluate the proposed PGCN on eight commonly adopted
graph classification benchmarks. We compare the proposed method to several state-of-the-art
GCNs, consistently achieving higher or comparable predictive performances. Differently from
other works in literature, the contribution of this paper is to show that the common approach
of stacking multiple GC layers may not provide an optimal exploitation of topological infor-
mation because of the strong coupling of the depth of the network with the size of the topolog-
ical receptive fields. In our proposal, the depth of the PGCN is decoupled from the receptive
field size, allowing to build deep GNNs avoiding the oversmoothing problem.

2 � Notation

We use italic letters to refer to variables, bold lowercase to refer to vectors, and bold upper-
case letters to refer to matrices. The elements of a matrix � are referred to as aij (and sim-
ilarly for vectors). We use uppercase letters to refer to sets or tuples. Let G = (V ,E,�)
be a graph, where V = {v0,… , vn−1} denotes the set of vertices (or nodes) of the graph,

1207Machine Learning (2022) 111:1205–1237	

1 3

E ⊆ V × V is the set of edges, and � ∈ ℝ
n×s is a multivariate signal on the graph nodes

with the i-th row representing the attributes of vi . We define � ∈ ℝ
n×n as the adjacency

matrix of the graph, with elements aij = 1 ⟺ (vi, vj) ∈ E . With N(v) we denote the
set of nodes adjacent to node v. Let also � ∈ ℝ

n×n be the diagonal degree matrix where
dii =

∑
j aij , and � the normalized graph laplacian defined by � = � − �

−
1

2��
−

1

2 , where � is
the identity matrix.

With GConv�(�v,G) we denote a graph convolution with set of parameters � . A GCN
with k levels of convolutions is denoted as GConv�k (…GConv�1 (�v,G)… ,G) . For a dis-
cussion about the most common GCNs we refer to “Appendix A”. We indicate with �̂ the
input representation fed to a layer, where �̂ = � if we are considering the first layer of the
graph convolutional network, or �̂ = �(i−1) if considering the i-th graph convolution layer.

3 � Background

The derivation of the graph convolution operator originates from graph spectral filter-
ing (Defferrard et al. 2016). In order to set up a convolutional network on G, we need
the notion of a convolution ∗G between a signal � and a filter signal � The Spectral con-
volution (Defferrard et al. 2016) can be considered the application of Fourier transform
to graphs. It is obtained via Chebyshev polynomials of the Laplacian matrix. In general,
the usage of a Chebyshev basis improves the stability in numerical approximation, and is
defined as:

A graph filter can be defined as:

where �̃ =
2�

𝜆max
− �n is the diagonal matrix of scaled eigenvectors of the graph Laplacian.

The resulting convolution is then:

where �̃ =
2�

𝜆max
− �n.

The graph convolution (Kipf and Welling 2017) (GCN) is a simplification of the spec-
tral convolution. The authors propose to fix the order k⋆ = 1 of the Chebyshev spectral con-
volution in Eq. (2) to obtain a linear first order graph convolution filter. These simple con-
volutions can then be stacked in order to improve the discriminatory power of the resulting
network. The resulting convolution operator in Kipf and Welling (2017) is defined as:

where �̃ = �� + � , �� is the n × n identity matrix, �̃ is a diagonal matrix with entries
d̃ii =

∑
j ãij , and �(0) = �.

Morris et al. (2019) defined the GraphConv operator inspired by the Weisfeiler-Lehman
graph invariant, defined as follows:

T (0)(x) = 1,T (1)(x) = x,T (k)(x) = 2xT (k−1)(x) − T (k−2)(x).

(1)�̂
�
=

k⋆∑
i=0

𝜃iT
(i)(�̃),

(2)�
�
∗G � =

k⋆∑
i=0

𝜃iT
(i)(�̃)�,

(3)�(i+1) = (�̃−
1

2 �̃�̃−
1

2)�(i)�i,

1208	 Machine Learning (2022) 111:1205–1237

1 3

Xu et al. (2018) defined the graph isomorphism network (GIN) convolution. The GIN con-
volution exploits aggregation over node neighbors is implemented using an MLP, therefore
the resulting GC formulation is the following one:

4 � Polynomial graph convolution (PGC)

In this section, we introduce the polynomial graph convolution (PGC), able to simultane-
ously and directly consider all topological receptive fields up to k − hops , just like the ones
that are obtained by the graph convolutional layers in a stack of size k. PGC, however, does
not incur in the typical limitation related to the complex interaction among the parameters
of the GC layers. Actually, we show that PGC is more expressive than the most common
convolution operators. Moreover, we prove that a single PGC convolution of order k is
capable of implementing k linearly stacked layers of convolutions proposed in the litera-
ture, providing also additional functions that cannot be realized by the stack. Thus, the
PGC layer extracts topological information from the input graph decoupling in an effec-
tive way the depth of the network from the size of the receptive field. Its combination with
deep MLPs allows to obtain deep graph neural networks that can overcome the common
oversmoothing problem of current architectures. The basic idea underpinning the definition
of PGC is to consider the case in which the graph convolution can be expressed as a poly-
nomial of the powers of a transformation T of the adjacency matrix. This definition is very
general, and thus it incorporates many existing graph convolutions as special cases. Given
a graph G = (V ,E,�) with adjacency matrix � , the polynomial graph convolution (PGC)
layer of degree k, transformation T of � , and size m, is defined as

where T ∶
⋃∞

j=1
(ℝj×j

→ ℝ
j×j) is a generic transformation of the adjacency matrix that pre-

serves its shape, i.e. T(�) ∈ ℝ
n×n . For instance, T can be defined as the function return-

ing the Laplacian matrix starting from the adjacency matrix. Moreover, �k,T ∈ ℝ
n×s(k+1) , is

defined as

and � ∈ ℝ
s(k+1)×m is a learnable weight matrix. For the sake of presentation, we will con-

sider � as composed of blocks: � = [�0,… ,�k]
⊤ , with �j ∈ ℝ

s×m . In the following,
we show that PGC is very expressive, able to implement commonly used convolutions as
special cases.

4.1 � Graph convolutions in literature as PGC instantiations

The PGC layer in (6) is designed to be a generalization of the linear stacking of some
of the most common spatially localized graph convolutions. The idea is that spatially
localized convolutions aggregate over neighbors (the message passing phase) using a
transformation of the adjacency matrix (e.g. a normalized graph Laplacian). We provide

(4)�(i+1) = �(i)�̄(i) + ��(i)�̂(i).

(5)�(i+1) = MLP((1 + �)�(i) + ��(i)).

(6)PGConvk,T,m(�,�) = �k,T�,

�k,T = [�, T(�)�, T(�)2�, .., T(�)k�],

1209Machine Learning (2022) 111:1205–1237	

1 3

in this section a formal proof, as a theoretical contribution of this paper, that linearly
stacked convolutions can be rewritten as polynomials of powers of the transformed adja-
cency matrix.

We start by showing how common graph convolution operators can be defined as
particular instances of a single PGC layer (in most cases with k = 1 ). Then, we prove
that linearly stacking any two PGC layers produces a convolution that can be written as
a single PGC layer as well.

Spectral A layer of Spectral convolutions of order k⋆ defined in Eq. (2), can be
implemented by a single PGC layer instantiating T(A) to be the graph Laplacian matrix
(or one of its normalized versions), setting the PGC k value to k⋆ , and setting the weight
matrix to encode the constraints given by the Chebyshev polynomials. For instance, we
can get the output � of a Spectral convolution layer with k⋆ = 3 by the following PGC:

GCN The convolution defined in Eq. (3) can be obtained in the PGC framework by setting
k = 1 and T(A) = �̃

−
1

2 �̃�̃
−

1

2 ∈ ℝ
n×n . We obtain the following equivalent equation:

where � is a s × m matrix with all entries equal to zero and �1 ∈ ℝ
s×m is the weight matrix

of GCN. Note that the GCN does not consider a node differently from its neighbors, thus in
this case there is no contribution from the first component of �k,T .

GraphConv The convolution defined in Eq. (4) can be obtained by setting T(A) = A
(the identity function), and k is again set to 1. A single GraphConv layer can be written
as:

GIN
Technically, the GIN presented in eq (5) is a composition of a convolution (that is a

linear operator) with a multi-layer perceptron. Let us thus decompose the MLP() as f◦g ,
where g is an affine projection via weight matrix � , and f incorporates the element-wise
non-linearity, and the other layers of the MLP. We can thus isolate the GIN graph convolu-
tion component and define it as a specific PGC istantiation. We let k = 1 and T() the iden-
tity function as before. A single GIN layer can then be obtained as:

Note that, differently from GraphConv, in this case the blocks of the matrix � are tied.
Figure 3 in “Appendix B” depicts the expressivity of different graph convolution operators
in terms of the respective constraints on the weight matrix � . The comparison is made
easy by the definition of the different graph convolution layers as instances of PGC layers.
Actually, it is easy to see from Eqs. (8–10) that GraphConv is more expressive than GCN
and GIN.

(7)� = [�,��,�2,�3�]�, where� =

⎡
⎢⎢⎢⎣

�0 −�2

�1 − 3�3

2�2

4�3

⎤
⎥⎥⎥⎦
, �i ∈ ℝ

s×m.

(8)� = [�, �̃−
1

2 �̃�̃−
1

2�]�, where� =

[
�

�1

]
,

(9)� = [�,��]�, where� =

[
�0

�1

]
, and �0,�1 ∈ ℝ

s×m.

(10)� = [�,��]�, where � =

[
(1 + �)�1

�1

]
.

1210	 Machine Learning (2022) 111:1205–1237

1 3

4.2 � Linearly stacked graph convolutions as PGC instantiations

In the previous section, we have shown that common graph convolutions can be expressed
as particular instantiations of a PGC layer. In this section, we show that a single PGC layer
can model the linear stacking of any number of PGC layers (using the same transformation
T  ). Thus, a single PGC layer can model all the functions computed by arbitrarily many lin-
early stacked graph convolution layers defined in the previous section. We then show that a
PGC layer includes also additional functions compared to the stacking of simpler PGC layers,
which makes it more expressive.

Theorem 1  Let us consider two linearly stacked PGC layers using the same transformation
T  . The resulting linear Graph Convolutional network can be expressed by a single PGC
layer.

Due to space limitations, the proof is reported in “Appendix C”. Here it is important to
know that the proof of Theorem 1 tells us that a single PGC of order k can represent the
linear stacking of any q ( T -compatible) convolutions such that k =

∑q

i=1
di , where di is the

degree of convolution at level i. We will now show that a single PGC layer can represent also
other functions, i.e. it is more general than the stacking of existing convolutions. Let us con-
sider, for the sake of simplicity, the stacking of 2 PGC layers with k = 1 [that are equiva-
lent to GraphConv layers, see Eq. (9)], each with parameters �(i) = [�

(i)

0
,�

(i)

1
]⊤, i = 1, 2 ,

�
(1)

0
,�

(1)

1
∈ ℝ

s×m1 , �
(2)

0
,�

(2)

1
∈ ℝ

m1×m2 . The same reasoning can be applied to any other
convolution among the ones presented in Sect. 4.1. We can explicitly write the equations com-
puting the hidden representations:

A single PGC layer can implement this second order convolution as:

Let us compare it with a PGC layer that corresponds to the same 2-layer architecture but
that has no constraints on the weight matrix, i.e.:

Even though it is not obvious at a first glance, (16) is more constrained than (17), i.e. there
are some values of �0,�1,�2 in (17) that cannot be obtained for any �(1) = [�

(1)

0
,�

(1)

1
]⊤

and �(2) = [�
(2)

0
,�

(2)

1
]⊤ in (16), as proven by the following theorem.

(14)�(1) = ��
(1)

0
+ ���

(1)

1
,

(15)
�(2) = �(1)�

(2)

0
+ ��(1)�

(2)

1

= ��
(1)

0
�

(2)

0
+ ��(�

(1)

1
�

(2)

0
+�

(1)

0
�

(2)

1
) + �2��

(1)

1
�

(2)

1
.

(16)�(2) = [�,��,�2�]

⎡⎢⎢⎣

�
(1)

0
�

(2)

0

�
(1)

1
�

(2)

0
+�

(1)

0
�

(2)

1

�
(1)

1
�

(2)

1

⎤
⎥⎥⎦
.

(17)�(2) = [�,��,�2�]

⎡⎢⎢⎣

�0

�1

�2

⎤⎥⎥⎦
, �i ∈ ℝ

s×m2 , i = 0, 1, 2.

1211Machine Learning (2022) 111:1205–1237	

1 3

Theorem 2  A PGC layer with k = 2 is more general than two stacked PGC layers with
k = 1 with the same number of hidden units m.

We refer the reader to “Appendix C” for the proof. Notice that the GraphConv layer is
equivalent to a PGC layer with k = 1 (if no constraints on � are considered, see later in this
section). Since the GraphConv is, in turn, more general than GCN and GIN, the above the-
orem holds also for those graph convolutions. Moreover, Theorem 2 trivially implies that
a linear stack of q PGC layers with k = 1 is less expressive than a single PGC layer with
k = q . In “Appendices D and E” we characterize the hypothesis that cannot be represented
with the stacking approach, and we provide examples to provide more practical insights on
such hypotheses and on the reason why they are not representable with stacking.

If we now consider that in many GCN architectures it is typical, and useful, to con-
catenate the output of all convolution layers before aggregating the node representations,
then it is not difficult to see that such concatenation can be obtained by making wider the
weight matrix of PGC. Let us thus consider a network that generates a hidden representa-
tion that is the concatenation of the different representations computed on each layer, i.e.
� = [�(1),�(2)] ∈ ℝ

s×m, m = m1 + m2 . We can represent a two-layer GraphConv network
as a single PGC layer as:

More in general, if we consider k GraphConv convolutional layers (see Eq. (9)), each with
parameters �(i) = [�

(i)

0
,�

(i)

1
]⊤ , i = 1,… , k, �

(i)

0
,�

(i)

1
∈ ℝ

mi−1×mi , m0 = s, m =
∑k

j=1
 , the

weight matrix � ∈ ℝ
s⋅(k+1)×m can be defined as follows:

where Fi,j(), i, j ∈ {0,… , k}, i ≤ j , are defined as

We can now generalize this formulation by concatenating the output of k + 1 PGC convolu-
tions of degree ranging from 0 up to k. This gives rise to the following definitions:

where we do not put constraints among matrices �i,j ∈ ℝ
s×mj , m =

∑k

j=0
mj , which are

considered mutually independent. Note that as a consequence of Theorem 2, the network

(18)� = [�,��,�2�]

⎡⎢⎢⎣

�
(1)

0
�

(1)

0
�

(2)

0

�
(1)

1
�

(1)

1
�

(2)

0
+�

(1)

0
�

(2)

1

� �
(1)

1
�

(2)

1

⎤
⎥⎥⎦
.

(19)

⎡⎢⎢⎢⎢⎣

F0,1(�
(1)) F0,2(�

(1),�(2)) F0,3(�
(1),�(2),�(3)) …

F1,1(�
(1)) F1,2(�

(1),�(2)) F1,3(�
(1),�(2),�(3)) …

� F2,2(�
(1),�(2)) F2,3(�

(1),�(2),�(3)) …

� � F3,3(�
(1),�(2),�(3)) …

… … … …

⎤⎥⎥⎥⎥⎦
,

Fi,j(�
(1),… ,�(j)) =

�
(z1,..,zj)∈{0,1}

j

s.t.
∑j

q=1
zq=i

j�
s=1

�(s)
zs
.

(20)� =

⎡⎢⎢⎢⎢⎣

�0,0 �0,1 �0,2 … �0,k

� �1,1 �1,2 … �1,k

� � �2,2 … �2,k

⋮ ⋮ ⋮ ⋱ ⋮

� � � … �k,k

⎤⎥⎥⎥⎥⎦
, � =

⎡⎢⎢⎢⎣

(��0,0)
⊤

(��0,1 + T(�)��1,1)
⊤

⋮

(��0,k +⋯ + T(�)k��k,k)
⊤

⎤⎥⎥⎥⎦

⊤

,

1212	 Machine Learning (2022) 111:1205–1237

1 3

defined in (20) is more expressive than the one obtained concatenating different Graph-
Conv layers as defined in (19). It can also be noted that the same network can actually be
seen as a single PGC layer of order k + 1 with a constraint on the weight matrix (i.e., to
be an upper triangular block matrix). Of course, any weights sharing policy can be eas-
ily implemented, e.g. by imposing ∀j �i,j = �i , which corresponds to the concatenation
of the representations obtained at level i by a single stack of convolutions. In addition to
reduce the number of free parameters, this weights sharing policy allows the reduction of
the computational burden since the representation at level i is obtained by summing to the
representation of level i − 1 the contribution of matrix �i , i.e. �i��i

4.3 � Computational complexity

As detailed in the previous discussion, the degree k of a PGC layer controls the size of its
considered receptive field. In terms of the number of parameters, fixing the node attribute
size s and the size m of the hidden representation, the number of parameters of the PGC
is O(s ⋅ k ⋅ m) , i.e. it grows linearly in k. Thus, the number of parameters of a PGC layer
is of the same order of magnitude compared to k stacked graph convolution layers based
on message passing (Gilmer et al. 2017) (i.e. GraphConv, GIN and GCN, presented in
Sect. 3).

If we consider the number of required matrix multiplications, compared to message
passing GC networks, in our case it is possible to pre-compute the terms T(�)i� before
the start of training, making the computational cost of the convolution calculation cheaper
compared to message passing. In “Appendix H”, we report an example that makes evident
the significant improvement that can be gained in training time with respect to message
passing.

5 � Polynomial graph convolutional network (PGCN)

In this section, we present a neural architecture that exploits the PGC layer to perform
graph classification tasks. Note that, differently from other GCN architectures, in our archi-
tecture (exploiting the PGC layer) the depth of the network is completely decoupled from
the size k of the receptive field. The initial stage of the model consists of a first PGC layer
with k = 1 . The role of this first layer is to develop an initial node embedding to help the
subsequent PGC layer to fully exploit its power. In fact, in bioinformatics datasets where
node labels � are one-hot encoded, all matrices �,��,… ,�k� are very sparse, which we
observed, in preliminary experiments, influences in a negative way learning. Table 9 in
“Appendix I” compares the sparsity of the PGC representation using the original one-hot
encoded labels against their embedding obtained with the first PGC layer. The analysis
shows that using this first layer the network can work on significantly denser represen-
tations of the nodes. Note that this first stage of the model does not significantly bound
the PGC-layer expressiveness. A dense input for the PGC layer could have been obtained
by using an embedding layer that is not a graph convolutional operator. However, this
choice would have made difficult to compare our results with other state-of-the-art models
in Sect. 7, since the same input transformation could have been applied to other models
as well, making unclear the contribution of the PGC layer to the performance improve-
ment. This is why we decided to use a PGC layer with k = 1 (equivalent to a GraphConv)
to compute the node embedding, making the results fully comparable since we are using

1213Machine Learning (2022) 111:1205–1237	

1 3

only graph convolutions in our PGCN. For what concerns the datasets that do not have the
nodes’ label (like the social networks datasets), using the PGC layer with k = 1 allows to
create a label for each node that will be used by the subsequent larger PGC layer to com-
pute richer node’s representations. After this first PGC layer, a PGC layer as described
in Eq. (20) of degree k is applied. In order to reduce the number of hyperparameters,
we adopted the same number m

k+1
 of columns (i.e., hidden units) for matrices �i,j , i.e.

�i,j ∈ ℝ
s×

m

k+1 . A graph-level representation � ∈ ℝ
m∗3 based on the PGC layer output � is

obtained by an aggregation layer that exploits three different aggregation strategies over the
whole set of nodes V , j = 1,… ,m:

The readout part of the model is composed of q dense feed-forward lay-
ers, where we consider q and the number of neurons per layer as hyper-parame-
ters. Each one of these layers uses the ReLU activation function, and is defined as
�j = ReLu(�readout

j
�j−1 + �readout), j = 1,… , q, where �0 = � . Finally, the output layer of

the PGCN for a c-class classification task is defined as:

For a complete discussion about the reasons why we implement the readout network by an
MLP, please refer to “Appendix J″.

6 � Multi‑scale GCN architectures in literature

Some recent works in literature exploit the idea of extending graph convolution layers to
increase the receptive field size. In general, the majority of these models, that concatenate
polynomial powers of the adjacency matrix A, are designed to perform node classification,
while the proposed PGCN is developed to perform graph classification. In this regard, we
want to point out that the novelty introduced in this paper is not limited to a novel GC-
layer, but the proposed PGCN is a complete architecture to perform graph classification.

Atwood and Towsley (2016) proposed a method that exploits the power series of the
probability transition matrix, that is multiplied (using Hadamard product) by the inputs.
The method differs from the PGCN both in terms of how the activation is computed,
and because the activation computed for each exponentiation is summed, instead been
concatenated.

Similarly in Defferrard et al. (2016) the model exploits the Chebyshev polynomials, and,
differently from PGCN, it sums them over k. This architectural choice makes the proposed
method less general than the PGCN. Indeed, as showed in Sect. 4.1, the model proposed in
Defferrard et al. (2016) is an instance of the PGC.

In Xu et al. (2018), the authors proposed to modify the common aggregation layer in
such a way that, for each node, the model aggregates all the intermediate representations
computed in the previous GC-layers. In this work, differently from PGCN, the model
exploits the message passing method introducing a bias in the flow of the topological
information. Note that, as proven in Theorem 2, a PGC layer of degree k is not equivalent
to concatenating the output of k stacked GC layers, even though the PGC layer can also
implement this particular architecture.

s
avg

j
= avg({h(j)

v
|v ∈ V}), smax

j
= max({h(j)

v
|v ∈ V}), ssum

j
= sum({h(j)

v
|v ∈ V}),

� = [s
avg

1
, smax

1
, ssum

1
,… , savg

m
, smax

m
, ssum

m
]⊤.

� = LogSoftmax(�out�q + �out).

1214	 Machine Learning (2022) 111:1205–1237

1 3

Another interesting approach is proposed in Tran et al. (2018), where the authors con-
sider larger receptive fields compared to standard graph convolutions. However, they focus
on a single convolution definition (using just the adjacency matrix) and consider shortest
paths (differently from PGCN that exploits matrix exponentiations, i.e. random walks). In
terms of expressiveness, it is complex to compare methods that exploit matrix exponentia-
tions with methods based on the shortest paths. However, it is interesting to notice that,
thanks to the very general structure of the PGC layer, it is easy to modify the PGC defini-
tion in order to use the shortest paths instead of the adjacency matrix transformation expo-
nentiations. In particular, we plan to explore this option as the future development of the
PGCN.

Wu et al. (2019) introduce a simplification of the graph convolution operator, dubbed
simple graph convolution (SGC). The model proposed is based on the idea that perhaps the
nonlinear operator introduced by GCNs is not essential, and basically, the authors propose
to stack several linear GC operators. In Theorem 2 we prove that staking k GC layers is less
expressive than using a single PGC layer of degree k. Therefore, we can conclude that the
PGC Layer is a generalization of the SGC.

In Liao et al. (2019) the authors construct a deep graph convolutional network, exploit-
ing particular localized polynomial filters based on the Lanczos algorithm, which leverages
multi-scale information. This convolution can be easily implemented by a PGC layer. In
Chen et al. (2019) the authors propose to replace the neighbor aggregation function with
graph augmented features. These graph augmented features combine node degree features
and multi-scale graph propagated features. Basically, the proposed model concatenates
the node degree with the power series of the normalized adjacency matrix. Note that the
graph augmented features differ from �k,T  , used in the PGC layer. Another difference with
respect to the PGCN resides on the subsequent part of the model. Indeed, instead of pro-
jecting the multi-scale features layer using a structured weights matrix, the model proposed
in Chen et al. (2019) aggregates the graph augmented features of each vertex and project
each of these subsets by using an MLP. The model readout then sums the obtained results
over all vertices and projects it using another MLP.

Luan et al. (2019) introduced two deep GCNs that rely on Krylov blocks. The first one
exploits a GC layer, named snowball, that concatenates multi-scale features incrementally,
resulting in a densely-connected graph network. The architecture stacks several layers and
exploits nonlinear activation functions. Both these aspects make the gradient flow more
complex compared to the PGCN. The second model, called Truncated Krylov, concate-
nates multi-scale features in each layer. In this model, differently from PGCN, the weights
matrix of each layer has no structure, thus topological features from all levels are mixed
together.

Another method that introduces an alternative to the message passing mechanism is pro-
posed in Klicpera et al. (2019). Differently from PGCN, that exploits the concatenation of
the powers of the diffusion operator to propagate the message thought the graph topology,
Klicpera et al. proposed a graph convolution that exploits the Personalized PageRank as
propagation schema. Let f (⋅) define a 2-layer feedforward neural network. The PPNP layer
is defined as: � = 𝛼

(
�n − (1 − 𝛼)�̃

)−1
f (�) , where �̃ = � + �n . Such filter preserves local-

ity due to the properties of Personalized PageRank.
The same paper proposed an approximation, derived by a truncated power itera-

tion, avoiding the expensive computation of the matrix inversion, referred to as APPNP.
It is implemented as a multi-layer network where the (l + 1)-th layer is defined as
�(l+1) = (1 − 𝛼)�̃�(l) + 𝛼�(0) , where �(0) = f (�) and �̃ is the renormalized adjacency
matrix adopted in GCN, i.e. �̃ = �̃

−
1

2 �̃�̃
−

1

2.

1215Machine Learning (2022) 111:1205–1237	

1 3

PPNP and APPNP differ significantly from PGCN, since they use a multi-layer (non-
convolutional) architecture in order to exploit the different powers of the diffusion operator.
Other important differences between PGCN and PPNP/APPNP, is that the second ones are
specifically developed to solve the node classification task.

Abu-El-Haija et al. (2019) proposed a multilayer architecture that exploits the MixHop
Graph Convolution Layer. Each layer of the model mixes a subset (managed as a hyper-
parameter) of the powers of the adjacency matrix, by multiplying them by the embedding
computed in the previous layer. Finally, each layer concatenates the representation obtained
for each considered diffusion operator’s powers. Therefore, differently from PGC, the Mix-
Hop layer considers a subset of the powers of the adjacency matrix, and moreover, it non-
linearly projects the representation obtained for each considered power. Similarly to the
previously discussed multi-scale architectures, also MixHop model is developed to per-
form the node classification task.

Rossi et al. (2020) proposed an alternative method, named SIGN, to scale GNN to a
very large graph. This method uses as a building block the set of exponentiations of linear
diffusion operators. In this building block, every exponentiation of the diffusion operator is
linearly projected by a learnable matrix. Moreover, differently from the PGC layer, a non-
linear function is applied on the concatenation of the diffusion operators making the gradi-
ent flow more complex compared to the PGCN.

Very recently Liu et al. (2020) proposed a model dubbed deep adaptive graph neural
network, to learn node representations by adaptively incorporating information from large
receptive fields. Differently from PGCN, first, the model exploits an MLP network for node
feature transformation. Then it constructs a multi-scale representation leveraging on the
computed nodes features transformation and the exponentiation of the adjacency matrix.
This representation is obtained by stacking the various adjacency matrix exponentiations
(thus obtaining a 3-dimensional tensor). Similarly to Luan et al. (2019), also in this case
the model projects the obtained multi-scale representation using weights matrix that has
no structure, obtaining that the topological features from all levels are mixed together.
Moreover, this projection uses also (trainable) retainment scores. These scores measure
how much information of the corresponding representations derived by different propaga-
tion layers should be retained to generate the final representation for each node in order to
adaptively balance the information from local and global neighborhoods. Obviously, that
makes the gradient flow more complex compared to the PGCN, and also impact the com-
putational complexity.

7 � Experimental setup and results

In this section, we introduce our model set up, the adopted datasets, the baselines models,
and the hyper-parameters selection strategy. We then report and discuss the results obtained
by the PGCN. For implementation details please refer to Appendix F.

7.1 � Dataset

We empirically validated the proposed PGCN on five commonly adopted graph classifi-
cation benchmarks modeling bioinformatics problems: PTC (Helma et al. 2001), NCI1
(Wale et al. 2008), PROTEINS (Borgwardt et al. 2005), D&D (Dobson and Doig 2003)
and ENZYMES (Borgwardt et al. 2005). Moreover, we also evaluated the PGCN on 3

1216	 Machine Learning (2022) 111:1205–1237

1 3

large graph social datasets: COLLAB, IMDB-B, IMDB-M (Yanardag and Vishwana-
than 2015). We report more details in “Appendix G”.

7.2 � Baselines and hyper‑parameter selection

We compare PGCN versus several GNN architectures, that achieved state-of-the-art
results on the used datasets. Specifically, we considered PSCN (Niepert et al. 2016),
Funnel GCNN (FGCNN) model (Navarin et al. 2020), DGCNN (Zhang et al. 2018),
GIN (Xu et al. 2019), DIFFPOOL (Ying et al. 2018) and GraphSage (Hamilton et al.
2017). Note that these graph classification models exploit the convolutions presented
in Sect. 3. We report also the results of a baseline model that is structure-agnostic from
Errica et al. (2020). More precisely in Errica et al. (2020), the authors adopted two
different baselines, one for the chemical datasets and one for social datasets. For the
chemical datasets, the model counts the occurrences of atom types in the graph by sum-
ming the features of all nodes in the graph together and then applies a single layer MLP.
For social datasets, the baseline the model applies an MLP that has in input the nodes’
features then uses a global sum pooling operator and then another MLP to perform
classification.

The results were obtained by performing five runs of ten-fold cross-validation. The
hyper-parameters of the model (number of hidden units, learning rate, weight decay, k, q)
were selected using a grid search, where the explored sets of values were changed based on
the considered dataset. As validation test methodology we decided to follow the method
proposed in Errica et al. (2020), that in our opinion, turns out to be the fairest. Other details
about validation are reported in “Appendix K”.

7.3 � Results and discussion

The results reported in Table 1 show that the PGCN achieves higher results in all (except
one) considered datasets compared to competing methods. In particular, on NCI1 and
ENZYMES the proposed method outperforms state-of-the-art results. In fact, in both cases,
the performances of PGCN and the best competing method are more than one standard
deviation apart. Even for PTC, D&D, PROTEINS, IMDB-B and IMDB-M datasets PGCN
shows a slight improvement over the results of FGCNN and DGCNN models. Further-
more, the results of PGCN in Bioinformatics datasets achieves a significant lower standard
deviation (evaluated over the 5 runs of 10-fold cross-validation). For what concerns the
COLLAB datasets, PGCN obtained the second higher result in the considered state-of-the-
art methods. Note however that the difference with respect to the first one (GIN) is within
the standard deviation.

Significativity of our results To understand if the improvements reported in Table 1 are
significant or can be attributed to random chance, we conducted the two-tailed Wilcoxon
Signed-Ranks test between our proposed PGCN and competing methods. This test consid-
ers all the results for the different datasets at the same time. According to this test, PGCN
performs significantly better (p-value < 0.05 ) than PSCN, DGCNN3 , GIN, DIFFPOOL and
GraphSAGE. As for FGCNN and DGCNN2 , four datasets are not enough to conduct the
Wilcoxon test, see Japkowicz and Shah (2011), Table A.5.

1217Machine Learning (2022) 111:1205–1237	

1 3

7.4 � Experimental results omitted in the results comparison

The results reported in Xu et al. (2019), Chen et al. (2019), Ying et al. (2018) are not
considered in our comparison since the model selection strategy is different from the
one we adopted and this makes the results not comparable.

The importance of the validation strategy is discussed in Errica et al. (2020), where
results of a fair comparison among the considered baseline models are reported. For the
sake of completeness, we also report (and compare) in Table 2 the results obtained by
evaluating the PGCN method with the validation policy used in Xu et al. (2019), Chen
et al. (2019), Ying et al. (2018).

Specifically, the results reported in Xu et al. (2019), Chen et al. (2019), Ying et al.
(2018) are not considered in our experimental comparison since the model selection strat-
egy is different from the one we adopted. Indeed the results reported cannot be compared
with the other results reported in Table 1 of the paper, because the authors state “The
hyper-parameters we tune for each dataset are [...] the number of epochs, i.e., a single
epoch with the best cross-validation accuracy averaged over the 10 folds was selected.”.
Similarly, for the result reported in Chen et al. (2019) for the GCN and the GFN models,
the authors state “We run the model for 100 epochs, and select the epoch in the same way
as Xu et al. (2019), i.e., a single epoch with the best cross-validation accuracy averaged
over the ten folds is selected”. In both cases, the model selection strategy is clearly biased
and different from the one we adopted. This makes the results not comparable.

Table 1   Accuracy comparison between PGCNN and several state-of-the-art models on graph classification
task.

The best results are highlighted in bold.
1Niepert et al. (2016) , 2Navarin et al. (2020), 3Errica et al. (2020).

Model ∖ Dataset PTC NCI1 PROTEINS D&D ENZYMES COLLAB IMDB-B IMDB-M

PSCN1 60.00 76.34 75.00 76.27 - 72.60 71.00 45.23
±4.82 ±1.68 ±2.51 ±2.64 - ±2.15 ±2.29 ±2.84

FGCNN2 58.82 81.50 74.57 77.47 - - - -
±1.80 ±0.39 ±0.80 ±0.86 - - - -

DGCNN2 57.14 72.97 73.96 78.09 - - - -
±2.19 ±0.87 ±0.41 ±0.72 - - - -

DGCNN3 - 76.4 72.9 76.6 38.9 57.4 53.3 38.6
- ±1.7 ±3.5 ±4.3 ±5.7 ±1.9 ±5.0 ±2.2

GIN3 - 80.0 73.3 75.3 59.6 ��.� 66.8 42.2
- ±1.4 ±4.0 ±2.9 ±4.5 ±�.� ±3.9 ±4.6

DIFFPOOL3 - 76.9 73.7 75.0 59.5 67.7 68.3 45.1
- ±1.9 ±3.5 ±3.5 ±5.6 ±1.9 ±6.1 ±3.2

GraphSAGE3 - 76.0 73.0 72.9 58.2 71.6 69.9 47.2
- ±1.8 ±4.5 ±2.0 ±6.0 ±1.5 ±4.6 ±3.6

Baseline
3 - 69.8 ��.� 78.4 65.2 55.0 50.7 36.1

- ±2.2 ±�.� ±4.5 ±6.4 ±1.9 ±2.4 ±3.0

PGCN ��.�� ��.�� 75.31 ��.�� ��.� 74.1 ��.�� ��.��

±�.�� ±�.�� ±0.31 ±�.�� ±�.�� ±1.69 ±�.�� ±�.��

1218	 Machine Learning (2022) 111:1205–1237

1 3

Moreover, in Xu et al. (2019) the node descriptors are augmented with structural fea-
tures. In GIN experiments the authors add a one-hot representation of the node degree.
We decided to use a common setting for the chemical domain, where the nodes are
labeled with a one-hot encoding of their atom type. The only exception is ENZYMES,
where it is common to use 18 additional available features. Also in Ying et al. (2018)
there is a similar problem since the authors add the degree and the clustering coeffi-
cient to each node feature vector. For the sake of completeness in Table 2 we report
the results obtained by the proposed method following the same validation policy used
in Xu et al. (2019), Chen et al. (2019), Ying et al. (2018). The table shows that the
PGCN outperforms the methods proposed in the literature in almost all datasets.

7.5 � Empirical comparison versus multi‑scale GCNs

In this section, we empirically compare the PGCN with some of the methods that exploit
the multi-scale approach. As we highlight in Section 6, most of these models are developed
to perform node classification tasks and have very specific implementations. That makes
their extension to graph classification task very complex, and in some cases, it drives to
a modification that defines an almost completely brand new model. For these reasons, we
decided to implement only the models where the multi-scale layer, or at least the proposed
mechanism, is already implemented in pytorch geometric. Thanks to this, we were able to
adapt these models by inserting after the multi-scale layer representation the same read-
out structure used by the PGCN. The models for which we developed and implemented
a graph classification version (never proposed in the literature) are four, i.e. the SGC Wu
et al. (2019), Chebyshev Convolutional network (Defferrard et al. 2016), JK-Net (Xu et al.
2018), and SIGN (Rossi et al. 2020). For what concerns the JK-net, the authors propose a
novel methodology to aggregate the different convolutional layer representations. There-
fore, in order to perform a fair comparison, we consider the parameter k as the number of
convolutional layers of the model. Moreover, as graph convolutional operator we exploited
the GCN (Kipf and Welling 2017), as did by the authors in the original paper. For all these

Table 2   PGCN accuracy comparison using different values of k.

The validation policy is the same used in Xu et al. (2019), Chen et al. (2019) and Ying et al. (2018). In Ying
et al. (2018) the variance is not reported. The best results are highlighted in bold.
a  (Xu et al. 2019).
b  (Chen et al. 2019).
c  (Ying et al. 2018).

Model ∖ dataset PTC NCI1 PROTEINS D&D ENZYMES COLLAB IMDB-B IMDB-M

GINa 64.6 82.7 76.2 - - 80.2 75.1 52.3
±7.0 ±1.7 ±2.8 - - ±1.9 ±5.1 ±2.8

GFNb - 82.77 76.46 78.78 70.17 81.50 73.00 51.80
- ±1.49 ±4.06 ±3.49 ±5.58 ±2.42 ±4.35 ±5.16

GCNb - 83.65 75.65 79.12 69.50 ��.�� 73.30 51.20
- ±1.69 ±3.24 ±3.07 ±7.37 ±�.�� ±5.29 ±5.13

DIFFPOOLc - - 76.25 80.64 62.53 75.48 - -
PGCN ��.� ��.�� ��.�� ��.�� ��.�� 76.96 ��.�� ��.��

±�.�� ±�.�� ±�.�� ±�.�� ±�.�� ±2.14 ±�.�� ±�.��

1219Machine Learning (2022) 111:1205–1237	

1 3

models we performed a full validation by exploiting the GRID-search following the same
methodology used to validate the PGCN results, and using the same hyper-parameters grid
(reported in Appendix K). Performing the validation via GRID search, for all the consid-
ered datasets, has required to run more than 55, 000 experiments.1 Note that also the model
proposed by Klicpera et al. (2019) is present as a propagation mechanism in pytorch geo-
metric library, but it cannot be applied on graph classification task since PNPP is specifi-
cally defined for node classification. Finally, we would like to point out that the only mod-
els cited in Section 6 that are already defined to perform graph classification are the ones
proposed in Chen et al. (2019), and considered in the comparison reported in Table 2.

The obtained results are reported in Table 3, and they show that the PGCN model
achieves better results than the other multi-scale architectures on all the considered data-
sets, except PROTEINS and COLLAB. Notice that the difference between the accuracy
reached by PGCN and the best result achieved on the PROTEINS and COLLAB datasets
by the Chebyshev Convolutional network, is significantly lower than the standard deviation
obtained by the best method. For what concerns the bio-informatic datasets, the PGCN
consistently shows a lower standard deviation in comparison with the other multi-scale
models.

Similarly to what done in Sect. 7, in order to prove that the improvements reported
in Table 3 are significant, and not due to chance, we conducted the two-tailed Wilcoxon
Signed-Ranks test between our proposed PGCN and multi-scale competing methods. Also
in this case, the PGCN improvement compared to all competing methods is statistically
significant (significance level < 0.05).

Table 3   PGCN accuracy comparison versus other multi-scale node methods adapted to perform graph clas-
sification tasks

The validation policy is the same as the one used for the results reported in Errica et al. (2020). The best
results are highlighted in bold.

Model ∖ Dataset PTC NCI1 PROTEINS D&D ENZYMES COLLAB IMDB-B IMDB-M

SGC 55.63 76.25 75.43 77.10 31.33 69.34 66.38 43.33
±7.64 ±2.51 ±3.43 ±4.43 ±5.61 ±1.70 ±5.46 ±3.35

Cheb-Net 55.22 80.91 ��.�� 77.89 38.13 ��.�� 70.62 43.90
±6.54 ±1.85 ±5.12 ±3.67 ±6.20 ±�.�� ±3.82 ±3.42

JK-Net 57.58 76.79 74.09 77.42 31.16 73.56 64.80 38.84
±6.95 ±2.34 ±3.54 ±3.16 ±6.80 ±2.10 ±4.21 ±3.78

SIGN 54.98 77.10 75.54 77.19 42.75 58.47 63.68 39.63
±8.34 ±2.47 ±4.35 ±3.85 ±6.51 ±3.73 ±4.61 ±3.79

PGCN ��.�� ��.�� 75.31 ��.�� ��.� 74.1 ��.�� ��.��

±�.�� ±�.�� ±0.31 ±�.�� ±�.�� ±1.69 ±�.�� ±�.��

1  The code used to perform the experiments is publicly available at the following URL: https://​github.​com/​
lpasa/​Multi​Scale_​GCNs

https://github.com/lpasa/MultiScale_GCNs
https://github.com/lpasa/MultiScale_GCNs

1220	 Machine Learning (2022) 111:1205–1237

1 3

8 � Model analysis

In this section, we analyze some crucial aspects of the proposed model. Specifically, we
studied the impact of the size of the receptive fields, and the computation demand of the
model, comparing the time performance of the proposed model vs FGCNN (Navarin et al.
2020), that shares a similar architecture.

8.1 � Impact of receptive field size on PGCN

Most of the proposed GCN architectures in literature generally stack 4 or fewer GCs
layers. The proposed PGC layer allows us to represent a linear version of these archi-
tectures by using a single layer with an even higher depth ( k + 1 ), without incurring in
problems related to the flow of the topological information. Different values of k have
been tested to study how much the capability of the model to represent increased topo-
logical information helps to obtain better results. The results of these experiments are
reported in Table 4. The accuracy results in this table are referred to the validation sets,
since the choice of k is part of the model selection procedure. We decided to take into
account a range of k values between 2 and 5 for bioinformatics datasets, and between 2
to 8 for social networks datasets. The results show that it is crucial to select an appro-
priate value for k. Several factors influence how much depth is needed. It is important
to take into account that the various datasets used for the experiments refer to different
tasks. The quantity and the type of topological information required (or useful) to solve
the task highly influences the choice of k. Moreover, also the input dimensions and the

Table 4   PGCN accuracy comparison on the validation set of the datasets for different values of k.

The best results are highlighted in bold.

Dataset ∖ k 2 3 4 5

PTC ��.� 68.86 69.14 69.43
±�.�� ±2.44 ±2.33 ±1.78

NCI1 82.68 83.16 ��.�� 84.04
±0.22 ±0.70 ±�.�� ±0.83

PROTEINS ��.�� 78.48 78.48 78.84
±�.�� ±0.56 ±1.04 ±0.80

D&D 81.95 82.03 81.69 ��.��

±1.19 ±1.06 ±0.68 ±�.��

ENZYMES 77.50 76.83 ��.�� 77.18
±1.27 ±0.85 ±�.�� ±0.92

 Dataset ∖ k 2 4 6 8

COLLAB 76.94 76.32 ��.�� 76.72
±1.47 ±1.45 ±�.�� ±1.60

IMDB-B 76.70 76.60 76.38 ��.��

±3.48 ±3.84 ±2.90 ±�.��

IMDB-M 52.37 52.7 52.41 ��.��

±3.02 ±2.84 ±2.85 ±�.��

1221Machine Learning (2022) 111:1205–1237	

1 3

number of graphs contained in a dataset play an important role. In fact, using higher
values of k increases the number columns of the �k,T matrix (and therefore the number
of parameters embedded in � ), making the training of the model more difficult. It is
interesting to notice that in many cases our method exploits a larger receptive field (i.e.
a higher degree) compared to the competing models. Note that the datasets where bet-
ter results are obtained with k = 2 (PTC and PROTEINS) contain a limited amount of
training samples, thus deeper models tend to overfit arguably for the limited amount of
training data.

8.2 � Speed of convergence

Here, we discuss the results in terms of computation demand between a proposed PGCN
and FGCNN (Navarin et al. 2020). We decided to compare these two models since they
present a similar readout layer, therefore the comparison best highlights how the different
methodology manage the number of considered k-hops, from the point of view of perfor-
mance. In Table 5, we report the average time (over the ten folds) to perform a single epoch
of training and to perform the classification with both method.

In the evaluation we considered similar architectures using 3 layers for the FGCNN and
k = 2 for PGCN. The other hyper-parameters were set with the aim to get almost the same
number of parameters in both models, to ensure a fair comparison. The batch sizes used
for this evaluation are the same selected by the PGCN model selection. The results show
a significant advantage in using a PGC layer instead of the message passing based method
exploited by FCGNN.

Concerning the speed of convergence of the two models, in Fig. 1 we report the training
curves for two representative datasets (D&D and NCI). In the x-axis we report the compu-
tational time in seconds, while in the y-axis we report the loss value. Both curves end after
200 training epochs. From the curves it can be seen that PGCN converges faster or with a
similar pace than FCGNN.

Table 5   Time in second to perform a single training epoch (2nd and 3rd column) and to perform classifica-
tion (4th and 5th column), using PGCN and FGCNN (Navarin et al. 2020), respectively.

Dataset ∖ Model Train Classification

PGCN FGCNN PGCN FGCNN

D&D 0.718±0.098 0.975±0.146 0.054±0.011 0.055±0.006

ENZYMES 0.164±0.015 0.247±0.032 0.011±0.001 0.016±0.002

NCI1 0.883±0.119 1.568±0.263 0.052±0.005 0.089±0.011

PROTEINS 0.296±0.036 0.456±0.0599 0.024±0.003 0.027±0.004

PTC 0.084±0.009 0.139±0.016 0.006±0.002 0.009±0.003

COLLAB 1.507±0.175 2.048±0.378 0.137±0.014 0.109±0.014

IMDB-B 0.223±0.024 0.373±0.054 0.018±0.003 0.027±0.004

IMDB-M 0.326±0.044 0.554±0.087 0.022±0.003 0.034±0.005

1222	 Machine Learning (2022) 111:1205–1237

1 3

8.3 � � structure

PGC has been defined with a � matrix that is a block upper triangular matrix. This
structure is induced by the concatenation of the output of k PGC convolutions of degree
ranging from 0 up to k. Indeed, using a matrix with this precise structure ensures us to
obtain multi-resolution representations for each node and its neighborhoods. In fact,
PGConvi,T,m(�,�), i ∈ [0,… , k] contains information only about random walks of length
exactly equal to i. Thanks to the structure of � , different hop components are progressively
mixed in a differentiated way. But this is not the only advantage obtained by using this par-
ticular structure: having a block triangular matrix increases the probability to keep a full
rank matrix during training, thus to fully exploit the expressivity of the corresponding lin-
ear transformation. These two features can also be obtained by imposing even more strict
constraints on W structure, further reducing the number of used parameters. For example,
if we use a block diagonal matrix, we have that the node embeddings computed for each i
value will not be mixed when computing the corresponding hidden representations � . An
even more constrained structure for W can be obtained by using a diagonal matrix. In this
case, not only the embeddings for different i values will not be mixed, but also the single
node features will not be mixed each other when computing � . Note that, for both these
matrix structures the number of trainable parameters decreases significantly with respect to
the block upper triangular case.

In Fig. 2, we report the (average) distribution of the singular values of the weights �
along with the heatmaps that show the structure of the matrix and the (average) values of
the weights. The considered weights matrices are the results of the training phase on the
NCI1 dataset using the same hyper-parameters. The singular values are computed for each
W matrix learned in each of the 10-fold used to compute the reported accuracy. In the fig-
ure, we report the average (and variance) of each singular value of all folds. The obtained
curves show that using a more sparse structure the number of singular values close to 0
decreases. As we pointed out, having a W with block diagonal structure, or even a diago-
nal structure, limits the expressiveness of the computed transformation, but on the other
hand, it allows to have a faster training phase (due to the lower number of trainable param-
eters). To assess the pros and cons of using these more constrained structures, we report in
Table 6 the accuracy obtained by the same model using each of the proposed � structures

Fig. 1   PGCN and FGCNN training curves for D&D and NCI1 datasets

1223Machine Learning (2022) 111:1205–1237	

1 3

for the NCI1 dataset. The results show that using a more sparse structure the performance
drops, but not in a substantial way, still maintaining a good classification accuracy.

9 � Discussion about further PGC advantages

In this section, we briefly discuss some additional advantages that the proposed PGC archi-
tecture does possess. In a nutshell, there are two main additional advantages: i) the archi-
tecture is amenable to the application of techniques to improve explainability; ii) singular
values of � can ease the model selection procedure. Concerning explainability, if a diago-
nal � is used, any sensitivity/relevance analysis applied to the final network with respect to
the input will allow to understand which specific node feature2 is important at which spe-
cific value of k. This information can be projected back to a specific input graph, giving the
possibility to explain what are the (node and structural) input features that most contribute
to the output. If a block diagonal � is used, features are mixed, but still the most impor-
tant values of k (structural features) for the output task can be easily identified. Concerning
model selection, the singular values of � provide a guidance on the sizing of the network.
In fact, independently from the imposed structure, too low singular values for � are an

Fig. 2   Top: singular value distributions (average with variance) of the weights matrices � for different
matrix structures (block upper triangular, block diagonal, diagonal) for the NCI1 dataset (10-folds). Bot-
tom: heatmaps of the corresponding � matrices (average over the 10-fold)

Table 6   Accuracy computed
on NCI1 test set varying the
structure of the W matrix.

W structure m #Parameter Accuracy

Block upper triangular matrix 50 135627 82.04±0.26

Block diagonal matrix 50 110627 81.09±1.85

Diagonal matrix 50 98377 80.41±2.21

2  Assuming no node embeddings are used.

1224	 Machine Learning (2022) 111:1205–1237

1 3

indication that smaller sizes for it may be preferred if forcing those singular values to 0 (eas-
ily achievable by a Singular Value Decomposition of � ) returns the same (or better) perfor-
mances. Of course, using a (block) diagonal matrix will make this process much easier.

10 � Conclusions and Future Works

In this paper, we analyze some of the most common convolution operators evaluating their
expressiveness. Our study shows that their linear composition can be defined as instances
of a more general Polynomial Graph Convolution operator with a higher expressiveness.
We defined an architecture exploiting a single PGC layer to generate a decoupled repre-
sentation for each neighbor node at a different topological distance. This strategy allows
us to avoid the bias on the flow of topological information introduced by stacking multiple
graph convolution layers. We empirically validated the proposed Polynomial Graph Convo-
lutional Network on five commonly adopted graph classification benchmarks. The results
show that the proposed model outperforms competing methods in almost all the considered
datasets, showing also a more stable behavior.

In the future, in addition to exploring the research directions drafted in Sect. 9, we plan
to study the possibility to introduce an attention mechanism by learning a transformation T
that can adapt to the input. Furthermore, we will explore whether adopting our PGC opera-
tor as a large random projection can allow to develop a novel model for learning on graph
domains.

Appendix A: Graph neural networks

A graph neural network (GNN) is a neural network model that exploits the structure of the
graph and the information embedded in feature vectors of each node to learn a classifier or
regressor on a graph domain. Due to the success in image processing, convolutional-based
neural networks have become one of the main architectures (ConvGNN) applied to graph
processing. The typical structure of a ConvGNN comprises a first part of processing where
convolutional layers are used in order to learn a representation �v ∈ ℝ

m for each vertex
v ∈ V  . These representations are then combined to get a representation of the whole graph,
so that a standard feed-forward (deep) neural network can be used to process it. Convo-
lutional layers are important since they define how the (local) topological information is
mixed with the information attached to involved nodes, and what is the information to pass
over to the subsequent computational layers. Because of that, several convolution operators
for graphs have recently been proposed (Defferrard et al. 2016; Kipf and Welling 2017;
Morris et al. 2019; Xu et al. 2019).

The first definition of neural network for graphs has been proposed by Sperduti and
Starita (1997). More recently, (Micheli 2009) proposed the Neural Network for Graphs
(NN4G), exploiting an idea that has been re-branded later as graph convolution, and (Scar-
selli et al. 2008) defined a recurrent neural network for graphs. In the last few years, several
models inspired by the graph convolution have been proposed. Many recent works defining
graph convolutional networks (GCNs) extend the NN4G formulation (Micheli 2009), for
instance the graph convolutional network (GCN) (Kipf and Welling 2017) is based on a lin-
ear first-order filter based on the normalized graph Laplacian for each graph convolutional

1225Machine Learning (2022) 111:1205–1237	

1 3

layer in a neural network. SGC (Wu et al. 2019) proposes a fast way to compute the result
of several linearly stacked GCNs. Note that SGC considers just the GCN convolution,
while our proposed PGC is more expressive than any number of linearly stacked graph
convolutions among the ones presented in Section 3.1 of the main paper. DGCNN (Zhang
et al. 2018) adopts a graph convolution very similar to GCN (Kipf and Welling 2017) (a
slightly different propagation scheme for vertices’ representations is defined, based on the
random-walk graph Laplacian). While GCN is focused on node classification, DGCNN is
suited for graph classification since it incorporates the readout.

A more straightforward approach in defining convolutions on graphs is PATCHY-SAN
(PSCN) (Niepert et al. 2016). This approach is inspired by how convolutions are defined
over images. It consists in selecting a fixed number of vertices from each graph and exploit-
ing a canonical ordering on graph vertices. For each vertex, it defines a fixed-size neigh-
borhood, exploiting the same vertex ordering. It requires the vertices of each input graph
to be in a canonical ordering, which is as complex as the graph isomorphism problem (no
polynomial-time algorithm is known).

Another interesting proposal for the convolution over the node neighborhood is Graph-
Sage (Hamilton et al. 2017), which proposes to perform an aggregation over the neighbor-
hoods by using sum, mean or max-pooling operators, and then perform a linear projec-
tion in order to update the node representation. In addition to that, the proposed approach
exploits a particular neighbors sampling scheme. GIN (Xu et al. 2019) is an extension of
GraphSage that avoids the limitation introduced by using sum, mean or max-pooling by
using a more expressive aggregation function on multi-sets. DiffPool (Ying et al. 2018)
is an end-to-end architecture that combines a differentiable graph encoder with its polling
mechanism. Indeed, the method learns an adaptive pooling strategy to collapse nodes on
the basis of a supervised criterion.

The Funnel GCNN (FGCNN) model (Navarin et al. 2020) aims to enhance the gradi-
ent propagation using a simple aggregation function and LeakyReLU activation functions.
Hinging on the similarity of the adopted graph convolutional operator, that is the Graph-
Conv, to the way feature space representations by Weisfeiler-Lehman (WL) Subtree Kernel
(Shervashidze et al. 2011) are generated, it introduces a loss term for the output of each
convolutional layer to guide the network to reconstruct the corresponding explicit WL fea-
tures. Moreover, the number of filters used at each convolutional layer is based on a meas-
ure of the WL kernel complexity.

Appendix B: Expressiveness of commonly used graph convolutions

Thanks to the possibility to express commonly used graph convolutions as instances
of PGC, and from the discussion in Section 3 of the paper, it is easy to characterize the
expressiveness of commonly used graph convolutions. In Fig. 3 we represent the inclusion

Fig. 3   Expressiveness of com-
monly used graph convolution
operators. Each ellipse represents
the set of functions that can be
implemented by a single graph
convolution operator

1226	 Machine Learning (2022) 111:1205–1237

1 3

relationships among the sets of functions which can be implemented by GCN, GIN, Graph-
Conv, Spectral.

Appendix C: Proofs of theorems

Theorem 1  Let us consider two linearly stacked PGC layers using the same transformation
T  . The resulting linear Graph Convolutional network can be expressed by a single PGC
layer.

Proof  With no loss of generality, let the first PGC being of degree k1 , while the second
stacked PGC of degree k2 , i.e.

where

By expanding �(1) inside �(2) equation, we get:

In this case, by defining D1 = {0, .., k1} , D2 = {0, .., k2} , and auxiliary functions Fi() ,
i = 0, .., k1 + k2 , defined as

matrix � can be written as

and consequently the hidden representation becomes

�(1) = [�,… , T(�)k1�]�(1),

�(2) = [�(�),… , T(�)k2�(�)]�(2),

�(i) =

⎡
⎢⎢⎢⎢⎣

�
(i)

0

�
(i)

1

⋮

�
(i)

ki

⎤
⎥⎥⎥⎥⎦
, i = 1, 2.

(18)

�(2) = [[��
(1)

0
+…+ T(�)k1��

(1)

k1
],… ,

T(�)k2 [��
(1)

0
+…+ T(�)k1��

(1)

k1
]]�(2)

= [��
(1)

0
�

(2)

0
+…+ T(�)k1��

(1)

k1
�

(2)

0
+

…+ T(�)k2��
(1)

0
�

(2)

k2
+…+

T(�)k1+k2��
(1)

k1
�

(2)

k2
].

Fi(�
(1),�(2)) =

∑
(z1,z2)∈D1×D2
s.t. z1+z2=i

�(1)
z1
�(2)

z2
,

� =

⎡
⎢⎢⎢⎣

F0(�
(1),�(2))

F1(�
(1),�(2))

…

Fk1+k2
(�(1),�(2))

⎤
⎥⎥⎥⎦
,

1227Machine Learning (2022) 111:1205–1237	

1 3

which is the output of a PGC with k = k1 + k2 . 	� ◻

Theorem 2  A PGC layer with k = 2 is more general than two stacked PGC layers with
k = 1 with the same transformation T and the same number of hidden units m.

Proof  Since all PGCs use the same transformation T  , we can focus on the weights only.
We prove our theorem providing a counterexample, i.e. we fix m = 1 , s = 1 (the input
dimension) and show an instantiation of the weight matrix � = [�⊤

0
,�⊤

1
,�⊤

2
]⊤ of a PGC

layer with k = 2 that cannot be expressed by the composition of two PGC layers with k = 1
(equivalent to GraphConv). Let us consider the simplest case in which �0,�1,�2 ∈ ℝ ,
i.e. they are 1 × 1 matrices. Let us now consider the case where �0 = 5,�1 = 7,�2 = 3 .
Let us also, for the sake of clarity, rename the 1 × 1 matrices of the two PGCs with k = 1 as:
�

(1)

0
← a,�

(2)

0
← b,�

(1)

1
← c,�

(2)

1
← d . We get the following system of equations:

where we assume b and c are different from zero (it is easy to see that either b = 0 or c = 0
would not lead to any solution). If we compute the Δ of the third equation (solving for cb),
we get Δ =

√
49 − 60 = i

√
11 , i.e. a complex number. Thus there is no real value for cb

that satisfies our system of equations. We thus conclude that there are no values that we
can assign to the parameters of the PGCs with k = 1 that would lead to the considered PGC
weight matrix. 	� ◻

Moreover, Theorem 2 implies the following corollary.

Corollary 1  A linear stack of q T -compatible PGC layers with k = 1 is less expressive than
a single T -PGC layer with k = q.

Proof  Since all PGCs use the same transformation T  , we can focus on the weights
only. We prove the corollary by induction. The base case is provided by Theorem 2. Let
us now prove the inductive case. Let us assume that a stack of i PGC layers with k = 1
(with parameters set �(i)

1
= {�(j) ∈ ℝ

2s×m, j = 0,… , i} ) is less expressive than a sin-
gle PGC layer with k = i (with parameters set �(i)

2
= � ∈ ℝ

(i+1)s×m ), and let us prove
the same result for i + 1 . We can consider the set of functions that can be implemented
by the stack of i + 1 PGC layers with k = 1 as the composition of two functions coming
from two differrent sets: the first one PGC(i)

k=1
= {f |∃ �̂(i)

1
s.t. f ≡ PGC

(i)

k=1
(�̂

(i)

1
)} , is the set

of functions that can be computed stacking i PGC layers with k = 1 , and the second one
PGC

(1)

k=1
= {f |∃ �̂(1)

1
s.t. f ≡ PGC

(1)

k=1
(�̂

(1)

1
)} , is the set of functions computed by a single

PGC layer with k = 1 . We can then characterize the set of functions PGC(i+1)

k=1
 as:

�(2) = [�, T(�)�,… , T(�)k1�,… , T(�)k1+k2�]�,

(22)

⎧⎪⎨⎪⎩

ab = 5

ad + cb = 7

cd = 3

⎧
⎪⎨⎪⎩

a = 5∕b

d = 3∕c

15∕cb + cb = 7

⎧
⎪⎨⎪⎩

a = 5∕b

d = 3∕c

(cb)2 − 7cb + 15 = 0

PGC
(i+1)

k=1
= {f◦g | f ∈ PGC

(i)

k=1
, g ∈ PGC

(i)

k=1
}.

1228	 Machine Learning (2022) 111:1205–1237

1 3

From Theorem 1, we know that PGC(1)

k=i+1
⊇ {f◦g | f ∈ PGC

(1)

k=i
, g ∈ PGC

(1)

k=1
} . Since we

know that PGC(1)

k=i
⊃ PGC

(i)

k=1
 (it is more general), we conclude that PGC(1)

k=i+1
⊃ PGC

(i+1)

k=1
 . 	

� ◻

Appendix D: Parameter inefficiency of layer stacking

In “Appendix C”, we provided a proof of the limitations in the expressiveness of stacking
two PGC layers with k = 1 compared to using a single PGC layer with k = 2 . Here we pro-
vide additional evidence showing that the number of hypothesis that cannot be expressed
by the stacked solution is not negligible. In particular, there are some regions in the hypoth-
esis space of a single PGC neuron with k = 2 that cannot be covered by stacking two PGC
neurons with k = 1.

In order to empirically show this, we conducted numerical simulations. We ran-
domly sampled the values of the parameters of two stacked single-neurons PGC layers
with k = 1 (equivalent to stacked Graphconv layers). Exploiting Eq. (16), we mapped

Fig. 4   Hypothesis that can be represented by two stacked Graphconv layers (mapped to the three PGC
dimensions as per Eq. (16)) with a a single hidden neuron (4 trainable parameters), b two hidden neurons (8
parameters), and c by a single PGC neuron with k = 2 (3 parameters)

1229Machine Learning (2022) 111:1205–1237	

1 3

the solutions to the 3-dimensional space of PGC as per Eq. (17). In Fig. 4a we plot
a point for each sampled hypothesis. It is clear that there are uncovered areas of the
hypothesis space. In particular, it is not possible to obtain solutions where w0 and w1
are strongly negative (e.g. both taking the value −1 ) and at the same time having w1
close to zero. As proven in Theorem 2, there are no values for the parameters of the
stacked Graphconv layers that can represent this solution.

In order to express such solutions with stacking, we have to increase the number of
neurons in the hidden representation. In Fig. 4b, the hypotheses obtained using two
Graphconv neurons in the hidden representation are shown. Finally, Fig. 4c shows the
hypotheses obtainable by a PGC layer with k = 2 , i.e. the whole hypothesis space is
covered. Notice that the difference in the distribution of points between Fig. 4b, c does
not indicate a difference in the representable hypotheses, but it is due to the mecha-
nism in which the parameters are combined in the stacking.

Appendix E: Example of task where stacking is not a good idea

We provide in Fig. 5a a very simple example of a task of regression (that can be inter-
preted as the optimal representation that a Graph Convolution Layer, or a stack of
them, should learn). Since we use this example to show the difference in expressive-
ness between a single PGCN layer with k = 2 and a stack of 2 Graphconv layers, we
will consider all the nodes as training set. The learning of a single PGCN neuron with
k = 2 (thus with 3 parameters to learn) can easily achieve zero loss on the training data.
On the contrary, a stack of 2 Graphconv neurons, with a total of four parameters, was
not able to successfully learn the task, obtaining a training loss (Mean Squared Error)
of 0.2264 after 10, 000 epochs of the Adam optimizer. Starting from the node indi-
cated by a red arrow in Fig. 5a and moving clockwise, the predictions of Graphconv are:
[−0.3376, 0.3376, 9.4411, 14.7558, 4.9771, 0.3376,−0.3376,−9.4411,−14.7558,−4.9771] ,
compared to a perfect reconstruction of the PGC layer. In fact, the PGC layer with
k = 2 is able to learn the optimal weight vector [3, 7, 5]⊤ , while the two stacked
Graphconv architecture (if the weights are mapped back as per Eq. (16)) converges at
[2.6574, 7.2091, 4.8894]⊤ . To learn correctly such a function with the stacking mecha-
nism, we have to exploit two Graphconv neurons in the first hidden layer, obtaining a

1

-1 1

1-1

1

-1-1

t: -1

t:1 t: 9 t: 15 t: 5

t: -1
t: -9t: -15

1

t:1

-1

t: -5

(a)

classification.pdf

1

-1 1

1-1

1

-1-1

+

-

1

-1

-- - -

+
+ --

(b)

Fig. 5   Example of a regression (a) and a classification task (b) on the same graph. Node attributes are
reported inside the nodes (i.e. x

u
 ), while the desired target t is depicted close to the corresponding node for

regression in (a) and in red as {+,−} for binary classification in (b)

1230	 Machine Learning (2022) 111:1205–1237

1 3

total of eight parameters to learn, i.e. more than double the number required by the PGC
neuron with k = 2 (i.e. 3).

A similar example can be provided for a classification problem, and is reported in
Fig. 5b. Node attributes xv are reported inside the nodes. The function to learn is defined
(for each node u) as: t(u) = 1 ⟺ xu = (�2�)u = −1 , 0 otherwise , that is the function
evaluates to one for a node if and only if both the labels of the node and of its neighbor
at distance two (always exactly one in our example) are −1 . Also in this case, a single
PGC neuron with k = 2 can successfully learn such a function with zero training error,
while two stacked single-neuron PGC layers with k = 1 achieve 0.8 training accuracy at
most.

To understand why this is the case, we show that the input to the second single-
neuron PGC layer with k = 1 is non-linearly separable, so it cannot perform the cor-
rect classification. In fact, if we consider a single PGC neuron with k = 1 defined by
Eq. (9), we notice that, given that in the graph in Fig. 5b there are only two values for
the node attributes (i.e., −1 and 1), the output of the first layer can take only four dif-
ferent values, let’s say v1,−v1, v2,−v2 . In Table 7, we report both the input to the first

Table 7   Inputs for the first ( [x
u
 ,

(��)
u
] ) and second ( [h

u
 , (��)

u
] )

PGC convolution with k = 1 for
the classification task shown in
Fig. 5b. Row a refers to the node
pointed by the red arrow in the
figure. Subsequent rows refers
to nodes in the clockwise order
over the graph. Here we define
h
u
= w0 + w1 = v1 for input

[+1,+1] and h
u
= w0 − w1 = v2

for input [+1,−1] . The last
column reports the target

Id x
u

(Ax)
u

h
u

(Ah)
u

Target

a −1 +1 −v2 +v2 +

b +1 −1 +v2 −v2 −

c −1 +1 −v2 +v1 −

d +1 +1 +v1 +v1 −

e +1 +1 +v1 +v2 −

f +1 −1 +v2 −v2 −

g −1 +1 −v2 +v2 +

h +1 −1 +v2 −v1 −

i −1 −1 −v1 −v1 +

l −1 −1 −v1 −v2 −

Fig. 6   Example of space in
which the second Graphconv
neuron should perform a linear
classification. The example refers
to the case when 0 < v1 < v2

hu

(A
h
) u

+

-

- -

-

-

+

-+

-

1231Machine Learning (2022) 111:1205–1237	

1 3

neuron (i.e., [xu, (��)u] ), and the input to the second neuron (i.e., [hu, (��)u] ), provided
that hu = w0 + w1 = v1 for input [+1,+1] and hu = w0 − w1 = v2 for input [+1,−1] . The
target for each node is reported in the last column.

We can visualize the distribution of the points and their label. In Fig. 6 we report the
case in which 0 < v1 < v2 . It is possible to see from the plot that there is no hyperplane that
can correctly classify all the training examples. The other cases show a similar situation,
thus are not reported.

Appendix F: PGCN implementation details

We implemented the PGCN in PyTorch-Geometric (Fey and Lenssen 2019). To reduce the
covariate shift during training and to attenuate overfitting, we applied batch normalization
and dropout on the output of each �j layer. We used the Negative Log Likelihood loss, the
Adam optimizer (Kingma and Ba 2014), and the identity function for T  . For more details
please check the publicly available code.3

For our experiments, we adopted two types of machines, respectively equipped with:

•	 2 x Intel(R) Xeon(R) CPU E5-2630L v3, 192GB of RAM and a Nvidia Tesla V100;
•	 2 x Intel(R) Xeon(R) CPU E5-2650 v3, 160 GB of RAM and Nvidia T4.

Appendix G: Datasets

We empirically validated the proposed PGC-GNN on five commonly adopted graph clas-
sification benchmarks modeling bioinformatics problems: PTC (Helma et al. 2001), NCI1
(Wale et al. 2008), PROTEINS, (Borgwardt et al. 2005), D&D (Dobson and Doig 2003)
and ENZYMES (Borgwardt et al. 2005). The first two of them contains chemical com-
pounds represented by their molecular graph, where each node is labeled with an atom
type, and the edges represent bonds between them. PTC contains chemical compounds
and the task is to predict their carcinogenicity for male rats. In NCI1 the graphs repre-
sent anti-cancer screens for cell lung cancer. The last three datasets, PROTEINS, D&D and
ENZYMES, contain graphs that represent proteins. Each node corresponds to an amino
acid and an edge connects two of them if they are less then 6Å (Angstrom) apart. In par-
ticular ENZYMES, differently than the other considered datasets (that model binary classi-
fication problems) allows testing the model on multi-class classification over 6 classes. We
additionally considered three large social graph datasets: COLLAB, IMDB-B, IMDB-M
(Yanardag and Vishwanathan 2015). In COLLAB each graph represents a collaboration
network of a corresponding researcher with other researchers from three fields of phys-
ics. The task consists in predicting the physics field the researcher belongs to. IMDB-B
and IMDB-M are composed of graphs derived from actor/actress who played in different
movies on IMDB, together with the movie genre information. Each graph has a target that
represents the movie genre. IMDB-B models a binary classification task, while IMDB-M
contains graphs that belong to three different classes. Differently from the bioinformatics

3  https://​github.​com/​lpasa/​PGCN

https://github.com/lpasa/PGCN

1232	 Machine Learning (2022) 111:1205–1237

1 3

datasets, the nodes contained in the social datasets do not have any associated label. Rel-
evant statistics about the datasets are reported in Table 8.

Appendix H: PGCN computation complexity example

Consider a dataset with nG graphs, and the 2-layers GraphConv defined with a message
passing formulation in Eqs. (14) and (15) (assuming m1 = m2 = m ). Each GraphConv
layer requires 3 matrix multiplications. The �� term in the first layer can be pre-computed
since it remains the same over all training. Thus a 2-layer GCN performs 5 ⋅ nG matrix
multiplications in the forward pass for each epoch (generally the size of � is different for
each graph, but for the sake of discussion we can assume their dimension is compara-
ble). Assuming 100 epochs for training, the total number of such multiplications is then
5 ⋅ 100 ⋅ nG + 1 . If we now consider the PGC formulation with k = 2 in Eq. (17) (that we

Table 8   Datasets statistics

Dataset #Graphs #Node #Edge Avg #Nodes/graph Avg.#Edges/graph

PTC 344 4915 10108 14.29 14.69
NCI1 4110 122747 265506 29.87 32.30
PROTEINS 1113 43471 162088 39.06 72.82
D&D 1178 334925 1686092 284.32 715.66
ENZYMES 600 19580 74564 32.63 124.27
COLLAB 5000 372474 24572158 74.50 4914.43
IMDB-B 1000 19773 193062 19.773 193.06
IMDB-M 600 19502 197806 13.00 131.87

Table 9   Average ratio of the number of null entries over the total number of entries in the input compo-
nents up to k = 5 without (top row) and with (bottom) the PGC

k=1 layer for the used datasets

The value 0 corresponds to a dense matrix, while the value 1 to a null matrix

Input PTC NCI1 PROTEINS D&D ENZYMES

� 0.94 0.97 0.67 0.99 0.26
PGC

k=1(�) 0 0 0 0 0
�� 0.93 0.96 0.45 0.95 0.13
�PGC

k=1(�) 0 3.67 ⋅ 10−3 9.28 ⋅ 10−5 0 1.87 ⋅ 10−3

�2� 0.90 0.95 0.38 0.89 0.11
�2 PGC

k=1(�) 0 3.67 ⋅ 10−3 9.28 ⋅ 10−5 0 1.87 ⋅ 10−3

�3� 0.89 0.95 0.36 0.86 0.10
�3 PGC

k=1(�) 0 3.67 ⋅ 10−3 9.28 ⋅ 10−5 2.39 ⋅ 10−8 1.87 ⋅ 10−3

�4� 0.88 0.94 0.35 0.87 0.10
�4 PGC

k=1(�) 0 3.67 ⋅ 10−3 9.28 ⋅ 10−5 0 1.87 ⋅ 10−3

�5� 0.8 0.94 0.35 0.81 0.10
�5 PGC

k=1(�) 0 3.67 ⋅ 10−3 9.28 ⋅ 10−5 4.71 ⋅ 10−8 1.87 ⋅ 10−3

1233Machine Learning (2022) 111:1205–1237	

1 3

recall is more expressive than two stacked GraphConv layers, as shown in Sect. 4.1), the
number of matrix multiplications required for each graph is 6. However, the terms �� and
�2� remain the same, for each graph, during all the training. They can thus be pre-com-
puted and stored in memory. With this implementation, Eq. (17) would require just three
matrix multiplications, for a total number of matrix multiplications for 100 training epochs
of 3 ⋅ 100 ⋅ nG + 3 . While this does not modify the asymptotic complexity of PGC com-
pared to message passing, it significantly improves the training times.

Appendix I: Initial node embeddings

Some datasets that we used in the experiments, encode node labels (i.e., � ) by using a one-
hot encoding. That makes the nodes representations very sparse. In preliminary experi-
ments, we observed that such sparse representations negatively influence learning. In
Table 9, we show how the use of a sparse node representation as input leads to have sparse
input matrices �,��,… ,�k� . Specifically, in order to estimate the difference in terms of
the sparsity degree with or without an initial PGC layer with k = 1 , we computed the aver-
age ratio between the number of null entries (we round all the embedding values to the 4th
decimal digit) and the total number of entries of the input matrices on the whole dataset for
all the used bioinformatics datasets. We evaluated the sparsity of each PCG-layer block,
considering the values of k in the interval [0,… , 5] . It is interesting to notice that in all
datasets the use of the initial PGC leads to a sparsity ratio near 0 (therefore the subsequent
PGC-layer has in input dense embeddings). That is very useful, in particular for datasets
like NCI1, PTC, and D&D, where the percentage of zeros in the labels representation is
near 90%.

Appendix J: Readout in literature

For what concerns the readout stage we decided to adopted a simple and common archi-
tecture in order to obtain comparable results with the literature and to highlight the ben-
efit of using the proposed Polynomial Graph Convolution. Indeed, we use a simple MLP,
experimenting with two alternatives: (i) a single layer readout and (ii) an MLP composed
of three fully connected readout layers. For what concerns the aggregation step, we use the
concatenation of three simple element-wise operations (sum, mean, and max), that is the
same aggregation used by FGCNN. Note that many of the of the architectures considered
in the comparison use a more complex readout. For instance, the DIFFPOOL uses a pretty
complex node pooling method, while DGCNN uses the SortPooling layer followed by a
1D-convolutional layer followed by several dense layers (MLP).

1234	 Machine Learning (2022) 111:1205–1237

1 3

Ta
bl

e 
10

  
Se

ts
 o

f h
yp

er
-p

ar
am

et
er

s v
al

ue
s u

se
d

fo
r m

od
el

 se
le

ct
io

n
vi

a
gr

id
 se

ar
ch

D
at

as
et

/k
m

Le
ar

ni
ng

 ra
te

W
ei

gh
t d

ec
ay

D
ro

p
ou

t
B

at
ch

 si
ze

k
Re

ad
ou

t(#
la

ye
rs

 [d
im

s]
)

PT
C

15
, 3

0,
 6

0
1
0
−
3
,
5
⋅
1
0
−
4
,
1
0
−
4

5
⋅
1
0
−
3
,
5
⋅
1
0
−
4

0.
4,

 0
.6

16
, 3

2
2,

 3
, 4

, 5
1

[m
/2

],
2

[  m
∗
2
,
m

]
N

C
I1

50
, 1

00
1
0
−
3
,
5
⋅
1
0
−
4

5
⋅
1
0
−
3
,
5
⋅
1
0
−
4

0.
3,

 0
.5

16
, 3

2
2,

 3
, 4

, 5
1

[m
/2

],
2

[  m
∗
2
,
m

]
PR

O
TE

IN
S

25
, 5

0
1
0
−
3
,
5
⋅
1
0
−
4
,
1
0
−
4

5
⋅
1
0
−
3
,
5
⋅
1
0
−
4

0.
3,

 0
.5

16
, 3

2
2,

 3
, 4

, 5
1

[m
/2

],
2

[  m
∗
2
,
m

]
D

&
D

50
, 7

5
5
⋅
1
0
−
4
,
5
⋅
1
0
−
5

5
⋅
1
0
−
3
,
5
⋅
1
0
−
4

0.
3,

 0
.5

16
, 3

2
2,

 3
, 4

, 5
1

[m
/2

],
2

[  m
∗
2
,
m

]
EN

ZY
M

ES
50

, 1
00

1
0
−
3
,
1
0
−
4

5
⋅
1
0
−
3
,
5
⋅
1
0
−
4

0.
3,

 0
.5

16
, 3

2
2,

 3
, 4

, 5
1

[m
/2

],
2

[  m
∗
2
,
m

]
CO

LL
A

B
7,

 1
5,

 3
0

1
0
−
3
,
5
⋅
1
0
−
4

5
⋅
1
0
−
3
,
5
⋅
1
0
−
4

0,
 0

.5
16

, 3
2

2,
 4

, 6
, 8

1
[m

/2
],

2
[  m

∗
2
,
m

]
IM

D
B

-B
50

, 7
5

1
0
−
4
,
1
0
−
5

5
⋅
1
0
−
4
,
5
⋅
1
0
−
5

0,
 0

.5
16

, 3
2

2,
 4

, 6
, 8

1
[m

/2
],

2
[  m

∗
2
,
m

]
IM

D
B

-M
50

, 7
5,

 1
00

1
0
−
4
,
5
⋅
1
0
−
5

5
⋅
1
0
−
3
,
5
⋅
1
0
−
4

0,
 0

.5
16

, 3
2

2,
 4

, 6
, 8

1
[m

/2
],

2
[  m

∗
2
,
m

]

1235Machine Learning (2022) 111:1205–1237	

1 3

Appendix K: Hyper‑parameters selection

Due to the high computational time required to perform an extensive grid search, we
decided to limit the number of values taken into account for each hyper-parameter, by per-
forming preliminary tests to identify useful ranges of values.

The hyper-parameters of the model (number of hidden units, learning rate, weight
decay, k) were selected by using a limited grid search, where the explored sets of values do
change based on the considered dataset. Due to the high time requirements of performing
an extensive grid search, we decided to limit the number of values taken into account for
each hyper-parameter, by performing some preliminary tests.Preliminary tests showed that
for the social network datasets, it is more convenient to use the Laplacian � as T(�) . This
behavior could be due to lack of label associated to nodes. In Table 10, we report the sets
of hyper-parameters values used for model selection via grid search. As evaluation meas-
ure, we used the average accuracy computed over the 10-fold cross-validation on the vali-
dation sets, and we used the same set of selected hyper-parameters for each fold. For what
concerns the selection of the epoch, it was performed for each fold independently based on
the accuracy value on the validation set.

Acknowledgements  The authors acknowledge the HPC resources of the Department of Mathematics, Uni-
versity of Padua, made available for conducting the research reported in this paper.

Author contributions  LP conceptualization, methodology, software, experimental evaluation, writing; NN
conceptualization, methodology, writing; AS conceptualization, methodology, writing, supervision.

Funding  This work was supported by the Department of Mathematics, University of Padua, through the
SID/BIRD 2020 Project “Deep Graph Memory Networks.”

Availability of data and material and code availability  The datsets and the code that support the findings of
this study are openly available in PyTorch-Geometric library, and in the following repository: https://​github.​
com/​lpasa/​PGCN. https://​github.​com/​lpasa/​Multi​Scale_​GCNs

Declarations 

Conflict of interests  The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Consent for publication  Not applicable

Ethics approval and Consent to participate  Not applicable

References

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., Lerman, K., Harutyunyan, H., Steeg, G.V., &
Galstyan, A. (2019). Mixhop: Higher-order graph convolutional architectures via sparsified neighbor-
hood mixing. In K. Chaudhuri, R. Salakhutdinov (Eds.) Proceedings of the 36th international con-
ference on machine learning, ICML 2019, 9–15 June 2019, Long Beach, California, USA, PMLR,
Proceedings of machine learning research (Vol. 97, pp 21–29). http://​proce​edings.​mlr.​press/​v97/​abu-​
el-​haija​19a.​html.

Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. In Advances in neural informa-
tion processing systems (pp 1993–2001).

https://github.com/lpasa/PGCN
https://github.com/lpasa/PGCN
https://github.com/lpasa/MultiScale_GCNs
http://proceedings.mlr.press/v97/abu-el-haija19a.html
http://proceedings.mlr.press/v97/abu-el-haija19a.html

1236	 Machine Learning (2022) 111:1205–1237

1 3

Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., & Kriegel, H.P. (2005). Protein
function prediction via graph kernels. Bioinformatics 21(suppl_1):i47–i56.

Chen, T., Bian, S., & Sun, Y. (2019). Are powerful graph neural nets necessary? A dissection on graph clas-
sification. arXiv preprint arXiv:​19050​4579.

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast
localized spectral filtering. In NIPS (pp. 3844–3852).

Dobson, P. D., & Doig, A. J. (2003). Distinguishing enzyme structures from non-enzymes without align-
ments. Journal of molecular biology, 330(4), 771–783.

Errica, F., Podda, M., Bacciu, D., & Micheli, A. (2020). A fair comparison of graph neural networks for
graph classification. In International conference on learning representations

Fey, M., & Lenssen, J.E. (2019). Fast graph representation learning with PyTorch Geometric. In ICLR work-
shop on representation learning on graphs and manifolds

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., & Dahl, G.E. (2017). Neural message passing for
quantum chemistry. In Proceedings of the 34th international conference on machine learning (pp
1263–1272), arXiv:​1704.​01212

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In NIPS
(pp 1024–1034).

Helma, C., King, R. D., Kramer, S., & Srinivasan, A. (2001). The predictive toxicology challenge 2000–
2001. Bioinformatics, 17(1), 107–108.

Japkowicz, N., & Shah, M. (2011). Evaluating Learning Algorithms. Cambridge University Presshttps://​doi.​
org/​10.​1017/​CBO97​80511​921803, http://​ebooks.​cambr​idge.​org/​ref/​id/​CBO97​80511​921803, citation
Key: Japkowicz 2011 ISSN: 1098-6596

Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:​14126​
980.

Kipf, T.N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In
ICLR (pp. 1–14). https://​doi.​org/​10.​1051/​0004-​6361/​20152​7329. arXiv:​1609.​02907

Klicpera, J., Bojchevski, A., & Günnemann, S. (2019). Predict then propagate: Graph neural networks meet
personalized pagerank. In 7th international conference on learning representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, OpenReview.net.

Li, Q., Han, Z., & Wu, X.M. (2018). Deeper insights into graph convolutional networks for semi-supervised
learning. In Thirty-Second AAAI conference on artificial intelligence.

Liao, R., Zhao, Z., Urtasun, R., & Zemel, R.S. (2019). Lanczosnet: Multi-scale deep graph convolutional
networks. In 7th international conference on learning representations, ICLR 2019.

Liu, M., Gao, H., & Ji, S. (2020). Towards deeper graph neural networks. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining (pp. 338–348)

Luan, S., Zhao, M., Chang, X.W., & Precup, D. (2019). Break the ceiling: Stronger multi-scale deep graph
convolutional networks. In Advances in neural information processing systems (pp. 10945–10955).

Micheli, A. (2009). Neural network for graphs: A contextual constructive approach. IEEE Transactions on
Neural Networks, 20(3), 498–511.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M. (2019). Weisfeiler
and Leman Go Neural: Higher-order graph neural networks. In Proceedings of the AAAI conference
on artificial intelligence, 33, 4602–4609. https://​doi.​org/​10.​1609/​aaai.​v33i01.​33014​602arXiv:​1810.​
02244.

Navarin, N., Van Tran, D., & Sperduti, A. (2020). Learning kernel-based embeddings in graph neural net-
works. In: 24th European conference on artificial intelligence - ECAI 2020.

Niepert, M., Ahmed, M., & Kutzkov, K. (2016). Learning convolutional neural networks for graphs. In:
ICML, pp 2014–2023.

Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bronstein, M., & Monti, F. (2020). Sign: Scalable incep-
tion graph neural networks. arXiv preprint arXiv:​20041​1198.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network
model. IEEE Transactions on Neural Networks, 20(1), 61–80.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K. M. (2011). Weis-
feiler–Lehman graph kernels. Journal of Machine Learning Research, 12(77), 2539–2561.

Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures. IEEE
Trans Neural Networks, 8(3), 714–735. https://​doi.​org/​10.​1109/​72.​572108

Tran, D.V., Navarin, N., & Sperduti, A. (2018). On filter size in graph convolutional networks. In 2018 IEEe
symposium series on computational intelligence (SSCI), IEEE (pp. 1534–1541).

Wale, N., Watson, I. A., & Karypis, G. (2008). Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and Information Systems, 14(3), 347–375.

http://arxiv.org/abs/190504579
http://arxiv.org/abs/1704.01212
https://doi.org/10.1017/CBO9780511921803
https://doi.org/10.1017/CBO9780511921803
http://ebooks.cambridge.org/ref/id/CBO9780511921803
http://arxiv.org/abs/14126980
http://arxiv.org/abs/14126980
https://doi.org/10.1051/0004-6361/201527329
http://arxiv.org/abs/1609.02907
https://doi.org/10.1609/aaai.v33i01.33014602
http://arxiv.org/abs/1810.02244
http://arxiv.org/abs/1810.02244
http://arxiv.org/abs/200411198
https://doi.org/10.1109/72.572108

1237Machine Learning (2022) 111:1205–1237	

1 3

Wu, F., Zhang, T., de Souza, A. H., Fifty, C., Yu, T., & Weinberger, K. Q. (2019). Simplifying graph convo-
lutional networks. ICML, 1902, 07153.

Xu, K., Li, C., Tian, Y., Sonobe, T., Ki, Kawarabayashi, & Jegelka, S. (2018). Representation learning on
graphs with jumping knowledge networks. PMLR, Stockholmsmässan, Stockholm Sweden, Proceed-
ings of Machine Learning Research, 80, 5453–5462.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks? In Interna-
tional conference on learning representations.

Yanardag, P., & Vishwanathan, S. (2015). Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 1365–1374).

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph representa-
tion learning with differentiable pooling. In Advances in neural information processing systems (pp.
4800–4810).

Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An end-to-end deep learning architecture for graph
classification. In Thirty-second AAAI conference on artificial intelligence.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Polynomial-based graph convolutional neural networks for graph classification
	Abstract
	1 Introduction
	2 Notation
	3 Background
	4 Polynomial graph convolution (PGC)
	4.1 Graph convolutions in literature as PGC instantiations
	4.2 Linearly stacked graph convolutions as PGC instantiations
	4.3 Computational complexity

	5 Polynomial graph convolutional network (PGCN)
	6 Multi-scale GCN architectures in literature
	7 Experimental setup and results
	7.1 Dataset
	7.2 Baselines and hyper-parameter selection
	7.3 Results and discussion
	7.4 Experimental results omitted in the results comparison
	7.5 Empirical comparison versus multi-scale GCNs

	8 Model analysis
	8.1 Impact of receptive field size on PGCN
	8.2 Speed of convergence
	8.3 structure

	9 Discussion about further PGC advantages
	10 Conclusions and Future Works
	Acknowledgements
	References

