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Abstract
We propose a few-shot learning method for spatial regression. Although Gaussian pro-
cesses (GPs), or kriging, have been successfully used for spatial regression, they require 
many observations in the target task to achieve a high predictive performance. Our model 
is trained using spatial datasets on various attributes in various regions, and predicts val-
ues on unseen attributes in unseen regions given a few observed data. With our model, a 
task representation is inferred from given small data using a neural network. Then, spatial 
values are predicted by neural networks with a GP framework, in which task-specific prop-
erties are controlled by the task representations. The GP framework allows us to analyti-
cally obtain predictions that are adapted to small data. By using the adapted predictions in 
the objective function, we can train our model efficiently and effectively so that the test 
predictive performance improves when adapted to newly given small data. In our experi-
ments, we demonstrate that the proposed method achieves better predictive performance 
than existing meta-learning methods using spatial datasets.

Keywords  Few-shot learning · Spatial regression · Gaussian processes · Meta-learning · 
Neural networks

1  Introduction

Thanks to the development of sensors, GPS devices, and satellite systems, a wide vari-
ety of spatial data are being accumulated, including climate (Stralberg et al. 2015; Wang 
et al. 2016b), traffic (Zheng et al. 2014; Yuan et al. 2011), economic, and social data (Hain-
ing 1993; Shadbolt et  al. 2012). Analyzing such spatial data is critical in various fields, 
such as environmental sciences (Jerrett et al. 2005; Hession and Moore 2011), urban plan-
ning (Yuan et al. 2012), socio-economics (Smith-Clarke et al. 2014; Rupasingha and Goetz 
2007), and public security (Bogomolov et al. 2014; Wang et al. 2016a).
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Collecting data on some attributes is difficult if the attribute-specific sensing devices 
are very expensive, or experts that have extensive domain knowledge are required to 
observe data. Also, collecting data in some regions is difficult if they are not readily 
accessible. To counter these problems, many spatial regression methods have been pro-
posed  (Gao et  al. 2006a, b; Ward and Gleditsch 2018); they predict missing attribute 
values given data observed at some locations in the region. Although Gaussian pro-
cesses (GPs) (Rasmussen and Williams 2006; Banerjee et al. 2008) have been success-
fully used for spatial regression, they fail when the data observed in the target region are 
insufficient.

In this paper, we propose a few-shot learning method for spatial regression. Our 
model learns from spatial datasets on various attributes in various regions, and predicts 
values when observed data in the target task is scant, where both the attribute and region 
of the target task are different from those in the training datasets. Figure 1 illustrates the 
framework of the proposed method. Some attributes in some regions are expected to 
exhibit similar spatial patterns to the target task. Our model uses the knowledge learned 
from such attributes and regions in the training datasets to realize prediction in the tar-
get task.

Our model uses a neural network to embed a few labeled data into a task representation. 
Then, target spatial data are predicted based on a GP with neural network-based mean and 
kernel functions that depend on the inferred task representation. We call our model the 
neural embedding-based Gaussian processes. Using the task representation yields a task-
specific prediction function. By basing the modeling on GPs, the prediction function can 
be rapidly adapted to small labeled data in a closed form without iterative optimization, 
which enables efficient back-propagation through the adaptation. As the mean and kernel 
functions employ neural networks, we can flexibly model spatial patterns in various attrib-
utes and regions. By sharing the neural networks across different tasks in our model, we 
can learn from multiple attributes and regions, and use the learned knowledge to handle 
new attributes and regions. The neural network parameters are estimated by maximizing 
the expected prediction performance when a few observed data are given, which is calcu-
lated using training datasets by an episodic training framework (Ravi and Larochelle 2017; 
Santoro et al. 2016; Snell et al. 2017; Finn et al. 2017; Li et al. 2019).

Fig. 1   Our framework. In a 
training phase, our model learns 
from training datasets containing 
various attributes from various 
regions. In a test phase, our 
model predicts spatial values of a 
target attribute in a target region 
given a few observations; the 
target attribute and region are not 
present in the training datasets
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The main contributions of this paper are as follows: 

1.	 We present a framework of few-shot learning for spatial regression.
2.	 We propose a GP-based model that uses neural networks to learn spatial patterns from 

various attributes and regions.
3.	 We empirically demonstrate that the proposed method performs well in few-shot spatial 

regression tasks.

The remainder of this paper is organized as follows. Section 2 briefly reviews related work. 
In Sect.  3, we define our task, propose a few-shot learning model for spatial regression 
based on neural embedding-based Gaussian processes, and develop its training procedure. 
Section 4 experimentally demonstrates the effectiveness of the proposed method using cli-
mate data. Finally, we present concluding remarks and discuss future work in Sect. 5.

2 � Related work

GPs, or kriging  (Cressie 1990), have been widely used for spatial regression  (Banerjee 
et al. 2008; Luttinen and Ilin 2009; Park et al. 2011; Stein 2012; Gu and Hu 2012). They 
achieve high prediction performance at locations that are close to the observed locations. 
However, if the target region is large and only a few observed data are given, performance 
falls at locations far from the observed locations. For improving generalization perfor-
mance, neural networks have been used for mean and/or kernel functions of GPs (Wilson 
et  al. 2011; Huang et  al. 2015; Calandra et  al. 2016; Wilson et  al. 2016a, b; Iwata and 
Ghahramani 2017; Iwata and Otsuka 2019; Jean et  al. 2018). However, these methods 
require a lot of training data.

Many few-shot learning, or meta-learning, methods have been proposed (Schmidhuber 
1987; Bengio et al. 1991; Ravi and Larochelle 2017; Andrychowicz et al. 2016; Vinyals 
et al. 2016; Snell et al. 2017; Bartunov and Vetrov 2018; Finn et al. 2017; Li et al. 2017; 
Kim et al. 2018; Finn et al. 2018; Rusu et al. 2019; Yao et al. 2019; Edwards and Storkey 
2016; Garnelo et al. 2018a; Kim et al. 2019; Hewitt et al. 2018; Bornschein et al. 2017; 
Reed et al. 2017; Rezende et al. 2016). Since our task is regression, few-shot classification 
methods, such as matching networks (Vinyals et al. 2016) and prototypical networks (Snell 
et al. 2017), are not applicable. Existing few-shot learning methods that can handle regres-
sion tasks are applicable for our task, such as model-agnostic meta-learning  (Finn et  al. 
2017) and conditional neural processes  (Garnelo et  al. 2018a). However, they are not 
intended for spatial regression. On the other hand, our model is based on GPs, which have 
been successfully used for spatial regression. Some few-shot learning methods based on 
GPs have been proposed  (Harrison et  al. 2018; Tossou et  al. 2019; Fortuin et  al. 2019). 
Adaptive learning for probabilistic connectionist architectures (ALPaCA) (Harrison et al. 
2018) and adaptive deep kernel learning  (Tossou et  al. 2019) incorporate the informa-
tion in small labeled data in kernel functions using neural networks, but they assume zero 
mean functions. Although meta-learning mean functions (Fortuin et al. 2019) use a neu-
ral network for the mean function, the mean function does not change outputs depending 
on the given small labeled data. On the other hand, the proposed method uses a neural 
network-based mean function that outputs task-specific values by extracting a task repre-
sentation from the small labeled data. The effectiveness of our mean function is shown in 
the ablation study in our experiments. Task-similarity aware nonparametric meta-learning 
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(TANML)  (Venkitaraman and Wahlberg 2020) is related to the proposed method since 
both are meta-learning methods that use kernels. TANML uses kernels for calculating 
the similarity between tasks. In contrast, the proposed method uses kernel for calculating 
covariance between locations in each task.

Our model is related to conditional neural processes (NPs) (Garnelo et al. 2018a, 2018b) 
as both use neural networks for task representation inference and for prediction with 
inferred task representations. However, since NP prediction is based on fully parametric 
models, they are less flexible in adapting to the given target observations than GPs, which 
are nonparametric models. In contrast, our GP-based model enjoys the benefits of the non-
parametric approach, swift adaptation to the target observations, even though the mean and 
kernel functions are modeled parametrically. Our model is also related to similarity-based 
meta-learning methods, such as matching networks (Vinyals et al. 2016) and prototypical 
networks (Snell et al. 2017), since the kernel function represents similarities between data 
points. Although existing similarity-based meta-learning methods were designed for clas-
sification tasks, our model is designed for regression tasks.

The proposed method is also related to model-agnostic meta-learning (MAML) (Finn 
et  al. 2017) in the sense that both methods trains models so that the expected error on 
unseen data is minimized when adapted to a few observed data. For the adaptation, MAML 
requires costly back-propagation through iterative gradient descent steps. On the other 
hand, the proposed method achieves an efficient adaptation in a closed form using a GP 
framework. Ridge regression differentiable discriminator (R2D2)  (Bertinetto et al. 2018) 
is a neural network-based meta-learning method, where the last layer is adapted by solving 
a ridge regression problem in a closed form. Although R2D2 and (Lee et al. 2019) adapt 
with a linear model, the proposed method adapts with a nonlinear GP model, which ena-
bles us to adapt to complicated patterns more flexibly.

Adaptively initialized task optimizer (AVIATOR)  (Ye et  al. 2020) and multimodal 
MAML (MMAML) (Vuorio et al. 2019) extended MAML by modifying models using task 
representations. In particular, AVIATOR uses task representations for generating initial 
model parameters, and MMAML uses task representations for generating parameters that 
modulate models. The proposed method is related to them in that the task representation is 
used to define a model, then the model is adapted by minimizing a loss on the support set.

Transfer learning methods, such as multi-task GPs (Yu et al. 2005; Bonilla et al. 2008; 
Wei et  al. 2017) and co-kriging  (Myers 1982; Stein and Corsten 1991), have been pro-
posed; they transfer knowledge derived from source tasks to target tasks. However, they do 
not assume a few observations in target tasks. In addition, since these methods use target 
data to learn the relationship between source and target tasks, they require computationally 
costly re-training given new tasks that are not present in the training phase. On the other 
hand, the proposed method can be applied to unseen tasks by inferring task representations 
from a few observations without re-training.

3 � Proposed method

3.1 � Task

In a training phase, we are given spatial datasets for |R| regions, D = {Dr}r∈R , where R 
is the set of regions, and Dr is the dataset for region r. For each region, there are |Cr| attrib-
utes, Dr = {Drc}c∈Cr , where Cr is the set of attributes in region r, and Drc is the dataset of 
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attribute c in region r. The attribute sets can be different across the regions. Each data-
set consists of a set of location vectors and attribute values, Drc = {(�rcn, yrcn)}

Nrc

n=1
 , where 

�rcn ∈ ℝ
2 is a two-dimensional vector specifying the location of the nth point, e.g., longi-

tude and latitude, and yrcn ∈ ℝ is the scalar value on attribute c at that location.
In a test phase, we are given a few labeled observations in a target region, 

Dr∗c∗ = {(�r∗c∗n, yr∗c∗n)}
Nr∗c∗

n=1
 , where target region r∗ is not one of the regions in the training 

datasets, r∗ ∉ R , and target attribute c∗ is not contained in the training datasets, c∗ ∉ Cr 
for all r ∈ R . Our task is to predict target attribute value ŷr∗c∗ at location �r∗c∗ in the target 
region.

Location vector �rcn represents the relative position of the point in region r. We used 
longitudes and latitudes normalized with zero mean for the location vectors in our experi-
ments. Spatial data sometimes include auxiliary information such as elevation. In that case, 
we can include the auxiliary information in �rcn ∈ ℝ

M+2 , where M is the number of addi-
tional types of auxiliary information.

3.2 � Preliminaries: Gaussian processes

Before introducing the proposed model, we review GP regression, which forms the basis of 
the proposed model. In GP regression, GPs are used for the prior of a nonlinear function,

where m(�) is a mean function, and k(�, ��) is a kernel function. Let � = (yn)
N
n=1

 be the 
N-dimensional vector of the attribute values, and � = (�n)

N
n=1

 be the N × N matrix of the 
location vectors. The joint distribution of � given � with GP regression follows a Gaussian 
distribution,

where � = (m(�n))
N
n=1

 is the N-dimensional vector with the values of mean function m(⋅) at 
location vectors � , � is the N × N matrix of the kernel function evaluated between loca-
tion vectors � , and �nn� = k(�n, �n� ) . The predictive distribution at test point � given � and 
� as the training data is,

where � is the N-dimensional vector of the kernel function between the test point and train-
ing points, � = (k(�, �n))

N
n=1

.

3.3 � Model

Let S = {(�n, yn)}
N
n=1

 be a few labeled observations, which are called the support set. We 
here present our neural embedding-based Gaussian processes for predicting attribute sca-
lar value ŷ at location vector � , which is called the query, given support set S . Our model 
is used for training as described in Sect. 3.4 as well as target spatial regression in a test 
phase. Figure 2 illustrates our model. Our model infers task representation � from support 
set S as described in Sect. 3.3.1. Then, using the inferred task representation � , we predict 
attribute scalar value ŷ of location vector � by a neural network-based GP as described in 
Sect. 3.3.2. We omit indices for regions and attributes for simplicity in this subsection.

(1)g(x) ∼ GP(m(�), k(�, ��)),

(2)p(�|�) = N(�,�),

(3)p(y|�, �,�) = N(m(�) + �⊤�−1(� −�), k(�, �) − �⊤�−1�),
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3.3.1 � Inferring task representation

First, each pair of the location vector and attribute value, ( �n, yn ), in the support set is con-
verted into K-dimensional latent vector �n ∈ ℝ

K by a neural network: �n = fz([�n, yn]) , 
where fz is a feed-forward neural network with the (M + 3)-dimensional input layer and 
K-dimensional output layer, and [⋅, ⋅] represents the concatenation. Second, the set of latent 
vectors {�n}Nn=1 in the support set are aggregated to K-dimensional latent vector � ∈ ℝ

K by 
averaging: � = 1

N

∑N

n=1
�n , which is a representation of the task extracted from support set 

S . We can use other aggregation functions, such as summation (Zaheer et al. 2017), atten-
tion-based (Kim et al. 2019), and recurrent neural networks (Vinyals et al. 2016).

3.3.2 � Predicting attribute values

Our prediction function assumes a GP with neural network-based mean and kernel func-
tions that depend on the inferred task representation � . In particular, the mean function is 
modeled by

where fm is a feed-forward neural network that outputs a scalar value. The kernel function 
is modeled by

where fk is a feed-forward neural network, fb is a feed-forward neural network that outputs 
a positive scalar value, �(⋅, ⋅) is the Kronecker delta, �(�, ��) = 1 if � and �′ are identical, 
and zero otherwise. The kernel function is positive definite since it is a Gaussian kernel 
and fb(�) is positive. By incorporating task representation � in the mean and kernel func-
tions using neural networks, we can model nonlinear functions that depend on the support 
set.

In GPs, zero mean functions are often used since the GPs with zero mean functions 
can approximate an arbitrary continuous function, if given enough data  (Micchelli et  al. 
2006). However, GPs with zero mean functions predict zero at areas far from observed data 

(4)m(�;�) = fm([�, �]),

(5)k(�, ��;�) = exp
(
− ∥ fk([�, �]) − fk([�

�, �]) ∥2
)
+ fb(�)�(�, �

�),

Fig. 2   Our model. Each pair of location vector �n and attribute value yn in a few labeled data set (support 
set) is fed to neural network f

z
 . By averaging the outputs of the neural network, we obtain task representa-

tion � . The task representation and query location vector � are fed to neural networks f
b
 , f

k
 , and f

m
 to calcu-

late kernel k and mean m. Attribute value ŷ of the query location vector is predicted by using the kernel and 
mean based on a GP. Shaded nodes represent observed data
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points (Iwata and Ghahramani 2017), which is problematic in few-shot learning. Modeling 
the mean function by a neural network (4) allows us to predict values effectively even in 
areas far from observed data points in a target region due to the high generalization perfor-
mance of neural networks.

Location vector � is transformed by neural network fk before computing the kernel func-
tion by the Gaussian kernel in (5). The use of the neural network yields flexible modeling 
of the correlation across locations depending on the task representation. The noise param-
eter is also modeled by neural network fb , which enables us to infer the noise level from the 
support set without re-training.

The predicted value for query � is given by

where � is the N × N matrix of the kernel function evaluated between location vectors 
in the support set, �nn� = k(�n, �n� ) , � is the N-dimensional vector of the kernel func-
tion between the query and support set, � = (k(�, �n))

N
n=1

 , � is the N-dimensional vector 
of attribute values in the support set, � = (yn)

N
n=1

 , � is the N-dimensional vector of the 
mean function evaluated on locations in the support set, � = (fm([�n, �]))

N
n=1

 , and � are 
the parameters of neural networks fz , fm , fk , and fb . An advantage of our model is that the 
predicted value given the support set is analytically calculated without iterative optimiza-
tion, by which we can minimize the expected prediction error efficiently based on gradient-
descent methods.

When noise fb(�) is small, the predicted value approaches the observed values at loca-
tions close to the observed locations. This property of GPs is beneficial for few-shot regres-
sion without re-training. If a neural network without GPs is used for the prediction func-
tion, the predicted values might differ from the observations even at the observed locations 
when re-training based on the observations is not conducted. The first term in (6) is similar 
to conditional neural processes, where a neural network is used for the prediction function. 
The second term in (6) is related to similarity-based meta-learning methods since the sec-
ond term uses the similarities between the query and support set that are calculated by the 
kernel function. Therefore, our model can be seen as an extension of the conditional neu-
ral process and similarity-based meta-learning approach, where both of them are naturally 
integrated within a GP framework. When � is far from (close to) the observed locations, the 
first (second) term becomes dominant due to kernel � (Iwata and Ghahramani 2017). This 
is reasonable since similarity-based approaches are more reliable when there are observa-
tions nearby. The variance of the predicted attribute value of the query is given by

3.4 � Learning

We estimate neural network parameters � by minimizing the expected prediction error on 
a query set given a support set using an episodic training framework (Ravi and Larochelle 
2017; Santoro et  al. 2016; Snell et  al. 2017; Finn et  al. 2017; Li et  al. 2019). Although 
training datasets D contain many observations, they should be used in a way that closely 
simulates the test phase. Therefore, with the episodic training framework, support and 
query sets are generated by a random subset of training datasets D for each training itera-
tion. In particular, we use the following objective function:

(6)ŷ(�,S;�) = fm([�, �]) + �⊤�−1(� −�),

(7)� [y|�,S;�] = k(�, �;�) − �⊤�−1�.
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where � represents an expectation,

is the mean squared error on query set Q given support set S , and NQ is the number of 
instances in the query set. Usually, GPs are trained by maximizing the marginal likelihood 
of training data (support set), where test data (query set) are not used. On the other hand, 
the proposed method minimizes the prediction error on a query set when a support set is 
observed, by which we can simulate a test phase and learn a model that improves the pre-
diction performance on target tasks. When we want to improve the predictive density for 
each test location, we can use the following negative predictive log likelihood:

instead of the mean squared error (9). This is related to training GPs with the log pseudo-
likelihood  (Rasmussen and Williams 2006), where the leave-one-out predictive log like-
lihood is used as the objective function. When we want to improve the predictive joint 
density for a set of test locations, we can use the following negative predictive log joint 
likelihood:

where �Q is the NQ-dimensional vector of attribute values in the query set, 
�̂(�,S;�) = (�̂(�,S;�))�∈Q is the NQ-dimensional vector of predicted attribute values of 
the query set by Eq. (6), 𝕍 [�Q|�,S;�]) = �Q −�⊤

Q
�−1�Q ∈ ℝ

NQ×NQ is the covariance of 
the query set, and �Q ∈ ℝ

NQ×NQ is the kernel matrix evaluated on the query set by Eq. (5). 
The predictive likelihood has been used for a meta-learning method  (Chen et  al. 2020) 
instead of the marginal likelihood.

The training procedure of our model is shown in Algorithm 1. In each iteration, we ran-
domly generate support and query sets (Lines 2 – 5) from dataset Drc by randomly select-
ing region r and attribute c for simulating a test phase. Given the support and query sets so 
generated, we calculate the loss (Line 6). We update model parameters by using any of the 
stochastic gradient-descent methods, such as Adam (Kingma and Ba 2015) (Line 7). By 
training the model using randomly generated support and query sets, the trained model can 
predict values with a wide variety of observed location distributions, attributes and regions 
in a test phase.

The computational complexity for evaluating loss (9) and (10) is O(NQ + N3
S
) , where NS 

is the number of instances in the support set since we need the inverse of the kernel matrix 
with size NS × NS . In few-shot learning, the number of target observed data is very small, 
and so a very small support size NS is used in training. Therefore, our model can be opti-
mized efficiently with the episodic training framework. This is in contrast to the high com-
putational complexity of training for standard GP regression, which is cubic in the number 
of training instances. The computational complexity for evaluating loss (11) is O(N3

Q
+ N3

S
) 

since we need the inverse of the covariance with size NQ × NQ . When we use a large query 
set size for training, losses (9) and (10) are preferable to (11) in terms of computational 
efficiency. 

(8)�̂ = argmin
�

�r∼R[�c∼Cr
[�(S,Q)∼Drc

[L(S,Q;�)]],

(9)L(S,Q;�) =
1

NQ

∑

(�,y)∈Q

∥ ŷ(�,S;�) − y ∥2,

(10)L(S,Q;�) = −
1

NQ

∑

(�,y)∈Q

logN(y|ŷ(�,S;�),� [y|�,S;�]),

(11)L(S,Q;�) = − logN(�Q|�̂(�,S;�),� [�Q|�,S;�]),
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4 � Experiments

4.1 � Data

We evaluated the proposed method using the following three spatial datasets: NAE, NA, 
and JA. NAE and NA were the climate data in North American, which were obtained from 
https://​sites.​ualbe​rta.​ca/​~ahama​nn/​data/​clima​tena.​html. As the location vector, NA used 
longitude and latitude. With NAE, elevation in meters above sea level was additionally 
used in the location vector. With NAE and NA data, we used the following 26 bio-climate 
values as attributes shown in Table 1. We generated 1829 non-overlapping regions cover-
ing North America, where the size of each region was 100 × 100km, and attribute values 

Table 1   Attributes in NAE and NA data

Annual heat-moisture index Climatic moisture deficit
Degree-days above 18 ◦C Degree-days above 5 ◦C
Degree-days below 0 ◦C Degree-days below 18 ◦C
Monthly reference evaporation Length of the frost-free period
Mean annual precipitation Mean annual temperature
Mean temperature of the warmest month Number of frost-free days
Precipitation as snow Summer (Jun–Aug) precipitation
Winter (Dec–Feb) precipitation Monthly average relative humidity
Summer (Jun–Aug) mean temperature Winter (Dec–Feb) mean temperature
Beginning of the frost-free period End of the frost-free period
Summer heat-moisture index
Mean temperature of the coldest month
Mean summer (May–Sep) precipitation
Extreme minimum temperature over 30 years
Extreme maximum temperature over 30 years
Difference between MCMT and MWMT as a measure of continentality

https://sites.ualberta.ca/%7eahamann/data/climatena.html
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were observed at 1 × 1km grid squares in each region. JA was the climate data in Japan, 
which was obtained from http://​nlftp.​mlit.​go.​jp/​ksj/​gml/​datal​ist/​KsjTm​plt-​G02.​html. We 
used the following seven climate values as attributes shown in Table 2. The data contained 
273 regions, where attribute values were observed at 1 × 1km grid square, and there were 
at most 6,400 locations in a region. For all data, we randomly selected training, validation, 
and target regions without replacement. Also, we splitted the attributes into training, vali-
dation, and target attributes. The statistics of each data set are shown in Table 3. In each 
target region, values on a target attribute at five locations were observed, and values at the 
other locations were used for evaluation. The location vectors and attributes were normal-
ized with zero mean and one standard deviation for each region and for each attribute.

4.2 � Proposed method setting

As the neural networks in our model, fz , fb , fk , and fm , we used three-layered feed-for-
ward neural networks with 256 hidden units. The dimensionality of the output layer 
with fz and fk was 256, and that with fb and fm was one. We used rectified linear unit, 
ReLU(x) = max(0, x) , for activation. Optimization was performed using Adam  (Kingma 
and Ba 2015) with learning rate 10−3 and dropout rate 0.1. The maximum number of train-
ing epochs was 5000, and the validation datasets were used for early stopping. The support 
set size was NS = 5 , and query set size was NQ = 64.

4.3 � Comparison methods

We compared the proposed method with conditional neural process (NP), Gaussian process 
regression (GPR), Gaussian process autoencoder (GPVAE), neural network (NN), fine-tun-
ing with NN (FT), model-agnostic meta-learning with NN (MAML), adaptively initialized 
task optimizer (AVIATOR), multimodal MAML (MMAML), prototypical networks (PN), 
and ridge regression differentiable discriminator (R2D2).

With NP, a task representation was inferred from the support set using a neural network 
as in the proposed method, and then the attribute values of queries were predicted using 

Table 2   Attributes in JA data
Precipitation Maximum temperature Minimum temperature
Average temperature Maximum snow depth Sunshine duration
Total solar radiation

Table 3   Statistics of NA, NAE 
and JA data

NA/NAE JA

# Training attributes 20 4
# Validation attributes 5 2
# Test attributes 1 1
# Training regions 50 200
# Validation regions 18 28
# Test regions 549 45

http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-G02.html
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another neural network. We used the same neural network architecture with the proposed 
method for inferring task representations fz . The architecture of the neural network for pre-
diction was the same as that with fm in the proposed method, which was used as the mean 
function.

GPR predicted the attribute values by a GP regression with a Gaussian kernel given the 
support set. The kernel parameters, which were the signal variance, length scale, and noise 
variance, were estimated from the training datasets by minimizing the expected prediction 
error using the episodic training framework.

GPVAE was a variational autoencoder (Kingma and Welling 2014) with GP priors on 
latent variables  (Casale et al. 2018; Ashman et al. 2020). With GPVAE, latent variables 
were encoded using a neural network from location vectors. Then, attribute values were 
predicted by a decoder neural network from the latent variables. The parameters of encoder 
and decoder neural networks were estimated using the training datasets.

NN used a three-layered feed-forward neural network with 256 hidden units, and the 
ReLU activation was used. The input of the NN was a location vector, and its output was 
the predicted value of the attribute. NN parameters, which were shared across all tasks, 
were estimated using the training datasets. The NN did not use labeled data in target tasks.

FT fine-tuned the parameters of the trained NN with labeled data for each target task. 
For fine-tuning, we used Adam with learning rate 10−3 . The number of epochs for fine-
tuning was 100, which was selected from {10, 100} based on the target performance.

MAML used the same neural network as NN. The parameters were trained so that the 
prediction performance was improved when fine-tuned with a support set. The number of 
fine-tuning epochs was five. MAML was implemented with Higher, which is a library for 
higher-order optimization (Grefenstette et al. 2019).

AVIATOR and MMAML obtained a task representation using a neural network as in 
the proposed method. They were trained the neural network as in MAML, where the neural 
network was defined by the task representation. AVIATOR generated the initial param-
eters of a neural network using the task representation. MMAML generated parameters 
that modulate a neural network using the task representation.

With PN, a three-layered feed-forward neural network with 256 hidden and output units 
was used for embedding location vectors. Attribute values were predicted by a weighted 
average of the support instances, where the weights were calculated by softmaxed negative 
squared Euclidean distance between the query and support embedded instances.

R2D2 used a neural network of the same architecture with PN for embedding. A ridge 
regression model was used for predicting attribute values given embedded instances, where 
the ridge regression parameters were adapted using the support set for each region.

NP, GPR, GPVAE, NN, MAML, AVIATOR, MMAML, PN, and R2D2 used the epi-
sodic training framework in the same way as the proposed method. All the methods were 
optimized with Adam with learning rate 10−3 , and implemented with PyTorch  (Paszke 
et al. 2017).

4.4 � Results

The test mean squared errors (a) and test log likelihoods (b) in the target tasks averaged 
over ten experiments are shown in Table 4. The test log likelihoods were calculated for 
each test location. For the test mean squared error evaluations, all methods were trained 
with the mean squared error objective function in Eq. (9), and for the test log likelihood 
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evaluations, all methods were trained with the negative log likelihood objective func-
tion in Eq. (10). The proposed method achieved the best performance in all cases except 
for the test likelihood with JA data. NP was worse than the proposed method because its 
predictions were poor when task representations were not properly inferred. On the other 
hand, the proposed method performed well with any tasks in at least areas close to the 
observations, as its GP framework offers a smooth nonlinear function that passes over the 
observations. GPR was worse than the proposed method since GPR only shares kernel 
parameters across different tasks. In contrast, the proposed method shares neural networks 
across different tasks, which enables us to learn flexible spatial patterns in various attrib-
utes and regions and use them for target tasks. NN and GPVAE suffered the low perfor-
mance since they cannot use the target data. Fine-tuning (FT) decreased the error, but it 
remained worse than that of the proposed method. This is because FT consisted of two 
separate steps: pretrain and fine-tuning, and did not learn how to transfer knowledge. In 
contrast, the proposed method trained the neural network in a single step so that test per-
formance is maximized when the support set is given in the episodic training framework. 
MAML performance was low since it had difficulty in learning the parameters that fine-
tuned well with just a small number of epochs with various regions and attributes, where 
target function shapes vary drastically. Note that due to the high computational complexity 
of MAML, where it demands that the gradients of many gradient-descent steps be calcu-
lated, MAML makes it infeasible to use a large number of fine-tuning epochs. On the other 

Table 4   (a) Test mean squared errors and (b) test log likelihoods averaged over ten experiments

Values in bold typeface are not statistically significantly different at the 5% level from the best performing 
method in each data according to a paired t-test

(a) Test mean squared errors

Data Ours NP GPR GPVAE NN FT

NAE 0.316 0.348 0.476 0.972 0.963 0.497
NA 0.552 0.593 0.701 0.991 0.986 0.746
JA 0.653 0.756 0.703 0.987 1.016 0.871

 Data MAML AVIATOR MMAML PN R2D2

NAE 0.710 0.346 0.342 0.647 0.400
NA 0.824 0.611 0.604 0.835 0.875
JA 0.873 0.956 0.985 1.073 1.914

(b) Test log likelihoods

Data Ours NP GPR GPVAE NN FT

NAE − 0.987 − 1.025 − 1.067 − 1.316 − 1.281 − 1.271
NA − 1.166 − 1.190 − 1.230 − 1.348 − 1.322 − 1.311
JA − 1.227 − 1.307 − 1.220 − 1.369 − 1.333 − 1.598

 Data MAML AVIA-
TOR

MMAML PN R2D2

NAE − 1.256 − 1.088 − 1.090 − 1.234 − 1.119
NA − 1.306 − 1.216 − 1.208 − 1.300 − 1.337
JA − 1.314 − 1.747 − 1.828 − 1.413 -1.879
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hand, with the proposed method, since predicted values given the support set are calculated 
analytically based on a GP, the neural networks are optimized efficiently in terms of fitting 
the support set, and therefore the trained model attained high prediction performance for 
various attributes and regions. AVIATOR and MMAML used the task representation to 
obtain task-specific neural networks, and their performance was better than MAML. How-
ever, it was worse than the proposed method since the proposed method used GPs that 
were suitable for spatial regression. Since the number of training attributes was small with 
JA data, and training data were insufficient to train neural networks, the test likelihood 
of the proposed method was not significantly different from that of GPR. The expressive 
power of PN and R2D2 is low since they are adapted based on the weighted average and 
linear regression, respectively. Therefore, their performance was worse than the proposed 
method, which is adapated based on GPs.

Figure 3a shows the average test mean squared errors with different target support sizes 
with the proposed method, NP, and GPR. We omitted the results with NN, FT, and MAML 
since their performance was low as shown in Table 4. All methods yielded decreased error 
as the target support size increased. The proposed method achieved low errors with differ-
ent target support sizes since it uses neural networks to learn the relationship between sup-
port and query sets using the training datasets. NP achieved low error rates when the target 
support size was small. However, NP had higher error rates than GPR when the size was 
ten. Since NP used a fixed trained neural network to incorporate the support set informa-
tion, it was difficult to adapt prediction functions to a large support set. In contrast, since 
the proposed method and GPR can adapt them easily to support sets by calculating the 
posterior in a closed form, their errors were effectively decreased as the target support size 
increased.

Figure 3b shows the average test mean squared errors with different numbers of train-
ing attributes. The errors with the proposed method and NP decreased as the training 
attribute numbers increased. This is reasonable since the possibility that tasks similar 

(a) (b) (c)

(d) (e)

Fig. 3   Average test mean squared errors with (a) different target support sizes, (b) different numbers of 
training attributes, (c) different numbers of training regions, (d) different training support sizes, and (e) dif-
ferent training query sizes. The bar shows the standard error
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to target tasks are included in the training datasets increases as the number of training 
attributes increases. Since GPR shared only kernel parameters across different tasks, 
its performance was not improved even when many attributes were used. Fig. 3c shows 
the average test mean squared errors with different numbers of training regions. The 
errors with the proposed method and NP decreased as the training regions increased. 
Figure  3d shows the average test mean squared errors with different training support 
sizes with the proposed method. When the support size in the training phase was the 
same with that in the test phase, i.e., NS = 5 , the performance was best. When the test 
support size can differ in target tasks, we need to train with a wide range of training sup-
port sizes. Figure 3d shows the average test mean squared errors with different training 
query sizes with the proposed method. As the training query size increased, the per-
formance improved. It would be because the evaluation of the test error in the training 
phase improved using larger training query size.

Table 5 shows the average computation time in seconds for learning from the training 
datasets and the time for predicting test attribute values for each region on computers with 
2.60GHz CPUs. Although the proposed method had slightly longer training time than NP, 
GPR, or NN since it uses both the neural networks and GP, it was faster than MAML-based 
methods (MAML, AVIATOR and MMAML). All methods had short test times since the 
number of observed locations was small. The proposed method had shorter test time than 
FT because the proposed method calculated predictions analytically given the target data, 
while the FT required multiple updates for optimization given the target data.

Figure 4 visualizes the predictions for five attributes and regions of target tasks with the 
proposed method, NP, and GPR. The proposed method attained appropriate predictions 
in various attributes and regions. NP did not necessarily output predicted values that were 
similar to the observations. For example, in Fig.  4(a,NP), the predicted values of NP at 
two left observed locations differed from the true value. On the other hand, the proposed 
method and GPR predicted values similar to the observation at the locations. Since GPR 
could not extract the rich knowledge present in the training datasets, it sometimes failed to 
predict values. For example, in Fig. 4(a,GPR), the predicted values differed from the true 
values in the lower area. In contrast, the proposed method and NP predicted values at the 
area well using neural networks. The proposed method improved prediction performance 
by adopting both advantages of GPs and neural networks.

Table  6 shows the results of the ablation study of the proposed method. In terms of 
the test mean squared error, the proposed method with the mean squared error objective 
function (ErrObj) was better than that with the likelihood objective function (LikeObj). In 
terms of the test log likelihood, LikeObj was better than ErrObj. These results imply that 
the objective function should be selected properly depending on the applications. The pro-
posed method with the marginal likelihood objective function (MarObjS and MarObjSQ) 
was worse than ErrObj and LikeObj. Although standard GPs are usually trained with the 
marginal likelihood of training data, it is different from the test mean squared error and test 
log likelihood. On the other hand, ErrObj and LikeObj directly minimize the evaluation 
measurements by simulating the test phase using the episodic training framework. This 
result demonstrates the effectiveness to use the test performance for the objective func-
tion for few-shot learning. The proposed method with the mean function without the sup-
port information (NoSptM) and that with the zero mean function (ZeroMean) performed 
worse than the proposed method. This result indicates the importance to use non-zero 
mean functions that incorporate the support information, and the advantage of the pro-
posed method over existing GP-based meta-learning methods those that use zero mean 
functions (Harrison et al. 2018; Tossou et al. 2019) and those that do not use the support 
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information  (Harrison et  al. 2018). Although the test mean squared error of the pro-
posed method did not get worse with the kernel function without the support information 

Table 5   Average computational time in seconds for learning from the training datasets and the time for pre-
dicting test attribute values for each region

Ours NP GPR GPVAE NN FT

Train 2253.4 1031.9 637.6 1371.3 756.5 756.5
Test 0.142 0.050 0.005 0.080 0.026 0.161

MAML AVIATOR MMAML PN R2D2

Train 7618.8 93387.1 100675.0 2161.7 1469.8
Test 0.067 0.139 0.160 0.233 0.109

True attribute values

Ours

NP

GPR

(a) PAS (b) PPTsm (c) EMT (d) DD18 (e) bFFP

Fig. 4   Predictions for five attributes and regions of target tasks yielded by the proposed method, NP, and 
GPR. The top row shows the true attribute values. Red circles indicate observed locations. Values below 
each plot show the mean squared error
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(NoSptK), the test log likelihood got worse. This result implies that the kernel function 
with the support information is important for predicting the uncertainty. The performance 
of NoSptM was lower than that of NoSptK. This result indicates that incorporating the sup-
port information in the mean function is more beneficial for spatial regression.

5 � Conclusion

We proposed a few-shot learning method for spatial regression. The proposed method can 
predict attribute values given a few observations, even if the target attribute and region are 
not included in the training datasets. The proposed method uses a neural network to infer a 
task representation from a few observed data. Then, it uses the inferred task representation 
to calculate the predicted values by a neural network-based Gaussian process framework. 
Experiments on climate spatial data showed that the proposed method achieved better pre-
diction performance than existing methods. Although our results are encouraging, we must 
extend our approach in several directions. Although the proposed method uses a Bayesian 
framework given the mean and covariance functions based on GPs, the mean and covari-
ance functions are trained by a point estimation. Therefore, when the number of tasks is 
small, there is the risk of meta-overfitting. We want to mitigate the risk of meta-overfitting 
using a Bayesian estimation of the mean and covariance functions (Rothfuss et al. 2020). In 
addition, we want to apply our framework to other types of tasks, such as spatio-temporal 
regression, regression for non-spatial data, and classification.
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