
Vol.:(0123456789)

Machine Learning (2022) 111:1239–1257
https://doi.org/10.1007/s10994-021-06118-z

1 3

Few‑shot learning for spatial regression via neural
embedding‑based Gaussian processes

Tomoharu Iwata1  · Yusuke Tanaka1

Received: 1 December 2020 / Revised: 4 August 2021 / Accepted: 25 October 2021 /
Published online: 12 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
We propose a few-shot learning method for spatial regression. Although Gaussian pro-
cesses (GPs), or kriging, have been successfully used for spatial regression, they require
many observations in the target task to achieve a high predictive performance. Our model
is trained using spatial datasets on various attributes in various regions, and predicts val-
ues on unseen attributes in unseen regions given a few observed data. With our model, a
task representation is inferred from given small data using a neural network. Then, spatial
values are predicted by neural networks with a GP framework, in which task-specific prop-
erties are controlled by the task representations. The GP framework allows us to analyti-
cally obtain predictions that are adapted to small data. By using the adapted predictions in
the objective function, we can train our model efficiently and effectively so that the test
predictive performance improves when adapted to newly given small data. In our experi-
ments, we demonstrate that the proposed method achieves better predictive performance
than existing meta-learning methods using spatial datasets.

Keywords  Few-shot learning · Spatial regression · Gaussian processes · Meta-learning ·
Neural networks

1  Introduction

Thanks to the development of sensors, GPS devices, and satellite systems, a wide vari-
ety of spatial data are being accumulated, including climate (Stralberg et al. 2015; Wang
et al. 2016b), traffic (Zheng et al. 2014; Yuan et al. 2011), economic, and social data (Hain-
ing 1993; Shadbolt et al. 2012). Analyzing such spatial data is critical in various fields,
such as environmental sciences (Jerrett et al. 2005; Hession and Moore 2011), urban plan-
ning (Yuan et al. 2012), socio-economics (Smith-Clarke et al. 2014; Rupasingha and Goetz
2007), and public security (Bogomolov et al. 2014; Wang et al. 2016a).

Editor: Andrea Passerini.

 *	 Tomoharu Iwata
	 tomoharu.iwata.gy@hco.ntt.co.jp

1	 NTT Communication Science Laboratories, Kyoto, Japan

http://orcid.org/0000-0003-4425-1971
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06118-z&domain=pdf

1240	 Machine Learning (2022) 111:1239–1257

1 3

Collecting data on some attributes is difficult if the attribute-specific sensing devices
are very expensive, or experts that have extensive domain knowledge are required to
observe data. Also, collecting data in some regions is difficult if they are not readily
accessible. To counter these problems, many spatial regression methods have been pro-
posed (Gao et al. 2006a, b; Ward and Gleditsch 2018); they predict missing attribute
values given data observed at some locations in the region. Although Gaussian pro-
cesses (GPs) (Rasmussen and Williams 2006; Banerjee et al. 2008) have been success-
fully used for spatial regression, they fail when the data observed in the target region are
insufficient.

In this paper, we propose a few-shot learning method for spatial regression. Our
model learns from spatial datasets on various attributes in various regions, and predicts
values when observed data in the target task is scant, where both the attribute and region
of the target task are different from those in the training datasets. Figure 1 illustrates the
framework of the proposed method. Some attributes in some regions are expected to
exhibit similar spatial patterns to the target task. Our model uses the knowledge learned
from such attributes and regions in the training datasets to realize prediction in the tar-
get task.

Our model uses a neural network to embed a few labeled data into a task representation.
Then, target spatial data are predicted based on a GP with neural network-based mean and
kernel functions that depend on the inferred task representation. We call our model the
neural embedding-based Gaussian processes. Using the task representation yields a task-
specific prediction function. By basing the modeling on GPs, the prediction function can
be rapidly adapted to small labeled data in a closed form without iterative optimization,
which enables efficient back-propagation through the adaptation. As the mean and kernel
functions employ neural networks, we can flexibly model spatial patterns in various attrib-
utes and regions. By sharing the neural networks across different tasks in our model, we
can learn from multiple attributes and regions, and use the learned knowledge to handle
new attributes and regions. The neural network parameters are estimated by maximizing
the expected prediction performance when a few observed data are given, which is calcu-
lated using training datasets by an episodic training framework (Ravi and Larochelle 2017;
Santoro et al. 2016; Snell et al. 2017; Finn et al. 2017; Li et al. 2019).

Fig. 1   Our framework. In a
training phase, our model learns
from training datasets containing
various attributes from various
regions. In a test phase, our
model predicts spatial values of a
target attribute in a target region
given a few observations; the
target attribute and region are not
present in the training datasets

1241Machine Learning (2022) 111:1239–1257	

1 3

The main contributions of this paper are as follows:

1.	 We present a framework of few-shot learning for spatial regression.
2.	 We propose a GP-based model that uses neural networks to learn spatial patterns from

various attributes and regions.
3.	 We empirically demonstrate that the proposed method performs well in few-shot spatial

regression tasks.

The remainder of this paper is organized as follows. Section 2 briefly reviews related work.
In Sect. 3, we define our task, propose a few-shot learning model for spatial regression
based on neural embedding-based Gaussian processes, and develop its training procedure.
Section 4 experimentally demonstrates the effectiveness of the proposed method using cli-
mate data. Finally, we present concluding remarks and discuss future work in Sect. 5.

2 � Related work

GPs, or kriging (Cressie 1990), have been widely used for spatial regression (Banerjee
et al. 2008; Luttinen and Ilin 2009; Park et al. 2011; Stein 2012; Gu and Hu 2012). They
achieve high prediction performance at locations that are close to the observed locations.
However, if the target region is large and only a few observed data are given, performance
falls at locations far from the observed locations. For improving generalization perfor-
mance, neural networks have been used for mean and/or kernel functions of GPs (Wilson
et al. 2011; Huang et al. 2015; Calandra et al. 2016; Wilson et al. 2016a, b; Iwata and
Ghahramani 2017; Iwata and Otsuka 2019; Jean et al. 2018). However, these methods
require a lot of training data.

Many few-shot learning, or meta-learning, methods have been proposed (Schmidhuber
1987; Bengio et al. 1991; Ravi and Larochelle 2017; Andrychowicz et al. 2016; Vinyals
et al. 2016; Snell et al. 2017; Bartunov and Vetrov 2018; Finn et al. 2017; Li et al. 2017;
Kim et al. 2018; Finn et al. 2018; Rusu et al. 2019; Yao et al. 2019; Edwards and Storkey
2016; Garnelo et al. 2018a; Kim et al. 2019; Hewitt et al. 2018; Bornschein et al. 2017;
Reed et al. 2017; Rezende et al. 2016). Since our task is regression, few-shot classification
methods, such as matching networks (Vinyals et al. 2016) and prototypical networks (Snell
et al. 2017), are not applicable. Existing few-shot learning methods that can handle regres-
sion tasks are applicable for our task, such as model-agnostic meta-learning (Finn et al.
2017) and conditional neural processes (Garnelo et al. 2018a). However, they are not
intended for spatial regression. On the other hand, our model is based on GPs, which have
been successfully used for spatial regression. Some few-shot learning methods based on
GPs have been proposed (Harrison et al. 2018; Tossou et al. 2019; Fortuin et al. 2019).
Adaptive learning for probabilistic connectionist architectures (ALPaCA) (Harrison et al.
2018) and adaptive deep kernel learning (Tossou et al. 2019) incorporate the informa-
tion in small labeled data in kernel functions using neural networks, but they assume zero
mean functions. Although meta-learning mean functions (Fortuin et al. 2019) use a neu-
ral network for the mean function, the mean function does not change outputs depending
on the given small labeled data. On the other hand, the proposed method uses a neural
network-based mean function that outputs task-specific values by extracting a task repre-
sentation from the small labeled data. The effectiveness of our mean function is shown in
the ablation study in our experiments. Task-similarity aware nonparametric meta-learning

1242	 Machine Learning (2022) 111:1239–1257

1 3

(TANML) (Venkitaraman and Wahlberg 2020) is related to the proposed method since
both are meta-learning methods that use kernels. TANML uses kernels for calculating
the similarity between tasks. In contrast, the proposed method uses kernel for calculating
covariance between locations in each task.

Our model is related to conditional neural processes (NPs) (Garnelo et al. 2018a, 2018b)
as both use neural networks for task representation inference and for prediction with
inferred task representations. However, since NP prediction is based on fully parametric
models, they are less flexible in adapting to the given target observations than GPs, which
are nonparametric models. In contrast, our GP-based model enjoys the benefits of the non-
parametric approach, swift adaptation to the target observations, even though the mean and
kernel functions are modeled parametrically. Our model is also related to similarity-based
meta-learning methods, such as matching networks (Vinyals et al. 2016) and prototypical
networks (Snell et al. 2017), since the kernel function represents similarities between data
points. Although existing similarity-based meta-learning methods were designed for clas-
sification tasks, our model is designed for regression tasks.

The proposed method is also related to model-agnostic meta-learning (MAML) (Finn
et al. 2017) in the sense that both methods trains models so that the expected error on
unseen data is minimized when adapted to a few observed data. For the adaptation, MAML
requires costly back-propagation through iterative gradient descent steps. On the other
hand, the proposed method achieves an efficient adaptation in a closed form using a GP
framework. Ridge regression differentiable discriminator (R2D2) (Bertinetto et al. 2018)
is a neural network-based meta-learning method, where the last layer is adapted by solving
a ridge regression problem in a closed form. Although R2D2 and (Lee et al. 2019) adapt
with a linear model, the proposed method adapts with a nonlinear GP model, which ena-
bles us to adapt to complicated patterns more flexibly.

Adaptively initialized task optimizer (AVIATOR) (Ye et al. 2020) and multimodal
MAML (MMAML) (Vuorio et al. 2019) extended MAML by modifying models using task
representations. In particular, AVIATOR uses task representations for generating initial
model parameters, and MMAML uses task representations for generating parameters that
modulate models. The proposed method is related to them in that the task representation is
used to define a model, then the model is adapted by minimizing a loss on the support set.

Transfer learning methods, such as multi-task GPs (Yu et al. 2005; Bonilla et al. 2008;
Wei et al. 2017) and co-kriging (Myers 1982; Stein and Corsten 1991), have been pro-
posed; they transfer knowledge derived from source tasks to target tasks. However, they do
not assume a few observations in target tasks. In addition, since these methods use target
data to learn the relationship between source and target tasks, they require computationally
costly re-training given new tasks that are not present in the training phase. On the other
hand, the proposed method can be applied to unseen tasks by inferring task representations
from a few observations without re-training.

3 � Proposed method

3.1 � Task

In a training phase, we are given spatial datasets for |R| regions, D = {Dr}r∈R , where R
is the set of regions, and Dr is the dataset for region r. For each region, there are |Cr| attrib-
utes, Dr = {Drc}c∈Cr , where Cr is the set of attributes in region r, and Drc is the dataset of

1243Machine Learning (2022) 111:1239–1257	

1 3

attribute c in region r. The attribute sets can be different across the regions. Each data-
set consists of a set of location vectors and attribute values, Drc = {(�rcn, yrcn)}

Nrc

n=1
 , where

�rcn ∈ ℝ
2 is a two-dimensional vector specifying the location of the nth point, e.g., longi-

tude and latitude, and yrcn ∈ ℝ is the scalar value on attribute c at that location.
In a test phase, we are given a few labeled observations in a target region,

Dr∗c∗ = {(�r∗c∗n, yr∗c∗n)}
Nr∗c∗

n=1
 , where target region r∗ is not one of the regions in the training

datasets, r∗ ∉ R , and target attribute c∗ is not contained in the training datasets, c∗ ∉ Cr
for all r ∈ R . Our task is to predict target attribute value ŷr∗c∗ at location �r∗c∗ in the target
region.

Location vector �rcn represents the relative position of the point in region r. We used
longitudes and latitudes normalized with zero mean for the location vectors in our experi-
ments. Spatial data sometimes include auxiliary information such as elevation. In that case,
we can include the auxiliary information in �rcn ∈ ℝ

M+2 , where M is the number of addi-
tional types of auxiliary information.

3.2 � Preliminaries: Gaussian processes

Before introducing the proposed model, we review GP regression, which forms the basis of
the proposed model. In GP regression, GPs are used for the prior of a nonlinear function,

where m(�) is a mean function, and k(�, ��) is a kernel function. Let � = (yn)
N
n=1

 be the
N-dimensional vector of the attribute values, and � = (�n)

N
n=1

 be the N × N matrix of the
location vectors. The joint distribution of � given � with GP regression follows a Gaussian
distribution,

where � = (m(�n))
N
n=1

 is the N-dimensional vector with the values of mean function m(⋅) at
location vectors � , � is the N × N matrix of the kernel function evaluated between loca-
tion vectors � , and �nn� = k(�n, �n�) . The predictive distribution at test point � given � and
� as the training data is,

where � is the N-dimensional vector of the kernel function between the test point and train-
ing points, � = (k(�, �n))

N
n=1

.

3.3 � Model

Let S = {(�n, yn)}
N
n=1

 be a few labeled observations, which are called the support set. We
here present our neural embedding-based Gaussian processes for predicting attribute sca-
lar value ŷ at location vector � , which is called the query, given support set S . Our model
is used for training as described in Sect. 3.4 as well as target spatial regression in a test
phase. Figure 2 illustrates our model. Our model infers task representation � from support
set S as described in Sect. 3.3.1. Then, using the inferred task representation � , we predict
attribute scalar value ŷ of location vector � by a neural network-based GP as described in
Sect. 3.3.2. We omit indices for regions and attributes for simplicity in this subsection.

(1)g(x) ∼ GP(m(�), k(�, ��)),

(2)p(�|�) = N(�,�),

(3)p(y|�, �,�) = N(m(�) + �⊤�−1(� −�), k(�, �) − �⊤�−1�),

1244	 Machine Learning (2022) 111:1239–1257

1 3

3.3.1 � Inferring task representation

First, each pair of the location vector and attribute value, ( �n, yn ), in the support set is con-
verted into K-dimensional latent vector �n ∈ ℝ

K by a neural network: �n = fz([�n, yn]) ,
where fz is a feed-forward neural network with the (M + 3)-dimensional input layer and
K-dimensional output layer, and [⋅, ⋅] represents the concatenation. Second, the set of latent
vectors {�n}Nn=1 in the support set are aggregated to K-dimensional latent vector � ∈ ℝ

K by
averaging: � = 1

N

∑N

n=1
�n , which is a representation of the task extracted from support set

S . We can use other aggregation functions, such as summation (Zaheer et al. 2017), atten-
tion-based (Kim et al. 2019), and recurrent neural networks (Vinyals et al. 2016).

3.3.2 � Predicting attribute values

Our prediction function assumes a GP with neural network-based mean and kernel func-
tions that depend on the inferred task representation � . In particular, the mean function is
modeled by

where fm is a feed-forward neural network that outputs a scalar value. The kernel function
is modeled by

where fk is a feed-forward neural network, fb is a feed-forward neural network that outputs
a positive scalar value, �(⋅, ⋅) is the Kronecker delta, �(�, ��) = 1 if � and �′ are identical,
and zero otherwise. The kernel function is positive definite since it is a Gaussian kernel
and fb(�) is positive. By incorporating task representation � in the mean and kernel func-
tions using neural networks, we can model nonlinear functions that depend on the support
set.

In GPs, zero mean functions are often used since the GPs with zero mean functions
can approximate an arbitrary continuous function, if given enough data (Micchelli et al.
2006). However, GPs with zero mean functions predict zero at areas far from observed data

(4)m(�;�) = fm([�, �]),

(5)k(�, ��;�) = exp
(
− ∥ fk([�, �]) − fk([�

�, �]) ∥2
)
+ fb(�)�(�, �

�),

Fig. 2   Our model. Each pair of location vector �n and attribute value yn in a few labeled data set (support
set) is fed to neural network f

z
 . By averaging the outputs of the neural network, we obtain task representa-

tion � . The task representation and query location vector � are fed to neural networks f
b
 , f

k
 , and f

m
 to calcu-

late kernel k and mean m. Attribute value ŷ of the query location vector is predicted by using the kernel and
mean based on a GP. Shaded nodes represent observed data

1245Machine Learning (2022) 111:1239–1257	

1 3

points (Iwata and Ghahramani 2017), which is problematic in few-shot learning. Modeling
the mean function by a neural network (4) allows us to predict values effectively even in
areas far from observed data points in a target region due to the high generalization perfor-
mance of neural networks.

Location vector � is transformed by neural network fk before computing the kernel func-
tion by the Gaussian kernel in (5). The use of the neural network yields flexible modeling
of the correlation across locations depending on the task representation. The noise param-
eter is also modeled by neural network fb , which enables us to infer the noise level from the
support set without re-training.

The predicted value for query � is given by

where � is the N × N matrix of the kernel function evaluated between location vectors
in the support set, �nn� = k(�n, �n�) , � is the N-dimensional vector of the kernel func-
tion between the query and support set, � = (k(�, �n))

N
n=1

 , � is the N-dimensional vector
of attribute values in the support set, � = (yn)

N
n=1

 , � is the N-dimensional vector of the
mean function evaluated on locations in the support set, � = (fm([�n, �]))

N
n=1

 , and � are
the parameters of neural networks fz , fm , fk , and fb . An advantage of our model is that the
predicted value given the support set is analytically calculated without iterative optimiza-
tion, by which we can minimize the expected prediction error efficiently based on gradient-
descent methods.

When noise fb(�) is small, the predicted value approaches the observed values at loca-
tions close to the observed locations. This property of GPs is beneficial for few-shot regres-
sion without re-training. If a neural network without GPs is used for the prediction func-
tion, the predicted values might differ from the observations even at the observed locations
when re-training based on the observations is not conducted. The first term in (6) is similar
to conditional neural processes, where a neural network is used for the prediction function.
The second term in (6) is related to similarity-based meta-learning methods since the sec-
ond term uses the similarities between the query and support set that are calculated by the
kernel function. Therefore, our model can be seen as an extension of the conditional neu-
ral process and similarity-based meta-learning approach, where both of them are naturally
integrated within a GP framework. When � is far from (close to) the observed locations, the
first (second) term becomes dominant due to kernel � (Iwata and Ghahramani 2017). This
is reasonable since similarity-based approaches are more reliable when there are observa-
tions nearby. The variance of the predicted attribute value of the query is given by

3.4 � Learning

We estimate neural network parameters � by minimizing the expected prediction error on
a query set given a support set using an episodic training framework (Ravi and Larochelle
2017; Santoro et al. 2016; Snell et al. 2017; Finn et al. 2017; Li et al. 2019). Although
training datasets D contain many observations, they should be used in a way that closely
simulates the test phase. Therefore, with the episodic training framework, support and
query sets are generated by a random subset of training datasets D for each training itera-
tion. In particular, we use the following objective function:

(6)ŷ(�,S;�) = fm([�, �]) + �⊤�−1(� −�),

(7)� [y|�,S;�] = k(�, �;�) − �⊤�−1�.

1246	 Machine Learning (2022) 111:1239–1257

1 3

where � represents an expectation,

is the mean squared error on query set Q given support set S , and NQ is the number of
instances in the query set. Usually, GPs are trained by maximizing the marginal likelihood
of training data (support set), where test data (query set) are not used. On the other hand,
the proposed method minimizes the prediction error on a query set when a support set is
observed, by which we can simulate a test phase and learn a model that improves the pre-
diction performance on target tasks. When we want to improve the predictive density for
each test location, we can use the following negative predictive log likelihood:

instead of the mean squared error (9). This is related to training GPs with the log pseudo-
likelihood (Rasmussen and Williams 2006), where the leave-one-out predictive log like-
lihood is used as the objective function. When we want to improve the predictive joint
density for a set of test locations, we can use the following negative predictive log joint
likelihood:

where �Q is the NQ-dimensional vector of attribute values in the query set,
�̂(�,S;�) = (�̂(�,S;�))�∈Q is the NQ-dimensional vector of predicted attribute values of
the query set by Eq. (6), 𝕍 [�Q|�,S;�]) = �Q −�⊤

Q
�−1�Q ∈ ℝ

NQ×NQ is the covariance of
the query set, and �Q ∈ ℝ

NQ×NQ is the kernel matrix evaluated on the query set by Eq. (5).
The predictive likelihood has been used for a meta-learning method (Chen et al. 2020)
instead of the marginal likelihood.

The training procedure of our model is shown in Algorithm 1. In each iteration, we ran-
domly generate support and query sets (Lines 2 – 5) from dataset Drc by randomly select-
ing region r and attribute c for simulating a test phase. Given the support and query sets so
generated, we calculate the loss (Line 6). We update model parameters by using any of the
stochastic gradient-descent methods, such as Adam (Kingma and Ba 2015) (Line 7). By
training the model using randomly generated support and query sets, the trained model can
predict values with a wide variety of observed location distributions, attributes and regions
in a test phase.

The computational complexity for evaluating loss (9) and (10) is O(NQ + N3
S
) , where NS

is the number of instances in the support set since we need the inverse of the kernel matrix
with size NS × NS . In few-shot learning, the number of target observed data is very small,
and so a very small support size NS is used in training. Therefore, our model can be opti-
mized efficiently with the episodic training framework. This is in contrast to the high com-
putational complexity of training for standard GP regression, which is cubic in the number
of training instances. The computational complexity for evaluating loss (11) is O(N3

Q
+ N3

S
)

since we need the inverse of the covariance with size NQ × NQ . When we use a large query
set size for training, losses (9) and (10) are preferable to (11) in terms of computational
efficiency.

(8)�̂ = argmin
�

�r∼R[�c∼Cr
[�(S,Q)∼Drc

[L(S,Q;�)]],

(9)L(S,Q;�) =
1

NQ

∑

(�,y)∈Q

∥ ŷ(�,S;�) − y ∥2,

(10)L(S,Q;�) = −
1

NQ

∑

(�,y)∈Q

logN(y|ŷ(�,S;�),� [y|�,S;�]),

(11)L(S,Q;�) = − logN(�Q|�̂(�,S;�),� [�Q|�,S;�]),

1247Machine Learning (2022) 111:1239–1257	

1 3

4 � Experiments

4.1 � Data

We evaluated the proposed method using the following three spatial datasets: NAE, NA,
and JA. NAE and NA were the climate data in North American, which were obtained from
https://​sites.​ualbe​rta.​ca/​~ahama​nn/​data/​clima​tena.​html. As the location vector, NA used
longitude and latitude. With NAE, elevation in meters above sea level was additionally
used in the location vector. With NAE and NA data, we used the following 26 bio-climate
values as attributes shown in Table 1. We generated 1829 non-overlapping regions cover-
ing North America, where the size of each region was 100 × 100km, and attribute values

Table 1   Attributes in NAE and NA data

Annual heat-moisture index Climatic moisture deficit
Degree-days above 18 ◦C Degree-days above 5 ◦C
Degree-days below 0 ◦C Degree-days below 18 ◦C
Monthly reference evaporation Length of the frost-free period
Mean annual precipitation Mean annual temperature
Mean temperature of the warmest month Number of frost-free days
Precipitation as snow Summer (Jun–Aug) precipitation
Winter (Dec–Feb) precipitation Monthly average relative humidity
Summer (Jun–Aug) mean temperature Winter (Dec–Feb) mean temperature
Beginning of the frost-free period End of the frost-free period
Summer heat-moisture index
Mean temperature of the coldest month
Mean summer (May–Sep) precipitation
Extreme minimum temperature over 30 years
Extreme maximum temperature over 30 years
Difference between MCMT and MWMT as a measure of continentality

https://sites.ualberta.ca/%7eahamann/data/climatena.html

1248	 Machine Learning (2022) 111:1239–1257

1 3

were observed at 1 × 1km grid squares in each region. JA was the climate data in Japan,
which was obtained from http://​nlftp.​mlit.​go.​jp/​ksj/​gml/​datal​ist/​KsjTm​plt-​G02.​html. We
used the following seven climate values as attributes shown in Table 2. The data contained
273 regions, where attribute values were observed at 1 × 1km grid square, and there were
at most 6,400 locations in a region. For all data, we randomly selected training, validation,
and target regions without replacement. Also, we splitted the attributes into training, vali-
dation, and target attributes. The statistics of each data set are shown in Table 3. In each
target region, values on a target attribute at five locations were observed, and values at the
other locations were used for evaluation. The location vectors and attributes were normal-
ized with zero mean and one standard deviation for each region and for each attribute.

4.2 � Proposed method setting

As the neural networks in our model, fz , fb , fk , and fm , we used three-layered feed-for-
ward neural networks with 256 hidden units. The dimensionality of the output layer
with fz and fk was 256, and that with fb and fm was one. We used rectified linear unit,
ReLU(x) = max(0, x) , for activation. Optimization was performed using Adam (Kingma
and Ba 2015) with learning rate 10−3 and dropout rate 0.1. The maximum number of train-
ing epochs was 5000, and the validation datasets were used for early stopping. The support
set size was NS = 5 , and query set size was NQ = 64.

4.3 � Comparison methods

We compared the proposed method with conditional neural process (NP), Gaussian process
regression (GPR), Gaussian process autoencoder (GPVAE), neural network (NN), fine-tun-
ing with NN (FT), model-agnostic meta-learning with NN (MAML), adaptively initialized
task optimizer (AVIATOR), multimodal MAML (MMAML), prototypical networks (PN),
and ridge regression differentiable discriminator (R2D2).

With NP, a task representation was inferred from the support set using a neural network
as in the proposed method, and then the attribute values of queries were predicted using

Table 2   Attributes in JA data
Precipitation Maximum temperature Minimum temperature
Average temperature Maximum snow depth Sunshine duration
Total solar radiation

Table 3   Statistics of NA, NAE
and JA data

NA/NAE JA

Training attributes 20 4
Validation attributes 5 2
Test attributes 1 1
Training regions 50 200
Validation regions 18 28
Test regions 549 45

http://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-G02.html

1249Machine Learning (2022) 111:1239–1257	

1 3

another neural network. We used the same neural network architecture with the proposed
method for inferring task representations fz . The architecture of the neural network for pre-
diction was the same as that with fm in the proposed method, which was used as the mean
function.

GPR predicted the attribute values by a GP regression with a Gaussian kernel given the
support set. The kernel parameters, which were the signal variance, length scale, and noise
variance, were estimated from the training datasets by minimizing the expected prediction
error using the episodic training framework.

GPVAE was a variational autoencoder (Kingma and Welling 2014) with GP priors on
latent variables (Casale et al. 2018; Ashman et al. 2020). With GPVAE, latent variables
were encoded using a neural network from location vectors. Then, attribute values were
predicted by a decoder neural network from the latent variables. The parameters of encoder
and decoder neural networks were estimated using the training datasets.

NN used a three-layered feed-forward neural network with 256 hidden units, and the
ReLU activation was used. The input of the NN was a location vector, and its output was
the predicted value of the attribute. NN parameters, which were shared across all tasks,
were estimated using the training datasets. The NN did not use labeled data in target tasks.

FT fine-tuned the parameters of the trained NN with labeled data for each target task.
For fine-tuning, we used Adam with learning rate 10−3 . The number of epochs for fine-
tuning was 100, which was selected from {10, 100} based on the target performance.

MAML used the same neural network as NN. The parameters were trained so that the
prediction performance was improved when fine-tuned with a support set. The number of
fine-tuning epochs was five. MAML was implemented with Higher, which is a library for
higher-order optimization (Grefenstette et al. 2019).

AVIATOR and MMAML obtained a task representation using a neural network as in
the proposed method. They were trained the neural network as in MAML, where the neural
network was defined by the task representation. AVIATOR generated the initial param-
eters of a neural network using the task representation. MMAML generated parameters
that modulate a neural network using the task representation.

With PN, a three-layered feed-forward neural network with 256 hidden and output units
was used for embedding location vectors. Attribute values were predicted by a weighted
average of the support instances, where the weights were calculated by softmaxed negative
squared Euclidean distance between the query and support embedded instances.

R2D2 used a neural network of the same architecture with PN for embedding. A ridge
regression model was used for predicting attribute values given embedded instances, where
the ridge regression parameters were adapted using the support set for each region.

NP, GPR, GPVAE, NN, MAML, AVIATOR, MMAML, PN, and R2D2 used the epi-
sodic training framework in the same way as the proposed method. All the methods were
optimized with Adam with learning rate 10−3 , and implemented with PyTorch (Paszke
et al. 2017).

4.4 � Results

The test mean squared errors (a) and test log likelihoods (b) in the target tasks averaged
over ten experiments are shown in Table 4. The test log likelihoods were calculated for
each test location. For the test mean squared error evaluations, all methods were trained
with the mean squared error objective function in Eq. (9), and for the test log likelihood

1250	 Machine Learning (2022) 111:1239–1257

1 3

evaluations, all methods were trained with the negative log likelihood objective func-
tion in Eq. (10). The proposed method achieved the best performance in all cases except
for the test likelihood with JA data. NP was worse than the proposed method because its
predictions were poor when task representations were not properly inferred. On the other
hand, the proposed method performed well with any tasks in at least areas close to the
observations, as its GP framework offers a smooth nonlinear function that passes over the
observations. GPR was worse than the proposed method since GPR only shares kernel
parameters across different tasks. In contrast, the proposed method shares neural networks
across different tasks, which enables us to learn flexible spatial patterns in various attrib-
utes and regions and use them for target tasks. NN and GPVAE suffered the low perfor-
mance since they cannot use the target data. Fine-tuning (FT) decreased the error, but it
remained worse than that of the proposed method. This is because FT consisted of two
separate steps: pretrain and fine-tuning, and did not learn how to transfer knowledge. In
contrast, the proposed method trained the neural network in a single step so that test per-
formance is maximized when the support set is given in the episodic training framework.
MAML performance was low since it had difficulty in learning the parameters that fine-
tuned well with just a small number of epochs with various regions and attributes, where
target function shapes vary drastically. Note that due to the high computational complexity
of MAML, where it demands that the gradients of many gradient-descent steps be calcu-
lated, MAML makes it infeasible to use a large number of fine-tuning epochs. On the other

Table 4   (a) Test mean squared errors and (b) test log likelihoods averaged over ten experiments

Values in bold typeface are not statistically significantly different at the 5% level from the best performing
method in each data according to a paired t-test

(a) Test mean squared errors

Data Ours NP GPR GPVAE NN FT

NAE 0.316 0.348 0.476 0.972 0.963 0.497
NA 0.552 0.593 0.701 0.991 0.986 0.746
JA 0.653 0.756 0.703 0.987 1.016 0.871

 Data MAML AVIATOR MMAML PN R2D2

NAE 0.710 0.346 0.342 0.647 0.400
NA 0.824 0.611 0.604 0.835 0.875
JA 0.873 0.956 0.985 1.073 1.914

(b) Test log likelihoods

Data Ours NP GPR GPVAE NN FT

NAE − 0.987 − 1.025 − 1.067 − 1.316 − 1.281 − 1.271
NA − 1.166 − 1.190 − 1.230 − 1.348 − 1.322 − 1.311
JA − 1.227 − 1.307 − 1.220 − 1.369 − 1.333 − 1.598

 Data MAML AVIA-
TOR

MMAML PN R2D2

NAE − 1.256 − 1.088 − 1.090 − 1.234 − 1.119
NA − 1.306 − 1.216 − 1.208 − 1.300 − 1.337
JA − 1.314 − 1.747 − 1.828 − 1.413 -1.879

1251Machine Learning (2022) 111:1239–1257	

1 3

hand, with the proposed method, since predicted values given the support set are calculated
analytically based on a GP, the neural networks are optimized efficiently in terms of fitting
the support set, and therefore the trained model attained high prediction performance for
various attributes and regions. AVIATOR and MMAML used the task representation to
obtain task-specific neural networks, and their performance was better than MAML. How-
ever, it was worse than the proposed method since the proposed method used GPs that
were suitable for spatial regression. Since the number of training attributes was small with
JA data, and training data were insufficient to train neural networks, the test likelihood
of the proposed method was not significantly different from that of GPR. The expressive
power of PN and R2D2 is low since they are adapted based on the weighted average and
linear regression, respectively. Therefore, their performance was worse than the proposed
method, which is adapated based on GPs.

Figure 3a shows the average test mean squared errors with different target support sizes
with the proposed method, NP, and GPR. We omitted the results with NN, FT, and MAML
since their performance was low as shown in Table 4. All methods yielded decreased error
as the target support size increased. The proposed method achieved low errors with differ-
ent target support sizes since it uses neural networks to learn the relationship between sup-
port and query sets using the training datasets. NP achieved low error rates when the target
support size was small. However, NP had higher error rates than GPR when the size was
ten. Since NP used a fixed trained neural network to incorporate the support set informa-
tion, it was difficult to adapt prediction functions to a large support set. In contrast, since
the proposed method and GPR can adapt them easily to support sets by calculating the
posterior in a closed form, their errors were effectively decreased as the target support size
increased.

Figure 3b shows the average test mean squared errors with different numbers of train-
ing attributes. The errors with the proposed method and NP decreased as the training
attribute numbers increased. This is reasonable since the possibility that tasks similar

(a) (b) (c)

(d) (e)

Fig. 3   Average test mean squared errors with (a) different target support sizes, (b) different numbers of
training attributes, (c) different numbers of training regions, (d) different training support sizes, and (e) dif-
ferent training query sizes. The bar shows the standard error

1252	 Machine Learning (2022) 111:1239–1257

1 3

to target tasks are included in the training datasets increases as the number of training
attributes increases. Since GPR shared only kernel parameters across different tasks,
its performance was not improved even when many attributes were used. Fig. 3c shows
the average test mean squared errors with different numbers of training regions. The
errors with the proposed method and NP decreased as the training regions increased.
Figure 3d shows the average test mean squared errors with different training support
sizes with the proposed method. When the support size in the training phase was the
same with that in the test phase, i.e., NS = 5 , the performance was best. When the test
support size can differ in target tasks, we need to train with a wide range of training sup-
port sizes. Figure 3d shows the average test mean squared errors with different training
query sizes with the proposed method. As the training query size increased, the per-
formance improved. It would be because the evaluation of the test error in the training
phase improved using larger training query size.

Table 5 shows the average computation time in seconds for learning from the training
datasets and the time for predicting test attribute values for each region on computers with
2.60GHz CPUs. Although the proposed method had slightly longer training time than NP,
GPR, or NN since it uses both the neural networks and GP, it was faster than MAML-based
methods (MAML, AVIATOR and MMAML). All methods had short test times since the
number of observed locations was small. The proposed method had shorter test time than
FT because the proposed method calculated predictions analytically given the target data,
while the FT required multiple updates for optimization given the target data.

Figure 4 visualizes the predictions for five attributes and regions of target tasks with the
proposed method, NP, and GPR. The proposed method attained appropriate predictions
in various attributes and regions. NP did not necessarily output predicted values that were
similar to the observations. For example, in Fig. 4(a,NP), the predicted values of NP at
two left observed locations differed from the true value. On the other hand, the proposed
method and GPR predicted values similar to the observation at the locations. Since GPR
could not extract the rich knowledge present in the training datasets, it sometimes failed to
predict values. For example, in Fig. 4(a,GPR), the predicted values differed from the true
values in the lower area. In contrast, the proposed method and NP predicted values at the
area well using neural networks. The proposed method improved prediction performance
by adopting both advantages of GPs and neural networks.

Table 6 shows the results of the ablation study of the proposed method. In terms of
the test mean squared error, the proposed method with the mean squared error objective
function (ErrObj) was better than that with the likelihood objective function (LikeObj). In
terms of the test log likelihood, LikeObj was better than ErrObj. These results imply that
the objective function should be selected properly depending on the applications. The pro-
posed method with the marginal likelihood objective function (MarObjS and MarObjSQ)
was worse than ErrObj and LikeObj. Although standard GPs are usually trained with the
marginal likelihood of training data, it is different from the test mean squared error and test
log likelihood. On the other hand, ErrObj and LikeObj directly minimize the evaluation
measurements by simulating the test phase using the episodic training framework. This
result demonstrates the effectiveness to use the test performance for the objective func-
tion for few-shot learning. The proposed method with the mean function without the sup-
port information (NoSptM) and that with the zero mean function (ZeroMean) performed
worse than the proposed method. This result indicates the importance to use non-zero
mean functions that incorporate the support information, and the advantage of the pro-
posed method over existing GP-based meta-learning methods those that use zero mean
functions (Harrison et al. 2018; Tossou et al. 2019) and those that do not use the support

1253Machine Learning (2022) 111:1239–1257	

1 3

information (Harrison et al. 2018). Although the test mean squared error of the pro-
posed method did not get worse with the kernel function without the support information

Table 5   Average computational time in seconds for learning from the training datasets and the time for pre-
dicting test attribute values for each region

Ours NP GPR GPVAE NN FT

Train 2253.4 1031.9 637.6 1371.3 756.5 756.5
Test 0.142 0.050 0.005 0.080 0.026 0.161

MAML AVIATOR MMAML PN R2D2

Train 7618.8 93387.1 100675.0 2161.7 1469.8
Test 0.067 0.139 0.160 0.233 0.109

True attribute values

Ours

NP

GPR

(a) PAS (b) PPTsm (c) EMT (d) DD18 (e) bFFP

Fig. 4   Predictions for five attributes and regions of target tasks yielded by the proposed method, NP, and
GPR. The top row shows the true attribute values. Red circles indicate observed locations. Values below
each plot show the mean squared error

1254	 Machine Learning (2022) 111:1239–1257

1 3

(NoSptK), the test log likelihood got worse. This result implies that the kernel function
with the support information is important for predicting the uncertainty. The performance
of NoSptM was lower than that of NoSptK. This result indicates that incorporating the sup-
port information in the mean function is more beneficial for spatial regression.

5 � Conclusion

We proposed a few-shot learning method for spatial regression. The proposed method can
predict attribute values given a few observations, even if the target attribute and region are
not included in the training datasets. The proposed method uses a neural network to infer a
task representation from a few observed data. Then, it uses the inferred task representation
to calculate the predicted values by a neural network-based Gaussian process framework.
Experiments on climate spatial data showed that the proposed method achieved better pre-
diction performance than existing methods. Although our results are encouraging, we must
extend our approach in several directions. Although the proposed method uses a Bayesian
framework given the mean and covariance functions based on GPs, the mean and covari-
ance functions are trained by a point estimation. Therefore, when the number of tasks is
small, there is the risk of meta-overfitting. We want to mitigate the risk of meta-overfitting
using a Bayesian estimation of the mean and covariance functions (Rothfuss et al. 2020). In
addition, we want to apply our framework to other types of tasks, such as spatio-temporal
regression, regression for non-spatial data, and classification.

Declarations 

Conflict of interest  None.

References

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B., & De
Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In Advances in Neu-
ral Information Processing Systems, 3981–3989.

Table 6   Ablation study

Test mean squared errors (MSE) and test log likelihoods (LL) on target tasks with NAE data. ErrObj is the
proposed method with the mean squared error objective function in Eq. (9). LikeObj is that with the log
likelihood objective function in Eq. (10), MarObjS is that with the marginal likelihood on the support set,
MarObjSQ is that with the marginal likelihood on the support and query sets, and ZeroM is that with zero
mean function. NoSptM is that with neural netwok-based mean function without the support information,
m(�) = fm(�) , and NoSptK is that with neural netwok-based kernel function without the support informa-
tion, k(�, ��) = exp

(
− ∥ fk(�) − fk(�

�) ∥2
)
 , and NoSptMK is that with neural netwok-based mean and kernel

functions without the support information

ErrObj LikeObj MarObjS MarObjSQ ZeroM NoSptM NoSptK NoSptMK

MSE 0.316 0.329 0.476 0.497 0.394 0.386 0.316 0.470
LL − 1.025 − 0.987 − 1.479 − 1.316 − 1.088 − 1.086 − 1.013 − 1.065

1255Machine Learning (2022) 111:1239–1257	

1 3

Ashman, M., So, J., Tebbutt, W., Fortuin, V., Pearce, M., & Turner, R.E. (2020). Sparse Gaussian pro-
cess variational autoencoders. In arXiv preprint arXiv:​2010.​10177.

Banerjee, S., Gelfand, A. E., Finley, A. O., & Sang, H. (2008). Gaussian predictive process models for
large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(4), 825–848.

Bartunov, S., & Vetrov, D. (2018). Few-shot generative modelling with generative matching networks.
International Conference on Artificial Intelligence and Statistics, 84, 670–678.

Bengio, Y., Bengio, S., & Cloutier, J. (1991). Learning a synaptic learning rule. In International Joint
Conference on Neural Networks.

Bertinetto, L., Henriques, J. F., Torr, P., & Vedaldi, A. (2018). Meta-learning with differentiable closed-
form solvers. In International conference on learning.

Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F., & Pentland, A. (2014). Once upon a crime:
towards crime prediction from demographics and mobile data. In Proceedings of the 16th interna-
tional conference on multimodal interaction, pages 427–434. ACM.

Bonilla, E. V., Chai, K. M., & Williams, C. (2008). Multi-task Gaussian process prediction. In Advances
in Neural Information Processing Systems, 153–160.

Bornschein, J., Mnih, A., Zoran, D., & Rezende, D. J. (2017). Variational memory addressing in genera-
tive models. In Advances in Neural Information Processing Systems, 3920–3929.

Calandra, R., Peters, J., Rasmussen, C.E., & Deisenroth, M.P. (2016). Manifold Gaussian processes for
regression. In International Joint Conference on Neural Networks, pp 3338–3345. IEEE.

Casale, F. P., Dalca, A. V., Saglietti, L., Listgarten, J., & Fusi, N. (2018). Gaussian process prior vari-
ational autoencoders. In Neural Information Processing Systems, 10390–10401.

Chen, Y., Friesen, A. L., Behbahani, F., Doucet, A., Budden, D., & Hoffman, M. W., de Freitas N.
(2020). Modular meta-learning with shrinkage. In Neural Information Processing Systems.

Cressie, N. (1990). The origins of kriging. Mathematical Geology, 22(3), 239–252.
Edwards, H., & Storkey, A. (2016). Towards a Neural Statistician. arXiv preprint arXiv:​1606.​02185.
Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep net-

works. In Proceedings of the 34th international conference on machine learning, pp 1126–1135.
Finn, C., Xu, K., & Levine, S. (2018). Probabilistic model-agnostic meta-learning. In Advances in Neu-

ral Information Processing Systems, 9516–9527.
Fortuin, V., Strathmann, H., & Rätsch, G. (2019). Meta-learning mean functions for Gaussian processes.

arXiv preprintarXiv:​1901.​08098.
Gao, X., Asami, Y., & Chung, C.-J.F. (2006). An empirical evaluation of spatial regression models.

Computers & Geosciences, 32(8), 1040–1051.
Gao, J., Lu, Z., Tjøstheim, D., et al. (2006). Estimation in semiparametric spatial regression. The Annals

of Statistics, 34(3), 1395–1435.
Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M., Teh, Y. W.,

Rezende, D., & Eslami, S. A. (2018). Conditional neural processes. In International conference on
machine learning, 1690–1699.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D. J., Eslami, S., & Teh, Y.W. (2018).
Neural processes. arXiv preprintarXiv:​1807.​01622.

Grefenstette, E., Amos, B., Yarats, D., Htut, P. M., Molchanov, A., Meier, F., Kiela, D., Cho, K., &
Chintala, S. (2019). Generalized inner loop meta-learning. arXiv preprintarXiv:​1910.​01727.

Gu, D., & Hu, H. (2012). Spatial Gaussian process regression with mobile sensor networks. IEEE Trans-
actions on Neural Networks and Learning Systems, 23(8), 1279–1290.

Haining, R. (1993). Spatial data analysis in the social and environmental sciences. Cambridge Univer-
sity Press.

Harrison, J., Sharma, A., & Pavone, M. (2018). Meta-learning priors for efficient online Bayesian regres-
sion. arXiv preprintarXiv:​1807.​08912.

Hession, S. L., & Moore, N. (2011). A spatial regression analysis of the influence of topography on
monthly rainfall in east africa. International Journal of Climatology, 31(10), 1440–1456.

Hewitt, L. B., Nye, M. I., Gane, A., Jaakkola, T., Tenenbaum, J. B. (2018). The variational homoen-
coder: learning to learn high capacity generative models from few examples. arXiv preprintarXiv:​
1807.​08919.

Huang, W.-B., Zhao, D., Sun, F., Liu, H., & Chang, E. Y. (2015). Scalable Gaussian process regression
using deep neural networks. In IJCAI, pp 3576–3582.

Iwata, T., Ghahramani, Z. (2017). Improving output uncertainty estimation and generalization in deep
learning via neural network Gaussian processes. arXiv preprintarXiv:​1707.​05922.

Iwata, T., Otsuka, T. (2019). Efficient transfer Bayesian optimization with auxiliary information. arXiv
preprintarXiv:​1909.​07670.

http://arxiv.org/abs/2010.10177
http://arxiv.org/abs/1606.02185
http://arxiv.org/abs/1901.08098
http://arxiv.org/abs/1807.01622
http://arxiv.org/abs/1910.01727
http://arxiv.org/abs/1807.08912
http://arxiv.org/abs/1807.08919
http://arxiv.org/abs/1807.08919
http://arxiv.org/abs/1707.05922
http://arxiv.org/abs/1909.07670

1256	 Machine Learning (2022) 111:1239–1257

1 3

Jean, N., Xie, S. M., & Ermon, S. (2018). Semi-supervised deep kernel learning: Regression with unla-
beled data by minimizing predictive variance. In Advances in Neural Information Processing Sys-
tems, pp 5322–5333.

Jerrett, M., Burnett, R. T., Ma, R., Pope, C. A., III., Krewski, D., Newbold, K. B., et al. (2005). Spatial
analysis of air pollution and mortality in los angeles. Epidemiology, 1, 727–736.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A., Rosenbaum, D., Vinyals, O., Teh, Y. W.
(2019). Attentive neural processes. In International conference on learning representations.

Kim, T., Yoon, J., Dia, O., Kim, S., Bengio, Y., & Ahn, S. (2018). Bayesian model-agnostic meta-learn-
ing. In Advances in Neural Information Processing Systems.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In International confer-
ence on learning representations.

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational Bayes. In International conference on
learning representations.

Lee, K., Maji, S., Ravichandran, A., & Soatto, S. (2019). Meta-learning with differentiable convex
optimization. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp10657–10665.

Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.-Z., & Hospedales, T. M. (2019). Episodic training for
domain generalization. In Proceedings of the IEEE international conference on computer vision,
pp 1446–1455.

Li, Z., Zhou, F., Chen, F., Li, H. (2017). Meta-SGD: Learning to learn quickly for few-shot learning.
arXiv preprintarXiv:​1707.​09835.

Luttinen, J., & Ilin, A. (2009). Variational Gaussian-process factor analysis for modeling spatio-temporal
data. Advances in Neural Information Processing Systems, 22, 1177–1185.

Micchelli, C. A., Xu, Y., & Zhang, H. (2006). Universal kernels. Journal of Machine Learning Research,
7(Dec), 2651–2667.

Myers, D. E. (1982). Matrix formulation of co-kriging. Journal of the International Association for
Mathematical Geology, 14(3), 249–257.

Park, C., Huang, J. Z., & Ding, Y. (2011). Domain decomposition approach for fast Gaussian process
regression of large spatial data sets. Journal of Machine Learning Research, 12(May), 1697–1728.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017). Automatic differen-
tiation in PyTorch. In NIPS Autodiff Workshop.

Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning. MIT press.
Ravi, S., & Larochelle, H. (2017). Optimization as a model for few-shot learning. In International con-

ference on learning representations.
Reed, S., Chen, Y., Paine, T., Oord, A. v. d., Eslami, S., Rezende, D., Vinyals, O., de Freitas, N. (2017).

Few-shot autoregressive density estimation: Towards learning to learn distributions. arXiv pre-
printarXiv:​1710.​10304.

Rezende, D. J., Mohamed, S., Danihelka, I., Gregor, K., & Wierstra, D. (2016). One-shot generalization
in deep generative models. In Proceedings of the 33rd international conference on international
conference on machine learning, pp 1521–1529.

Rothfuss, J., Fortuin, V., Josifoski, M., Krause, A. (2020). PACOH: Bayes-optimal meta-learning with
PAC-guarantees. arXiv preprintarXiv:​2002.​05551.

Rupasingha, A., & Goetz, S. J. (2007). Social and political forces as determinants of poverty: A spatial
analysis. The Journal of Socio-Economics, 36(4), 650–671.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., & Hadsell, R. (2019).
Meta-learning with latent embedding optimization. In International conference on learning
representations.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. (2016). Meta-learning with mem-
ory-augmented neural networks. In International conference on machine learning, pp 1842–1850.

Schmidhuber, J. (1987). Evolutionary principles in self-referential learning. on learning now to learn:
The meta-meta-meta...-hook. Master’s thesis, Technische Universitat Munchen.

Shadbolt, N., O‘Hara, K., Berners-Lee, T., Gibbins, N., Glaser, H., Hall, W., et al. (2012). Linked open
government data: Lessons from data. IEEE Intelligent Systems, 27(3), 16–24.

Smith-Clarke, C., Mashhadi, A., & Capra, L. (2014). Poverty on the cheap: Estimating poverty maps using
aggregated mobile communication networks. In Proceedings of the SIGCHI conference on human fac-
tors in computing systems, pp 511–520.

Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. Advances in Neural
Information Processing Systems, 1, 4077–4087.

Stein, M. L. (2012). Interpolation of spatial data: Some theory for kriging. Springer.

http://arxiv.org/abs/1707.09835
http://arxiv.org/abs/1710.10304
http://arxiv.org/abs/2002.05551

1257Machine Learning (2022) 111:1239–1257	

1 3

Stein, A., & Corsten, L. (1991). Universal kriging and cokriging as a regression procedure. Biometrics, 1,
575–587.

Stralberg, D., Matsuoka, S., Hamann, A., Bayne, E., Sólymos, P., Schmiegelow, F., et al. (2015). Projecting
boreal bird responses to climate change: The signal exceeds the noise. Ecological Applications, 25(1),
52–69.

Tossou, P., Dura, B., Laviolette, F., Marchand, M., Lacoste, A. (2019). Adaptive deep kernel learning. arXiv
preprintarXiv:​1905.​12131.

Venkitaraman, A., Wahlberg, B. (2020). Task-similarity aware meta-learning through nonparametric kernel
regression. arXiv preprintarXiv:​2006.​07212.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016). Matching networks for one shot learning.
Advances in Neural Information Processing Systems, 29, 3630–3638.

Vuorio, R., Sun, S.-H., Hu, H., & Lim,J.J. (2019). Multimodal model-agnostic meta-learning via task-aware
modulation. In Advances in Neural Information Processing Systems.

Wang, H., Kifer, D., Graif, C., & Li, Z. (2016). Crime rate inference with big data. Proceedings of the ACM
SIGKDD 22nd international conference on knowledge discovery and data mining, pp 635–644.

Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally downscaled and spatially customiz-
able climate data for historical and future periods for North America. PloS One, 11(6), E0156720.

Ward, M. D., & Gleditsch, K. S. (2018). Spatial regression models. Sage Publications.
Wei, P., Sagarna, R., Ke, Y., Ong, Y.-S., & Goh, C.-K. (2017). Source-target similarity modelings for multi-

source transfer Gaussian process regression. In Proceedings of the 34 th international conference on
machine learning, pp 3722–3731.

Wilson, A. G., Hu, Z., Salakhutdinov, R. R., & Xing, E. P. (2016). Stochastic variational deep kernel learn-
ing. In Advances in Neural Information Processing Systems, 2586–2594.

Wilson, A.G., Knowles, D.A., & Ghahramani, Z. (2011). Gaussian process regression networks. arXiv pre-
printarXiv:​1110.​4411.

Wilson, A. G., Hu, Z., Salakhutdinov, R., & Xing, E. P. (2016). Deep kernel learning. Artificial Intelligence
and Statistics, 51, 370–378.

Yao, H., Wei, Y., Huang, J., & Li, Z. (2019). Hierarchically structured meta-learning. In In International
conference on machine learning, 7045–7054.

Ye, H.-J., Sheng, X.-R., & Zhan, D.-C. (2020). Few-shot learning with adaptively initialized task optimizer:
A practical meta-learning approach. Machine Learning, 109(3), 643–664.

Yu, K., Tresp, V., & Schwaighofer, A. (2005). Learning Gaussian processes from multiple tasks. In Pro-
ceedings of the 22nd international conference on machine learning, pp 1012–1019.

Yuan, J., Zheng, Y., & Xie, X. (2012). Discovering regions of different functions in a city using human
mobility and POIs. In Proceedings of the 18th ACM SIGKDD international conference on knowledge
discovery and data mining, pp 186–194. ACM.

Yuan, J., Zheng, Y., Xie, X., & Sun, G. (2011). T-drive: Enhancing driving directions with taxi drivers intel-
ligence. IEEE Transactions on Knowledge and Data Engineering, 25(1), 220–232.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J. (2017). Deep sets.
In Advances in Neural Information Processing Systems, 3391–3401.

Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: Concepts, methodologies, and
applications. ACM Transactions on Intelligent Systems and Technology (TIST), 5(3), 38.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1905.12131
http://arxiv.org/abs/2006.07212
http://arxiv.org/abs/1110.4411

	Few-shot learning for spatial regression via neural embedding-based Gaussian processes
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Task
	3.2 Preliminaries: Gaussian processes
	3.3 Model
	3.3.1 Inferring task representation
	3.3.2 Predicting attribute values

	3.4 Learning

	4 Experiments
	4.1 Data
	4.2 Proposed method setting
	4.3 Comparison methods
	4.4 Results

	5 Conclusion
	References

