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Abstract
Massive spatio-temporal event data sets are now available that cover events such as disease 
outbreaks, armed conflicts and crimes. Predicting such events and revealing the underlying 
triggering patterns are a crucial task for many applications, ranging from disease control 
to global politics. Traditional event prediction models based on Hawkes processes capture 
the spatio-temporal relationships between events, but cannot incorporate complex and het-
erogeneous external features, including population distribution, weather and terrain. This 
paper proposes an event prediction method that effectively utilizes the rich external infor-
mation present in sets of unstructured data (e.g., map images, satellite images and weather 
map). Specifically, we extend a convolutional neural network (CNN) by combining it with 
continuous kernel convolution; and design the conditional intensity of Hawkes process 
based on the extended neural network model that accepts images as its input. Our approach 
of using the continuous convolution kernel provides a flexible way to discover the complex 
effect of external factors on the triggering process, as well as yielding tractable optimiza-
tion algorithms. We use real-world event data from different domains (i.e., disease out-
breaks, armed conflicts and protests) to demonstrate that the proposed method has better 
prediction performance than existing methods.
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1  Introduction

Spatio-temporal event data are being accumulated in many important fields such as health 
care and public safety. Such data contains time and location, indicating when and where 
events have happened. For example, electronic health records are represented as a sequence 
of events with locations and times of disease outbreaks. Armed conflicts are recorded with 
locations and times at which the conflicts took place.

A wide range of event sequences are demonstrations of spatio-temporal processes that 
have “self-exciting” or triggering patterns. In all the aforementioned examples, event 
occurrence is triggered by preceding events. For instance, disease outbreak can ignite sec-
ondary outbreaks, often leading to epidemics. A conflict between rival ethnic groups may 
trigger a cycle of retaliation.

Modeling such triggering processes and predicting future events is crucial for realizing 
many applications such as disease control and harmonizing global politics. For instance, 
if local health authorities can predict when, where and which events will trigger disease 
outbreaks, they can make more effective intervention policies (Wagner et al., 2011). Bet-
ter understanding and prediction of conflicts will help governments take more appropriate 
actions to reduce life and economic losses.

Hawkes process is a general mathematical framework for modeling triggering pro-
cesses; it is characterized by a conditional intensity that describes the rate of events occur-
ring at any location and at any time. Hawkes process has been adopted for modeling a wide 
spectrum of events, including infectious disease (Reinhart, 2018), terrorist attacks (Porter 
& White, 2012), crimes (Mohler et al., 2011) and earthquakes (Ogata et al., 2003). How-
ever, these models fail to adequately depict the real diffusion process, since its conditional 
intensity is modeled as a function of spatio-temporal distance, and the impact of external 
factors on triggering processes is ignored. Real-world triggering processes are determined 
not only by the spatio-temporal relationship between events but also by external factors 
such as population distribution, weather, road network and terrain. These external features 
can be spatially heterogeneous and change over time. For example, infectious diseases 
spread among high population areas (Morse, 2001). The transmission of diseases is also 
influenced by other external factors, including trading patterns (Nicolas et al., 2013), land 
use (Patz et al., 2004) and weather (Parham & Michael, 2010). Conflicts tend to be more 
accentuated in densely populated areas (Lee et al., 2019).

One promising approach to capturing the spatial heterogeneity of the triggering process 
is to incorporate external factors, e.g., population, weather and road network. Nowadays, 
rich external information sets are becoming accessible. For example, with the development 
of remote sensing techniques, high resolution satellite images are being collected and are 
available at various spectral, spatial and temporal resolutions. Also, open-source GIS plat-
forms have become commonplace; they provide geographic features including road net-
work and land use, in the form of a colored map. These images contain meaningful infor-
mation that can rarely be found in traditional information sources, and offer detailed spatial 
patterns of various external factors, ranging from human demography to weather and land 
use, as well as their temporal variations.

Several studies (Kim et  al. (2017; Meyer, 2018; Servadio et  al., 2018) have extended 
Hawkes process to incorporate external factors, e.g., regional populations (Meyer, 2018), 
mobility flows between regions (Kim et  al., 2017) and weather conditions (Servadio 
et al., 2018). But these methods are based on hand-crafted features engineered by domain 
experts, and make a simplified assumption on the conditional intensity as a function of 
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these features. Thus these methods cannot handle unstructured data like images, which 
contain rich, meaningful information.

In this paper, we propose an event prediction method that effectively utilizes the rich 
external features present in georeferenced images. Inspired by the recent success of deep 
learning models in computer vision (Vaswani et al., 2017; Zhang et al., 2018), we use them 
to enhance the Hawkes process model. The most straightforward way is to directly replace 
the Hawkes process intensity by a neural network that accepts these images as its input. 
Although this approach enables the automatic discovery of meaningful information from 
the images and thus improve event prediction performance, it suffers from the intractable 
optimization problem, as integral computations are required to determine the likelihood 
needed for estimation.

We solve this by introducing a novel architecture for Hawkes processes. In particular, 
we extend a convolutional neural network (CNN) by combining it with continuous ker-
nel convolution; the conditional intensity of Hawkes process is designed on the extended 
model. Our approach of using the continuous convolution kernel provides a flexible way 
of learning the complex external features present in the images, allowing us to capture the 
spatial heterogeneity of the triggering process. Notably, our formulation permits the likeli-
hood to be determined by tractable integration. In the proposed method, referred to as Con-
volutional Hawkes process (ConvHawkes), the parameters of the neural network and the 
convolutional kernel can be simultaneously optimized to maximize the likelihood by using 
gradient-based algorithms.

We conduct experiments on three real-world datasets from multiple domains and show 
that ConvHawkes consistently outperforms existing methods in event prediction tasks. 
The experiments also demonstrate that ConvHawkes provides a better understanding 
of the underlying mechanisms by which various external factors influence the triggering 
processes.

The main contributions of this paper are as follows:

–	 We propose a novel Hawkes process model, ConvHawkes (Convolutional Hawkes 
process) for modeling diffusion processes and predicting spatio-temporal events. It 
accurately and effectively predicts spatio-temporal events by leveraging the external 
features contained in georeferenced images (e.g., satellite images and map images), that 
impact triggering processes.

–	 We present an extension of the neural network model and integrate it into the Hawkes 
process framework. This formulation allows us to utilize the external features present in 
the unstructured image data, and to automatically discover their complex effects on the 
triggering process, while at the same time yielding tractable optimization.

–	 We conduct extensive experiments on real-world datasets from different domains. With 
regard to event occurrence, the proposed method achieves better predictive performance 
than several existing methods on all datasets (Sect. 6).

2 � Preliminaries

This section starts by providing the theoretical background to spatio-temporal Hawkes 
processes.

Point process is a random sequence of event occurrences over a domain. We assume 
here a sequence of events with known times and locations. Let (t, �) be the event written as 
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the pair of time t ∈ �  and location s ∈ � , where � × � is a subset of ℝ ×ℝ
2 . We denote the 

number of events falling in subset A of � × � as N(A). The general approach to identifying 
a point process is to estimate “intensity” function �(t, �) . Intensity �(t, �) represents the rate 
of event occurrence in a small region. Given the history H(t) up to t, intensity is defined as

where dt is a small interval around time t, |dt| is its length and d� is a small region contain-
ing location s, |d�| is its area. � is an expectation term. The functional form of intensity is 
designed to appropriately capture the underlying dynamics of event occurrence.

The Hawkes process is an important class of point process models, and its intensity is 
modeled as the cumulative effects from all the past events H(t) , represented by

where � is a base intensity independent of the preceding events. ti and �i is the time and 
location of the i-th event; �i is a constant that represents the strength of the influence of the 
i-th event; g(⋅) ≥ 0 is a triggering kernel that specifies the decaying effect of the i-th event. 
For computational simplicity, the triggering kernel function is often factorized into tempo-
ral and spatial components as follows:

where g1(⋅) and g2(⋅) are temporal and spatial decay functions, respectively. Typical choices 
for the temporal decay function include power-law, exponential, and Rayleigh functions 
(Mishra et al., 2016). Gaussian kernel is commonly used as the spatial decay function.

Given a sequence of events, D = {(tn, �n)}
N
n=1

 , tn ∈ �  and �n ∈ � , the likelihood is given 
by

3 � Problem definition

This subsection formally defines the problem of spatio-temporal event prediction.
Event Sequence Each event is represented by the tuple (t, �) , where t ∈ 𝕋 ⊆ ℝ denotes 

its time and � ∈ 𝕊 ⊆ ℝ
2 is its location (i.e., latitude and longitude). We assume that we 

have a sequence of N events up to time T, denoted by D = {(tn, �n)}
N
n=1

.
Image Sequence Additionally, we have an image dataset (e.g., satellite image, night 

light image, weather map). The image dataset is represented as a sequence of images, e.g., a 
collection of satellite images acquired at different times covering the area of interest � . An 
image dataset example is presented on the left in Fig. 2. Formally, we denote I ∈ ℝ

C×H×W 
as the image, where H and W are image height and width, respectively; C is the number of 
channels. Each image is annotated with time � when the observation was made. Each pixel 
of image I[h, w] is georeferenced and corresponds to a fixed geospatial area (e.g., 500 m 
by 500 m). The corresponding latitude/longitude coordinates of the geospatial area for the 
(h, w)-th pixel are represented by �h,w , where �h,w is the coordinates of the pixel center. For 

(1)�(t, �|H(t)) ≡ lim
|dt|→0,|d�|→0

�[N(dt × d�)|H(t)]

|dt||d�|
,

(2)𝜆
(
t, s|H(t)

)
= 𝜇 +

∑

i∶ti<t

𝛼ig(t − ti, � − �i),

(3)g(t − ti, � − �i) = g1(t − ti)g2(� − �i),

(4)p
(
D|�(t, �)

)
=

N∏

n=1

�(tn, �n) ⋅ exp

(
− ∫

�×�

�(t, �)dtd�

)
.
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specific kinds of images (e.g., weather map), besides historical sequence, future sequence 
of the images (e.g., weather forecast maps) is available. Let I = {(Il, �l)}

L
l=1

 be the sequence 
of images over the time window [0,T + �T) , where L is the number of observations.

Event Prediction Problem Given the event sequence D in the observation time win-
dow [0, T), and the image dataset I  in the time period [0,T + �T] , we aim to

–	 predict the number of events within any given spatial area and time period in 
[T , T + �T]

–	 predict times and locations of events in the future time window [T , T + �T],

by leveraging D and I .

4 � Convolutional Hawkes processes

This section presents the proposed method for spatio-temporal event prediction, referred to 
as ConvHawkes (Convolutional Hawkes process). We provide the model formulation of 
ConvHawkes followed by parameter learning and prediction.

4.1 � Model overview

We propose a novel extension of Hawkes process for modeling triggering processes and 
predicting spatio-temporal events. The triggering processes are significantly influenced by 
the external factors such as population, weather, road network and terrain.

The idea of this work is to leverage image data (e.g., satellite image and weather map) to 
capture such heterogeneity in the external factors and determine their effect on the trigger-
ing process. To this end, we incorporate the neural network model into the Hawkes process 
formulation. We illustrate our method in Fig. 1. Specifically, we extend the neural network 

Fig. 1   Illustration of the proposed method
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that learns the influence of the external factors by incorporating continuous kernel convo-
lution, and parameterize the Hawkes process intensity based on the extended model. The 
proposed model learns latent external features from georeferenced images; and also learns 
external effects at each location, while at the same time providing tractable learning.

4.2 � Model formulation

We develop a flexible and tractable framework based on Hawkes process to learn the 
underlying external effects and spatio-temporal relationships between events from image 
data, e.g., satellite image, map image and weather map. Formally, ConvHawkes designs 
the conditional intensity as follows:

where � is the background rate of event occurrence. As seen in Eq. (5), our model consists 
of two components: external effect and spatio-temporal decay. The external effect �(⋅) is 
specified by a neural network function, which captures the influence of the external factors. 
The spatio-temporal decay �(⋅) is designed by a triggering kernel function over space and 
time that describes the decay in the influence of past events with spatio-temporal distance. 
In the following, we describe the formulation of each component and the rationale behind 
them.

External effect We model the external effect �(⋅) based on a neural network model. The 
architecture of the external effect module is given in Fig. 2.

For each image dataset, the image sequence is first processed by a convolutional neu-
ral network (CNN). The CNN is designed such that its output has the same size of the 
input image sequence, which makes it straightforward to utilize the time stamps, and 
location information of the images in the subsequent continuous convolution layer. We 
can use the encoder-decoder-based CNN (Yasrab, 2017; Yasrab et al., 2017), CNN-RNN 
encoder–decoder (Attia et  al., 2017), or other deep neural networks that are suitable for 
the given image data. In this paper, we choose a simple CNN with Nl layers. As shown in 
the experimental section (Sect. 6.5), our proposed method produces satisfactory prediction 
performance even with this simple neural architecture. Each image of the image sequence 
Il is fed into the CNN architecture and transformed into the latent feature map �l , where 
�l ∈ ℝ

H×W×d . Here d is the dimension size of the latent feature map. For the sake of sim-
plicity, we fix d = 1 in the experiments.

(5)
𝜆(t, �|H(t)) = 𝜇 +

∑

j∶tj<t

𝛼
(
t, �|I

)

�����
external effect

𝛾(t − tj, � − �j)
���������������
Spatio-tempora decay

,

Fig. 2   Overall architecture of the external effect module
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Next we apply continuous kernel convolution to these latent feature map to expand 
the learned latent feature map over discrete pixel space onto the continuous spatio-tem-
poral space. Formally, given the latent feature map �l and their associated time �l and 
latitude/longitude coordinates for each pixel �h,w , the output of the convolutional layer 
at time t and location � is written by

where f (⋅) is a convolution kernel defined as continuous functions over the temporal and 
spatial plane. The definition for the continuous convolution kernel f (⋅) is provided later 
in this subsection. �l[h,w] ∈ ℝ

d denotes the (h, w)-th pixel of latent feature map �l . �(⋅) 
is a scalar function that quantifies the external effects at time t and location � . Intuitively, 
the external feature map �

(
(t, �)|I

)
 indicates how likely an event is to occur at time t and 

location � given preceding events that trigger it. This procedure is inspired by the work of 
Schütt et al. (2017) and Wang et al. (2018), which generalizes the discrete convolution used 
in standard CNNs to a continuous one. Our method is unique in that it does not require 
any discrete approximation. The above formulation enables the neural network model to 
be directly injected in the end-to-end framework of Hawkes process. At the same time, it 
yields tractable optimization (as discussed in Sect. 4.3).

Continuous convolution kernel To ensure computation simplicity, we factorize the 
continuous convolution kernel f (⋅) into temporal and spatial components such that: 
f (t − �, � − �) = h(t − �)k(� − �) , where h(⋅) and k(⋅) are the kernel functions for tempo-
ral and spatial convolutions, respectively. In our case, we use the uniform kernel for the 
temporal convolution, which is defined by

where 1[⋅] is an indicator function that indicates 1 when the condition holds, and 0 other-
wise; � is the binwidth parameter. Without loss of generality, in our experiment, we fix � 
as the time interval between the observations. This is equivalent to piece-wise approxima-
tion. If we have no future observations or predictions of the images, the last image in the 
image sequence is used for prediction. For the spatial convolution, we can select a Gauss-
ian kernel:

where Σk is a 2 × 2 covariance matrix (bandwidth) of the kernel. We can use other convolu-
tion kernel functions, such as uniform and Rayleigh.

Spatio-temporal decay Following previous work (Rocque et al., 2011; Pratiwi et al., 
2017), the spatio-temporal decay kernel functions are taken to be separable in space and 
time such that: �(t − tj, � − �j) = �(t − tj)� (� − �j) . Regarding the temporal decay function 
�(⋅) , the exponential decay function is the standard choice:

where 𝛽 > 0 is the decay factor. This implies that the occurrence of an event grows when 
events occur but their influence decreases exponentially at the rate of � over time.

A typical form of the spatial decay function is based on a Gaussian distribution as 
follows:

(6)�
(
(t, �)|I

)
=
∑

l

∑

h,w

�l[h,w]f (t − �l, � − �
h,w),

(7)h(t − 𝜏) = 1[𝜏 − 𝛥 < t < 𝜏 + 𝛥],

(8)k(� − �) = exp
(
− (� − �)⊤Σ−1

k
(� − �)

)
,

(9)�(t − tj) = exp
(
− �(t − tj)

)
,
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where Σ� is a 2 × 2 covariance matrix (bandwidth) of the kernel. Intuitively, when the jth 
event occurs, the probability of the next event occurring is higher in the neighborhood of 
location �j . The bandwidth parameter Σ� quantifies how strongly the influence from each 
past event decays over space. Other kernel functions, such as uniform and Rayleigh are 
viable alternatives.

4.3 � Parameter learning

Given a list of observed events up to time T (total of N events) D and the image dataset I  , 
the logarithm of the likelihood function is written as

where |�| denotes the area of spatial region � . The computation difficulty comes from the 
integral of the neural network function (i.e., CNN) in the external effect �(⋅) of term �n . 
With our formulation, the neural network function �l can be moved outside the integral, 
and �n is rewritten as

Consequently, we can obtain closed form solutions of the integral in term �n for stand-
ard decay and convolution kernel functions, as shown in Appendix A.2. In the case of the 
Gaussian kernel pair defined by Eqs. (8) and (10), it is given by an error function (the deri-
vation is provided in Appendix A.2). The resulting log-likelihood is fully tractable, permit-
ting the use of gradient-based algorithms. We apply simple back-propagation for training 
ConvHawkes. During the training phase, we adopt mini-batch optimization.

4.4 � Event number prediction

The point process model can be used to predict the expected number of events by integrat-
ing the estimated intensity over specific time period WT = [Tp, Tq] and the area of interest 
WS ⊂ � such that

(10)𝜁 (� − �j) = exp
(
− (� − �j)

⊤Σ−1
𝜁
(� − �j)

)
,

(11)

L =

N∑

n=1

log

[
𝜇 + 𝛼(tn, �n)

∑

j∶tj<tn

𝛾(tn − tj, �n − �j)

]

−

[
𝜇T|�| +

N∑

n=1
∫

T

tn
∫
�

𝛼(t, �)𝛾(t − tn, � − �n)dtd�

�����������������������������������������������
call this 𝛬n

]
,

(12)�n =
∑

l

∑

h,w

�l[h,w]∫
T

tn

�(t − tn)h(t − �l)dt ∫
�

� (� − �n)k(� − �
h,w)d�.

(13)

N(WT ×WS) = ∫WT
∫WS

�(t, �)dtd�

=
∑

l

∑

h,w

�l[h,w]∫
Tq

Tp

� (t − tn)h(t − �l)dt ∫WS

� (� − �n)k(� − �
h,w)d�,
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where N(A) is the number of events that fall into subset A. As mentioned in Sect. 4.3, we 
can obtain closed form solutions of the above integral.

Moreover, the ConvHawkes model can simulate the occurrence time of the next event 
and its location by adopting the thinning algorithm Reinhart (2018).

5 � Related work

Spatio-temporal prediction constitutes an important problem with various applications such 
as public safety, transportation, health care, and environment. The conventional approach 
to this problem is regression. Early works are based on traditional machine learning meth-
ods, including classical time-series models like vector autoregression (VAR) (Chandra 
& Al-Deek, 2009; Zivot & Wang, 2006) and autoregressive integrated moving average 
(ARIMA) (Van Der Voort et  al., 1996), and support vector regression (SVR) (Zhang & 
Liu, 2009). Recently, deep learning models have been successfully applied to this problem. 
For example, Ma et  al. (2015) and Zhao et  al. (2017) employ long short-term memory 
(LSTM) networks for traffic prediction, which captures the long-term temporal dependen-
cies. Several studies (Kang & Kang, 2017; Zhang et  al., 2016, 2017) use convolutional 
neural networks (CNNs) to capture the non-linear spatial dependencies. Yao et al. (2018) 
combine LSTM and CNN to jointly model both spatial and temporal dependencies in traf-
fic data. In recent literature, graph neural networks (GNNs) have been adopted for spatio-
temporal traffic graphs (Guo et al., 2019; Yu et al., 2017; Zhao et al., 2019) and epidemic 
forecasting (Kapoor et al., 2020) to handle the complex spatio-temporal correlations. How-
ever, all the aforementioned methods focus on predicting the aggregated number of events 
within a predefined spatial region and time interval. This task is fundamentally different 
from ours. In this paper, we aim to directly model a sequence of events in continuous time 
and space, without aggregation, by using explicit information about location and/or time.

Point process is a powerful mathematical framework for modeling a sequence of events 
that occur in a continuous space and/or time domain. Hawkes processes (Hawkes, 1971) 
have been proven effective in describing the phenomenon of mutual excitation between 
events (i.e., triggering process); examples include earthquakes and aftershocks (Musmeci 
& Vere-Jones, 1992; Ogata, 1998; Zhuang et  al., 2002), gang-on-gang violence (Louie 
et al., 2010), terrorist attacks (Porter & White, 2012), near repeat crimes (Mohler et al., 
2011; Zhu & Xie, 2019), disease transmission (Choi et al., 2015; Reinhart, 2018), finan-
cial transactions (Bacry et al., 2015), and social activities (Blundell et al., 2012; Farajtabar 
et al., 2015). Early work made fixed parametric assumptions regarding the functional form 
of the conditional intensity, which is often too restrictive to depict real triggering process. 
Recent studies employ neural networks to enhance the expressiveness of point processes. 
For example, Xiao et al. (2017) present a generative adversarial network-based framework 
for estimating the intensity of an inhomogeneous Poisson process. Chen et al. (2020) lev-
erage neural ODEs to parameterize marked temporal point processes. These models are 
based on inhomogeneous Poisson processes; they do not directly consider the influence 
of past events. Some other works (Du et al., 2016; Mei & Eisner, 2017) propose to param-
eterize the intensity of temporal Hawkes processes by a recurrent neural network (RNN) 
to learn the non-linear influence from past events. Omi et al. (2019) generalize the RNN-
based Hawkes process model to further improve its expressive power. Transformer Hawkes 
process (Zuo et al., 2020) and self-attentive Hawkes process (Zhang et al., 2020) employ 
a self-attention mechanism to capture the non-linear temporal correlation between events. 
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These models focus on learning the temporal dependencies between events, and cannot 
be easily extended to account for the spatial aspect. More recent work (Zhu et al., 2019) 
extends this approach to spatio-temporal Hawkes processes to consider both spatial and 
temporal domains. Despite the advances, all the above methods ignore the effects of exter-
nal factors on the triggering processes.

Some efforts have been made to incorporate external features into Hawkes processes. 
For instance, several studies have proposed temporal Hawkes process methods that take 
account of external features such as population density (Meyer, 2018), transportation net-
works (Aldrin et al., 2015; Wilder-Smith & Gubler, 2008), human mobility patterns (Kim 
et al., 2017), weather (Mohler et al., 2011; Servadio et al., 2018), fault structure (Musmeci 
& Vere-Jones, 1992). However, it is still challenging to effectively utilize complex unstruc-
tured data like images.

Another line of work (Maya et al., 2019) takes account of the external features repre-
sented in images and texts by combining Poisson process modeling and deep neural net-
work. However, the method of Okawa et  al. (2019) assumes that events occur indepen-
dently of one another, and thus does not adequately describe the triggering phenomena 
in which there exists strong interaction between events. We focus on the triggering pro-
cess, and aim at capturing history-dependent and self-exciting phenomena such as diseases, 
armed conflicts and earthquakes.

6 � Experiments

We used real-world event datasets from different domains to evaluate the predictive perfor-
mance of ConvHawkes.

6.1 � Datasets

We used three real-world event datasets and five image datasets. All the datasets are pub-
licly available. The statistics of these datasets are given in Table 1.

6.1.1 � Event data

We conducted experiments on three event datasets from different domains.

Table 1   Statistics of datasets used in this paper

Area Time span Source # of events

Conflict Africa 1 Mar, 2018–31 Mar, 2020 ACLED1 16,801
Protest Middle East 1 Mar, 2018–31 Mar, 2020 ACLED1 34,243
Disease Europe 1 Mar, 2020–31 Aug, 2020 EMPRES-i2 21,529
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–	 Conflict Conflict dataset, which is provided by ACLED project,1 consists of roughly 
17,000 armed conflicts in Africa dated from April 1, 2018 to March 31, 2020. Every 
event is recorded in the form of time and location (latitude and longitude coordinates).

–	 Protest Protest dataset, which was gathered by ACLED project,1 contains over 34,000 
demonstration events in Middle East over a four year period from April 1, 2018 to 
March 31, 2020. Each record contains time and location of the protest.

–	 Disease Disease dataset is a collection of reported incidents of animal disease out-
breaks that occurred in Europe, provided by EMPRES-i2 it contains 21,529 records, 
each of which shows time, latitude and longitude.

The procedure of data preprocessing is detailed in Appendix B.1.

6.1.2 � Georeferenced image

We incorporated five image datasets as the external features: nightlight, landcover, 
weather, population and road. These georeferenced images were all sourced from open 
GIS databases.

–	 The source of nightlight image is the Night time Lights of the World data processed 
and distributed by the NGDC,3 we used the 16, 801 × 43, 201 tiles that cover the entire 
world.

–	 For landcover image, the data source is the world map image file, at scale of 1:10m , 
provided within the Natural Earth4 package.

–	 The world map files for weather and population were taken from GeoNetwork web-
site.5 with a spatial resolution of 5 arc minutes.

–	 For road, the shapefile of roads was downloaded from gROADS6 The shapefile was 
converted into a GeoTIFF file.

The input images were saved in GeoTIFF format. As preprocessing, we cropped GeoTIFF 
images for the three areas of interest (i.e., Africa, Middle East, Europe) and resized them 
to 120 × 114 pixels for Africa, 120 × 147 for Middle East, 120 × 127 for Europe. The exam-
ples of a population image is given in Figs. 5a and 6a, and landcover image in Fig. 7a. In 
the experiment, we only used static images which not contain time information. Thus, the 
number of observations L is fixed to 1. Details of the data collection procedure are shown 
in Appendix B.2.

1  Armed Conflict Location and Event Dataset (ACLED). https://​www.​acled​data.​com. Accessed on Decem-
ber 10, 2021.
2  EMPRES Global Animal Disease Information System (EMPRES-i). http://​empres-​i.​fao.​org/​eipws​3g/. 
Accessed on April 1, 2021.
3  Image and Data processing by the National Oceanic and Atmospheric Administration’s (NOAA) National 
Geophysical Data Center (NGDC). https://​ngdc.​noaa.​gov/​ngdc.​html. Accessed on April 1, 2021.
4  Natural Earth. https://​www.​natur​alear​thdata.​com. Accessed on April 1, 2021.
5  Food and Agriculture Organization (FAO), GeoNetwork. http://​www.​fao.​org/​geone​twork. Accessed on 
April 1, 2021.
6  NASA Socioeconomic Data and Applications Center (SEDAC), Global Roads Open Access Data Set, 
Version 1 (gROADSv1). http://​dx.​doi.​org/​10.​7927/​H4VD6​WCT. Accessed on April 15, 2021.

https://www.acleddata.com
http://empres-i.fao.org/eipws3g/
https://ngdc.noaa.gov/ngdc.html
https://www.naturalearthdata.com
http://www.fao.org/geonetwork
http://dx.doi.org/10.7927/H4VD6WCT
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6.2 � Comparison methods

We compared the proposed ConvHawkes against four widely used point process methods.

–	 HPP (Spatio-temporal homogeneous Poisson Process): The intensity is assumed to be 
constant over time and space: �(t, �) = �0 . This optimization can be solved in closed 
form.

–	 RMTPP (Recurrent Marked Temporal Point Process) (Du et al., 2016): RMTPP uses 
RNN to describe the intensity of the marked temporal point process. RMTPP is pri-
marily intended to model event timing and categorical event feature (marker). To allow 
comparison, we partitioned the area of interest using a pre-defined rectangular grid; 
and mapped latitude and longitude values of event data into particular grids (hereafter 
referred to as regions). Then the latitude and longitude coordinates were replaced by a 
region index. The region indices are regarded as marks.

–	 Hawkes (Spatio-temporal Hawkes Process) (Reinhart, 2018): Intensity is given by Eq. 
(3), which does not accept any additional features. We choose an exponential decay 
function, see Eq. (9), as the temporal decay function h(⋅) , and Gaussian kernel shown as 
Eq. (10) for the spatial decay function k(⋅).

–	 DMPP (Deep Mixture Point Process) (Maya et al., 2019): This method incorporates the 
external features represented in images and texts by combining Poisson process mode-
ling and deep neural networks. We used the same image datasets used in ConvHawkes 
as the external features for DMPP.

6.3 � Experimental settings

For the experiments, we divided each dataset into training, validation and test sets in chron-
ological order with the ratios of 80%, 10%, and 10%. The model parameters were trained 
using the ADAM optimizer (Kingma & Ba, 2014) with a learning rate of 0.002. We tuned 
all the models using early stopping based on the log-likelihood performance on the vali-
dation set with a maximum of 200 epochs and a patience of 10 epochs. Batch size was 
set to 256 for all methods. The hyperparameters of each model were optimized via grid 
search. For the neural networks-based models (i.e., RMTPP, DMPP and ConvHawkes), 
we chose the number of layers Nl from {1, 2, 3, 4, 5} , and the number of units per layer Nu 
from {1, 3, 5, 8} . For CNN-based methods (i.e., DMPP and ConvHawkes), we searched 
the filter size Nk in the CNN over {1, 3, 5} . The uniform kernel function was selected for 
the temporal and spatial convolution. The mathematical definitions are given in Appendix 
A.1. The chosen hyperparameters are presented in Sect. 6.5.1. The pixel intensities of color 
channels were normalized to [0,1], and then used as input of our model.

6.4 � Evaluation metrics

Our experiments use the following two metrics in evaluating all models. For both metrics, 
lower values indicate better performance.

–	 NLL (Negative Log-Likelihood) is used to assess the likelihood of the occurrence of 
the events over the test period; it is calculated as 
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 where Nt is the number of events in the test period.
–	 NMAE (Normalized Mean Absolute Error) evaluates the discrepancies between the 

predicted number of events in small time intervals and pre-defined regions and the 
ground truth. We first split the test time period [T , T + �T] into S successive small time 
intervals. Also, we partitioned the area of interest � into R uniform grid regions. For 
each time interval (ts, ts+1] and each region (�r, �r+1) , given the history of events up to 
ts , we predicted the number of events in (ts, ts+1] and (�r, �r+1] , N̂((ts, ts+1], (�r, �r+1]) , 
described in Eq. (13). Then, we measured the average normalized difference between 
the predicted and observed number of events over all the time intervals and the pre-
defined regions as follows: 

 where N̂
(
(t
s+1, ts], (�r, �r+1]

)
 is the predicted number of events in the small time interval 

(ts+1, ts] and the grid region (�r, �r+1] and N(⋅) is the ground truth at the s-th time interval 
and rth region. In our experiment, we partitioned the spatial area of interest using a 
5 × 5 uniform grid, and divided the test period into 20 time intervals. Therefore S = 20 
and R = 25.

6.5 � Performance comparison

In this section, we compare ConvHawkes with existing point process methods for event 
prediction.

Table 2 shows the negative log-likelihood (NLL) of the test data for the three event data-
sets. Note that since the temporal point processes (i.e., RMTPP) cannot calculate spatial 
likelihood, the NLL results of these methods are not reported on this table. We trained the 
proposed method with each of the five image datasets (i.e., nightlight, landcover, weather, 
population, road) and reported the best performance among the different image datasets in 
Tables 2 and 3. The population image yields the best prediction performance for Conflict 
and Protest datasets; the landcover produces the best result for Disease dataset. We can see 
that the proposal, ConvHawkes, outperforms all existing methods examined across all the 
datasets. HPP delivers the worst prediction accuracy since it fails to account for temporal 
or spatial dependencies between events. DMPP performs worse than Hawkes on all the 
datasets. This is expected, because DMPP does not explicitly model the mutual excitation 

(14)
N+Nt∑

n=N

[
− log �(tn, �n) + ∫

tn

ti−1
∫
�

�(t, �)dtd�

]
,

(15)NMAE =

∑R

r=1

∑S

s=1
��N̂

�
(ts, ts+1], (�r, �r+1]

�
− N

�
(ts, ts+1], (�r, �r+1]

���
∑R

r=1

∑S

s=1
N
�
(ts, ts+1], (�r, �r+1]

� ,

Table 2   Negative log-likelihood 
(NLL)

Lower is better. The best performance is shown in bold. Our proposal, 
ConvHawkes, outperforms four existing methods

Conflict Protest Disease

 HPP − 8.872 − 9.130 − 9.081
 Hawkes − 10.156 − 10.525 − 10.806
 DMPP − 9.531 − 9.465 − 9.902
 Proposed − 11.548 − 11.583 − 11.988
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between events and thus cannot capture triggering patterns. For all the datasets, Hawkes 
outperformed the other existing methods. This is possibly because Hawkes models the 
mutual excitation between events with decay over spatio-temporal distances, while DMPP 
does not explicitly consider the spatial dependencies between events. ConvHawkes pro-
duces even better performance than Hawkes. The results suggest that our method can 
extract the meaningful features from the images, and effectively learn their impact on the 
triggering processes.

Table 3 reports the Normalized Mean Absolute Error (NMAE) of five different meth-
ods on the three event datasets. The result again demonstrates the effectiveness of our 
approach. Compared to the strongest baseline, ConvHawkes offers a NMAE improvement 
of 34.9% for the Conflict data ( p < 0.001 ; paired t-test), 11.6% NMAE improvement for 
the Protest data ( p < 0.1 ), 13.7% NMAE improvement for the Disease data ( p < 0.001 ). 
This supports the above conclusion.

Our ConvHawkes demonstrated improvements in all evaluation metrics used. This is 
probably because ConvHawkes can capture the spatial heterogeneity of the triggering pro-
cess as well as the spatio-temporal decay effects. We can see this in Fig. 3, which depicts 
the conditional intensity of diseases learned by four different methods on March 1, 2020. 
In Fig. 3c, the spatial influences seem to be evenly distributed for Hawkes. ConvHawkes 
intensity (Fig. 3d) is more unevenly distributed along the densely populated urban areas.

6.5.1 � Sensitivity analysis

In this section, we analyze the impact of hyperparameters and experimental settings. We 
report the prediction performance of ConvHawkes under different settings for the three 
event datasets.

Table 3   Normalized mean 
absolute error (NMAE) with 
standard deviation (in the 
bracket)

Lower is better. The best performance is shown in bold. Our proposal, 
ConvHawkes, outperforms four existing methods

Conflict Protest Disease

 HPP 1.144 (0.055) 1.116 (0.096) 1.277 (0.230)
 RMTPP 0.876 (0.094) 0.925 (0.159) 0.940 (0.300)
 Hawkes 0.464 (0.023) 0.520 (0.064) 0.481 (0.087)
 DMPP 0.685 (0.041) 0.867 (0.119) 0.865 (0.231)
 Proposed 0.344 (0.015) 0.466 (0.043) 0.423 (0.073)

RMTPP DMPP Hawkes ConvHawkes(a) (b) (c) (d)

Fig. 3   a RMTPP, b DMPP, c Hawkes, d ConvHawkes. Conditional intensity of diseases in Europe esti-
mated by each method at March 1st 2020. The x-axis and y-axis represent longitude and latitude respec-
tively
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Impact of Different Images Table 4 examines the importance of different images for 
event prediction by individually incorporating each of the image datasets into the proposed 
model. For Conflict data, NLL is improved when adding population image. This is consist-
ent with the prior observation: unrest spreads among densely populated areas. We can see 
that incorporating nightlight images improves the prediction performance for Protest and 
Disease datasets. This is probably because nightlight is correlated to population density. 
We can observe that the weather image is important for Disease data. This finding matches 
the previous study: weather change affects on disease transmission (Parham & Michael, 
2010). In general, ConvHawkes can achieve stable performance across different image 
datasets. ConvHawkes with different image datasets is consistently better than all the 
comparison methods (Table 2), which ensures all the image datasets used in this paper are 
important for event prediction, and that ConvHawkes can effectively utilize these images.

Network Structure We show the impact of network structures in Fig. 4a–c. Except for 
the parameters being tested, all other parameters were held to default values. The NLL per-
formance tends to be stable for all datasets. The prediction performance slightly improves 
when layer size Nl is 3 for Conflict data, 2 for Protest data, and 1 for Disease data. As 
shown in Fig. 4b, ConvHawkes performs robustly for different number of units, Nu , across 
all data sets. The prediction performance saturates as filter size Nk in the CNN increases. 
The proposed method yields similar results for the other metrics (i.e., NMAE). Throughout 
the experiment, we set Nl = 3 , Nu = 3 , Nk = 3 for Conflict dataset; Nl = 2 , Nu = 3 , Nk = 3 
for Protest dataset; and Nl = 1 , Nu = 3 , Nk = 3 for Disease dataset.

6.6 � Analysis of feature learning

To further verify the above conclusion, we qualitatively explore the estimated intensity and 
the latent feature maps learned from the input image by our method.

Table 4   Performance comparison 
of the proposed method with 
different images on three event 
datasets

The number indicates NLL. Lower is better. The best performance is 
in boldface and second best is italicised

Conflict Protest Disease

nightlight − 11.207 − 11.379 − 11.272
landcover − 11.021 − 10.814 − 11.115
weather − 11.111 − 11.336 − 11.149
population − 11.548 − 10.918 − 10.959
road − 10.937 − 11.050 − 11.088

Number of layers Number of units Filter size(a) (b) (c)

Fig. 4   a Number of layers, b number of units, c filter size impact of hyper-parameters on NLL performance
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Figures 5–7 show the input image, the learned latent feature map and intensity for Conflict, 
Protest, Disease datasets. The x-axis and y-axis represent longitude and latitude respectively. 
Figures 5a and 6a show the input population image for Africa and Middle East, respectively. 
Figure 5a is the input landcover image for Europe. In the learned feature maps (Figs. 5b, 6b, 
7b), the lighter shades are higher feature values and the darker shades indicate lower feature 
values. In Figs. 5b and 6b, we can observe that ConvHawkes highlights coastal areas for Con-
flict and Protest datasets. This is expected, since the unrest events are strengthened in densely 
populated coastal areas. ConvHawkes (Figs. 5c and 6c) exhibits heterogeneous intensity, in 
which the spatial influence is spread along the coastal areas. As shown in Fig. 7, the landcover 

Input population image Learned feature map Intensity(a) (b) (c)

Fig. 5   a Input population image, b learned feature map, c intensity learned feature map and intensity for 
Conflict dataset

Input population image Learned feature map Intensity(a) (b) (c)

Fig. 6   a Input population image, b learned feature map, c intensity learned feature map and intensity for 
Protest dataset

Input landcover image Learned feature map Intensity(a) (b) (c)

Fig. 7   a Input landcover image, b learned feature map, c intensity Learned feature map and intensity for 
Disease dataset
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image serves as an important feature for Disease dataset. This may because landcover is asso-
ciated with other characteristics including weather and population. The proposed method can 
automatically discover discriminative features from the images, providing insights about the 
effects the underlying external factors have on the triggering process.

7 � Conclusion

In this paper, we tackled the problem of spatio-temporal event prediction. Our proposal, Con-
vHawkes (Convolutional Hawkes Process), is a novel Hawkes process model based on a deep 
learning approach. Specifically, we combine CNN with continuous kernel convolution and 
model the Hawkes process intensity parameter by using an extended neural network model. 
The key advantage of ConvHawkes over existing methods is that it can utilize the rich con-
texts present in image data, including satellite images, map images and weather maps, and 
automatically discover their complex effects on the event triggering processes. At the same 
time, this formulation makes analytical integration over the intensity, which is required for 
Hawkes process estimation, tractable. Using three real-world datasets from different domains 
(i.e., armed conflicts, protests, diseases), we demonstrated that the proposed method is able to 
provide higher event prediction accuracy than existing methods.

To the best of our knowledge, this work is the first attempt towards incorporating image 
data into self-exciting spatio-temporal point process models. For future work, we plan to 
extend the proposed approach by combining it with recent point process models.

A. Appendix

A.1 Convolutional kernel

We factorize the convolutional kernel function f (⋅) into temporal and spatial components, and 
model each component by the uniform kernel:

where 1[⋅] is an indicator function, and � and w are positive parameters that threshold the 
kernels to zeros. In our experiment, we fix � as the time interval between the observations; 
w is the pixel size of the image. This is equivalent to a piece-wise approximation. Here we 
consider the simplest case for the implementation simplicity; but note that our method can 
be easily generalized to other forms.

A.2 Likelihood computation

With the uniform kernel function (Eq. 7), the integral over time can be performed analytically 
as follows:

where G(⋅) is the derivative of the temporal decay kernel g(⋅) . For the exponential decay 
defined by Eq. (9), G(t − tn) = − exp

(
− �(t − tn)

)
.

(16)f (t − 𝜏, � − �) = 1[|t − 𝜏| < 𝛥]1[||� − �|| < w],

(17)∫
T

tn

1[𝜏 − 𝛥𝜏 < t < 𝜏]g(t − tn)dt =
[
G(t − tn)

]max (𝜏,max (tn,𝜏−𝛥𝜏))

max (tn,𝜏−𝛥𝜏)
,
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For the pair of the Gaussian convolutional kernel (Eq. 8) and Gaussian decay function 
(Eq. 10), the integral over space � is described as the sum of error functions:

where

The Gaussian integral in the above equation can be expressed in terms of the error function 
for the diagonal covariance matrices Σk and Σ� . The integral in the likelihood (Eq. 11) has 
analytic form for many other kernels including Rayleigh and power-law.

B. Experiment

B.1 Event dataset

Conflict and Protest datasets were acquired from ACLED1 website at https://​acled​data.​
com/​data-​export-​tool/ ACLED is an event-level data on political violence and protest that 
includes date, location and type of event. For Conflict dataset, we extracted violent con-
flict events (i.e., battles, remote violence and bombings, and violence against civilians) 
occurred in Africa from the ACLED database. For Protest dataset, we collected civil dem-
onstrations (i.e., protests and riots) in Middle East.

Disease data were obtained through the online EMPRES-i2 system (https://​empres-​i.​
review.​fao.​org/#/.) The disease outbreak data for domestic poultry from 1 January 2004 to 
31 December 2009 were obtained from the EMPRES-i database. Each confirmed outbreak 
contains outbreak location (latitude and longitude) and date of observation.

B.2 Georeferenced image

–	 The source of nightlight image is the Night time Lights of the World data processed 
and distributed by NGDC3 : [F182013.v4c_web.stable_lights.avg_vis.tif], from https://​
ngdc.​noaa.​gov/​eog/​dmsp/​downl​oadV4​compo​sites.​html.

–	 For landcover image, the data source is the world map image file found in the Natural 
Earth4 package: [HYP_HR_SR_W_DR.tif] at https://​github.​com/​nvkel​so/​natur​al-​earth-​
raster/​tree/​master/​10m_​raste​rs.

(18)

∫
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https://acleddata.com/data-export-tool/
https://acleddata.com/data-export-tool/
https://empres-i.review.fao.org/#/
https://empres-i.review.fao.org/#/
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://github.com/nvkelso/natural-earth-raster/tree/master/10m_rasters
https://github.com/nvkelso/natural-earth-raster/tree/master/10m_rasters
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–	 The world map files for weather, population, livestock and terrain were taken from 
GeoNetwork website5 at http://​www.​fao.​org/​geone​twork/​srv/​en/​main.​home?​uuid=​
fc32c​5de-​440c-​46aa-​9cad-​81f4c​8b84c​6a, namely,

–	 weather: [clim.tif]
–	 population: [popd.tif]
–	 livestock: [lvstd.tif]
–	 terrain: [slp.tif]

–	 For road, the shapefile of the roads is downloaded from gROADS6 at https://​sedac.​
ciesin.​colum​bia.​edu/​data/​set/​groads-​global-​roads-​open-​access-​v1/​data-​downl​oad: 
[gROADS-v1-africa.shp]. We use an open source GIS platform, Quantum GIS 
(QGIS), to convert the shapefile to a GeoTIFF file.

B.3 Implementation details

All code was implemented using Python 3.9 and Keras Chollet (2015) with a Tensor-
Flow backend Abadi et  al. (2016). We conducted all experiments on a machine with 
four 2.8GHz Intel Cores and 16GB memory. We compare the training times of the dif-
ferent methods on three datasets in Table 5.
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Table 5   Execution times of 
different methods in seconds

Conflict Protest Disease

 HPP 3.585 3.189 4.370
 RMTPP 136.473 34.711 61.410
 Hawkes 29.387 30.414 33.943
 DMPP 20.054 151.486 27.120
 Proposed 715.874 992.047 885.619

http://www.fao.org/geonetwork/srv/en/main.home?uuid=fc32c5de-440c-46aa-9cad-81f4c8b84c6a
http://www.fao.org/geonetwork/srv/en/main.home?uuid=fc32c5de-440c-46aa-9cad-81f4c8b84c6a
https://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1/data-download
https://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1/data-download
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