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Abstract
We provide a thorough treatment of one-class classification with hyperparameter optimisa-
tion for five data descriptors: Support Vector Machine (SVM), Nearest Neighbour Distance 
(NND), Localised Nearest Neighbour Distance (LNND), Local Outlier Factor (LOF) and 
Average Localised Proximity (ALP). The hyperparameters of SVM and LOF have to be 
optimised through cross-validation, while NND, LNND and ALP allow an efficient form of 
leave-one-out validation and the reuse of a single nearest-neighbour query. We experimen-
tally evaluate the effect of hyperparameter optimisation with 246 classification problems 
drawn from 50 datasets. From a selection of optimisation algorithms, the recent Malherbe–
Powell proposal optimises the hyperparameters of all data descriptors most efficiently. We 
calculate the increase in test AUROC and the amount of overfitting as a function of the 
number of hyperparameter evaluations. After 50 evaluations, ALP and SVM significantly 
outperform LOF, NND and LNND, and LOF and NND outperform LNND. The perfor-
mance of ALP and SVM is comparable, but ALP can be optimised more efficiently so 
constitutes a good default choice. Alternatively, using validation AUROC as a selection 
criterion between ALP or SVM gives the best overall result, and NND is the least compu-
tationally demanding option. We thus end up with a clear trade-off between three choices, 
allowing practitioners to make an informed decision.
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1  Introduction

The goal of one-class classification [Tax (2001), also known as novelty, semi-supervised 
outlier or semi-supervised anomaly detection], is to form, on the basis of a representative 
sample, a model of a target (or positive) class that can later be used to predict whether 
unseen instances belong to that target class. Such one-class classification algorithms are 
called data descriptors. The difference with binary classification and the closely related 
learning from positive and unlabelled data (Bekker & Davis, 2020) lies in the fact that a 
data descriptor only uses training data belonging to the target class.

In recent years, one-class classification has been applied to a wide range of problems, 
including the detection of tweets promoting hate or extremism (Agarwal & Sureka, 2015), 
or generated by bots (Rodríguez-Ruiz et al., 2020), user authentication based on keystroke 
dynamics (Antal & Szabó, 2015), writer identification (Hadjadji & Chibani, 2018), detect-
ing abnormal train door operations (Ribeiro et al., 2016), and the identification of different 
tumor cell subtypes (Sokolov et al., 2016).

A number of popular data descriptors require setting one or more hyperparameters. In a 
recent paper (Lenz et al., 2021), we have identified optimal default hyperparameter values 
for a selection of these, and evaluated their performance. These default values allow the 
data descriptors to be used on one-class classification problems without negative training 
samples. However, for problems where a (limited) sample of negative data is available, this 
data can be used to optimise, or ‘tune’, the hyperparameter values. Notably, for all of the 
concrete applications of one-class classification listed in the previous paragraph, there was 
negative data that could have been used for hyperparameter optimisation. In addition, nega-
tive data is always available when data descriptors are used as building blocks in a multi-
class classification ensemble (Ban & Abe, 2006).

The aim of this paper is to provide empirical evidence for the potential performance 
benefits of hyperparameter optimisation. The performance of data descriptors with hyper-
parameter optimisation has previously been evaluated by Janssens et al. (2009) and Swer-
sky et al. (2016). In the present article, we go further, and try to answer the question: “What 
is the best way to optimise the hyperparameter values of a data descriptor?”. Whereas both 
previous works use a naive grid search to optimise hyperparameter values, we evaluate a 
representative selection of optimisation algorithms, and identify the most effective strategy. 
We also explain how data descriptors based on nearest neighbour searches can be opti-
mised using efficient leave-one-out validation instead of ordinary cross-validation.

A second question that we address is: “How long should hyperparameter optimisa-
tion run for?” Besides being inefficient, grid search also requires fixing the total number 
of evaluations before optimisation begins. In contrast, the optimisation algorithms that we 
consider sequentially select points in the hyperparameter space to evaluate. This allows 
us to present our results in terms of the number of evaluations, giving practitioners more 
insight into the effect of this choice.

We compare the data descriptors from Lenz et al. (2021) that have one or more optimis-
able hyperparameters: Average Local Proximity (ALP), Support Vector Machine (SVM), 
Nearest Neighbour Distance (NND), Localised Nearest Neighbour Distance (LNND) and 
Local Outlier Factor (LOF).

In the experiments performed by Janssens et  al. (2009), SVM and LOF were tied, 
ahead of LNND, but the difference was not statistically significant. Swersky et al. (2016) 
ranked SVM, NND, LOF and LNND from high to low in that order, but only the difference 
between SVM and LNND was statistically significant. The former study did not include 
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NND, and neither study included ALP, which had not yet been proposed at the time. Thus, 
ALP remains untested in the context of hyperparameter optimisation, whereas we found in 
Lenz et al. (2021) that it is the best-performing data descriptor with default hyperparameter 
values (although the difference with SVM was only weakly significant).

Both previous studies evaluated performance with a Nemenyi test on mean ranks 
(Demšar 2006). This forced them to amalgamate results from one-class classification prob-
lems derived from the same dataset, of which there were 24 in Janssens et al. (2009) and 
30 in Swersky et al. (2016). In order to get more statistical certainty, we draw from a larger 
number of datasets (50), and we compare pairs of data descriptors using a clustered Wil-
coxon signed rank test (Rosner et al. 2006) that allows us to use the full results from all 246 
one-class classification problems. This choice is additionally motivated by the criticism 
that the p-value generated by the Nemenyi test for a pair of machine learning algorithms 
is too strongly dependent on the inclusion of other algorithms in the comparison (Benavoli 
et al. 2016).

Together, these improvements over the previous studies—using a suitable optimisation 
procedure, more datasets and a more precise statistical test, and including ALP—allow us 
to provide a stronger answer to our third and final question: “What is the best data descrip-
tor for one-class classification with hyperparameter optimisation?”

We proceed by discussing the various data descriptors (Sect. 2) and optimisation algo-
rithms (Sect. 3) in this article, explaining how our experiments are structured (Sect. 4), dis-
cussing the results of these experiments (Sect. 5) and presenting our conclusions (Sect. 6).

2 � Data descriptors

In this section, we list the data descriptors under consideration in the present paper. For a 
more detailed discussion, the reader is referred to Lenz et al. (2021). Here we focus on how 
the hyperparameters of these data descriptors can be optimised. The goal in each case is to 
maximise the area under the receiver operator characteristic (AUROC).

2.1 � Support Vector Machine

The Support Vector Machine (SVM) data descriptor was proposed independently by Tax 
and Duin (1999a, 1999b, 2004) and Schölkopf et al. (1999, 2001) as an adaptation of the 
soft-margin SVM for binary classification (Cortes and Vapnik 1995). Both variants fit a 
surface to isolate the training data in the feature space, and allow application of the ker-
nel trick to transform the feature space. The recommended kernel is the Gaussian kernel, 
parametrised with a value c ∈ (0,∞) . With the Gaussian kernel, the two variants become 
equivalent. We use the Schölkopf variant, which solves an optimisation problem to fit a 
hyperplane between most of the target data and the origin, at a maximal distance to the ori-
gin. A hyperparameter � ∈ (0, 1] controls the relative weight placed respectively on max-
imising distance to the origin, and not leaving training instances on the same side as the 
origin.

Thus, there are two hyperparameters that have to be chosen, and can be optimised 
with training data: � and c. Because many of the optimisation methods that we consider 
require compact hyperparameter domains, we reparametrise c as c�

1−c�
 , and optimise c′ in 

[10−6, 1 − 10−6] , and restrict the domain of � to [10−6, 1].
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In order to optimise � and c′ , we apply stratified fivefold cross-validation to obtain five 
splits of the available training data into a smaller training set and a validation set. For each 
training set, we select the target class instances to obtain a target set. We evaluate a pair of 
hyperparameter values by constructing a model on the target set, querying with the respec-
tive validation sets, and calculating the mean of the resulting AUROC scores. This means 
that optimising the hyperparameters of SVM requires constructing five models for each 
pair of values to be evaluated.

2.2 � Nearest Neighbour Distance

Nearest Neighbour Distance (NND) is a much simpler data descriptor than SVM, and goes 
back to at least Knorr and Ng (1997); it classifies instances in accordance with the distance 
to their kth nearest neighbour in the target data. In principle, the distance measure can be 
chosen freely, but in order to allow the efficient form of optimisation discussed below, 
we fix this choice to the Manhattan metric, which generally gives better results than the 
Euclidean metric (Lenz et al., 2021). This leaves k as the only hyperparameter to be opti-
mised. Since it encodes a magnitude, we optimise k logarithmically. To avoid having to 
work with extremely large arrays, and knowing that its optimal default value is simply 1, 
we limit k to min (n, 100 log n).

Because NND is so simple, k can be optimised more efficiently than the hyperparam-
eters of SVM. Firstly, it is not necessary to completely recalculate a new NND model for 
each value of k. if kmax is the maximum value for k that we want to consider, we only 
require a single sorted kmax nearest neighbour query, since this contains all kth nearest 
neighbours for k ≤ kmax.

Secondly, instead of fivefold cross-validation, we use an efficient form of leave-one-out 
cross-validation, where each validation set contains a single instance. For fivefold cross-
validation, we would have to create five nearest neighbour search models, one for each 
target set corresponding to a fold. To perform leave-one-out cross-validation, we create 
a single nearest neighbour search model on the basis of all target set instances. For each 
target class instance, we must ensure that it is not also part of the target set corresponding 
to its fold, so we query to obtain its kmax + 1 nearest neighbours, and remove the first near-
est neighbour distance (with value 0). For other instances, there is nothing to correct and 
we can simply perform a kmax nearest neighbour query. We collect the resulting scores and 
calculate a single validation AUROC.

2.3 � Localised Nearest Neighbour Distance

Localised Nearest Neighbour Distance (LNND) (de Ridder et al., 1998; Tax & Duin, 1998) 
is a simple extension of NND. It divides the kth nearest neighbour distance of an instance 
by that kth nearest neighbour’s own kth nearest neighbour distance. This is motivated by 
the observation that the typical distance between neighbours in the target set may vary 
throughout the feature space, and that the nearest neighbour distance of a test instance 
should be relativised accordingly.

As with NND, we adopt the Manhattan metric and optimise k logarithmically, up to 
min (n, 100 log n).

We can also perform efficient leave-one-out cross-validation as with NND, but we have 
to do some additional work to obtain a correct result. For each target class instance, we 
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have to check whether it is among the k nearest neighbours of its kth nearest target class 
neighbour, and if so, substitute the k + 1th nearest neighbour.

2.4 � Local Outlier Factor

Local Outlier Factor (LOF) (Breunig et  al., 2000) is a more complex realisation of the 
idea behind LNND: it relativises the so-called local reachability density of a test instance 
against the local reachability density of its k nearest neighbours.

Again as with NND and LNND, we adopt the Manhattan metric and optimise k loga-
rithmically, up to min (n, 100 log n).

The calculation of LOF requires determining the kth nearest neighbour distance of the 
ith nearest neighbour of the jth nearest neighbour of a test instance (for all i, j ≤ k ). For 
this reason, it is no longer feasible to apply the efficient form of leave-one-out cross-valida-
tion described for NND and LNND, and we resort to performing stratified fivefold cross-
validation as with SVM. However, we still retain the efficiency that for each fold, we only 
need one query to obtain the kmax nearest neighbours of a test instance.

2.5 � Average Localised Proximity

Average Localised Proximity (ALP) (Lenz et al., 2021) aims to be more robust than LNND 
but less complex than LOF.

For a choice of integers k and l, the average localised proximity of an instance y is 
defined as follows. For each i ≤ k , and each j ≤ l , we establish di[ NN j(y)] , the ith neigh-
bour distance of the jth nearest neighbour of y. We then take, for each i, the weighted mean 
of these values, to obtain the local ith neighbour distance relative to y:

and use this to relativise the ith nearest neighbour distance of y in the target data di(y) , 
resulting in the ith localised proximity of y:

Finally, we aggregate over the k localised proximities of y by applying the ordered weighted 
average *wk ↓ (Yager, 1988), which is the weighted mean of the values sorted from large to 
small:

The distance measure used is the Manhattan metric, and the weights wk and wl are linearly 
decreasing: p

p(p+1)∕2
,

p−1

p(p+1)∕2
,… ,

1

p(p+1)∕2
 , for p = k, l . This leaves k and l to be optimised, 

which respectively determine the scale at which nearest neighbour distances are considered 
and the amount of localisation. As with NND, we optimise k and l logarithmically.

Similar to NND and LNND, we only need a single max(kmax, lmax) nearest neighbour 
query if we want to evaluate values of k and l up to kmax and lmax . We can also apply 
efficient leave-one-out validation, by performing essentially the same correction as for 
LNND. In particular, we correct the local distances of a neighbour x of y by considering 

(1)Di(y) =
∑

j≤l

wl
j
⋅ di[ NN j(y)],

(2)lp i(y) =
Di(y)

Di(y) + di(y)
.

(3)alp(y) = wk
i≤k

↓ lpi(y).
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its k + 1 nearest neighbours, and removing either the distance to y or the k + 1 th nearest 
neighbour distance.

Increasing k and l has two effects: it draws in more distant neighbours of y, and it 
decreases the slope of the weight vectors, making the contribution of successive neigh-
bours more equal. The asymptotic limit of this process is a weight vector with equal 
weights everywhere. A more practical limit is that k and l cannot grow beyond the num-
ber of target instances n. However, we can simulate higher values for k and l by truncat-
ing the weight vector and multiplying by a constant to ensure that its sum still equals 1.

This also allows us to address a computational issue with large datasets, that evaluat-
ing a pair of values for k and l on the whole training set involves (k + 1) ⋅ l ⋅ n distance 
values. If all three values are large, processing a single array with all distance values 
requires a very large amount of memory. For these reasons, we let k and l range up 
to 5n, but truncate distance values and weight vectors after min (n, 20 log n) . This is 
informed by the knowledge that the optimal default values for k and l are 5.5 log n and 
6 log n respectively (Lenz et al., 2021).

3 � Optimisation algorithms

Optimisation problems are typically formulated in terms of a problem function 
f ∶ P ⟶ ℝ , where the problem space P is a subspace of ℝm for some m that is often 
required to be compact. Depending on the context, the goal of optimisation is to find 
points in P that minimise or maximise f. In the present article, we wish to maximise the 
validation AUROC of our data descriptors, and the problem space is determined by the 
hyperparameters that we optimise.

There is an important distinction between algorithms that aim to find a local opti-
mum of f in P, and those that aim to identify the global optimum of f in P. An essential 
characteristic of global optimisation algorithms is that they have to balance the explora-
tion of areas of the problem space with large uncertainty and the exploitation of areas 
where function performance is known to be good.

An intrinsic disadvantage of local optimisation algorithms is that they require a 
choice of starting point, and may get stuck in a local optimum if this starting point is 
chosen poorly. However, the optimisation problems of finding the best hyperparameter 
values for our data descriptors may be close to unimodal/quasiconvex (Stephenson et al., 
2021), in which case this risk could be relatively small. For this reason, we include two 
classical local optimisation algorithms that are easy to implement.

3.1 � Random search

Purely random search is a surprisingly potent global optimisation strategy. By continu-
ing to evaluate arbitrary points in the problem space, we can expect to eventually get 
arbitrarily close to the global optimum. In particular, random search is a more efficient 
algorithm than grid search (Bergstra & Bengio, 2012). Because this strategy uses no 
information from previous evaluations, it serves as a good baseline.



2869Machine Learning (2022) 111:2863–2883	

1 3

3.2 � Hooke–Jeeves

The local search algorithm proposed by Hooke and Jeeves (1961) passes through the 
problem space in steps. Each step follows a pattern, which is the vector sum of a num-
ber of substeps along each coordinate axis. The pattern is adjusted with each step, by 
optionally adding or subtracting a substep along each coordinate axis, depending on 
which option results in the greatest decrease in the objective function value. If the pat-
tern cannot be adjusted to produce a step with any improvement, a new pattern is cre-
ated from scratch. If no such pattern can be found either, the substep size is decreased.

We use the implementation provided by pymoo (Blank & Deb, 2020) and its default 
values. As starting values we use the optimal default values identified in Lenz et  al. 
(2021).

3.3 � Nelder–Mead

The local search algorithm proposed by Nelder and Mead (1965) is based on an earlier 
proposal by Spendley et al. (1962). It iterates on m + 1 points that can be viewed as the 
vertices of an m-dimensional simplex. The algorithm lets this simplex ‘walk’ through the 
problem space by replacing its worst vertex in each iteration. Each step is directed towards 
the mid-point of the remaining vertices. The new vertex is either placed between the worst 
vertex and this mid-point (shrinking the simplex), or beyond the midpoint (reflecting and 
optionally extending it). If none of these options improve upon the worst vertex, the entire 
simplex is shrunk, with only the best vertex remaining in place.

The theoretical performance of Nelder–Mead optimisation had long been unclear, until 
Torczon (1989) demonstrated with a concrete example that Nelder–Mead can converge on 
points that are not local optima, even with problems that are twice differentiable. Neverthe-
less, Nelder–Mead optimisation has been very popular due to its relative simplicity, and 
because it seems to converge very quickly in many simple practical applications (Wright 
1995).

We use the implementation provided by SciPy (Virtanen et al. 2020), with starting sim-
plices centred around the optimal default values identified in Lenz et al. (2021).

3.4 � Kushner–Sittler

A global optimisation method was first proposed by Kushner (1962, 1964), based in part 
on unpublished work by Robert A Sittler (see Betrò (1991), Jones (2001) and Brochu et al. 
(2009) for overviews of later developments). This has been referred to as simply global 
optimisation, or Bayesian optimisation, because its central idea is to iteratively use the 
Bayesian information criterion to select the next point in the problem space to evaluate. We 
assume that the unknown problem function is drawn from a random distribution of func-
tions, which is traditionally modelled as a Gaussian process. In each step, we can calculate 
the conditional probability p(y|x) that the problem function will obtain certain values at a 
given point x in the problem space, in light of the function values that have already been 
calculated. These conditional probabilities are then reduced to a single score for each x 
with an activation function, and the point with the maximal such score is selected as the 
next point to evaluate. The activation function most often used today, already hinted at in 
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Kushner (1962), is expected improvement, the expected value of max(y − y∗, 0) under the 
model for some y∗ ∈ ℝ , typically the largest evaluated function value so far.

Kushner–Sittler optimisation transforms the original optimisation problem into a series 
of new optimisation problems for each iteration. These new optimisations incur a certain 
cost themselves, but this cost is only dependent on the dimensionality of the original prob-
lem, so for problems that are costly to evaluate, the trade-off is worthwhile. Note also that 
as with the original problem, these optima can generally only be approximated, but it is 
(often tacitly) assumed that this is not problematic.

We use the implementation provided by Emukit (Paleyes et al. 2019), with the first point 
chosen randomly.

3.5 � Bergstra–Bardenet

A more recent variant of Kushner–Sittler optimisation, motivated in particular by high-
dimensional and conditional problem spaces, is the tree-structured Parzen estimator (TPE) 
proposal by Bergstra et al. (2011). It lets the target value y∗ correspond to a quantile of the 
evaluated function values. This induces a split between small and large values, and the cor-
responding distributions p(y < y∗) and p(y > y∗) , which can be modelled with two Parzen 
Estimators l(x) and g(x). By reformulating p(y|x) in terms of p(x|y), p(y) and p(x), the 
authors then show that the expected improvement of the original model is maximal when 
g(x)

l(x)
 is maximal.
We use the Adaptive TPE implementation of hyperopt (Bergstra et al. 2011).

3.6 � Malherbe–Powell

Global optimisation algorithms often proceed from the assumption that the problem func-
tion satisfies certain smoothness conditions. In particular, for any k > 0 , we can define the 
class of k-Lipschitz functions as those functions f that satisfy:

Malherbe and Vayatis (2017) propose that we can use this assumption to restrict the search 
to certain parts of the problem space. They propose the LIPO algorithm, in which random 
candidates are drawn from the problem space, but only those candidates are evaluated that 
potentially improve upon the current optimum, in view of the candidates evaluated so far 
and (4).

In general, k may be difficult to estimate, and we simply want to assume that some such 
k exists for a problem function. For this purpose, Malherbe and Vayatis (2017) also propose 
the AdaLIPO algorithm. This alternates LIPO with purely random search, and increases k 
whenever (4) is no longer satisfied.

AdaLIPO was further modified into MaxLIPO and implemented into the dlib library 
by King (2009, 2017). MaxLIPO presents three improvements. Firstly, it incorporates a 
noise term that prevents k from approaching infinity if the problem function is not in fact 
k-Lipschitz because it has small discontinuities. Secondly, it employs separate values of k 
for each dimension. And thirdly, instead of selecting new candidates at random, it identifies 
the candidate with the largest potential improvement in light of (4).

A more fundamental problem of AdaLIPO that carries over to MaxLIPO is that while it 
is seemingly able to quickly locate the neighbourhood of the global optimum, it then takes 

(4)∀x1, x2 ∈ A ∶ ||f (x1) − f (x2)
|| ≤ k ⋅ ||x1 − x2

||



2871Machine Learning (2022) 111:2863–2883	

1 3

much longer to approach the optimum itself. This can be understood, since by consider-
ing the maximal potential improvement, rather than some form of expected improvement, 
these algorithms place a greater emphasis on exploration than exploitation. To address this, 
King (2017) lets MaxLIPO alternate with the trust region approach of the local optimiser 
BOBYQA (Powell, 2009), a bounded version of the earlier NEWUOA proposal (Powell, 
2004).

4 � Experimental setup

In order to enable comparison with using default hyperparameter values, we closely follow 
the experimental setup of Lenz et al. (2021). We use the same collection of 246 one-class 
classification problems, drawn from 50 datasets from the UCI machine learning repository 
(Dua & Graff, 2019). For each problem, one class is selected as the target/positive class, 
and the instances from the other classes are combined to form the other/negative class. 
Instances are rescaled through division by the interquartile range (Rousseeuw & Croux, 
1993) of each feature in the target class. We have implemented the data descriptors in our 
own open-source Python wrapper fuzzy-rough-learn1 (Lenz et al., 2020), which uses scikit-
learn (Pedregosa et al. 2011) as a backend for SVM and nearest neighbour queries.

For each one-class classification problem, we apply stratified fivefold cross-validation. 
We measure the performance of a data descriptor with specific hyperparameter values 
in terms of the area under the receiver operator curve (AUROC). For each division, we 
measure validation AUROC using nested stratified cross- or leave-one-out validation as 
explained in Sect. 2, as well as test AUROC by retraining the data descriptor on all of the 
training data and evaluating its performance on the test data.

We maximise validation AUROC by applying the optimisation algorithms from Sect. 3. 
Each optimiser is allowed a maximum budget of 50 evaluations of hyperparameter values. 
Although the NND, LNND, LOF and ALP hyperparameters k and l are discrete, in order 
to be able to apply the selected optimisation algorithms, we optimise them as if they were 
continuous.2 As a result, subsequent steps of the optimisation search may target different 
points in the problem space that are discretised back to the same concrete value(s), which 
are not evaluated again. Thus, with local optimisers that have reached a local optimum, as 
well as with small datasets in general, the optimisation search may never reach 50 evalua-
tions. Therefore, we terminate all optimisation searches after 100 steps.

We structure our analysis in terms of the number of evaluations. For each cross-valida-
tion division and number of evaluations, we use the hyperparameter values that maximise 
validation AUROC up to that point. We start our analysis by identifying the most suitable 
optimiser for each data descriptor, and adopt this for the rest of our analysis. We compare 
data descriptors both by summarising performance with the mean test AUROC, and by 
looking at individual results at the level of cross-validation divisions. In both cases, we 
apply a weighting scheme such that the 50 datasets from which the one-classification prob-
lems are drawn all contribute equally. In scatter plots, this is reflected in the size of the 
markers. We measure rank correlation with the weighted Kendall’s � (Vigna, 2015).

1  https://​github.​com/​oulenz/​fuzzy-​rough-​learn.
2  We note that more generally, for any classification algorithm, performance metrics like AUROC, accu-
racy, precision and recall are non-continuous because a finite number of instances can only be subjected to 
a finite number of rankings.

https://github.com/oulenz/fuzzy-rough-learn
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In order to determine statistical significance, we apply clustered Wilcoxon signed-
rank tests (Rosner et  al., 2006) on the mean AUROC scores across folds for each one-
class classification problem. When we compare data descriptors to each other, we use the 
Holm–Bonferroni method (Holm, 1979) to correct for family-wise error.

5 � Results and analysis

The results of our experiments allow us to answer the three questions raised in the 
Introduction.

5.1 � What is the best way to optimise the hyperparameter values of a data 
descriptor?

Figure 1 shows the performance of the different optimisers with the data descriptors. We 
can get an idea of the difficulty of these optimisation problems by looking at the baseline 
random strategy. For NND, our maximum budget of fifty evaluations is essentially enough 
for random search to find the global maxima, while for LOF, it comes reasonably close. 
LNND and ALP are more difficult, and random search clearly lags behind the other opti-
misation strategies with SVM. Taking into account the dimensionality of the respective 
problem spaces, it appears that the problem curves of LNND and SVM are relatively hard 
to optimise.

It is clear that the two local optimisation methods, Nelder–Mead and Hooke–Jeeves, 
generally fail to find the global optima because they get stuck in a local optimum. Neither 
method performs clearly better than the other. Nevertheless, if ease of implementation is a 
larger priority than performance, they may be an acceptable option for ALP and SVM. For 
the data descriptors with one hyperparameter, simple random search is to be preferred.

Of the global algorithms, the performance of Kushner–Sittler is surprisingly poor, in 
particular with NND and LOF, where it appears to stall below the level reached by the best 
local algorithm. Closer inspection reveals that it is too strongly focused on exploitation 
over exploration, and will often evaluate long series of points in the problem space that 
are very close together. This may be due to the chosen implementation, or the fact that the 
hyperparameters k and l are locally constant.

The overall best-performing method is Malherbe–Powell, with Bergstra–Bardenet in 
clear second place. Malherbe–Powell finds the highest AUROC for all data descriptors, 
except NND, where the difference with Bergstra–Bardenet is minimal ( 1.4 × 10−4 ). There-
fore, we will use the results of Malherbe–Powell for the rest of this section. However, we 
also note that some of the differences are very small, and practitioners may want to priori-
tise ease of implementation when selecting an optimiser.

Figure 2 shows the distribution of the hyperparameter values after 50 evaluations. These 
distributions are relatively uniform, which suggests that the chosen parametrisations are 
efficient, in the sense that the optimisation algorithm doesn’t have to spend unnecessary 
evaluations exploring sparse areas of the hyperparameter space.3 However, for LOF (7.3%), 
LNND (8.6%) and especially NND (39%), there is a substantial minority of problems for 

3  We also find for many problems that different cross-validation divisions optimise to different values, 
which may indicate that the response curves are somewhat flat and noisy.
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Fig. 1   Weighted mean validation AUROC of data descriptors with hyperparameters optimised by a number 
of different algorithms
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which the optimal value is simply 1. In the case of NND, for which 1 is the default value, 
this indicates that k often doesn’t need to be optimised. For LNND, a large number of opti-
mal values (23%) are within 1% of the maximum, but this is in most cases due to the fact 
that k cannot increase beyond n, rather than our imposed limit of 100 log n.

5.2 � How long should hyperparameter optimisation run for?

Figure  3 shows the weighted mean test AUROC of the data descriptors. The data 
descriptors display varying sensitivity to hyperparameter optimisation. All test AUROC 
curves increase steeply for 4 evaluations and then flatten out. However, for SVM, the 
initial rise is steeper and its curve continues to increase for much longer, allowing it to 
surpass LOF, NND and ALP even though it starts quite low. LNND improves even more 

Fig. 2   Distribution of selected hyperparameter values after 50 evaluations with Malherbe–Powell optimisa-
tion, for each of the 246 one-class classification problems and for each fivefold cross-validation division. 
Point size corresponds to the weight of a problem, which corresponds inversely to the number of problems 
derived from the same original dataset
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steeply, but because it starts out very poorly, remains the worst-performing data descrip-
tor. The data descriptors approach their final scores (after 50 evaluations) to within 
0.001 points after respectively 5 (NND), 10 (LNND and LOF), 13 (ALP) and 37 (SVM) 
evaluations.

The test AUROC curves in Fig.  3 don’t achieve the same scores as the validation 
AUROC curves for Malherbe–Powell optimisation in Fig.  1. This difference can be 
interpreted as overfitting. Among the data descriptors optimised with leave-one-out val-
idation, it is largest for LNND (0.036 after fifty evaluations), followed by ALP (0.012) 
and NND (0.0066), while for those optimised with fivefold cross-validation, it is larger 
for LOF (0.016) than for SVM (0.0073). Note that LNND and LOF, with one hyperpa-
rameter, show more overfitting than, respectively, ALP and SVM, with two hyperparam-
eters. The weighted Kendall’s � for the amount of overfitting after 50 evaluations ranges 
from 0.31 for SVM and LNND to 0.59 for SVM and NND. The amount of overfitting 
should be taken into account when estimating test AUROC or selecting data descriptors 
on the basis of validation AUROC. However, the numbers cited above are dependent 
on the mix of datasets that we use: for all data descriptors, validation AUROC becomes 
increasingly accurate as the target set size grows (Fig. 4).

When we apply a clustered Wilcoxon signed rank test to compare the test AUROC 
obtained with hyperparameter optimisation and the test AUROC obtained with default 
hyperparameter values from Lenz et  al. (2021), we find that optimised values start to 
outperform default values with great certainty (p < 0.01) within 2 (LNND, ALP), 3 
(LOF, SVM) and 4 (NND) evaluations. With optimised values, SVM, LOF and NND 
also perform significantly better (p < 0.01) than ALP, the best data descriptor with 
default values, after 4 (SVM), 5 (LOF) and 20 (NND) evaluations. Even after fifty eval-
uations, LNND with optimised values still performs worse than ALP with default val-
ues. Hyperparameter optimisation is not guaranteed to increase AUROC for any of the 
data descriptors, especially with smaller datasets (Fig. 5).

Fig. 3   Weighted mean test AUROC of data descriptors, with hyperparameters optimised by the Malherbe–
Powell algorithm
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Fig. 4   Difference between test and validation AUROC as a function of target class size n. Point size cor-
responds to the weight of a problem, which corresponds inversely to the number of problems derived from 
the same original dataset

Fig. 5   Increased or decreased AUROC due to hyperparameter optimisation over default hyperparameter 
values, as a function of target class size n. Point size corresponds to the weight of a problem, which cor-
responds inversely to the number of problems derived from the same original dataset
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5.3 � What is the best data descriptor for one‑class classification 
with hyperparameter optimisation?

The test AUROC scores after 50 evaluations are highly rank-correlated: the weighted 
Kendall’s � ranges from 0.74 (SVM and LNND) to 0.86 (SVM and NND). To determine 
whether the differences in performance are statistically significant, we perform one-
sided clustered Wilcoxon signed rank tests. The resulting p-values after each evaluation 
are displayed in Fig. 6. The p-value for the opposite test can be obtained by subtracting 
the respective value from 1. Tests with LNND are omitted from Fig. 6 since the corre-
sponding p-values don’t rise above 0.01. Table 1 lists the p-values after 50 evaluations, 
corrected for multiple testing.

Based on these experiments, we can confidently say that with sufficient evaluations, 
ALP and SVM perform better than NND, LOF and LNND, and that NND and LOF also 
perform better than LNND. We have far less certainty about the relative performance 
of ALP and SVM, and of NND and LOF. Figure 6 suggests that LOF generally outper-
forms NND, and that when the number of evaluations is small, ALP outperforms SVM, 

Fig. 6   One-sided p-values of clustered Wilcoxon signed rank tests that one data descriptor is better than 
another (uncorrected for multiple testing)

Table 1   One-sided p-values of clustered Wilcoxon signed-rank tests of AUROC after 50 evaluations, test-
ing row data descriptor > column data descriptor, with Holm–Bonferroni family-wise error correction 
applied to each row

ALP LOF NND LNND

SVM 0.29 0.0079 0.037 < 0.0001
ALP 0.00091 0.0077 < 0.0001
LOF ≥ 1 < 0.0001
NND 0.00037



2878	 Machine Learning (2022) 111:2863–2883

1 3

and vice-versa when the number of evaluations is large, but there is a large possibility 
that these observations are simply due to chance.

If we focus on the performance of SVM and ALP after 50 evaluations (Table 2), we see 
that SVM obtains a higher AUROC than ALP slightly more often than vice-versa, both 
on validation and test data. This confirms that the average performance of ALP and SVM 
is very close in practice. However, for individual classification problems, the choice still 
matters. We note that which of these two data descriptor performs better is fairly consist-
ent between validation and test data. If for each classification problem, we choose the data 
descriptor that obtains a higher validation AUROC (choosing ALP in event of a tie), it will 
perform worse on test data than the other data descriptor in only 21% of cases. The advan-
tage of this combination of ALP and SVM over either of ALP or SVM on its own is highly 
significant ( p < 0.0001 ), regardless of whether we choose for each fold separately or on the 
basis of the mean validation AUROC across folds.

One factor that plays a role in the relative performance of SVM and ALP is the difficulty 
of the one-class classification problem. For the purpose of the present analysis, we can 

Table 2   Fraction of one-class classification problems with higher training and test AUROC by ALP or 
SVM

Validation AUROC Test AUROC

ALP < SVM ALP = SVM ALP > SVM Total

ALP < SVM 0.37 0.031 0.088 0.49
ALP = SVM 0.00080 0.033 0.0052 0.039
ALP > SVM 0.12 0.038 0.31 0.47
Total 0.49 0.10 0.40

Fig. 7   Difference between ALP and SVM AUROC, as a function of the difficulty of one-class classification 
problems, expressed by the maximum of ALP and SVM AUROC. Point size corresponds to the weight of 
a problem, which corresponds inversely to the number of problems derived from the same original dataset



2879Machine Learning (2022) 111:2863–2883	

1 3

express this as the maximum of the AUROC achieved by ALP and SVM. Figure 7 plots the 
relative performance of ALP and SVM against this difficulty. SVM is better able to sepa-
rate more difficult problems, but for problems for which a good AUROC of 0.8 or more can 
be achieved, ALP beats SVM more often (46%) than vice-versa (41%), with a weighted 
mean difference of 0.0021.

Finally, Fig. 8 displays the run times of hyperparameter optimisation as a function of the 
number of evaluations. These run times are implementation-dependent, but we can never-
theless make a number of broad observations. For SVM, run time is directly proportional 
to the number of evaluations, as no calculations are reused. NND, LNND and LOF can 
effectively be optimised in constant time, since the initial nearest neighbour queries domi-
nate. The run time of LOF is higher because it uses fivefold cross-validation and needs five 
nearest neighbour queries. For ALP, we observe a considerable amount of additional run 
time per evaluation. Looking at individual evaluations, we find that their run time varies 
wildly, seemingly due to the computational load of working with large arrays when k and l 
are large.

The higher run time required by SVM for additional evaluations is compounded by the 
finding, reported above, that optimisation of SVM requires more evaluations than ALP, 
LOF, LNND and especially NND. This is illustrated by the fact that the curves of the last 
three data descriptors in Fig. 8 end before 50 evaluations.

6 � Conclusion

In this paper, we have presented a thorough analysis of hyperparameter optimisation for 
five data descriptors, SVM, NND, LNND, LOF and ALP. We have explained how NND, 
LNND and ALP can be optimised efficiently with a single nearest neighbour query 
and leave-one-out validation, while SVM requires building a new model for each addi-
tional hyperparameter evaluation. We then evaluated the performance of hyperparameter 

Fig. 8   Mean run times (5 runs) of hyperparameter optimisation with Malherbe–Powell on a training set 
with 1000 target class instances and 1000 other instances, drawn from the miniboone dataset (target class 1)
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optimisation empirically, based on a large selection of 246 one-class classification prob-
lems drawn from 50 datasets.

From a selection of optimisation algorithms, the recent Malherbe–Powell approach pro-
vides the best overall performance with all five data descriptors. LNND and LOF are rela-
tively sensitive to overfitting, but in all cases overfitting reduces with target set size. For all 
data descriptors, optimised hyperparameters significantly outperform default hyperparam-
eter values after a handful of evaluations. As predicted, different hyperparameter values 
can be evaluated more efficiently for NND, LNND, LOF and ALP than for SVM. In addi-
tion, these data descriptors also require fewer evaluations than SVM. After 50 evaluations, 
ALP and SVM significantly outperform LOF, NND and LNND, and LOF and NND in turn 
perform better than LNND. SVM also outperforms ALP on our datasets, but the difference 
is not significant.

A more detailed look at the difference between ALP and SVM revealed that their 
strengths are to some extent complementary, and that selecting one or the other based on 
their validation AUROC gives the best results. SVM has a strong relative advantage with 
difficult one-class classification problems, while ALP performs better with problems with 
which a good AUROC of 0.8 or higher can be achieved.

Overall, we come to the following conclusion. NND is a very simple data descriptor 
that can be optimised very efficiently. While the resulting gain in performance is limited, it 
nevertheless leads to results that are generally better than what can be obtained with a data 
descriptor with default hyperparameter values. SVM is a data descriptor with excellent per-
formance, but it is expensive to optimise. The performance of ALP rivals that of SVM, and 
potentially surpasses it with one-class classification problems that admit a good solution, 
but it can be optimised much more efficiently.

Therefore, we find that ALP is a good default choice, while NND may appeal to prac-
titioners constrained by a smaller computational budget. If the absolute best performance 
is desired, we recommend that practitioners consider both ALP and SVM, and make the 
choice dependent on validation AUROC.

In future research, we think that it could be worthwhile to investigate in greater detail 
what properties of datasets determine the relative strengths and weaknesses of ALP and 
SVM. A deeper understanding of this question could in turn be applied to modify the ALP 
and SVM algorithms. In addition, it would be useful if the computational cost of optimis-
ing SVM and ALP could be reduced.

We have focused our attention in this paper on a handful of hyperparameters with the 
most immediate impact on the classification of different datasets. But these are not the only 
choices available to a practitioner. Hyperparameter optimisation is a specific form of model 
selection, and conversely, any modification to a classification algorithm can be seen as a 
hyperparameter choice. In particular, one large topic that we have set aside in the present 
paper is the possibility to change how similarity and difference are measured, by choos-
ing a different metric, kernel and/or scaling function. These are essentially open-ended 
choices, so part of the challenge lies in delineating the search area.

Another avenue for future research is the effect of the quality and quantity of the nega-
tive instances that are available for hyperparameter optimisation. This could provide guid-
ance as to when such a negative sample is insufficiently representative for binary classifica-
tion, yet still good enough to make hyperparameter optimisation beneficial. However, this 
question may be difficult to answer in general terms, since samples of negative data can be 
unrepresentative in ways that are particular to a specific problem. In any case, establishing 
a collection of one-class classification problems that are not derived from multi-class prob-
lems would provide a useful reality check in this regard.
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In the nearby future, we plan to investigate how the optimisation of hyperparameters can 
best be integrated into data descriptor ensembles in a multi-class setting.
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