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Abstract
The feature hashing algorithm introduced by Weinberger et al. (2009) is a popular dimen-
sionality reduction algorithm that compresses high dimensional data points into low dimen-
sional data points that closely approximate the pairwise inner product. This algorithm has 
been used in many fundamental machine learning applications such as model compression 
(Chen et al. 2015), spam classification (Weinberger et al. 2009), compressing text classi-
fiers (Joulin et al. 2016), large scale image classification (Mensink et al. 2012). However, 
a limitation of this approach is that the variance of its estimator for the inner product tends 
to be large for small values of the reduced dimensions, making the estimate less reliable. 
We address this challenge and suggest two simple and practical solutions in this work. Our 
approach relies on control variate (CV) and maximum likelihood estimator (MLE), which 
are popular variance reduction techniques used in statistics. We show that these methods 
lead to significant variance reduction in the inner product similarity estimation. We give 
theoretical bounds on the same and complement it via extensive experiments on synthetic 
and real-world datasets. Given the simplicity and effectiveness of our approach, we hope 
that it can be adapted in practice.
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1  Introduction

Due to recent technological advancements, the last decade has witnessed a dramatic 
increase in the ability to collect data from various sources like social media platforms, 
mobile applications, finance, WWW, IoT, biology, remote sensing, etc. In many of these 
applications, the datasets are of terascale order, with the dimension being in the order of 
trillions (Agarwal et al., 2014; Wu et al., 2014; Zhai et al., 2014). Further, to get useful 
insight, we need to perform analytics on such high-dimensional datasets. Many fundamen-
tal algorithms such as clustering, classification, regression, nearest neighbor search, and 
ranking are basic subroutines of these analytics algorithms. However, running these algo-
rithms/analytics on such high dimensional datasets becomes computationally expensive 
due to phenomena called the “curse of dimensionality” (Bellman, 1966).

To tackle the high dimensionality of the datasets, several dimensionality reduction 
algorithms have been proposed that compresses the dimension of the data while closely 
approximating the pairwise distances between the data points (Pratap et al., 2019; John-
son & Lindenstrauss 1983; Dasgupta et al., 2010; Weinberger et al., 2009; Broder et al., 
1998; Charikar, 2002; Pratap et al., 2019; Pratap et al., 2018). As the geometry of the data 
points is preserved in the low-dimension, the corresponding results of the algorithms such 
as clustering, classification, regression, etc on the low-dimension also closely approximate 
the corresponding result in the full-dimension. It essentially leads to several benefits—for 
e.g.: smaller memory requirement; faster running time of the algorithms; faster inference/
prediction time; smaller model size, etc.

Dimensionality reduction algorithms for the real-valued datasets can be broadly classi-
fied into two categories—a) random projection and b) feature hashing. The random projec-
tion approach is based on projecting the data matrix on a random matrix whose entries are 
sampled from a Gaussian distribution (Johnson & Lindenstrauss, 1983; Dasgupta et  al., 
2010; Dasgupta & Gupta, 2003; Charikar, 2002; Yu et al., 2014, or Bernoulli/sparse Ber-
noulli distribution Achlioptas, 2003; Li et al., 2006). The projected matrix is in low dimen-
sion and simultaneously approximates the original pairwise similarity/distance. On the 
other hand, the feature hashing (Weinberger et al., 2009) approach is based on randomly 
assigning each feature (dimension) into several bins, and a sketch value for each bin is 
generated by aggregating all the feature values fallen into the particular bin. Aggregating 
all the sketch values into a vector generates a low-dimensional representation of the input 
data. A major advantage of feature hashing over random projection is that 1) the com-
pressed data preserves the sparsity of the input, and 2) it does not require any additional 
space to store the projection matrix [We refer the readers to Weinberger et al. (2009) for 
details]. This work focuses on the feature hashing algorithm for dimensionality reduction. 
We recall it as follows:

Definition 1  (Feature hashing - Definition 1 of Weinberger et  al. 2009) Let 
� = (�1,… , �k,… , �N), � = (�1,… , �k,… , �N) ∈ ℝ

N be N-dimensional sketches of input 
vectors �, � ∈ ℝ

D , respectively, obtained from feature hashing algorithm such that

�k =

D∑
i=1

aig(i)z
(k)

i
,

�k =

D∑
i=1

big(i)z
(k)

i
,
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where g ∶ [D] ↦ {−1,+1} , and h ∶ [D] ↦ [N] are hash functions from 2-universal hash 
families, and z(k)

i
 is indicator of the event h(i) = k.

For a pair of vectors � = [a1, a2,… , aD] and � = [b1, b2,… , bD] , the inner product of their 
respective sketches � = [�1,… , �N] and � = [�1,… , �N] (obtained using Definition 1) is an 
unbiased estimate of the inner product between � and � . That is

One of the major applications of sketching results such as random projection and feature 
hashing is to compute the Gram Matrix of the given data matrix. Let � ∈ ℝ

M×D be 
our input matrix, then its Gram Matrix is defined as ��T . The computational complex-
ity of computing the Gram Matrix on the full-dimensional dataset is O(M2D) , which may 
be impractical for large values of M and D. The inner product of the sketch of data points 
obtained using feature hashing is an unbiased estimate of the inner product between the 
original full dimensional data points. The complexity of computing the Gram matrix using 
feature hashing is O(M2N + nnz(P)N) [due to Weinberger et  al. (2009)], where N is the 
dimension of the sketch, and nnz(P) denote the number of non-zero entries of � . The sav-
ings from O(M2D) to O(M2N + nnz(P)N) is quite significant, especially when N ≪ D . 
However, the variance of the similarity estimate tends to be large for the small values of N, 
making the estimate less reliable. We state the expression for the variance of the estimate 
as follows [see Theorem 3 and Weinberger et al. (2009)]

In this work, we address this challenge and suggest practical and straightforward solutions 
for variance reduction in the inner product estimate of the feature hashing method (Wein-
berger et al., 2009). Our technique relies on the classical variance reduction techniques—
control variate method (CV) and maximum likelihood estimator (MLE). In the following 
two subsections, we briefly discuss these two techniques and state our results.

Variance reduction using control variate trick: The control-variate is one of the classi-
cal techniques used for variance reduction in Monte-Carlo simulation (Lavenberg & Welch, 
1981). We illustrate this with an example as follows: consider a process that generates a ran-
dom variable Y, and we are interested in computing the term �[Y] . Let us have another process 
for generating another random variable Z such that we know the exact value of its true mean 
�[Z] . Then for any constant c, the expression Y + c(Z − �[Z]) is an unbiased estimator of Y:

The variance of Y + c ⋅ (Z − �[Z]) is given by

By elementary calculus, we can find the appropriate value of c, which minimizes the above 
expression. Suppose we denote that value by ĉ , then

Equations (4), (5) give us the following

(1)�[⟨�, �⟩] = ⟨�, �⟩.

(2)Var[⟨�, �⟩] = 1

N

D�
i≠j,i,j=1

�
a2
i
b2
j
+ aibiajbj

�
.

(3)�[Y + c ⋅ (Z − �[Z])] = �[Y] + c ⋅ �[Z − �[Z]] = �[Y] + 0 = �[Y].

(4)Var[Y + c ⋅ (Z − �[Z])] = Var[Y] + c2 ⋅ Var[Z] + 2c ⋅ Cov[Y , Z].

(5)ĉ = −
Cov[Y , Z]

Var[Z]
.
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To summarize the above, for a random variable Y, we generate another random vari-
able Y + c ⋅ (Z − �[Z]) that gives an unbiased estimator of Y. Further, the variance of 
Y + c ⋅ (Z − �[Z]) is smaller than or equal to that of Y because the Cov[Y , Z]2∕Var[Z] is 
always non-negative— with the equality if there is no correlation between Y and Z. The 
random variable Z is called control variate, and the term ĉ is called the control variate 
coefficient.

Variance reduction using the maximum likelihood estimator (MLE): Maximum 
likelihood estimation (MLE) (Murphy 2013) is a popular statistical estimation method 
used for estimating parameters in statistical modeling. We discuss it as follows:

Suppose X1,X2,… ,Xn

i.i.d.
∼ f (x||�) , where f (x||�) represents a probability density func-

tion (PDF) when X is a continuous random variable, and represents a probability mass 
function (PMF) when X is a discrete random variable, and � is an unknown parameter. For 
every observed sample x1, x2,… , xn , we define

We call f (x1, x2,… , xn
||�) as the likelihood function and denote it by L(�). The term L(�) 

consists of a product of n terms. Further, maximizing L(�) is equivalent to maximizing 
logL(�) , as log is a monotonically increasing function. We therefore focus on maximizing 
the term logL(�) , which is called as the log likelihood function, and we denote it as l(�) , 
that is,

Our aim is to find a value of � that maximizes the likelihood function L(�) (or l(�) ). Thus, 
the maximum likelihood estimator (MLE) of � is defined as

Where “ arg ” returns the argument at which the maxima is attained.

1.1 � Our contribution

This work proposes two simple, effective, and practical approaches for variance reduction 
in the inner product estimate obtained via feature hashing. We use the above mentioned 
variance reduction techniques—control variate (CV) and maximum likelihood estimate 
(MLE) for this purpose. To apply these methods, we need to know the marginal norms ( �2 
norm) of the data points. We note that the computing norm of M data points in D-dimen-
sion is of complexity O(MD), which can be computed by taking just one pass over the data-
set. As mentioned earlier, the variance of the feature hashing estimator tends to be large for 
small values of N. Our both variance reduction methods mitigate this problem and suggest 
significant variance reduction in such a scenario. We require a word of notation to state 
our technical contribution. We mention it as follows: Suppose we have two D-dimensional 
data points � = [a1, a2,… , aD] and � = [b1, b2,… , bD] such that their squared �2 norms 

(6)Var[Y + c ⋅ (Z − �[Z])] = Var[Y] −
Cov[Y , Z]2

Var[Z]
.

(7)L(�) = f (x1, x2,… , xn
||�) = f (x1

||�) ⋅ f (x2||�)… f (xn
||�) =

n∏
i=1

f (xi
||�).

(8)l(�) = logL(�) = log

n∏
i=1

f (xi
||�) =

n∑
i=1

f (xi
||�).

𝜃̂ = argmax𝜃L(𝜃) = argmax𝜃l(𝜃),



2635Machine Learning (2022) 111:2631–2662	

1 3

and inner product are m1 , m2 , and � , respectively—that is m1 =
∑D

i=1
a2
i
 , m2 =

∑D

i=1
b2
i
 and 

� =
∑D

i=1
aibi . The vectors � and � are compressed into N dimensional real-valued vectors 

� = [�1,… , �k,… , �N] , and � = [�1,… , �k,… , �N] , respectively, using feature hashing 
algorithm (Weinberger et al., 2009), where N ≪ D.

–	 Our first estimator is based on the control variate method, and we refer it as control 
variate feature hashing (CV-FH). Our proposed estimator remains unbiased and offers 
significant variance reduction. If we denote Y∶=⟨�, �⟩ as the estimator of feature hash-
ing, and ŶCV as the estimate obtained via our CV method, then we have 

(due to Weinberger et al. 2009).

 We state further details in Theorem 6.
–	 Our other estimator is based on the maximum likelihood estimate (MLE), and we refer 

to it as MLE feature hashing (MLE-FH). If ŶMLE denote our estimator of the MLE 
method, then 

 Further as � =
√
m1

√
m2 cos � , where � is the angle between � and � , then Equa-

tion (11) simplifies to the following: 

 We state further details in Theorem 8.
–	 Both of our estimators are simple, practical, and effective. We show their applicability 

by performing extensive experiments on several real-world datasets (see Sect. 4).

A major bottleneck in applying CV and MLE techniques is to show that the sketch vector 
[�, �] = [�1,… , �N , �1,… , �N] follows multivariate normal distribution, where � and � are 
N dimensional sketches of vectors � and � obtained via feature hashing. We prove this (in 
Theorem 4) under the asymptotic convergence in distribution, as D → ∞ , and we use mul-
tivariate Lyapunov’s central limit Theorem 2 for this purpose. Theorem 4 along with CV 
and MLE method leads to variance reduction in the inner product estimation.

Theoretical plotting on variance reduction: We wish to understand the variance 
reduction obtained by our proposals CV-FH and MLE-FH. To do so, we generate several 
pairs of real-valued vectors in the 5000 dimension such that the angle between them is � , 
and their squared �2 norms are m1 and m2 , respectively. We generate different such pairs for 
various values of � ∈ {10o, 30o, 60o, 90o} , and the ratio m2∕m1 = {0.1, 0.4, 0.7, 1}. Then 
we compute the variance of our estimators ŶMLE and ŶCV (using Equations (11), (9)), and 

(9)

Var[ŶCV ] = Var(Y) −
2𝜆2(m1 + m2)

2

N(m2

1
+ m2

2
+ 2𝜆2)

, where,

Var[Y] =
1

N

D∑
i≠j,i,j=1

(
a2
i
b2
j
+ aibiajbj

)

(10)=
1

N

(
m1m2 + �2 − 2

D∑
i=1

a2
i
b2
i

)
.

(11)Var[ŶMLE] =
(m1m2 − 𝜆2)2

N(m1m2 + 𝜆2)
.

(12)Var[ŶMLE] =
(1 − cos2(𝜃))2

N(1 + cos2(𝜃))
.
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the variance of vanilla feature hashing (Vanilla-FH) (using Eq.  (10)), for several values 
of the reduced dimensions N. We summarize our observations in Fig.   1. We also note 
the corresponding ratio of variance reduction, that is, the ratio of the variance of CV-FH 
and MLE-FH with that of Vanilla-FH, and summarize it in Fig.  2. We note the following 
insights from the Figs.

–	 In Fig.  1, we observe that for smaller values of � , the variances of our proposals CV-FH 
and MLE-FH are much smaller than that of Vanilla-FH and tend to increase with the 
increase of � . Finally, all the three variances converge when � = 90o . Furthermore, the 

Fig. 1   Theoretical plots of variance for CV-FH, MLE-FH and Vanilla-FH feature hashing at different angles 
� and different m

2
∕m

1
 ratio

Fig. 2   Reduction ratio of variance for MLE-FH and CV-FH trick w.r.t. Vanilla-FH feature hashing at differ-
ent m

2
∕m

1
 ratio
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variance of MLE-FH is smaller than that of CV-FH, and both of them converge when 
m2∕m1 → 1.

–	 The variance of MLE-FH is independent of the ratio m2∕m1 (Eq.  (12)). Further, in 
Fig.  2, we observe that for smaller values of m2∕m1 , the ratio between the variances 
of MLE-FH and Vanilla-FH is much smaller than the corresponding ratio between the 
variances of CV-FH and Vanilla-FH. However, as m2∕m1 → 1 , these ratios converge to 
each other. Therefore, when m2∕m1 → 1 is small, as the variance of MLE-FH is smaller, 
it gives a more accurate estimate of the inner product, whereas when m2∕m1 = 1 , both 
the estimators are almost equally accurate. We empirically observe that (see Sect. 4.3) 
the running time of CV-FH is much faster than that of MLE-FH. Therefore, CV-FH can 
potentially be used when m2∕m1 = 1 , as its running time is much faster than MLE-FH, 
and simultaneously it offers a similar variance.

Importance of variance reduction: The standard way to achieve the variance reduction in 
the pairwise similarity estimation is to generate several i.i.d. copies of the sketches (or hash 
values) of given input pairs. Needless to say, this is an expensive routine. A major advan-
tage of our approach is that it significantly reduces the variance that occurred in the simi-
larity estimation by proposing a new estimator that exploits the existing available sketches. 
A major advantage of our proposal is that it provides significant variance reductions by 
exploiting the existing available sketches and doesn’t require generating their i.i.d. copies. 
As a consequence, we can achieve the same accuracy during the similarity estimation at a 
considerably lower reduced dimension.

1.2 � Related work

Dimensionality reduction is a well-known algorithmic technique for compressing high-
dimensional data to a low-dimensional format while approximating pairwise similarity/
distance. Several dimensionality reduction techniques have been developed, considering 
the various data types and the underlying similarity measures. We mention a few nota-
ble results: Johnson Lindenstrauss (JL) lemma (or random projection) (Johnson & Linden-
strauss, 1983; Dasgupta & Gupta, 2003) and its improved variants (Dasgupta et al., 2010; 
Li & Li, 2019) suggest compressing real-valued vectors while preserving pairwise euclid-
ean distance and inner product. Random projection using �−stable distribution suggests 
compressing real-valued vectors while preserving the pairwise l� distance ( 0 < 𝛼 ≤ 2 ) 
(Indyk, 2006; Li, 2007; Li, 2008; Li & Hastie, 2007; Li et al., 2006). Min-wise independ-
ent permutation (Broder et al. 1998) and its improved variants suggest compressing binary 
vectors (or sets) while preserving pairwise jaccard similarity (Li & König, 2011; Li et al., 
2012; Shrivastava, 2017). Weighted minwise hashing algorithms (Ioffe, 2010; Shrivastava, 
2016; Ertl, 2018; Wei et al., 2018) compress real vectors (or weighted sets) and preserve 
the weighted jaccard similarity (generalized jaccard similarity). Signed random projection 
(SimHash) (Charikar 2002) and its improved variants give compression of real-valued vec-
tors while preserving pairwise cosine similarity (Yu et al., 2014; Ji et al., 2012; Shrivastava 
& Li, 2014; Li, 2019). BinSketch (Pratap et al. 2019) gives a compression of binary vectors 
while preserving multiple similarity measures such as hamming distance, inner product, 
cosine, and jaccard similarity in the same sketch. Feature hashing (Weinberger et al. 2009) 
suggests compression of real-valued vectors while preserving the pairwise inner product.
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Most of these dimensionality reduction algorithms are randomized, and their similar-
ity estimators incur high variance, especially at smaller reduced dimensions, making the 
estimate less reliable. To address this, several variance reduction techniques have been 
attempted. The control-variate (CV) and the maximum likelihood estimator (MLE) are 
two notable techniques in this regard. We discuss their known applications for variance 
reduction in dimensionality reduction algorithms as follows:

Both control variate and MLE methods have been used for variance reduction in ran-
dom projection (Johnson & Lindenstrauss, 1983). The result of Li et al. (2006) suggests 
variance reduction for random projection using the MLE method, under the assumption 
that the marginal norms of the data points are known. Later Li et al. (2006) extends this 
and suggests variance reduction for very sparse random projection (Li et al., 2006). The 
result of Kang and Pin (2018) suggests variance reduction in the estimator of SimHash 
(Charikar 2002) using the MLE method. Typically in the MLE method, the technique 
includes formulating a cubic polynomial equation (using the marginal norms of the 
data points and their respective sketches) whose roots closely estimate the desired inner 
product between original data points. Kang and Hooker (2017), Kang (2017) exploit 
control variate method for improving the estimates of inner product and euclidean dis-
tance obtained from the random projection. They further extended their result by add-
ing so-called dummy vectors in the dataset and obtained a better estimator for the inner 
product (Li et al., 2020). To the best of our knowledge, variance reduction techniques 
have not been attempted in the context of the feature hashing algorithm. In this work, 
we show that both MLE and CV offer a simple, effective and practical solution for vari-
ance reduction in the feature hashing estimator, which in turn offers a more accurate 
similarity estimation at the cost of little computational overhead.

Organization of the paper: The rest of the paper is organized as follows: in Sect. 2, 
we introduce the notations and state some preliminary results that are required to build 
the results stated in the paper. In Sect. 3 we give a theoretical analysis of the variance 
reduction obtained using CV and MLE methods. In Sect. 4, we complement our theo-
retical results and show their practical applicability by doing extensive experiments on 
several real-world datasets. Finally, in Sect.  5, we conclude our discussion and state 
some potential open questions of the work.

2 � Background

The mathematical notations used in this paper are defined in Table 1.
We state the following lemma from Provost and Mathai (1992).

Lemma 1  (Provost and Mathai 1992) Let � ∼ N(�,�) , and �,� are symmetric matrices, 
then

where Tr is the trace operator of the matrix.

Var[����] = 2Tr[����],

Cov[����,����] = 2Tr[����],
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We use the following multivariate Lyapunov’s central limit theorem.

Theorem  2  Multivariate Lyapunov CLT (Feller 1968) Let {�1,…�D} be a sequence of 
independent random vectors such that each entry of the both 

	 (i)	 the expected value of the random vector {�i}
D
i=1

,
	 (ii)	 and the corresponding covariance matrix �i,

is finite. We define

If for some 𝛿 > 0 the following condition holds true

as D tends to infinity. Where d
→

 denotes the convergence in distribution; � and � denote zero 
vector and the identity matrix, respectively.

We state some results from Weinberger et al. (2009) which we require to prove our 
results.

Theorem  3  (Adapted from the results of Weinberger et  al. 2009) Given vectors 
� = [a1,… , aD] , � = [b1,… , bD] get compressed into vectors � = [�1,… , �k,… , �N] and 
� = [�1,… , �k,… , �N] , respectively, using the feature hashing algorithm (stated in Defini-
tion 1, Weinberger et al. 2009), where 1 ≤ k ≤ N . Then

�D =

D∑
i=1

�i.

lim
D→∞

||�−
1

2

D
||2+�

D∑
i=1

�
[||�i − �[�i]||2+�

]
= 0, then

�
−

1

2

D

D∑
i=1

(�i − �[�i])
d
→ N(�, �),

(13)�[�] = �[�] = �.

(14)�[⟨�, �⟩] = ⟨�,�⟩.

(15)�[||�||2 + ||�||2] = ||�||2 + ||�||2.

(16)Var[⟨�, �⟩] = 1

N

D�
i≠j,i,j=1

�
a2
i
b2
j
+ aibiajbj

�
.

(17)=
1

N

�
�����2 ⋅ �����2 + ⟨�, �⟩2 − 2

D�
i=1

a2
i
b2
i

�
.
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3 � Analysis

We first show that the vector [�, �]T asymptotically converges to multivariate normal 
distribution. To prove the asymptotic results, we assume that the fourth moment of input 
features are bounded e.g. �[a4

i
] < ∞ , �[b4

i
] < ∞ and �[a2

i
b2
i
] < ∞ (similar assumption 

to Li et al. 2006, Section 4). This assumption essentially states that all the input dimen-
sions are almost equally important. Then using this result, we obtain our results on vari-
ance reduction.

Theorem 4  If ∀i, 1 ≤ i ≤ D, �
[|ai|2+�

]
,�

[|bi|2+�
]
 take finite, nonzero values, the pairwise 

angle between vectors � and � is non-zero, and N = o
(
D

�

2(�+2)

)
 for some 𝛿 > 0 , then as 

D → ∞ , we have

where d
→

 denotes convergence in distribution, �� =

[
�� ���

��� ��

]

2N×2N

 , � is a (2N × 1) 

dimensional vector with each entry as zero, � is an (2N × 2N) identity matrix, and

Proof  Let us denote 𝜶̂i =
[
aixiz

(1)

i
,… , aixiz

(N)

i

]T
 and 𝜷 i =

[
bixiz

(1)

i
,… , bixiz

(N)

i

]T
 . We 

define a sequence of 2N dimensional random vectors {�i}
D
i=1

 , which is obtained via concat-
enation of vectors 𝜶̂i and 𝜷 i as follows:

We compute the expected value and covariance matrix of the vector �i as follows.

(18)��
−

1

2

[
�

�

]
d
→ N(�, �),

�� =
1

N

⎡⎢⎢⎣

�����2 … 0

⋮ ⋱ ⋮

0 … �����2
⎤⎥⎥⎦N×N

,

��� =
1

N

⎡⎢⎢⎣

⟨�, �⟩ … 0

⋮ ⋱ ⋮

0 … ⟨�,�⟩

⎤⎥⎥⎦N×N
,

�� =
1

N

⎡⎢⎢⎣

�����2 … 0

⋮ ⋱ ⋮

0 … �����2
⎤⎥⎥⎦N×N

.

(19)
�i =

[
𝜶̂i

𝜷 i

]

=
[
aixizi

(1),… , aixizi
(N), bixizi

(1),… , bixizi
(N)

]T
.

(20)�[�i] = �

⎡
⎢⎢⎢⎢⎢⎢⎣

aixizi
(1)

⋮

aixizi
(N)

bixizi
(1)

⋮

bixizi
(N)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ai�[xi] ⋅ �[zi
(1)]

⋮

ai�[xi] ⋅ �[zi
(N)]

bi�[xi] ⋅ �[zi
(1)]

⋮

bi�[xi] ⋅ �[zi
(N)]

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

⋮

.

.

⋮

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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where,

Equations (22), (23), and (24) holds due to the following, where 1 ≤ k ≤ N.

We need to calculate

To do so, we first calculate the following using Eq. (19)

(21)�i = Cov[�i] =

[
Cov[𝜶̂i] Cov[𝜶̂i, 𝜷 i]

Cov[𝜶̂i,𝜷 i] Cov[𝜷 i]

]

2N×2N

(22)Cov[𝜶̂i] =
1

N

⎡
⎢⎢⎣

a2
i
… 0

⋮ ⋱ ⋮

0 … a2
i

⎤
⎥⎥⎦N×N

,

(23)Cov[𝜶̂i,𝜷 i] =
1

N

⎡⎢⎢⎣

aibi … 0

⋮ ⋱ ⋮

0 … aibi

⎤⎥⎥⎦N×N
,

(24)Cov[𝜷 i] =
1

N

⎡⎢⎢⎣

b2
i
… 0

⋮ ⋱ ⋮

0 … b2
i

⎤⎥⎥⎦N×N
.

(25)�

[
aixiz

(k)

i

]
= �

[
bixiz

(k)

i

]
= 0,

(
∵�[xi] = 0

)
.

(26)

Cov
[
aixiz

(k)

i
, aixiz

(k)

i

]
= �

[(
aixiz

(k)

i

)2
]
−
(
�

[
aixiz

(k)

i

])2

.

= a2
i
�
[
x2
i

]
�

[
z
(k)

i

]
,

(
∵
(
z
(k)

i

)2

= z
(k)

i

)
.

=
a2
i

N
,

(
∵�

[
x2
i

]
= 1 and �

[
z
(k)

i

]
=

1

N

)
.

(27)

Cov[aixiz
(k)

i
, bixiz

(k)

i
] = �

[(
aixiz

(k)

i

)(
bixiz

(k)

i

)]
− �

[
aixiz

(k)

i

]
�

[
bixiz

(k)

i

]
.

= aibi�
[
x2
i

]
�

[
z
(k)

i

]
.

=
aibi

N
.

Similarly,

Cov[aixiz
(k)

i
, ajxjz

(k)

j
] = 0, where i ≠ j.

Cov[aixiz
(k)

i
, bjxjz

(k)

j
] = 0, where i ≠ j.

(28)�[||�i − �[�i]||2+�] = �[||�i||2+�].
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Equations (28), (29), and (20) give us the following:

We now compute �D using Eq. (21)

where matrices �� ,��� ,�� are defined in the theorem statement. Note that the matrix �D 
is a symmetric positive definite matrix. We calculate the symmetric positive definite matrix 
�−1

D
 and its value is

Note that if the pairwise angle between �, � is zero, then ⟨�,�⟩ = ���������� which makes the 
above expression undefined.

(29)

||�i||2 = a2
i
x2
i
(z

(1)

i
)2 +⋯ + a2

i
x2
i
(z

(N)

i
)2

+ b2
i
x2
i
(z

(1)

i
)2 +⋯ + b2

i
x2
i
(z

(N)

i
)2.

=

N∑
k=1

(a2
i
+ b2

i
)x2

i
(z

(k)

i
)2.

= (a2
i
+ b2

i
)

N∑
k=1

z
(k)

i
= (a2

i
+ b2

i
).

⟹ ||�i|| = (a2
i
+ b2

i
)
1

2 .

(30)
�
[||�i − �[�i]||2+�

]
= �

[||�i||2+�
]
.

= �

[
(a2

i
+ b2

i
)
2+�

2

]
= (a2

i
+ b2

i
)
2+�

2 .

(31)

�D =

D�
i=1

�i =

D�
i=1

Cov(Xi).

=

� ∑D

i=1
Cov[𝜶̂i]

∑D

i=1
Cov[𝜶̂i,𝜷 i]∑D

i=1
Cov[𝜶̂i,𝜷 i]

∑D

i=1
Cov[𝜷 i]

�

2N×2N

.

=
1

N

⎡⎢⎢⎢⎢⎢⎢⎣

�����2 … 0 ⟨�, �⟩ … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … �����2 0 … ⟨�,�⟩
⟨�,�⟩ … 0 �����2 … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … ⟨�,�⟩ 0 … �����2

⎤⎥⎥⎥⎥⎥⎥⎦
2N×2N

.

=

�
�𝜶 �𝜶𝜷

�𝜶𝜷 �𝜷

�

2N×2N

,

(32)

�−1
D

=
N������2�����2 − ⟨�, �⟩2�

⎡
⎢⎢⎢⎢⎢⎢⎣

�����2 … 0 − ⟨�, �⟩ … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … �����2 0 … − ⟨�, �⟩
−⟨�, �⟩ … 0 �����2 … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … − ⟨�, �⟩ 0 … �����2

⎤
⎥⎥⎥⎥⎥⎥⎦
2N×2N

.
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We know the facts that for any matrix � , ||�||2
F
= Tr(��T ) = Tr(�T�) and for any 

positive definite matrix � , there exists a unique symmetric matrix � such that � = �� . 
Matrix � is called square root of matrix � . Hence, from these facts, we have

We need to show

(33)

���−1∕2

D
��2
F
= Tr

�
�

−1∕2

D
(�

−1∕2

D
)T
�
.

= Tr
�
�

−1∕2

D
�

−1∕2

D

� �
∵V

−1∕2

D
is symmetric

�
.

= Tr(�−1
D
).

=
N2

������2 + �����2�������2�����2 − ⟨�, �⟩2� .

(34)

lim
D→∞

���
D

−
1

2 ��2+�
F

D�
i=1

�[��X
i
��2+�] = 0.

���
D

−
1

2 ��2+�
F

D�
i=1

�[��X
i
��2+�]

=

�
(�����2 + �����2)N2

�����2�����2 − ⟨�, �⟩2
� 2+�

2
D�
i=1

(a2
i
+ b

2

i
)
2+�

2 .

(35)

= N
2+�

� �����2 + �����2
�����2�����2 − ⟨�, �⟩2

� 2+�

2
D�
i=1

(a2
i
+ b

2

i
)
2+�

2 .

=
N

2+�

D

�

2

⎛⎜⎜⎝

�����2
D

+
�����2
D

�����2
D

�����2
D

−
⟨�,�⟩2
D

2

⎞⎟⎟⎠

2+�

2
D�
i=1

⎛⎜⎜⎝
(a2

i
+ b

2

i
)
2+�

2

D

⎞⎟⎟⎠
.

=
N

2+�

D

�

2

⎛
⎜⎜⎜⎝

∑
D

i=1

a
2

i

D

+
∑

D

i=1

b
2

i

D

∑
D

i=1

a
2

i

D

∑
D

i=1

b
2

i

D

−
�∑

D

i=1

a
i
b
i

D

�2

⎞
⎟⎟⎟⎠

2+�

2

D�
i=1

⎛⎜⎜⎝
(a2

i
+ b

2

i
)
2+�

2

D

⎞⎟⎟⎠
.

=
N

2+�

D

�

2

�
�[a2

i
] + �[b2

i
]

�[a2
i
]�[b2

i
] −

�
�[a

i
b
i
]
�2

� 2+�

2

�

�
(a2

i
+ b

2

i
)
2+�

2

�
.

=

�
N

D

�

2(�+2)

�2+��
�[a2

i
] + �[b2

i
]

�[a2
i
]�[b2

i
] −

�
�[a

i
b
i
]
�2

� 2+�

2

�

�
(a2

i
+ b

2

i
)
2+�

2

�
.

≤

�
N

D

�

2(�+2)

�2+��
�[a2

i
] + �[b2

i
]

�[a2
i
]�[b2

i
] −

�
�[a

i
b
i
]
�2

� 2+�

2

�

��
2max{a2

i
, b2

i
}
� 2+�

2

�
.

=

�
N

D

�

2(�+2)

�2+��
�[a2

i
] + �[b2

i
]

�[a2
i
]�[b2

i
] −

�
�[a

i
b
i
]
�2

� 2+�

2

2
2+�

2 �
�
max{�a

i
�(2+�), �b

i
�(2+�)}�.

≤

�
N

D

�

2(�+2)

�2+��
�[a2

i
] + �[b2

i
]

�[a2
i
]�[b2

i
] −

�
�[a

i
b
i
]
�2

� 2+�

2

2
2+�

2 �
��a

i
�(2+�) + �b

i
�(2+�)�.

≤

�
N

D

�

2(�+2)

�2+��
�[a2

i
] + �[b2

i
]

�[a2
i
]�[b2

i
] −

�
�[a

i
b
i
]
�2

� 2+�

2

2
2+�

2

�
�
��a

i
�(2+�)� + �

��b
i
�(2+�)��.
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Equation  (34) holds due to Eq.  (33) along with Eq.  (30). Finally, Eq.  (36) holds due to 
Theorem 2 and due to the fact that N = o

(
D

�

2(�+2)

)
 , �

[|ai|(2+�)
]
 , and �

[|bi|(2+�)
]
 have finite 

nonzero limit. Thus due to Theorem 2, we have

	�  ◻

Effect of Sparsity on Theorem 4: Let s denotes the sparsity of the input vectors � and 
� i.e. s = max{nnz(�), nnz(�)} , where nnz(⋅) returns the number of nonzero entries of the 
input vector. Recall that the Theorem 4 requires �

[|ai|2+�
]
 , �

[|bi|2+�
]
 to have finite non zero 

limits. We note that input sparsity s, crucially affects this distributional assumption. We 
require s = O(D) to satisfy this assumption1. On the contrary, if s = o(D) , then �

[|ai|2+�
]
 , 

�
[|bi|2+�

]
 tends to zero as D → ∞ , which do not satisfy the assumptions of the Theorem 4.

Corollary 5  Following the assumption stated in Theorem 4,

Proof  We know that for any random vector � of dimension N × 1 and any random matrix 
� of dimension N × N

Therefore,

(36)→ 0 as D → ∞.

(37)

�
−1∕2

D

D∑
i=1

�i

d
→ N(�, �).

⟹ �
−1∕2

D

D∑
i=1

[
�i

� i

]
= �

−1∕2

D

[
�

�

]
d
→ N(�, �).

(38)�
−1∕2

D

[
�

�

]
d
→ N(�, �) ⟹

[
�

�

]
d
→ N

(
�,�D

)
.

�[��] = � ⋅ �[�].

Cov(��) = � ⋅ Cov(�) ⋅ �T .

(39)

�

[
�

1

2

D
�

−1∕2

D

[
�

�

]]
= �

1

2

D
�

[
�

−1∕2

D

[
�

�

]]
.

= �
1

2

D
� = �.

⟹ �

[
�

1

2

D
�

−1∕2

D

[
�

�

]]
= �

[
�

�

]
= �.

1  We note that

where s
a
 denotes the number of nonzero entries in input vector � and � = max{|a

i
|}D

i=1
 . For finite value of 

�(2+�) , it is easy to see that

�
��a

i
�(2+�)� =

∑
D

i=1
�a

i
�(2+�)

D

≤
s
a
⋅
�
max{�a

i
�}D

i=1

�(2+�)
D

=
s
a
⋅ �(2+�)

D

,

s
a
⋅ �(2+�)

D

→

{
0 if s

a
= o(D),

finite non zero if s
a
= O(D),

as D → ∞.
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Equation (39) and (40) implies

	�  ◻

Remark 1  In the proof of Theorem 4, the random variable xi (Eq. (19)) takes value ±1 with 
probability 1/2. In order to to prove Theorem 4, we only require the values of �[xi] , �[x2i ] , 
and Var[xi] . We note that even if xi ∼ N(0, 1) (instead of {−1,+1} with probability 1/2) the 
corresponding values of these expressions are the same. Therefore, the proof of Theorem 4 
holds for xi ∼ N(0, 1) as well.

3.1 � Variance reduction using control variate method:

In the following, we present our result of applying the control variate method to reduce 
variance in the inner product estimation.

Theorem  6  Let Y∶=⟨�, �⟩ be the random variable denoting the estimate of ⟨�,�⟩ in the 
feature hashing (Weinberger et al., 2009) (see Algorithm 1, Theorem 3). Then there exists a 
control variate random variable Z, and the corresponding control variate coefficient ĉ such 
that the variance of the control variate estimator, denoted by ŶCV , is the following:

as noted in Weinberger et al. (2009) (Theorem 3, Equation (16)).

Proof  We first state the estimator of the feature hashing (denoted as Y) and our control 
variate random variable (denoted as Z) as follows:

(40)

Cov

(
�

1

2

D
�

−1∕2

D

[
�

�

])
= �

1

2

D
Cov

(
�

−1∕2

D

[
�

�

])(
�

1

2

D

)T

.

= �
1

2

D
�

(
�

1

2

D

)T

.

= �
1

2

D

(
�

1

2

D

)T

.

= �D.

⟹ Cov

([
�

�

])
= �D.

[
�

�

]
d
→ N

(
�,�D

)
.

Var[ŶCV ] = Var(Y + ĉ(Z − �[Z])).

= Var(Y) −
2𝜆2(m1 + m2)

2

N(m2
1
+ m2

2
+ 2𝜆2)

, where

Var(Y) = Var[⟨�, �⟩] = 1

N

D�
i≠j,i,j=1

�
a2
i
b2
j
+ aibiajbj

�
,

(41)Y = �T�� = ⟨�, �⟩.
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Here � and � are symmetric matrices. We state the covariance of � as follows which can 
be easily computed using Theorem  3. For brevity, in the following Equation we denote 
||�||2, ||�||2 and ⟨�,�⟩ with m1 , m2 and � , respectively.

Due to Theorem 3, we have

We need to estimate the term Cov[Y , Z] and Var[Z] to compute the control variate coef-
ficient term ĉ , and the variance reduction term Cov[Y , Z]2∕Var[Z] (see Eqs. (5),(6)). Note 
that in Theorem  4 we show that � is normal. Further matrices � and � are symmetric. 
Therefore we can use Lemma 1 to compute the terms Var[Z] and Cov[Y , Z].

Equation (46) obtained after computing the term � × �� × � × �� . Similarly, we compute 
the term Cov[Y , Z] using the Lemma 1 as follows

(42)

Z = �T�� = �����2 + �����2, where

� =
�
�, �

�T
=
�
�1, … , �N , �1, … , �N

�T
,

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 … 0 1∕2 … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … 0 0 … 1∕2

1∕2 … 0 0 … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … 1∕2 0 … 0

⎤
⎥⎥⎥⎥⎥⎥⎦2N×2N

,

� =

⎡⎢⎢⎣

1 … 0

⋮ ⋱ ⋮

0 … 1

⎤⎥⎥⎦2N×2N
.

(43)�� =
1

N

⎡
⎢⎢⎢⎢⎢⎢⎣

m1 … 0 � … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … m1 0 … �

� … 0 m2 … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … � 0 … m2

⎤
⎥⎥⎥⎥⎥⎥⎦2N×2N

.

(44)�[Y] = �[⟨�, �⟩] = ⟨�,�⟩.

(45)�[Z] = �
[||�||2 + ||�||2] = ||�||2 + ||�||2.

(46)

Var[Z] = Var
�
�T��

�
= 2Tr

�
� × �� × � × ��

�
.

=
2

N2
Tr

⎡⎢⎢⎢⎢⎢⎢⎣

m2
1
+ �2 … 0 �(m1 + m2) … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … m2
1
+ �2 0 … �(m1 + m2)

�(m1 + m2) … 0 m2
2
+ �2 … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … �(m1 + m2) 0 … m2
2
+ �2

⎤⎥⎥⎥⎥⎥⎥⎦2N×2N

.

(47)=
2N(m2

1
+ m2

2
+ 2�2)

N2
=

2(m2
1
+ m2

2
+ 2�2)

N
.
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Equation (48) along with Eq. (47) give the control variate coefficient and variance reduc-
tion as follows (see Equations (5), (6)):

Equation  (41),  (42) and (45) along with Eq.  (49) gives the following control variate 
estimator

Equation (6) along with Eq. (50) gives the following

Equation (52) completes a proof of the theorem. 	�  ◻

In the following, we give a concentration analysis on Theorem 6.

Corollary 7  Let ŶCV be the control variate estimate stated in Theorem 6, then for any 𝜖 > 0 
and 𝛥 > 0 the following holds

(48)

Cov[Y , Z] = Cov
�
�T��,�T��

�
.

= 2Tr
�
� × �� × � × ��

�
.

=
1

N2
Tr

⎡⎢⎢⎢⎢⎢⎢⎣

�(m1 + m2) … 0 m2
2
+ �2 … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … �(m1 + m2) 0 … m2
2
+ �2

m2
1
+ �2 … 0 �(m1 + m2) … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … m2
1
+ �2 0 … �(m1 + m2)

⎤⎥⎥⎥⎥⎥⎥⎦2N×2N

.

=
2N�(m1 + m2)

N2
=

2�(m1 + m2)

N
.

(49)
ĉ = −

Cov[Y , Z]

Var[Z]
= −

2𝜆(m1+m2)

N

2

N
(m2

1
+ m2

2
+ 2𝜆2)

.

= −
𝜆(m1 + m2)

(m2
1
+ m2

2
+ 2𝜆2)

.

(50)
Variance Reduction =

Cov[Y , Z]2

Var[Z]
=

(
2�(m1+m2)

N

)2

2

N
(m2

1
+ m2

2
+ 2�2)

.

=
2�2(m1 + m2)

2

N(m2
1
+ m2

2
+ 2�2)

.

(51)
ŶCV = Y + ĉ ⋅ (Z − �[Z]).

= Y −
𝜆(m1 + m2)

(m2
1
+ m2

2
+ 2𝜆2)

[||�||2 + ||�||2 − m1 − m2].

(52)
Var[Y + c.(Z − �(Z))] = Var[Y] −

Cov[Y , Z]2

Var[Z]
.

= Var[Y] −
2�2(m1 + m2)

2

N(m2
1
+ m2

2
+ 2�2)
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Proof  We apply Chebyshev inquisitive on our control variate estimator ŶCV as follows:

Equation (55) completes a proof. 	�  ◻

3.2 � Variance reduction using MLE method

In the following, we present our result of applying the MLE method to reduce variance in 
the inner product estimation.

Theorem  8  Let Y∶=⟨�, �⟩ be the random variable denoting the estimate of ⟨�,�⟩ in the 
feature hashing (Weinberger et al., 2009) (see Algorithm 1, Theorem 3). Then the maxi-
mum likelihood estimator (MLE) of the inner product is the solution of the following cubic 
equation

Denoted by ŶMLE , the asymptotic variance of this estimator is

Proof  Due to Theorem 2, we have

(53)Pr
[|ŶCV − 𝜆| ≥ 𝜖

]
≤ 𝛥, forN >

2𝜆4 − 𝜆2(m1 + m2)
2 + m1m2(m

2
1
+ m2

2
)

𝛥(m2
1
+ m2

2
+ 2𝜆2)𝜖2

.

(54)

Pr
��ŶCV − 𝜆� ≥ 𝜖

�
≤

Var[ŶCV ]

𝜖2
.

=

Var[Y] −
2𝜆2(m1+m2)

2

N(m2
1
+m2

2
+2𝜆2)

𝜖2
.

=

1

N

�
m1m2 + 𝜆2 − 2

∑D

i=1
a2
i
b2
i

�
−

2𝜆2(m1+m2)
2

N(m2
1
+m2

2
+2𝜆2)

𝜖2
.

=

m1m2 + 𝜆2 − 2
∑D

i=1
a2
i
b2
i
−

2𝜆2(m1+m2)
2

(m2
1
+m2

2
+2𝜆2)

N𝜖2
.

(55)

≤
2𝜆4 − 𝜆2(m1 + m2)

2 + m1m2(m
2
1
+ m2

2
)

N𝜖2(m2
1
+ m2

2
+ 2𝜆2)

. (upon simplification)

≤ 𝛥 (if we chooseN >
2𝜆4 − 𝜆2(m1 + m2)

2 + m1m2(m
2
1
+ m2

2
)

𝛥(m2
1
+ m2

2
+ 2𝜆2)𝜖2

in above expression) .

(56)�3 − �2
(
��T

)
+ �

(
−m1m2 + m1||�||2 + m2||�||2

)
− m1m2

(
��T

)
= 0.

(57)Var[ŶMLE] =
(m1m2 − 𝜆2)2

N(m1m2 + 𝜆2)
.

��
−

1

2

[
�

�

]
D
→ N(�, �),
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where �� =

[
�� ���

��� ��

]
 ; � is (2N × 1) zero vector and � is (2N × 2N) identity matrix. That 

is the joint distribution of [�, �] follows multivariate normal distribution under the conver-
gence of distribution as D → ∞.2 The joint probability density function of multivariate 
normal distribution of [�, �] is given by

Equations (59) and (61) holds by computing the determinant and inverse of the matrix �D . 
We now calculate the term

The above equality holds by putting the value of �−1
D

 from Eq. (61) followed by some alge-
braic calculation. Equations (60), (62) along with Eq. (58) give us the following:

Taking logarithm of the above equation gives us

(58)lik([�, �]) ∝ |�D|−
1

2 exp

(
−
1

2

[
� �

]
�−1

D

[
�

�

])
.

(59)Where |�D| =
(m1m2 − �2)N

N2N
,

(60)|�D|−
1

2 =
NN

(m1m2 − �2)
N

2

, and

(61)�−1
D

=
N

(m1m2 − �2)

⎡
⎢⎢⎢⎢⎢⎢⎣

m2 … 0 − � … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … m2 0 … − �

−� … 0 m1 … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 … − � 0 … m1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(62)
[
� �

]
�−1

D

[
�

�

]
=

N

(m1m2 − �2)

(
N∑
i=1

(
�2
i
m2 + �2

i
m1 − 2�i�i�

))
.

lik([�, �]) ∝
NN

(m1m2 − �2)
N

2

× exp

(
−

N

2(m1m2 − �2)

N∑
i=1

(
�2
i
m2 + �2

i
m1 − 2�i�i�

))
.

l(�) = N log(N) −
N

2
log(m1m2 − �2)

−
N

2(m1m2 − �2)

N∑
i=1

(
�2
i
m2 + �2

i
m1 − 2�i�i�

)
.

2  A proof of Theorem 8 follows using similar analysis as of the proof of Lemma 7 of Li et al. (2006) or 
Lemma 2 of Li et al. (2006).
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By setting l� (�) equal to zero we get ŶMLE , which is solution to equation

Finally, Var[�] is given as follows (due to the well known results of large sample theory, 
see Li et al. 2006)

Equations (64) and (63) completes a proof of the theorem. 	�  ◻

Corollary 9  Let ŶMLE be the inner product estimator of the MLE method stated in Theo-
rem 8. Then for any 𝜖 > 0 and 𝛥 > 0 , the following holds

Proof  The variance of ŶMLE (from Theorem 8) is

From Chevyshev’s inequality, we have

Equation (67) completes a proof. 	�  ◻

The MLE method typically introduces some bias and requires a bias correction. How-
ever, our result shows that the bias introduced due to the MLE approach is negligible and 
of the order O(1∕N2) . Further, we show that the probability of attaining multiple real roots 
in cubic polynomials (stated in Eq. (56)) is very small. It ensures that the only real root cor-
responds to the pairwise inner product. We summarise it in the following Lemma, whose 
proof follows exactly from the Lemma 3 and 4 of Li et al. (2006).

Lemma 10  (Adapted from Lemma 3 and 4 of Li et al. 2006) The bias correction for the 
maximum likelihood estimator, ŶMLE , derived in Theorem 8 is given by

Further, the cubic equation stated in Eq. (56) (Theorem 8) admits multiple real roots with 
a very small probability, given by

(63)�3 − �2
(
��T

)
+ �

(
−m1m2 + m1||�||2 + m2||�||2

)
− m1m2

(
��T

)
= 0.

(64)Var[�] = −
1

�[l
��
(�)]

=
(m1m2 − �2)2

N(m1m2 + �2)
.

(65)Pr
[|ŶMLE − 𝜆| ≥ 𝜖

]
≤ 𝛥, forN >

(m1m2 − 𝜆2)2

𝛥(m1m2 + 𝜆2)𝜖2
.

(66)Var[ŶMLE] =
(m1m2 − 𝜆2)2

N(m1m2 + 𝜆2)
.

(67)

Pr
[|ŶMLE − 𝜆| ≥ 𝜖

]
≤

Var[ŶMLE]

𝜖2
.

=
(m1m2 − 𝜆2)2

𝜖2N(m1m2 + 𝜆2)
.

≤ 𝛥 (if we chooseN >
(m1m2 − 𝜆2)2

𝛥(m1m2 + 𝜆2)𝜖2
in above expression).

�[ŶMLE] = ⟨�, �⟩ + O
�

1

N2

�
.
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where P =
⟨�,�⟩√
m1m2

 , Q =
||�||2
m1

+
||�||2
m2

 . This probability is crudely bounded by

Remark 2  Our both results stated in Theorems 6, 8 crucially build on the result of Theo-
rem  4 which shows that the vector � =

[
�, �

]T is multivariate normal. Note that Theo-
rem 4 holds for small values of N = o

(
D

�

2(�+2)

)
 such that �

[|ai|2+�
]
 and �

[|bi|2+�
]
 are finite 

for any 𝛿 > 0 . Note that for smaller values of N the variance of the feature hashing estima-
tor is large (see Theorem  3), and our results (Theorems  6, 8) mitigate this problem by 
showing significant variance reduction on such instance.

Assumptions and overhead of our estimators:  It’s worth mentioning that both these 
results require the norm of the data points to compute their respective similarity estimates. 
The overhead of our control variate estimator (CV-FH, Theorem 6) is that it requires com-
puting the expected value of the control variate random variable Z (see Eq. (45)), and con-
trol variate coefficient ĉ (see Eq. (49)). Further, computing ĉ requires knowing the value of 
�—the very quantity which we want to estimate. Empirically, we use the estimate obtained 
from Vanilla-FH as a proxy for this. The overhead of our MLE estimator (MLE-FH, Theo-
rem 8) is that it requires computing roots of the cubic polynomial stated in Eq. (56) to get 
an estimate of the inner product.

4 � Experiments

Hardware description: CPU: Intel(R) Core(TM) i7-8750H CPU @ 2.21GHz x 6; Memory: 
16 GB; OS: Windows 10; Model: Lenovo Legion Y530.

Datasets: We use the following datasets for our experiments:

–	 Synthetic dataset: In synthetic dataset, we generate 2000 random data points in 20000 
dimension such that each feature of the data point is randomly chosen from [1, 10].

–	 PEMS-SF (Lichman 2013): This dataset contains the daily occupancy rates of various 
car lanes on the San Francisco Bay Freeway from the California Department of Trans-
portation PEMS website over a 15-month period. These data range from [0, 1], with 
440 data samples of size 138672. The link of the dataset is available here3.

–	 UCI Bag-of-word datasets—NYTimes articles (Lichman 2013): This dataset consists 
of a corpus of documents that include 300000 points in 102660 dimension. The raw 
documents were pre-processed by tokenization and removal of stopwords. A vocabu-
lary of unique words was generated (by keeping only those words that occurred more 
than ten times). The size of the vocabulary determines the dimension of the dataset. A 

Pr[multiple real roots] = Pr
(
P2(11 − Q2∕4 − 4Q + P2) + (Q − 1)3 ≤ 0

)
,

Pr[multiple real roots] ≤ e−0.0085N + e−0.0966N .

3  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​PEMS-​SF

https://archive.ics.uci.edu/ml/datasets/PEMS-SF
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document is represented by the frequency vector of the words in it. The link of the data-
set is available here4.

–	 Gisette dataset  (Guyon et  al. 2005; Lichman 2013): This dataset consists of hand-
written digit images and is constructed from the MNIST dataset. This dataset consists 
of 13, 500 real-valued vectors in 5000 dimension. The digits have been size-normal-
ized and centered in a fixed-size image of dimension 28 × 28 . From the images, pixels 
were sampled at random so that it contains the necessary information to disambiguate 
between the digit 4 from 9. Further higher-order features were created to project the 
problem into a higher dimensional feature space. The link of the dataset is available 
here. 5

4.1 � Methodology

Let Y = ⟨�, �⟩ be the random variable denoting the estimate of inner product obtained via 
the feature hashing. In these experiments, we aim to show that the variance of our control 
variate estimate (CV-FH) and MLE estimate (MLE-FH) is smaller than that of the vanilla 
feature hashing estimate. In what follows, we describe the procedure to empirically com-
pute our estimates (CV-FH and MLE-FH). In Sect. 4.2, we discuss the evaluation metric, 
and finally in Sect. 4.3, we discuss our experimental insights. Our estimates require com-
puting the �2 norm of the data points that can be easily computed by taking a pass over the 
dataset.

Computing control variate estimate (CV-FH) : Recall that our control variate estimate 
is given by Y + c(Z − �[Z]) , where c is the control variate coefficient, and Z is the con-
trol variate random variable. From Eq. (49) the optimum value of c, denoted by ĉ , can be 
described as follows:

Recall that our control variate random variable is Z = ||�||2 + ||�||2 (see Eq.  (42)), and 
�[Z] = m1 + m2. To compute the value of ĉ , we need to know the value of �—the very 
quantity we want to estimate. We use the estimate of the inner product obtained using the 
feature hashing as a proxy for � . As the sketch and norm of data points are known to us, 
we can compute the terms Y, Z, �[Z] and ĉ , and as a consequence, we can compute the CV 
estimate Y + ĉ(Z − �[Z]).

Computing MLE estimate (MLE-FH): Recall that from Eq. (56), our MLE estimator is 
the real root of the following cubic polynomial

As we know the sketch � , � , and the norm of the data points, we can generate the above 
polynomial. We show that the polynomial has only one real root (see Lemma 10), and we 
can get the estimation of the inner product by computing the real root of this cubic polyno-
mial. To compute the real root, we use the following expression deduced from Cardano’s 
formula (Cardano 1993).

ĉ = −
Cov[Y , Z]

Var[Z]
= −

𝜆(m1 + m2)

(m2
1
+ m2

2
+ 2𝜆2)

.

�3 − �2
(
��T

)
+ �

(
−m1m2 + m1||�||2 + m2||�||2

)
− m1m2

(
��T

)
= 0.

4  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Bag+​of+​Words
5  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Giset​te

https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
https://archive.ics.uci.edu/ml/datasets/Gisette
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4.2 � Evaluation metric

We evaluate the performance of our CV estimate (CV-FH) and MLE estimate (MLE-FH) 
with the vanilla feature hashing (Vanilla-FH) on the following metrics (Table 1).

–	 Variance analysis via box-plot,
–	 Mean absolute error (MAE) for a pair of points,
–	 Mean absolute error (MAE) for a large number of points, and
–	 the running time.

We elaborate our experimental procedure as follows:
Variance analysis via box-plot: In this experiment, we aim to compare the variance of 

all the three estimates—CV feature hashing (CV-FH), MLE feature hashing (MLE-FH), 
and baseline feature hashing (Vanilla-FH). We perform this experiment on both synthetic 
pairs and pairs sampled from the real-world datasets. For synthetic pairs, we generate sev-
eral pairs of real-valued vectors in 10000 dimension such that the angle between them 
is � = {10o, 30o, 60o, 90o}. For pairs from real-world datasets, we pick a random pair of 
points for each dataset mentioned in Table 2. We run CV-FH, MLE-FH, and feature hash-
ing (Vanilla-FH) on these pairs, 100 times for different values of reduced dimension N. It 
gives us 100 different estimates for each of the baseline algorithms. We use these estimates 
to generate box plots for variance analysis. We summarize our observations in Fig.  3 for 
synthetic pairs, and in Fig.  4 for pairs sampled from the real-world datasets.

MAE for a pair of points: In this experiment, for a pair of data points, we aim to com-
pare the mean absolute error of all three estimates with respect to the ground similarity. We 
perform this for synthetic pairs as well as the pairs sampled from the real-world datasets 
mentioned above. We run CV-FH, MLE-FH, and feature hashing 100 times on these input 
pairs for various values of reduced dimension N. It gives us 100 different estimates for 
each of the baseline algorithms on various values of N. We use these estimates to calculate 
the mean absolute error (MAE)—by computing the average of the absolute difference of 
estimates obtained from the baselines with ground truth similarity—for different values of 
reduced dimension. We summarize our observations in Fig.  5 for synthetic pairs, and in 
Fig.  6 for pairs sampled from the real-world datasets.

MAE for a large number of pairs: In this experiment, we aim to compare the MAE of 
all three estimates with respect to the ground similarity for all pairs of points. To do so, we 
take a random sample of 2000 data points (except the PEMS-SF dataset, which has a lesser 

� = −
1

3

�
p + C +

d0

C

�
, where

C =

⎛
⎜⎜⎜⎝

d1 ±
�

d2
1
− 4d3

0

2

⎞
⎟⎟⎟⎠

1

3

,

d0 = p2 − 3q,

d1 = 2p3 − 9pq + 27r,

p = −��T , q = −m1m2 + m1�����2 + m2�����2, and , r = −m1m2

�
��T

�
.
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number of points) from each of the datasets. We repeat the above experiment (MAE for a 
pair) 10 times for every pair of points (out of the possible 

(
2000

2

)
= 19, 99, 000 pairs). We 

compute the MAE - by computing the mean (overall the iteration and all possible pairs) 
absolute difference of estimates obtained from the baselines with ground truth similarity. 
We summarise our results in Fig.  7. We note that if we include all points from the datasets, 
then we are getting “out-of-memory” error due to the very large number of pairs generated. 
Therefore, we decided to include a random sample of 2000 points in our experiments. The 
number of pairs generated by 2000 points is 19, 99, 000, which is large enough to cover a 
wide spectrum of pairwise similarity. We also note the average time (over 10 repetitions) 
taken by each method for this experiment to compare their respective time complexity. We 
summarise it in Fig.  8.

4.3 � Insight

From Figs.  3, 4 it is evident that the interquartile range of our proposed techniques CV-FH 
and MLE-FH is smaller than that of the Vanilla-FH. In particular, in Fig.  3, we notice that 
our proposals have a smaller interquartile range when the pairwise angle is small. This indi-
cates that the variances of the proposed techniques are much smaller than the variance of 
the Vanilla-FH, especially when pairwise angles are small. In Figs.  5, 6, we notice that the 
MAEs of the proposed techniques are always smaller than that of Vanilla-FH. Again, due 

Table 2   Dataset description. 
(Sparsity denotes the maximum 
number of non-zero entries in 
any data point)

Dataset Attributes Dimension Sparsity

Synthetic Dataset Real 20000 20000
PEMS-SF (Lichman 2013) Real 138672  138655
NYTimes articles (Lichman 2013) Integer 102660 871
Gisette (Lichman 2013) Integer 5000  1409

Table 1   Notations Notations

D dimension of the input data.
N dimension of the compressed data.
M number of data points.
� [a

1
, a

2
,… a

D
] input vector.

� [b
1
, b

2
,… b

D
] input vector.

� [�
1
, ..�

k
, ..… �

N
] compressed vector of �.

� [�
1
, .., �

k
, ..… �

N
] compressed vector of �.

[�,�] [�
1
,… , �

N
, �

1
,… , �

N
][

�

�

]
[�,�]T

m
1 �����2

2
=
∑

D

i=1
a
2

i
 squared norm of �.

m
2 �����2

2
=
∑

D

i=1
b
2

i
 squared norm of �.

� ⟨�,�⟩ = ∑
D

i=1
a
i
b
i
 dot product of � and �.

� angle between � and �.
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to Fig.  5, we observe that our proposals have smaller MAE values when the pairwise angle 
between input pairs is small. This indicates that the errors in our estimates are smaller, and 
they closely approximate the ground truth inner product, especially when pairwise angles 
are small. Further, in Figs.  7, we again observe that MAEs of our proposals are smaller 
than that of Vanilla-FH. These observations indicate that, on average, our proposals cor-
rectly estimate the ground truth pairwise similarity. The MAE values of our estimators are 
comparable to that of Vanilla-FH for the NYTimes dataset. This is because a large number 
of input pairs are almost orthogonal to each other. We computed some statistics on the 
pairwise angle for the NYTimes dataset and observed that mean angle = 87.3o , median 
angle = 88.2o . This is also consistent with our observations on the theoretical variance plot 
(Fig.  1), where we notice that our proposal CV-FH and MLE-FH doesn’t give any advan-
tage over Vanilla-FH on orthogonal pairs. We note that the MLE estimates generally offer 
better performance (lower variance and MAE) as compared to the CV estimate. However, 
this comes at the cost of the slower computational time of the MLE estimate, possibly due 
to the computation involved in computing the roots of the cubic polynomials. We summa-
rise the average speedup (mean of the speedup obtained at various reduced dimensions) of 
CV-FH w.r.t. MLE-FH in Table 3 and notice that the CV-FH is roughly 2.5× faster than the 
MLE-FH on our datasets.

Fig. 3   Comparison among vanilla feature hashing (Vanilla-FH) and our proposed estimates based on CV 
(CV-FH), and MLE (MLE-FH) on the variance analysis via box-plot for synthetic pairs. Smaller interquar-
tile range is an indication of better performance. The dotted line corresponds to the ground truth inner prod-
uct

Fig. 4   Comparison among vanilla feature hashing (Vanilla-FH) and our proposed estimates based on CV 
(CV-FH), and MLE (MLE-FH) on the variance analysis via box-plot for pairs sampled from real world 
datasets. Smaller interquartile range is an indication of better performance. The dotted line corresponds to 
the ground truth inner product
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Fig. 5   Comparison among Vanilla-FH and our proposed estimates CV-FH and MLE-FH on the mean-abso-
lute-error (MAE) metric for a synthetic data pair. A smaller value of MAE is an indication of better perfor-
mance

Fig. 6   Comparison among Vanilla-FH and our proposed estimates CV-FH and MLE-FH on the mean-abso-
lute-error (MAE) metric for a pair of points sampled from the real world datasets. A smaller value of MAE 
is an indication of better performance

Fig. 7   Comparison among Vanilla-FH and our proposed estimates CV-FH and MLE-FH on the mean-abso-
lute-error (MAE) metric for 

(
2000

2

)
 pairs from real-world datasets. A smaller value of MAE is an indication 

of better performance

Fig. 8   Comparison on the average running time among Vanilla-FH, CV-FH, and MLE-FH
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5 � Conclusion

We provide a simple and effective improvement to the feature hashing algorithm, a pop-
ular dimensionality reduction technique. Our improvement is to achieve the variance 
reduction in the inner product estimate obtained from the feature hashing algorithm. We 
propose variance reduction via two approaches—control variate (CV) and maximum 
likelihood estimator (MLE) methods. We present a clean theoretical analysis of our 
approaches and complement it with rigorous experiments on synthetic as well as real-
world datasets. We observed (theoretically as well as empirically) that both the meth-
ods offer significant variance reduction, especially when data points are highly similar. 
In comparison between these two methods, the MLE tends to offer a higher variance 
reduction but at the cost of higher running time (see Table 3). Our proposals (CV-FH 
and MLE-FH) are simple, effective, and can be easily adopted in practice.

Appendix—missing proofs

Proof of Theorem 3:

Proof  We can write the k-th feature of the sketch vectors � and � as follows:

Where xi takes value between {+1,−1} each with probability 1/2 and z(k)
i

 is an indicator 
random variable defined as follows:

We now compute the expected value of � . In order to compute this, first we compute 
expected value of �k

(68)�k =

D∑
i=1

aixiz
(k)

i
.

(69)�k =

D∑
i=1

bixiz
(k)

i
.

(70)z
(k)

i
=

{
1, if i-th feature falls into the k-th bucket

0, otherwise.

Table 3   Average speedup of CV-FH w.r.t. MLE-FH, which is the mean of speedup of CV-FH w.r.t. MLE-
FH obtained at various reduced dimensions

Dataset Synthetic Dataset PEMS-SF Gisette NYTimes articles

Avg. Speedup 2.41× 2.40× 2.43× 2.51×
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Equation (71) holds because �[xi] = 0 . This is true because the random variable xi takes 
value between {−1,+1} each with probability 1/2. Similarly, we can compute the value of 
�[�] . We now compute the inner product of the compressed vectors ⟨�, �⟩ as follows:

Equation (74) follows from Eq. (73) because x2
i
= 1 as xi = ±1 , and z2

i
= zi as zi takes value 

either 1 or 0. We continue from Eq. (75) and compute the expectation of the random vari-
able ⟨�, �⟩ as follows:

(71)
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]
.
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Equation  (76) holds due to the linearity of expectation. Equation  (77) holds because 
�[xixjz

(k)

i
z
(k)

j
] = 0 as both xi and xj take a value between {−1,+1} each with probability 1/2 

which leads to �[xixj] = 0 . Now, we will compute the expected value of the norm square of 
compressed vectors � and �

Equation (78) holds due to the following

In similar fashion we can calculate

(76)
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Now we will compute the expectation of ||�||2 + ||�||2

Equation (82) holds because of Eq. (79) and (81). Using similar analysis techniques we 
compute the Var[⟨�, �⟩] which turn out to be the following due to Weinberger et al. (2009).
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