
Vol.:(0123456789)

Machine Learning (2022) 111:1987–2010
https://doi.org/10.1007/s10994-022-06170-3

1 3

JGPR: a computationally efficient multi‑target Gaussian
process regression algorithm

Mohammad Nabati1 · Seyed Ali Ghorashi1,2  · Reza Shahbazian3

Received: 7 June 2021 / Revised: 10 February 2022 / Accepted: 18 March 2022 /
Published online: 11 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
Multi-target regression algorithms are designed to predict multiple outputs at the same
time, and allow us to take all output variables into account during the training phase.
Despite the recent advances, this context of machine learning is still an open challenge
for developing a low-cost and high accurate algorithm. The main challenge in multi-target
regression algorithms is how to use different targets’ information in the training and/or test
phases. In this paper, we introduce a low-cost multi-target Gaussian process regression
(GPR) algorithm, called joint GPR (JGPR) that employs a shared covariance matrix among
the targets during the training phase and solves a sub-optimal cost function for optimiza-
tion of hyperparameters. The proposed strategy reduces the computational complexity con-
siderably during the training and test phases and simultaneously avoids overfitting of the
multi-target regression algorithm upon the targets. We have performed extensive experi-
ments on both simulated data and 18 benchmark datasets to assess the proposed method
compared with other multi-target regression algorithms. Experimental results show that the
proposed JGPR outperforms the state-of-the-art approaches on most of the given bench-
mark datasets.

Keywords  Machine learning · Gaussian process regression · Multi-task learning · Multi-
target regression

Editor: Dragi Kocev.

 *	 Seyed Ali Ghorashi
	 s.a.ghorashi@uel.ac.uk

	 Mohammad Nabati
	 mo.nabati@mail.sbu.ac.ir

	 Reza Shahbazian
	 r.shahbazian@standard.ac.ir

1	 Cognitive Telecommunication Research Group, Department of Telecommunications, Faculty
of Electrical Engineering, Shahid Beheshti University, Tehran 19839‑69411, Iran

2	 School of Architecture, Computing and Engineering, University of East London,
London E16 2RD, UK

3	 Department of Electrical Engineering, Faculty of Technology and Engineering, Standard Research
Institute, Alborz 31745‑139, Iran

http://orcid.org/0000-0002-2910-9208
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06170-3&domain=pdf

1988	 Machine Learning (2022) 111:1987–2010

1 3

1  Introduction

Conventional machine learning (ML) algorithms are often designed for the prediction of
a single target (output variable). However, there are other types of data that contain mul-
tiple targets. For example, in Andromeda dataset (Hatzikos et al., 2008) the goal is to pre-
dict 6 targets which determines the quality of seawater, or in See Click Predict Fix dataset
(Spyromitros-Xioufis et al., 2016) the goal is to find the number of clicks, views and com-
ments based on input features. For these types of data, the conventional ML algorithms
can independently be implemented for each target (Li et al., 2014). Although establishing
this strategy is a straightforward solution, it does not use the other outputs’ information in
the training and/or test phases. Muti-target regression algorithms, which are the subset of
multi-task learning (MTL) (Zhang & Yang, 2021), are used to predict multiple and con-
tinuous outputs at the same time (Zhen et al., 2018).

MTL algorithms are built for the simultaneous implementation of relevant tasks. In the
MTL algorithms, a current task uses the other related tasks’ information for achieving a
better performance (Zhang & Yang, 2017). The concept of MTL has been derived from the
human-learning paradigm in which people gain knowledge from previous learning tasks
(Xu et al., 2018). Multi-target regression has a similar definition in which the goal is to
predict multiple outputs simultaneously (Spyromitros-Xioufis et al., 2016; Petković et al.,
2020). The MTL is a general form in which the input samples and the number of those
samples can be different for each task, while, in multi-target regression problems, input
samples are the same for all targets. Generally, the MTL-based algorithms can also be
employed for multi-target regression problems but not vice versa; however, in most cases,
the MTL-based algorithms force enormous calculation costs due to their general form.

Various multi-target regression algorithms have been introduced, which are the extended
versions of the baseline ML algorithms. Spyromitros-Xioufis et al. (2016) proposed input
space expansion such that the other outputs are fed into the input space for each target.
Tsoumakas et al. (2014) employed a random linear target combination scenario, in which
new output variables are created via random multiplications of available outputs. Melki
et al. (2017) introduced a multi-target support vector regression-based correlation chain
to take the outputs’ correlation into account. Struyf and Džeroski (2005) proposed a con-
straint-based system to build a multi-objective regression tree.

On the other side, some researchers have tried to design MTL-based Gaussian process
regression (GPR) algorithms. Bonilla et al. (2008) proposed an MTL-based GPR algorithm
that uses the Kronecker product to extract the correlation between the targets. Nguyen et al.
(2014) proposed a collaborative GPR-based algorithm to draw the tasks’ correlations by
sharing multiple sets of inducing samples. Also, there are lots of attempts to elicit the out-
puts’ correlations through the convolutional process (Álvarez & Lawrence, 2011; Álvarez
et al., 2010). The earlier MTL-based GPR algorithms force huge computational costs for
multi-target regression problems.

Despite all the recent advances in this topic, lots of efforts are underway to design a
low-cost and high accurate algorithm. The accuracy of an implemented algorithm on one
hand, and the complexity, on the other hand, are two main challenges of the MTL or multi-
target regression algorithms. Although the MTL-based algorithms can handle the multi-
target regression problems, they might implicate huge calculation costs due to the structure
of implemented techniques in the general form. A more complex structure of an algorithm
does not give always a better performance; because, when an ML algorithm becomes more

1989Machine Learning (2022) 111:1987–2010	

1 3

and more complex, only the training error may reduce, but the test error increases due to
the overfitting effect (Hastie et al., 2009).

The overfitting problem occurs when an ML algorithm is fit to the training data too
well in the presence of noise (Liu et al., 2008). Various techniques have been introduced
to avoid this problem. The regularization (Hastie et al., 2009; Tibshirani, 1996) is used
in a wide range of ML algorithms to prevent overfitting of a regression model. Srivastava
et al. (2014) proposed a dropout connection strategy for deep neural networks to hinder
the model from co-adapting too much in which the units are randomly removed during the
training process. The basic idea behind most techniques for solving the overfitting problem
is to prevent the hyperparameters of a model to reach a globally optimum point (Hastie
et al. 2009). The overfitting also can be prevented by stopping the iteration when the vali-
dation data error increases. When the instances of data are not enough, using a portion of
data as validation part may decrease the performance, and in general, using an algorithm
without needing a part of dataset for validation would be more desired.

In multi-target regression problems, the tasks (targets) have a common set of features,
and thereby, it helps to reduce the complexity calculation of the multi-target regression
algorithms. On the other hand, the concept of overfitting reduction by finding a sub-opti-
mal solution can either help to increase the accuracy or to reduce the complexity. Hence,
there are two facts

1.	 The input features are common for output variables in multi-target regression problems.
This fact can help to reduce the complexity.

2.	 The overfitting problem can be solved by finding a sub-optimal solution. By using this
fact, we can reduce the complexity and at the same time enhance the accuracy.

The key idea behind multi-target regression algorithms is the transfer of knowledge
between the targets. In this paper, we introduce a GPR-based multi-target regression algo-
rithm that combines the transfer of knowledge between the targets and overfitting reduction
concepts by solving a sub-optimal solution. The proposed method, named joint Gaussian
process regression (JGPR), maximizes the log-likelihood of the joint probabilities with a
shared covariance matrix over the targets. The proposed JGPR algorithm not only benefits
from a low-complexity structure in the training and test phases, but also achieves better
accuracy in the test phase compared with conventional GPR (CGPR) in both toy prob-
lem and real-world datasets. Unlike the existing works, the JGPR uses a shared covari-
ance matrix in a completely joint optimization process for all targets. This subtle assump-
tion significantly reduces the complexity in the optimization process, and at the same time,
avoids overfitting of the model upon the targets. Experimental results on 18 diverse bench-
mark datasets show that the proposed JGPR has better performance compared with state-
of-the-art multi-target regression algorithms. It is because the JGPR is not overfitted when
all targets take part during the training process. This paper is the extended version of our
previous work (Nabati et al., 2021) in which we only used a 2D-based algorithm for a fin-
gerprint-based positioning problem, and also, we did not perform sufficient mathematical
analyses such as convergence and complexity. In summary, the main contributions of this
paper can be summarized as follows

–	 We propose a novel multi-target Gaussian process regression algorithm, named joint
Gaussian process regression (JGPR), which not only benefits a low-complexity struc-

1990	 Machine Learning (2022) 111:1987–2010

1 3

ture but also prevents the regression algorithm from overfitting problem and enhances
the accuracy.

–	 We perform a mathematical convergence analysis for the proposed JGPR algorithm and
conclude that the proposed method is converged in the optimization process.

–	 We provide a complexity analysis for the proposed JGPR algorithm and conclude that
it has a lower calculation cost even compared with the conventional GPR algorithm in
multi-target regression problems.

The rest of this paper is organized as follows: In Sect. 2, we present the conventional
Gaussian process regression framework. Our proposed algorithm is explained in Sect. 3.
Experimental results and conclusions are presented in Sect. 4 and 5, respectively.

Notations: We use lower-case letters to show scalars (e.g., u), bold-face lower-case
letters to indicate vectors (e.g., � ) and bold-face capital letters to denote matrices (e.g.,
� ). Also, ui demonstrates the ith element of � , �i and �i show the ith row and ith column
of � , respectively. The (.̂) symbol is used to show the test dataset.

2 � Conventional GPR (CGPR)

In this section, we present a background for conventional GPR in the training and test
phases. This section helps the reader to better understand the proposed JGPR in the next
section.

2.1 � Training phase of CGPR

Gaussian process regression is one of the most popular non-linear ML algorithms and
has a wide variety of applications (Williams & Rasmussen, 2006; Nguyen et al., 2018).
This algorithm can predict the variance besides the outputs, which is derived from the
Bayes rule. The goal of CGPR in the training phase is to obtain a non-linear function
that maps the input features to a single output variable. We commence via the assump-
tion that a non-linear relationship between input features and a single output variable is
as follows

where � is the input vector, � is a function that converts the input features to the desired
target, and � ∼ N(0, �2

n
) models the noise. In the training phase, the function values �(�i)

are unknown; however, we have access to the noisy observations fi and the goal is to obtain
the function � with a training dataset. We shall first consider the training dataset as follows

(1)fi = �(�i) + � ∀�i,

(2)� =

⎛⎜⎜⎜⎝

x11 x12 ⋯ x1M
x21 x22 ⋯ x2M
⋮ ⋮ ⋱ ⋮

xN1 xN2 ⋯ xNM

⎞⎟⎟⎟⎠
, � =

⎡⎢⎢⎢⎣

f1
f2
⋮

fN

⎤⎥⎥⎥⎦
,

1991Machine Learning (2022) 111:1987–2010	

1 3

where � ∈ ℜN×M is the input matrix with M features and N observations, and � is the vec-
tor of outputs. We can assume a zero-mean Gaussian process, and hence, the joint distribu-
tion of input observations can be written in the following form

where � ∈ ℜN×N is the covariance matrix, which must be positive definite (Ambikasaran
et al., 2016). Each element of this matrix cij is calculated by two pairs of input observations
via kernel functions K(�i,�j) , where �i and �j are the ith and jth row of the matrix � in
(2). There are several kernel functions to calculate the elements of covariance matrix. In
this paper we use squared exponential kernel KSE(�i,�j) = �2 exp

(
−d2(�i,�j)

/
l2
)
 to cap-

ture non-linear dependencies of input features and Noise kernel Kn(�i,�j) = �2
n
�ij to model

the noise � in (1), where �ij = {1 if i = j, 0 o.w} . Therefore, the combined kernel can be
written as follows

where � = [� , l, �n]
T is the vector of hyperparameters that should be optimized in the

training phase, and d is the Euclidean distance between two vectors �i and �j . In order
to optimize the hyperparameters, the multivariate probability density function (PDF) of
observations can be maximized as follows

where p(�) is the multivariate PDF as follows

Thus, the objective function in (5) can be written as follows

The Eq. (5) is a non-convex optimization problem; however, a gradient-based optimizer
can be used to solve this problem for a locally optimum point such as conjugate gradient
algorithm (Nocedal and Wright 2006). The conjugate gradient requires the first order gra-
dient, which for the jth hyperparameter can be derived as follows

where ��
��j

∈ ℜN×N is a squared matrix, and its elements are calculated by gradient of the jth
hyperparameter. The ∇L(�j) is calculated for all hyperparameters, and then, they can be fed
to the jth element of gradient vector � = [∇L(�1),∇L(�2),… ,∇L(�G)]

T , which here
G = 3 , since there are three hyperparameters for definition of kernel function in (4). The
hyperparameters in � are updated till reaching a convergence point.

(3)� ∼ GP(�,�),

(4)K(�i,�j) = �2 exp

(
−
d2(�i,�j)

l2

)
+ �2

n
�ij,

(5)𝜽̃ = argmax
𝜽

log(p(�)) = argmin
𝜽

(− log(p(�))),

(6)p(�) =
1

(2�)N∕2|�|1∕2 exp(−
1

2
�T�−1�),

(7)L(�) = − log p(�) =
1

2
log |�| + N

2
log(2�) +

1

2
�T�−1� .

(8)∇L(�j) = −
1

2
tr((��T − �−1)

��

��j
) where � = �−1� ,

1992	 Machine Learning (2022) 111:1987–2010

1 3

2.2 � Test phase of CGPR

The optimized function for prediction of outputs in the test phase is derived from the Bayes
theorem. Initially, the joint distribution of the test and train observations is written as
follows

where �̂ is a vector contains the outputs of test data, � = �(�, �) ∈ ℜN×N is the covariance
matrix between train observations, �(�̂, �) = �T (�, �̂) ∈ ℜN̂×N is the covariance matrix
between the test and train observations, and �(�̂, �̂) ∈ ℜN̂×N̂ is the covariance matrix
between the test observations. The posterior distribution can be derived by conditioning
over the training observations �̂ |� as follows

where � is prediction of the output values, and � is the posterior covariance matrix whose
diagonal elements are predicted variances for the elements of �.

(9)
(
�

�̂

)
∼ N

[(
�

�

)
,

(
� �(�, �̂)

�(�̂, �) �(�̂, �̂)

)]

(10)
�̂ |� ∼ N(�, �)

� = �(�̂, �)�−1�

� = �(�̂, �̂) − �(�̂, �)�−1�(�, �̂)

Fig. 1   Multi-Task Learning structure

1993Machine Learning (2022) 111:1987–2010	

1 3

3 � Proposed joint GPR (JGPR)

This section describes the proposed multi-target regression algorithm, named joint
Gaussian process regression (JGPR). The structures of the MTL and multi-target regres-
sion algorithms are illustrated in Figs. 1 and 2, respectively. As can be seen in the multi-
target regression structure, the input features are the same for all targets, and this struc-
ture helps to reduce the complexity. Initially, the train and test phases of the JGPR are
explained in detail. Then, a pre/post-processing step is proposed that can be performed
before and after the training and test phases of JGPR, which is a crucial step to get equal
information from all targets in the optimization process. Finally, we discuss the conver-
gence and complexity analyses of the proposed JGPR.

3.1 � Training phase of JGPR

The CGPR is independently implemented for each output in multi-target regression
problems. Nevertheless, all outputs can contribute in the training phase. Although there
are other MTL-based GPR algorithms, most of them have high complexity, because they
have been designed for multi-task problems. The proposed algorithm has lower com-
plexity even compared with CGPR for L dimensional outputs, which will be discussed
in Sect. 3.5. The basic idea behind this algorithm is to use a shared covariance matrix
with the same hyperparameters across the targets. This strategy prevents the model from
overfitting problem since it is not fit to a single target as well. Assuming that there are
L targets, and � is a matrix that consists of all targets on its columns, the distribution of
input observations over these outputs can be written as follows

where � is the shared covariance matrix over all targets and is filled with a user-defined
kernel function as discussed in the previous section. The joint distribution of these targets
is as follows

(11)�i ∼ GP(�,�), where i = 1, 2, ...L

Fig. 2   Multi-Target Regression structure

1994	 Machine Learning (2022) 111:1987–2010

1 3

where p(�) = p(�1,�2,⋯ ,�L) is the joint distribution of all targets. In (12), the posterior
distributions cannot be derived, since they have a shared covariance matrix and hyperpa-
rameters. Even if the restriction does not exist, posterior derivation increases the complex-
ity. Here, it can be assumed that outputs are independent, since we already modeled the
dependency of output observations by a shared covariance matrix. Therefore, Eq. (12) is
simplified as follows

We propose the following optimization problem to obtain the hyperparameters

where the objective function is calculated as follows

The first-order gradient ∇L(�j) is needed for optimization process, where �j indicates the jth
hyperparameter. Therefore, we derive the gradient of objective function as presented below

where �i is calculated for each target independently. The term
∑L

i=1
�i[�i]

T
− L�−1 plays

a transfer knowledge role for optimization of the hyperparameters, and ∇L(�j) shows a

(12)
p(�) = p(�1,�2,⋯ ,�L) = p(�L|�L−1,�L−2,⋯ ,�1)

p(�L−1|�L−2,⋯ ,�1)⋯ p(�3|�2,�1) p(�2|�1) p(�1)

(13)p(�) = p(�1,�2,⋯ ,�L) =

L∏
i=1

p(�i)

(14)
𝜽̃ = argmax

𝜽

log(p(�1,�2,⋯ ,�L))

= argmin
𝜽

(− log(p(�1,�2,⋯ ,�L)))

(15)

L(�) = − log(p(�1,�2,⋯ ,�L))

=
1

2
log |�| + N

2
log(2�) +

1

2
[�1]T�−1�1+

1

2
log |�| + N

2
log(2�) +

1

2
[�2]T�−1�2+

⋮

1

2
log |�| + N

2
log(2�) +

1

2
[�L]T�−1�L

=
1

2

L∑
i=1

log |�| + N log(2�) + [�i]
T
�−1�i

(16)

∇L(�j) =
�(− log(p(�1,�2,⋯ ,�L)))

��j

= −

L∑
i=1

(
1

2
[�i]

T
�−1 ��

��j
�−1[�i]

T
−
1

2
tr(�−1 ��

��j
))

= −
1

2

L∑
i=1

tr((�i[�i]
T
− �−1)

��

��j
)

= −
1

2
tr((

L∑
i=1

�i[�i]
T
− L�−1)

��

��j
), where �i = �−1�i

1995Machine Learning (2022) 111:1987–2010	

1 3

sub-optimal direction. Here, the term
∑L

i=1
�i[�i]

T
− L�−1 also is interpreted as the overfit-

ting reduction part; because it hinders the hyperparameters from adapting to a single target
as well. The �ith can be calculated in matrix form for calculation of ∇L(�j) as follows

Then, a gradient-based algorithm can be utilized to optimize the hyperparameters (e.g.,
conjugate gradient algorithm).

3.2 � Test phase of JGPR

All targets have the same kernel function with the same hyperparameters during the
training and test phases, and due to having a shared covariance matrix, the joint distri-
bution of targets can be expressed as follows

The same scenario of (10) can be used to obtain the posterior distribution for each target.
Therefore, we can write the following distribution for prediction of the ith target

As can be seen, each target has its own prediction function �i , because the real train out-
puts �i are different for each target. However, all targets have the same posterior covariance
matrix �i . The posterior covariance matrix is not used for prediction of outputs; however,
we will discuss this issue in Sect. 3.3 in more detail.

3.3 � Target equalization

The proposed JGPR algorithm is more robust when all targets’ values are in the same
range. This condition helps the ∇L(�j) to extract equal information from each output
variable, since the matrix � is directly related to the gradient direction and computed by
� = �−1� . However, sometimes the outputs are not in the same range and have diverse
effects on the gradient direction ∇L(�j) . To tackle this problem, the output variables can
be normalized or standardized before the training phase. Generally, the scaling function
can be written in the following form

where �i is the real values of the ith train target, �i
sc

 is the scaled values of the ith target, �i
and �i are defined based on standardization or normalization process. In the normalization
process, these two parameters are described below

(17)
∇L(�j) = −

1

2
tr((��T − L�−1)

��

��j
)

where, � = �−1�

(18)

(
�i

�̂i

)
∼ N

[(
�

�

)
,

(
� �(�, �̂)

�(�̂, �) �(�̂, �̂)

)]

i = 1, 2, ...,L

(19)
�i = �(�̂, �)�−1�i

�i = �(�̂, �̂) − �(�̂, �)�−1�(�, �̂)

i = 1, 2, ...,L

(20)�i
sc
=

�i − �i
�i

, i = 1, 2, ..., L

1996	 Machine Learning (2022) 111:1987–2010

1 3

and in the standardization process, the mentioned parameters are defined as follows

After the normalization process, all outputs fall into the [0, 1] range, and by using the
standardization process, the output variables have a zero-mean normal distribution with
unit variance. In the training phase, the model is trained via the �sc instead of � . Therefore
in the test phase, the predicted outputs are in the same range as �sc . We can re-scale the
distribution of the estimated outputs to real ranges via the following equations

where �i
re

 and �i
re

 are the ith rescaled estimation target and corresponding covariance
matrix, respectively. This pre/post-processing also can solve the problem presented in
Sect. 3.2, which concerns the equal estimated of posterior covariance matrix for all targets
in (24), since the covariance matrices for each target are different for all targets due to the
�2

i
 term in (23).

3.4 � Convergence analysis of JGPR

In this section, we provide a theoretical analysis for the convergence of proposed JGPR algo-
rithm. Initially, we need the below Lemma to provide a rigorous proof for the JGPR.

Lemma  If a sequence is bounded from below and monotonically decreased, it will
converge.

It should be proved that the objective function in (15) is bounded from below. We know
that the inequality 0 < ∫ �i ��

�i � ∫ ���

��
p(�i,�) d�d�i < 1 holds for the ith target, where ∫ �i′′

�i′ . d�i

and ∫ �′′

�′
. d� are translated to ∫ �i′′

N

�i′

N

⋯ ∫ �i′′

1

�i′

1

.d�i
N
⋯ d�i

1
 and ∫ � ′′

� ′
∫ l′′

l′
∫ �′′

n

�′
n

. d�ndl d� , respec-

tively. The same concept holds for joint distribution of all targets p(�;�) as follows

where the multiple integral ∫ �
′′

�′ .d� is translated to ∫ �L��

�L� ∫ �(L−1)��

�(L−1)� ⋯ ∫ �1��

�1� . d�Ld�L−1 ⋯ d�1 .

The above inequality can be multiplied by a constant 1
�

(21)
�i = min(�i)

�i = max(�i) −min(�i)

i = 1, 2, ...,L

(22)
�i = mean(�i)

�i = variance(�i)

i = 1, 2, ...,L

(23)
�i
re
= �i

re
� i + �i

�i
re
= �i

re
�2

i

i = 1, 2, ...,L

(24)
0 < ∫

���

�� ∫
���

��
p(�;�) d� d� < 1

0 < ∫
���

�� ∫
���

��

L∏
i=1

p(�i;�) d� d� < 1

1997Machine Learning (2022) 111:1987–2010	

1 3

where (�i�� − �i�) and (��� − ��) are translated to (�i��

N
− �i�

N
)(�i��

N−1
− �i�

N−1
)⋯ (�i��

1
− �i�

1
)

and (� �� − � �)(l�� − l�)(���
n
− ��

n
) , respectively. Now, we can get the − log from the above

inequality

where � = log (�) and from the Jensen’s inequality (Kuczma, 2009) we can write

The middle term of the above inequality is the average of L(�,�) over the ranges of �i and
� , where 1 ≤ i ≤ L . For simplicity we use � to indicate all targets ( �ith ). Here, there are two
possible presumptions for L(�,�)

1.	 L(�,�) is higher than that of � for all ranges of � and � . In this case, the L(�,�) is
bounded from below because of the primary assumption L(�,�) > �.

2.	 L(�,�) is higher than that of � for some ranges of � and � , and smaller than that of �
for the other ranges. We shall first consider the symbol 𝛥 for sum of the areas where
L(�,�) > � , and the symbol �

−
 for sum of the areas where L(�,�) < � . Then with respect

to (27), we can conclude that 𝛥 > 𝛥
−

 , and �
−

 must finite. In order to prove the finiteness
of �

−
 , the inequality (27) can be decomposed into several parts such that L(�,�) does

not cross over the � on those regions. Therefore, the inequality (27) can be written as
follows

 where 𝛥 + 𝛥
−
∕(��� − ��)(��� − ��) is the average of L(�,�) over all regions. The

inequality (28) holds when 𝛥 > 𝛥
−
 , and �

−
 must be finite. This means that L(�,�) is

bounded from below. Since sum of the regions under the � must be finite, it implies the
limitation of L(�,�) under the constant �.

It can be concluded that the L(�,�) is converged; because, it is bounded from below and
monotonically decreases by a gradient based algorithm.

3.5 � Complexity analysis

Here, we compare the multiplication complexity of the proposed JGPR and CGPR in multi-
target regression problems. The O notation is used to indicate the order of complexity.

(25)
0 <

1

�∫
���

�� ∫
���

��

L∏
i=1

p(�i;�) d� d� <
1

�

� = (�L�� − �L�)⋯ (�1�� − �1�)(��� − ��)

(26)� < − log

(
1

� ∫
���

�� ∫
���

��

L∏
i=1

p(�i;�)d�d�

)

(27)
� <

1

�∫
���

�� ∫
���

��
− log

(
L∏
i=1

p(�i;�)

)
d� d�

� <
1

�∫
���

�� ∫
���

��
L(�;�) d� d�

(28)� <
1

��� − ��

1

��� − ��
(𝛥 + 𝛥

−
)

1998	 Machine Learning (2022) 111:1987–2010

1 3

Complexity of CGPR in the training phase: The conjugate gradient algorithm for opti-
mization process only needs ∇L(�) to optimize the hyperparameters, where the complexity
of the first-order gradient is O(N3) due to the need for inversion of covariance matrix in (8).
The other operations such as matrix elements’ calculations of ��

��j
 and � lead to O(MN2)

computation cost. Assuming that M ≪ N , the complexity of CGPR is O(N3) in the training
phase. Therefore, the implementation of CGPR in multi-target regression algorithm forces
O(LN3) calculation cost.

Complexity of CGPR in the Test Phase: Calculation of matrix elements in (10), including
�(�̂, �̂) and �(�̂, �) have O(MN̂2) and O(MNN̂) costs, respectively. The other conclusions are
based on the assumption that M ≪ N and N̂ ≪ N are satisfied. To calculate the � we must
pay O(N3) , O(N2) and O(N̂N) computation costs for �1 = �−1 , �2 = �1� and �(�̂, �)�2 ,
respectively. Therefore, the complexity of calculating � is O(N3) . Also, to calculate the � we
must pay O(N3) , O(N2N̂) and O(N̂2N) computation costs for �1 = �−1 , �2 = �1�

T (�̂, �) and
�(�̂, �)�2 , respectively. Therefore, the complexity of calculating � is O(N3) . When this pro-
cess implemented for L targets, the complexity will be O(LN3) for both � and �.

Complexity of JGPR in the training phase: The proposed JGPR in the training phase is
not implemented for each target independently. We use a shared covariance matrix for all
targets and need the gradient of the introduced objective function, which has been stated
in (17). To calculate the gradient of objective function in (17), we must pay O(LN2 + N3)
cost for � = �−1� . Therefore, if L ≤ N , the complexity of calculating � is O(N3) . Also, the
complexity calculation of ��T is O(LN2) . By doing so, the complexity of calculating ∇L(�)
equals to O(N3) . While this process is not repeated for each target independently. Thus, the
complexity of JGPR in the training phase equals to O(N3).

Complexity of JGPR in the test phase: To calculate the �i in (19), the �(�̂, �)�−1 is the
same for all targets, which forces O(N3) complexity due to inversion of the training covari-
ance matrix. Then, it is multiplied by �i with complexity of O(N̂N) , and for the L targets
the complexity equals to O(LN̂N) . If N̂ ≪ N and L̂ ≪ N , the complexity calculation of
targets equals to O(N3) . Since the posterior covariance matrix �i is equal for all targets in
(19), the complexity of this process is O(N3).

4 � Experiments

In this section, we perform extensive experiments in both the simulated data and real-world
datasets to show the effectiveness of the proposed JGPR algorithm. Accuracy is measured
in terms of relative root mean squared error (RRMSE). The simulated data figuratively
helps to understand the effect of simultaneous optimization in the training phase of JGPR
to reduce the overfitting problem, and the real-world datasets show the robustness of the
proposed algorithm compared with that of others.

4.1 � Evaluation metric

In the first experiment, two toy problems are investigated to compare our proposed JGPR
algorithm with the CGPR. In the second experiment, the JGPR is scrutinized on 18

1999Machine Learning (2022) 111:1987–2010	

1 3

real-world benchmark datasets and compared with other algorithms. The RRMSE metric is
used for the experiments, which is defined as follows

where N̂ is the number of test observations, ŷi is the ith estimated test value, yi is the ith real
test value, and ȳ is the average of outputs within the training set. In this paper, � = �̂ and
�̂ = � . For multi-target regression problems, the RRMSE is independently computed for
each output variable, and the averages of RRMSEs (aRRMSE) are reported.

The JGPR has been written in the R programming language1 using Microsoft Open R
(MOR version 3.5.3) due to its parallel computation ability and high-speed performance.
We run the implemented code on 64-bit operating system PC with the processor Intel(R)
Core(TM) i7-6700 CPU @ 3.4 GHz, and 16 GB RAM.

(29)RRMSE =

√√√√√√√√√√√

N̂∑
i=1

(
yi − ŷi

)2

N̂∑
i=1

(
yi − ȳ

)2

Fig. 3   Simulation results for the toy problem in experiment 1, consists of 8 shifted sinusoidal functions

Table 1   Comparison of CGPR and proposed JGPR in terms of RRMSE, where Ti is the ith target

Bold numbers are the best results

T1 T2 T3 T4 T5 T6 T7 T8 aRRMSE

JGPR 0.428 0.619 0.339 0.583 0.579 0.639 0.441 0.637 0.533
CGPR 0.479 1.162 0.361 0.762 0.684 0.624 0.442 0.718 0.654

1  The code is available in: https://​github.​com/m-​nabati/​JGPR/​tree/​main

https://github.com/m-nabati/JGPR/tree/main

2000	 Machine Learning (2022) 111:1987–2010

1 3

4.2 � Experiment 1

In this experiment, we use 8 shifted sinusoidal functions for generating multi-target sam-
ples. Then, Gaussian noise with zero mean and 0.8 deviant is added to the generated sam-
ples of these 8 functions independently as follows

where �i ∼ N(0, 0.8) . Here, we compare the JGPR with CGPR in terms of RRMSE, which
is depicted in Table 1. The last column in this table shows the average RRMSE (aRRMSE)
over targets. As can be seen in Table 1, the proposed JGPR on most targets has better per-
formance compared with CGPR. The reason is that sometimes the CGPR algorithm is
overfitted in the training phase, as depicted in Fig. 3. In this figure, the green solid lines
show real sine functions, the cyan points are noisy observations which are used for the
training phase, deep pink dotted lines are the outputs predicted by CGPR, and dashed blue
lines are outputs predicted by the JGPR algorithm.

To more precisely compare the CGPR and JGPR, we run the algorithms with different
noise levels (noise deviants). At each noise deviant, the algorithms are run with different
seeds, and the average of aRRMSE is plotted in Fig. 4a. As can be seen, the proposed JGPR
has better performance, especially when the noise deviant is large. In the next step, we run
the algorithms in another toy problem. We test the algorithms over the following targets

where �i is the noise added to the real function. The aRRMSE of algorithms are plotted in
Fig. 4b for this problem. As can be seen, the JGPR again achieves better results compared
with CGPR in the new toy problem, and this shows the robustness of the proposed method.

4.3 � Experiment 2

In this experiment, we use 18 real-world datasets2 to compare the proposed JGPR with
the other algorithms. We directly report the results from Spyromitros-Xioufis et al. (2016)
and Zhen et al. (2018), and follow the same simulation methodologies (such as using

(30)�i = sin(x + 0.2(i − 1)) + �i, i = 1, 2, ..., 8

(31)�i = sin(6x + 0.2(i − 1)) + x + �i, i = 1, 2, ..., 8

(a) (b)

Fig. 4   Comparing CGPR and JGPR algorithms with different noise deviants for a toy problem 1 in Eq. 30
and b toy problem 2 in Eq. 31

2  The datasets can be downloaded from: https://​github.​com/​lefman/​mulan-​exten​ded/​tree/​master/​datas​ets

https://github.com/lefman/mulan-extended/tree/master/datasets

2001Machine Learning (2022) 111:1987–2010	

1 3

cross-validation, choosing the number of folds, choosing targets of datasets, etc.) that have
been performed by Spyromitros-Xioufis et al. (2016). In the following, we describe the
datasets and the strategies which are conducted for simulations.

Solar Flare (SF): The solar flare dataset (Lichman, 2013) consists of two versions, and
the goal is to predict 3 output variables from 10 input features. The outputs are not continu-
ous variables. However, the regression algorithms can be used to predict these categorical
variables.

JURA: In this dataset (Goovaerts et al., 1997), seven heavy metals concentrations, in
addition to the land and rock types, have been collected at 359 locations. Three out of
seven metals that are more expensive than the others are used for output variables, and the
outputs are continuous.

Water Quality (WQ): The water quality dataset (Džeroski et al., 2000) consists of 14
output variables that have been gathered for six years from most of the Slovenian rivers,
and the outputs are categorical variables. Also, there are 16 physical and chemical input
features to predict the outputs.

Energy Building (ENB): The energy building dataset (Tsanas and Xifara, 2012) has
been generated by Ecotect software on 12 buildings. The goal is to find a relation between
building features (including surface area, wall area, etc.) and two continuous output vari-
ables (heating cool and loading cool). These two variables are needed to maintain comfort-
able indoor air conditions.

Electrical Discharge Machining (EDM): The EDM dataset (Karalič and Bratko, 1997)
has two categorical output variables and 16 continuous input features. The goal is to
decrease the machining time via reproducing human operator behavior that adjusts the val-
ues of output variables.

SLUMP: In this dataset (Yeh, 2007), the slump flow is used as an output variable to cre-
ate high-performance concrete. However, Spyromitros-Xioufis et al. (2016) use 3 output
variables. Both of the input features and output variables are continuous.

ANDRO: The Andromeda dataset (Hatzikos et al., 2008) has been collected by the
under-water system based on a set of sensors. The goal is to predict the quality of seawater,
which is determined by 6 continuous variables (the outputs) based on 30 continuous input
features.

Occupational Employment Survey (OES): There are two versions for the OES dataset
(Spyromitros-Xioufis et al., 2016), which have been collected in 1997 (OES97) and 2010
(OES10). In both versions, each sample includes full-time equivalent employees across
many employment types. Among the employment types, 10 variables have randomly been
selected as outputs.

OSALES: The goal of this dataset (Spyromitros-Xioufis et al., 2016) is to find a function
for the prediction of online sales of consumer products. There are 12 output variables and
401 input features. The missing values are imputed by samples’ mean.

See Click Predict Fix (SCPF): In this dataset (Spyromitros-Xioufis et al., 2016), the
goal is to find the number of clicks, views, and comments (The outputs), which show the
reaction of people on 311 topics. There are 23 input features (including city, source, etc.)
and the missing values are imputed by samples’ mean.

Airline Ticket Price (ATP): There are two versions for this dataset (Spyromitros-Xioufis
et al., 2016). One of them (ATP1D) concerns the prediction of the ticket price for the next
day, and the goal of the other one (ATP7D) is to predict the minimum ticket price after 7
days with 411 input features.

River Flow (RF): In the river flow dataset (Spyromitros-Xioufis et al., 2016), the goal
is to find the river network flows for 48 hours in the future based on previous states in the

2002	 Machine Learning (2022) 111:1987–2010

1 3

past (6, 12, 18, 24, 30, 36, 48 past hours). There are two versions for this dataset (RF1 and
RF2), and the missing values are imputed by samples’ mean.

Supply Chain Management (SCM): The SCM dataset (Spyromitros-Xioufis et al., 2016)
has two versions with the goal of predicting the mean price for the next day (SCM1D)
and 20 days (SCM20D) in the future. There are 280 and 61 input features for SCM1D and
SCM20D, respectively.

A summary of these datasets is stated in Table 2. Due to the high computations, two-
fold and five-fold cross-validation is used for large datasets3. Some of the outputs are not
continuous, and the ranges of these values are limited; therefore, we tick them as categori-
cal variables. We also define a criterion, named the average of absolute correlation (AAC),
which shows the average of targets’ correlation for a dataset. The Pearson correlation coef-
ficient (Benesty et al., 2009) between two vector variables is calculated as follows

Table 2   A summary description of 18 benchmark datasets used in experiments. Cat O shows the type of
outputs whether they are categorical or continuous. AAC indicates the average of absolute correlation,
which is defined in (33)

Dataset Observation (N) Inputs (M) Targets (L) k-fold cv Cat O AAC​

SF1 323 10 3 10 ✓ 0.231
SF2 1066 10 3 10 ✓ 0.199
JURA​ 359 15 3 10 ✗ 0.199
WQ 1060 16 14 10 ✓ 0.095
ENB 768 8 2 10 ✗ 0.975
EDM 154 16 2 10 ✓ 0.005
SLUMP 103 7 3 10 ✗ 0.417
ANDRO 49 30 6 10 ✗ 0.396
OES97 334 263 16 10 ✗ 0.786
OES10 403 298 16 10 ✗ 0.822
OSALES 639 401 12 10 ✓ 0.621
SCPF 1137 23 3 10 ✓ 0.734
ATP1D 337 411 6 10 ✗ 0.795
ATP7D 296 411 6 10 ✗ 0.677
RF1 9125 64 8 5 ✗ 0.391
RF2 9125 576 8 5 ✗ 0.391
SCM1D 9803 280 16 2 ✗ 0.638
SCM20D 8966 61 16 2 ✗ 0.596

3  Since large datasets have enough samples, it is reliable to perform the experiments with 2-fold and 5-fold
cross-validation, and this reliability previously has been reported by Spyromitros-Xioufis et al. (2016).

2003Machine Learning (2022) 111:1987–2010	

1 3

where N is the number of all samples, � = [u1, u2, ..., uN] and � = [w1,w2, ...,wN] are
two output vectors, ū and w̄ are averages of � and � , respectively. The AAC is defined as
follows

where � =
L2−L

2
 is the number of elements in lower triangular of the correlation matrix. L2

is the number of all elements in the correlation matrix, L the number of diagonal elements
must be subtracted from the number of all elements. Considering only the lower triangular
elements, the result L2 − L must be divided by 2. The summations

∑L

i=1

∑i

j=2
 probe the ele-

ments in the lower triangular matrix, and |.| returns the absolute value.

(32)

𝜌(�,�) =
E
�
(� − ū)T (� − w̄)

�
�

E
�
(� − ū)T (� − ū)

�
E
�
(� − w̄)T (� − w̄)

�

=

N∑
i=1

(ui − ū)(wi − w̄)

�
N∑
i=1

(ui − ū)2
N∑
i=1

(wi − w̄)2

(33)AAC =
1

�

L∑
i=1

i∑
j=2

|||�(�
i,�j)

|||

(a) (b)

Fig. 5   pairwise correlation between targets of a WQ and b OSALES datasets. The right-skewed shows the
positive correlation and the left-skewed means negative correlation

2004	 Machine Learning (2022) 111:1987–2010

1 3

Ta
bl

e 
3  

aR
R

M
SE

 p
er

fo
rm

an
ce

 o
f p

ro
po

se
d

JG
PR

 a
lg

or
ith

m
 c

om
pa

re
d

w
ith

 o
th

er
s

B
ol

d
nu

m
be

rs
 a

re
 th

e
be

st
re

su
lts

M
M

R
ST

SS
T

ER
C

R
LC

M
O

R
F

M
SV

R
A

K
R

F
M

TF
L

M
RO

TS
O

K
L

C
G

PR
JG

PR

SF
1

0.
95

8
1.

13
5

1.
06

8
1.

08
9

1.
16

3
1.

28
2

1.
02

1
1.

11
4

1.
11

2
1.

15
5

1.
05

9
0.

87
1

0.
82
6

SF
2

0.
98

4
1.

14
9

1.
05

5
1.

08
8

1.
22

8
1.

42
5

1.
04

3
1.

13
5

1.
12

7
1.

20
1

1.
00

4
0.

86
0

0.
82
0

JU
R

A
​

0.
58

2
0.

58
9

0.
59

1
0.

59
0

0.
59

6
0.

59
7

0.
61

1
0.

61
8

0.
60

8
0.

62
5

0.
59

9
0.

65
7

0.
57
7

W
Q

0.
88
9

0.
90

8
0.

90
9

0.
90

6
0.

90
2

0.
89

9
0.

89
9

0.
91

8
0.

96
2

0.
91

3
0.

89
1

0.
92

1
0.

91
8

EN
B

0.
11

1
0.

11
7

0.
12

1
0.

11
4

0.
12

0
0.

12
1

0.
22

0
0.

23
4

0.
31

6
0.

25
7

0.
13

8
0.

29
4

0.
06
3

ED
M

0.
71

6
0.

74
2

0.
74

0
0.

74
1

0.
73

5
0.

73
4

0.
73

7
0.

74
0

0.
85

1
0.

81
2

0.
74

1
0.

84
6

0.
69
7

SL
U

M
P

0.
58

7
0.

68
8

0.
69

5
0.

68
9

0.
69

0
0.

69
4

0.
71

1
0.

72
9

0.
68

1
0.

77
8

0.
69

9
0.

62
0

0.
56
8

A
N

D
RO

0.
52

7
0.

60
2

0.
57

9
0.

56
7

0.
57

0
0.

51
0

0.
62

7
0.

62
3

0.
80

3
0.

63
5

0.
55

3
0.

70
7

0.
50
1

O
ES

97
0.

49
7

0.
52

5
0.

52
4

0.
52

4
0.

52
3

0.
54

9
0.

55
7

0.
58

1
0.

81
8

0.
60

5
0.

53
5

0.
55

5
0.
46
5

O
ES

10
0.

40
3

0.
42

0
0.

42
1

0.
42

0
0.

41
9

0.
45

2
0.

44
7

0.
44

6
0.

53
2

0.
55

8
0.

43
2

0.
43

6
0.
39
0

O
SA

LE
S

0.
70
9

0.
74

8
0.

72
6

0.
71

3
0.

74
1

0.
75

3
0.

77
8

0.
77

5
1.

68
2

0.
80

0
0.

71
8

0.
85

2
0.

79
8

SC
PF

0.
81

2
0.

83
7

0.
83

1
0.

83
0

0.
83

5
0.

83
3

0.
82

8
0.

83
1

0.
89

9
0.

90
1

0.
82

0
0.

84
4

0.
80
8

A
TP

1D
0.

33
2

0.
37

4
0.

37
2

0.
37

2
0.

38
4

0.
42

2
0.

38
1

0.
41

2
0.

41
5

0.
40

4
0.

36
4

0.
29

4
0.
22
6

A
TP

7D
0.

44
3

0.
52

5
0.

50
7

0.
51

2
0.

46
1

0.
55

1
0.

47
7

0.
53

1
0.

55
3

0.
54

9
0.

47
5

0.
26

6
0.
17
0

R
F1

0.
08
9

0.
09

7
0.

09
4

0.
09

1
0.

12
1

0.
12

3
0.

10
9

0.
11

4
0.

98
3

0.
15

4
0.

11
2

0.
14

0
0.
08
9

R
F2

0.
09

5
0.

10
2

0.
09

7
0.

09
5

0.
13

0
0.

14
8

0.
14

4
0.

15
7

1.
10

3
0.

19
8

0.
11

8
0.

27
5

0.
09
0

SC
M

1D
0.

31
8

0.
34

8
0.

33
6

0.
33

0
0.

34
5

0.
35

2
0.

36
7

0.
36

8
0.

43
7

0.
44

9
0.

34
2

0.
38

7
0.
30
9

SC
M

20
D

0.
38

9
0.

47
5

0.
41

3
0.

39
4

0.
44

3
0.

48
2

0.
49

3
0.

65
5

0.
64

3
0.

45
6

0.
44

3
0.

58
4

0.
37
7

2005Machine Learning (2022) 111:1987–2010	

1 3

We compare the JGPR with other algorithms including multi-layer multi-target regres-
sion (MMR) (Zhen et al., 2018), single-target regression (ST) (Spyromitros-Xioufis et al.,
2016), stacked single target (SST) (Spyromitros-Xioufis et al., 2016), ensemble of regres-
sor chains (ERC) (Spyromitros-Xioufis et al., 2016), random linear target combinations
(RLC) (Tsoumakas et al., 2014), multi-object random forests (MORF) (Kocev et al., 2007),
multi-dimensional support vector regression (M-SVR) (Sánchez-Fernández et al., 2004),
multi-task feature learning (MTFL) (Argyriou et al., 2007), multi-output regression with
output and task structures (MROTS) (Rai et al., 2012), output kernel learning (OKL)
(Dinuzzo et al., 2011) and CGPR.

The aRRMSE of algorithms for 18 benchmark datasets have been reported in Table 3.
As can be seen, the JGPR has better accuracy on most of the given benchmark datasets
unless in WQ and OSALES datasets. The experiments show that the JGPR does not work
properly for the categorical output variables as well as continuous ones. The WQ and
OSALES datasets contain the categorical variables on their targets. Also, the experimen-
tal results show that the JGPR does not need any correlation between the targets. Fig. 5a
shows the pairwise correlation between the output variables of the WQ dataset. As shown,
the correlations between the outputs are small. On the other side, the OSALES dataset
has sufficient correlation on its outputs, while JGPR does not increase the accuracy of this
dataset as well as the other methods. In Fig 5b, we plot the pairwise correlation between
outputs for the OSALES dataset. We conclude that the categorical variable is a poisonous
factor for the proposed JGPR, while it outperforms the accuracy over the datasets with con-
tinuous output variables.

In order to investigate the effect of output type, we have performed the friedman-nemenyi
test (Demšar, 2006) on the results of Table 3. Two different tests have been performed: one
test with all datasets and the other by excluding the datasets with categorical variables. In both
experiments, the null hypothesis is rejected ( p < 0.05 ), and we can further proceed with the
nemanyi post-hoc test. Instead of pair-wise comparison, we draw the visualization of result
proposed by Demšar (2006), which is known to critical difference (CD) plot. The results have
been plotted in Fig. 6 for these two tests. A CD plot shows the average rank and group of dif-
ferent algorithms, which are connected with distinct links. In Fig. 6a the proposed JGPR and
MMR are in the same group, and their average rank is similar. The reason is that the proposed
method does not have a good performance on the WQ and OSALES datasets, which have

Fig. 6   Friedman-nemanyi test for a all datasets and b excluding the datasets with categorical targets

2006	 Machine Learning (2022) 111:1987–2010

1 3

categorical targets. In Fig. 6b, we excluded the datasets with categorical targets. Although the
proposed JGPR is again in the same group as MMR, it stands in rank 1. It is a clear evidence
that a statistical test may not be able to find the significance of an algorithm. In other words,
the statistical test can say a group of algorithms are different from the other groups, and not
finding a difference between algorithms does not mean that their performance is equivalent
(Carrasco et al., 2020).

Besides the performance improvement, the proposed method does not implicate higher
complexity for performing the optimization and prediction. Here, we compare the complexity
of the proposed method with those algorithms that have provided the complexity analysis for
their models. The ST refers to the single target regression for each output independently and
could be any machine learning algorithm. According to the reports of Spyromitros-Xioufis
et al. (2016), which bagged regression trees has a better performance compared with other
methods, we report the complexity of STBAG which equals to O(NM2) and O(N log2 M) for
the training and test phases of a single target regression problem, respectively. For multi-target
regression problems with L targets, the ST has O(LNM2) and O(LN log2 M) complexity for
training and test phases. SST and ERC have the same complexity level for multi-target regres-
sion problems. According to Zhen et al. (2018), the MMR implies the complexity of O(N3) in
the training phase. The proposed method has a better performance compared with MMR in
most of the given benchmark datasets, and it has the same complexity level as MMR.

5 � Conclusion

In this paper, we studied the multi-task learning and multi-target regression problems
and presented the main difference between them. We emphasized that the input fea-
tures are different for the targets in multi-task learning problems, while for multi-target
regression is not the case. We proposed a novel multi-target regression-based GPR algo-
rithm, named joint GPR (JGPR), which solves a sub-optimal cost function to optimize
the hyperparameters of a shared covariance matrix between the targets. The proposed
method improved the accuracy of conventional GPR in toy problem and the other state-
of-the-art approaches on 16 out of 18 benchmark datasets. Experiments show that the
JGPR is not overfitted over each target during the training phase. Solving the sub-opti-
mal solution also helped to reduce the complexity. In the test phase, we did not use
other outputs’ information, while it can be considered as future work to design an algo-
rithm for capturing the other targets’ information in the test phase.

Appendix: detailed results for proposed JGPR method

c-class m-class x-class

SF1 1.014 0.990 0.474

2007Machine Learning (2022) 111:1987–2010	

1 3

c-class m-class x-class

SF2 1.049 1.004 0.408

Cd Co Cu

JURA​ 0.648 0.588 0.495

25400 29600 30400 33400 17300 19400 34500 38100 49700 50390 55800 57500 59300 37880

WQ 0.937 0.971 0.946 0.883 0.916 0.871 0.970 0.922 0.819 0.906 0.935 0.918 0.954 0.906

Y1 Y2

ENB 0.058 0.069

DFlow DGap

EDM 0.599 0.795

SLUMP_cm FLOW_cm Compressive_Strength_Mpa

SLUMP 0.814 0.730 0.162

Target Target_2 Target_3 Target_4 Target_5 Target_6

ANDRO 0.362 0.355 0.490 0.499 0.639 0.668

58028 15014 32511 15017 98502 92965 32314 13008 21114 85110 27311 98902 65032 92998 27108 53905

OES97 0.180 0.263 0.868 0.312 0.622 0.621 0.697 0.232 0.182 0.466 0.563 0.449 0.477 0.511 0.518 0.489

2008	 Machine Learning (2022) 111:1987–2010

1 3

513021 292071 392021 151131 151141 291069 119032 432011 419022 292037 519061 291051 172141 431011 291127 412021

OES10 0.362 0.321 0.420 0.440 0.403 0.596 0.310 0.337 0.574 0.297 0.346 0.206 0.558 0.189 0.481 0.409

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

OSALES 0.747 0.711 0.805 0.789 0.829 0.809 0.781 0.827 0.838 0.812 0.804 0.828

num_views num_votes num_comments

SCPF 0.753 0.730 0.942

’ALLminpA’ ’ALLminp0’ ’aCOminpA’ ’aDLminpA’ ’aFLminpA’ ’aUAminpA’

ATP1D 0.338 0.148 0.160 0.231 0.340 0.141

’ALLminpA’ ’ALLminp0’ ’aCOminpA’ ’aDLminpA’ ’aFLminpA’ ’aUAminpA’

ATP7D 0.234 0.025 0.176 0.183 0.245 0.158

CHSI2__0 NASI2__0 EADM7__0 SCLM7__0 CLKM7__0 VALI2__0 NAPM7__0 DLDI4__0

RF1 0.019 0.497 0.028 0.022 0.041 0.042 0.036 0.030

CHSI2__0 NASI2__0 EADM7__0 SCLM7__0 CLKM7__0 VALI2__0 NAPM7__0 DLDI4__0

RF2 0.016 0.470 0.029 0.025 0.049 0.057 0.043 0.034

LBL MTLp2 MTLp3 MTLp4 MTLp5 MTLp6 MTLp7 MTLp8 MTLp9 MTLp10 MTLp11 MTLp12 MTLp13 MTLp14 MTLp15 MTLp16

SCM1D 0.268 0.292 0.289 0.302 0.310 0.331 0.321 0.339 0.292 0.313 0.305 0.337 0.306 0.328 0.301 0.312

LBL MTLp2A MTLp3A MTLp4A MTLp5A MTLp6A MTLp7A MTLp8A MTLp9A MTLp10A MTLp11A MTLp12A MTLp13A MTLp14A MTLp15A MTLp16A

SCM20D 0.338 0.353 0.363 0.371 0.378 0.394 0.379 0.380 0.371 0.394 0.384 0.407 0.392 0.395 0.368 0.379

2009Machine Learning (2022) 111:1987–2010	

1 3

Author Contributions  MN proposed and implemented the idea and wrote the first draft of the paper. SAG
managed the project and revised the paper, and RS has contributed to the revision of the paper.

Funding  Not Applicable.

Data availability  The datasets can be downloaded from: https://​github.​com/​lefman/​mulan-​exten​ded/​tree/​
master/​datas​ets

Declaration 

Conflict of interest  The authors declare that they have no conflict of interest.

Code availability  The implementation of the proposed JGPR is available at: https://​github.​com/m-​nabati/​
JGPR/​tree/​main (R programming language).

References

Álvarez, M., Luengo, D., Titsias, M., Lawrence, N. D. (2010). Efficient multioutput gaussian processes
through variational inducing kernels. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 25–32.

Álvarez, M. A., & Lawrence, N. D. (2011). Computationally efficient convolved multiple output gaussian
processes. The Journal of Machine Learning Research, 12, 1459–1500.

Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D. W., & O’Neil, M. (2016). Fast direct meth-
ods for gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2),
252–265.

Argyriou, A., Evgeniou, T., Pontil, M. (2007) Multi-task feature learning. In Advances in neural information
processing systems, pp. 41–48.

Benesty, J., Chen, J., Huang, Y., Cohen, I. (2009) Pearson correlation coefficient. In Noise reduction in
speech processing, Springer, pp. 1–4.

Bonilla, E. V., Chai, K. M., Williams, C. (2008). Multi-task gaussian process prediction. In Advances in
neural information processing systems, pp. 153–160.

Carrasco, J., García, S., Rueda, M., Das, S., & Herrera, F. (2020). Recent trends in the use of statistical
tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a criti-
cal review. Swarm and Evolutionary Computation, 54, 100665.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine
Learning Research, 7, 1–30.

Dinuzzo, F., Ong, C. S., Pillonetto, G., Gehler, P. V. (2011). Learning output kernels with block coor-
dinate descent. In Proceedings of the 28th International Conference on Machine Learning (ICML-
11), pp. 49–56.

Džeroski, S., Demšar, D., & Grbović, J. (2000). Predicting chemical parameters of river water quality
from bioindicator data. Applied Intelligence, 13(1), 7–17.

Goovaerts, P., et al. (1997). Geostatistics for natural resources evaluation. Oxford University Press on
Demand.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining,
inference, and prediction. Springer.

Hatzikos, E. V., Tsoumakas, G., Tzanis, G., Bassiliades, N., & Vlahavas, I. (2008). An empirical study
on sea water quality prediction. Knowledge-Based Systems, 21(6), 471–478.

Karalič, A., & Bratko, I. (1997). First order regression. Machine learning, 26(2–3), 147–176.
Kocev, D., Vens, C., Struyf, J., Džeroski, S. (2007) Ensembles of multi-objective decision trees. In Euro-

pean conference on machine learning, Springer, pp. 624–631.
Kuczma, M. (2009). An introduction to the theory of functional equations and inequalities: Cauchy’s

equation and Jensen’s inequality. Springer Science & Business Media.
Li, G., Hoi, S. C. H., Chang, K., Liu, W., & Jain, R. (2014). Collaborative online multitask learning.

IEEE Transactions on Knowledge and Data Engineering, 26(8), 1866–1876.
Lichman M (2013) Uci machine learning repository. http://​archi​ve.​ics.​uci.​edu/​ml
Liu, Y., Starzyk, J. A., & Zhu, Z. (2008). Optimized approximation algorithm in neural networks without

overfitting. IEEE Transactions on Neural Networks, 19(6), 983–995.

https://github.com/lefman/mulan-extended/tree/master/datasets
https://github.com/lefman/mulan-extended/tree/master/datasets
https://github.com/m-nabati/JGPR/tree/main
https://github.com/m-nabati/JGPR/tree/main
http://archive.ics.uci.edu/ml

2010	 Machine Learning (2022) 111:1987–2010

1 3

Melki, G., Cano, A., Kecman, V., & Ventura, S. (2017). Multi-target support vector regression via cor-
relation regressor chains. Information Sciences, 415, 53–69.

Nabati, M., Ghorashi, S. A., & Shahbazian, R. (2021). Joint coordinate optimization in fingerprint-based
indoor positioning. IEEE Communications Letters, 25(4), 1192–1195. https://​doi.​org/​10.​1109/​
LCOMM.​2020.​30473​52

Nguyen, T. N. A., Bouzerdoum, A., & Phung, S. L. (2018). Stochastic variational hierarchical mixture of
sparse gaussian processes for regression. Machine Learning, 107(12), 1947–1986.

Nguyen, T. V., Bonilla, E. V., et al. (2014). Collaborative multi-output gaussian processes. In UAI, pp.
643–652.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business Media.
Petković, M., Kocev, D., & Džeroski, S. (2020). Feature ranking for multi-target regression. Machine

Learning, 109(6), 1179–1204.
Rai. P., Kumar, A., Daume, H. (2012) Simultaneously leveraging output and task structures for multiple-

output regression. In Advances in Neural Information Processing Systems, pp. 3185–3193.
Sánchez-Fernández, M., de Prado-Cumplido, M., Arenas-García, J., & Pérez-Cruz, F. (2004). Svm

multiregression for nonlinear channel estimation in multiple-input multiple-output systems. IEEE
transactions on signal processing, 52(8), 2298–2307.

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., & Vlahavas, I. (2016). Multi-target regression via
input space expansion: treating targets as inputs. Machine Learning, 104(1), 55–98.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple
way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1),
1929–1958.

Struyf, J., & Džeroski, S. (2005). Constraint based induction of multi-objective regression trees. In
International Workshop on Knowledge Discovery in Inductive Databases, Springer, pp. 222–233.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1), 267–288.

Tsanas, A., & Xifara, A. (2012). Accurate quantitative estimation of energy performance of residential
buildings using statistical machine learning tools. Energy and Buildings, 49, 560–567.

Tsoumakas, G., Spyromitros-Xioufis, E., Vrekou, A., Vlahavas, I. (2014) Multi-target regression via ran-
dom linear target combinations. In Joint european conference on machine learning and knowledge
discovery in databases, Springer, pp. 225–240.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning. MIT press
Cambridge.

Xu, Y., Li, X., Chen, D., & Li, H. (2018). Learning rates of regularized regression with multiple gaussian
kernels for multi-task learning. IEEE Transactions on Neural Networks and Learning Systems, 29(11),
5408–5418.

Yeh, I. C. (2007). Modeling slump flow of concrete using second-order regressions and artificial neural net-
works. Cement and concrete composites, 29(6), 474–480.

Zhang, Y., & Yang, Q. (2017) A survey on multi-task learning. arXiv preprint arXiv:​1707.​08114
Zhang, Y., & Yang, Q. (2021). A survey on multi-task learning. IEEE Transactions on Knowledge and Data

Engineering pp. 1.
Zhen, X., Yu, M., He, X., & Li, S. (2018). Multi-target regression via robust low-rank learning. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 40(2), 497–504.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1109/LCOMM.2020.3047352
https://doi.org/10.1109/LCOMM.2020.3047352
http://arxiv.org/abs/1707.08114

	JGPR: a computationally efficient multi-target Gaussian process regression algorithm
	Abstract
	1 Introduction
	2 Conventional GPR (CGPR)
	2.1 Training phase of CGPR
	2.2 Test phase of CGPR

	3 Proposed joint GPR (JGPR)
	3.1 Training phase of JGPR
	3.2 Test phase of JGPR
	3.3 Target equalization
	3.4 Convergence analysis of JGPR
	3.5 Complexity analysis

	4 Experiments
	4.1 Evaluation metric
	4.2 Experiment 1
	4.3 Experiment 2

	5 Conclusion
	References

