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Abstract
A novel multi-task Gaussian process (GP) framework is proposed, by using a common 
mean process for sharing information across tasks. In particular, we investigate the prob-
lem of time series forecasting, with the objective to improve multiple-step-ahead predic-
tions. The common mean process is defined as a GP for which the hyper-posterior distribu-
tion is tractable. Therefore an EM algorithm is derived for handling both hyper-parameters 
optimisation and hyper-posterior computation. Unlike previous approaches in the litera-
ture, the model fully accounts for uncertainty and can handle irregular grids of observa-
tions while maintaining explicit formulations, by modelling the mean process in a unified 
GP framework. Predictive analytical equations are provided, integrating information shared 
across tasks through a relevant prior mean. This approach greatly improves the predictive 
performances, even far from observations, and may reduce significantly the computational 
complexity compared to traditional multi-task GP models. Our overall algorithm is called 
Magma (standing for Multi tAsk GPs with common MeAn). The quality of the mean pro-
cess estimation, predictive performances, and comparisons to alternatives are assessed in 
various simulated scenarios and on real datasets.

Keywords  Multi-task learning · Gaussian processes · EM algorithm · Common mean 
process · Functional data analysis

1  Introduction

Gaussian processes (GPs) are a powerful tool, widely used in machine learning (Bishop, 
2006; Rasmussen & Williams, 2006). The classic context of regression aims at inferring 
the underlying mapping function associating input to output data. In a probabilistic frame-
work, a typical strategy is to assume that this function is drawn from a prior GP. Doing so, 
we may enforce some properties for the function solely by characterising the mean and 
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covariance functions of the process, the latter often being associated with a specific kernel. 
This covariance function plays a central role and GPs are an example of kernel methods. 
We refer to Álvarez et al. (2012) for a comprehensive review. On the other hand, the mean 
function is generally set to 0 for all entries assuming that the covariance structure already 
integrates the desired relationship between observed data and prediction targets. In this 
paper, we consider a novel multi-task learning framework where a series of GPs share a 
common mean, expressed as a GP as well. We demonstrate that modelling the mean func-
tion as such can be key to obtain more relevant predictions.

Related work
The multi-task framework consists in using data from several tasks (or individuals) to 

improve learning or predictive capacities compared to an isolated model. It has been intro-
duced by Caruana (1997) and then adapted in many fields of machine learning. GP versions 
of such models were introduced in Schwaighofer et al. (2004), which proposed an Expecta-
tion-Maximisation (EM) algorithm for learning. Similar techniques can be found in Shi et al. 
(2005). Meanwhile, Yu et al. (2005) offered an extensive study of the relationships between 
the linear model and GPs to develop a multi-task GP formulation. However, since the intro-
duction in Bonilla et  al. (2008) of the idea of two matrices, modelling covariance between 
inputs and tasks respectively, the term multi-task Gaussian process has mostly referred to the 
choice made regarding the covariance structure. Some further developments were discussed 
by Hayashi et al. (2012), Rakitsch et al. (2013) and Zhu & Sun (2014). In particular, an inter-
esting approach in Nguyen and Bonilla (2014) proposed a sparse approximation for multi-task 
GP inference. More generally, these approaches are known as examples of linear models of 
coregionalization (LMC) in the geostatistics literature, and Álvarez & Lawrence (2011) pro-
vides a unified view on the topic as well as an efficient strategy for constructing computation-
ally efficient approximations. Let us emphasise that the present paper is not based on the same 
assumptions and principles, and aims at defining a different multi-task paradigm for GPs, 
focusing on sharing information through the mean function rather than the covariance struc-
ture. Besides, the work of Swersky et al. (2013) on Bayesian hyper-parameter optimisation in 
such LMC models is also worth a mention. Real applications were tackled by similar models 
in Williams et al. (2009) and Alaa & van der Schaar (2017), while Clingerman & Eaton (2017) 
and Moreno-Muñoz et al. (2019) developed continual learning methods for multi-task GP.

As we focus on multi-task time series forecasting, a connection can be drawn to the 
study of multiple curves, or functional data analysis (FDA). As initially proposed in Rice & 
Silverman (1991), it is possible to model and learn mean and covariance structures simul-
taneously in this context. We refer to the monographs Ramsay & Silverman (2005) and 
Ferraty & Vieu (2006) for a comprehensive introduction to FDA. In particular, these books 
introduced several usual ways for modelling a set of functional objects in frequentist frame-
works, for example by using a decomposition in a basis of functions (such as B-splines, 
wavelets, Fourier). This kind of B-splines decomposition was used in Shi et al. (2007) for 
modelling the mean function in a generative model that somehow resembles ours. Subse-
quently, some Bayesian alternatives were developed in Thompson & Rosen (2008), and 
Crainiceanu & Goldsmith (2010).

Our contributions
A multi-task GP framework with a common mean process is introduced, allowing reli-

able probabilistic forecasts even in multiple-step-ahead problems, or for sparsely observed 
individuals. For this purpose, (i) we introduce a GP model where the specific covariance 
structure of each task is defined through a separate kernel and its associated set of hyper-
parameters, whereas the common mean function �0 allows sharing information across tasks 
and overcomes the weaknesses of classic GPs in making predictions far from observed 
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data. To account for uncertainty, we propose a hierarchical formulation to define the com-
mon mean process �0 as a GP as well. (ii) We derive an algorithm called Magma (available 
as an R package at https://​github.​com/​Arthu​rLeroy/​Magma​ClustR) to compute �0 ’s hyper-
posterior distribution together with the estimation of hyper-parameters in an EM fashion, 
and discuss its computational complexity. (iii) We enrich Magma with explicit formulas to 
make predictions for any new, partially observed, task. The hyper-posterior distribution of 
�0 provides a prior belief on what we would expect to observe before seeing any new data, 
acting as an already-informed mean process, integrating both trend and uncertainty coming 
from other tasks. (iv) We illustrate the performance of our method on synthetic and two 
real-life datasets and obtain state-of-the-art results compared to alternative approaches.

Outline
The paper is organised as follows. We introduce our multi-task Gaussian process model 

in Sect. 2, along with notation. Section 3 is devoted to the inference procedure, with an 
Expectation-Maximisation (EM) algorithm to estimate the Gaussian process hyper-param-
eters and �0 ’s hyper-posterior. We leverage this strategy in Sect.  4 and derive a predic-
tion algorithm. In Sect. 5, we analyse and discuss the computational complexity of both 
the inference and prediction procedures. Our methodology is illustrated in Sect. 6, with a 
series of experiments on both synthetic and real-life datasets, and a comparison to com-
peting state-of-the-art algorithms. On those tasks, we provide empirical evidence that our 
algorithm outperforms other approaches. Section 7 draws perspectives for future work, and 
we defer some proofs to original results claimed in the paper to Sect. 8.

2 � The model

2.1 � Notation

While GPs can handle many types of data, their continuous nature makes them particularly 
well suited to study temporal phenomena. Throughout, the term individual is used as a 
synonym of task or batch, and we adopt notation and vocabulary of time series to remain 
consistent with the application on real dataset provided in Sect. 6.5, which addresses young 
swimmers performances’ forecast.

We are provided with functional data coming from M ∈ I  different individuals, where 
I ⊂ ℕ . For each individual i, we observe a set of inputs {t1

i
,… , t

Ni

i
} and associated out-

puts {yi(t1i ),… , yi(t
Ni

i
)} , where Ni is the number of data points for the i-th individual. Since 

many objects are defined for all individuals, we shorten our notation as follows: for any 
object x existing for all i, we denote 

{
xi
}
i
=
{
x1,… , xM

}
 . Moreover, as we work in a tem-

poral context, the inputs are referred to as timestamps. In the specific case where all indi-
viduals are observed at the same timestamps, we call the grid of observations common. On 
the contrary, a grid of observations is uncommon if the timestamps are different in number 
and/or location among the individuals. Some convenient notation follows:

•	 �i = {t1
i
,… , t

Ni

i
} , the set of timestamps for the i-th individual,

•	 �i = yi(�i) , the vector of outputs for the i-th individual,

•	 � =
M⋃

i=1

�i , the pooled set of timestamps among individuals,

•	 N = card(�) , the total number of observed timestamps.

https://github.com/ArthurLeroy/MagmaClustR
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2.2 � Model and hypotheses

Suppose that functional data are coming from the sum of a mean process, common to all 
individuals, and an individual-specific centred process. To clarify relationships in the gen-
erative model, we illustrate our graphical model in Fig. 1. Let T  be the input space, our 
model is

where �0(⋅) ∼ GP(m0(⋅), k�0 (⋅, ⋅)) and fi(⋅) ∼ GP
(
0, c�i (⋅, ⋅)

)
 are respectively the com-

mon mean and individual specific processes. Moreover, the error term is supposed to be 
�i(⋅) ∼ N(0, �2

i
I) . The following notation is used for parameters:

•	 m0(⋅) , an arbitrary prior mean function,
•	 k�0 (⋅, ⋅) , a covariance kernel of hyper-parameters �0,
•	 ∀i ∈ I, c�i (⋅, ⋅) , a covariance kernel with hyper-parameters �i,
•	 �2

i
∈ ℝ

+ , the noise variance associated with the i-th individual,
•	 ∀i ∈ I, we define the shorthand ��i,�

2
i
(⋅, ⋅) = c�i (⋅, ⋅) + �2

i
I,

•	 � = {�0,
{
�i
}
i
,
{
�2
i

}
i
} , the set of all hyper-parameters to learn in the model.

We also assume that:

•	 {fi}i are independent,
•	 {�i}i are independent,
•	 ∀i ∈ I, �0 , fi and �i are independent.

It follows that {yi ∣ �0}i=1,…,M are independent from one another, and for all i ∈ I :

Let us emphasise that this property only holds conditionally to �0 . Otherwise, once �0 
is integrated out, the yi are no longer independent. Here, we do not assume any specific 
covariance structure between individuals contrarily to standard LMC approaches. As we 
shall see in the next sections, the process �0 will be key to handle the dependencies and 
share information across the individuals.

yi(t) = �0(t) + fi(t) + �i(t), ∀t ∈ T, ∀i ∈ I,

yi(⋅) ∣ �0(⋅) ∼ GP(�0(⋅),��i,�
2
i
(⋅, ⋅)).

Fig. 1   Graphical model of 
dependencies between vari-
ables in the Multi-task Gaussian 
Process model

yi

µ0

m0 θ0

fi

θi

εi σ2
i

N N

N

∀i ∈ I
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Although this model is based on infinite-dimensional GPs, the inference will be con-
ducted on a finite grid of observations. According to the aforementioned notation, we 
observe {(�i, �i)}i , and the corresponding likelihoods are Gaussian:

where � �i

�i,�
2
i

= ��i,�
2
i
(�i, �i) =

[
��i,�

2
i
(k, l)

]

k,�∈�i

 is a Ni × Ni covariance matrix. Since �i 

might be different among individuals, we also need to evaluate �0 on the pooled grid of 
timestamps �:

where ��
�0
= k�0 (�, �) =

[
k�0 (k,�)

]
k,l∈�

 is a N × N covariance matrix.
An alternative hypothesis consists in considering hyper-parameters 

{
�i
}
i
 and 

{
�2
i

}
i
 

equal for all individuals. We call this hypothesis Common HP (where HP stands for hyper-
parameters) in the Sect. 6. This particular case represents a context where individuals cor-
respond to different trajectories of the same process, whereas different hyper-parameters 
indicate different covariance structures and thus a more flexible model. For the sake of 
generality, the remainder of the paper is written with �i and �2

i
 notation, when there are 

no differences in the procedure. Moreover, the model above and the subsequent algo-
rithm may use any form of covariance function, often parametrised by a finite set (usually 
small) of hyper-parameters. For example, a common kernel in the GP literature is known 
as the Exponentiated Quadratic kernel (also called sometimes Squared Exponential or 
Radial Basis Function kernel). It solely depends on two hyper-parameters � = {v,�} and 
is defined as:

The Exponentiated Quadratic kernel is simple and enjoys useful smoothness properties. 
This is the kernel used in the current version of our implementation (see Sect. 6 for details). 
Note that there is a rich literature on kernel choice, their construction and properties, which 
is beyond the scope of the present work: we refer to Rasmussen and Williams (2006) or 
Duvenaud (2014) for comprehensive studies.

3 � Inference

3.1 � Learning

Several approaches to learn hyper-parameters for Gaussian processes have been pro-
posed in the literature, we refer to Rasmussen and Williams (2006) for a comprehen-
sive study. One classical approach, called empirical Bayes (Casella 1985), is based on 
the maximisation of an explicit likelihood to estimate hyper-parameters. This procedure 
avoids sampling from intractable distributions, usually resulting in additional computa-
tional cost and complicating practical use in moderate to large sample sizes. As previ-
ously stated, once �0 is marginalised out, the log-likelihood cannot be written as a sum 

�i ∣ �0(�i) ∼ N(�i;�0(�i),�
�i

�i,�
2
i

),

�0(�) ∼ N
(
�0(�);m0(�),�

�
�0

)
,

(1)kEQ
(
x, x�

)
= v2 exp

(

−

(
x − x�

)2

2�2

)

.
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of Gaussian log-likelihoods any more. Therefore, we propose an EM algorithm (see the 
pseudocode in Algorithm 1) to learn the hyper-parameters � in this context. The proce-
dure alternatively computes the hyper-posterior distribution p(�0 ∣ (�i)i, �̂) with current 
hyper-parameters, and then optimises � according to this hyper-posterior distribution. 
This EM algorithm converges to local maxima (Dempster et  al. 1977), typically in a 
handful of iterations.

E step
For the sake of simplicity, we assume in that section that ∀i, j ∈ I, �i = �j = � , i.e. the 

individuals are observed on a common grid of timestamps. We provide a generalisation of 
the following proposition in Sect. 4 (Proposition 4), where the result holds for uncommon 
grids. The E step then consists in computing the hyper-posterior distribution of �0(�).

Proposition 1  Assume the hyper-parameters �̂ known from initialisation or estimated from 
a previous M step. The hyper-posterior distribution of �0 remains Gaussian:

with

•	 �̂� =

�

��

�̂0

−1
+

M∑

i=1

� �

�̂i,�̂
2
i

−1

�−1

,

•	 m̂0(�) = �̂�

�

��

�̂0

−1
m0(�) +

M∑

i=1

� �

�̂i,�̂
2
i

−1
�i

�

.

Proof  We omit specifying timestamps in what follows since each process is evaluated on � . 
Therefore, we can write:

The term L1 = −(1∕2) log p(�0 ∣
{
�i
}
i
, �̂) may then be written as

(2)p
(
�0(�) ∣

{
�i
}
i
, �̂

)
= N

(
�0(�);m̂0(�), �̂

�
)
,

p
(
�0 ∣

{
�i
}
i
, �̂

)
∝ p

({
�i
}
i
∣ �0, �̂

)
p
(
�0 ∣ �̂

)

∝

{
M∏

i=1

p
(
�i ∣ �0, �̂i, �̂

2
i

)
}

p
(
�0 ∣ �̂0

)

∝

{
M∏

i=1

N
(
�i;�0,� �̂i,�̂

2
i

)
)
}

N
(
�0;m0,��̂0

)
.

L1 = −
1

2
log p(�0 ∣

{
�i
}
i
, �̂)

=

M∑

i=1

(
yi − �0

)⊺
�−1

�̂i,�̂
2
i

(
yi − �0

)
+
(
�0 − m0

)⊺
�−1

�̂0

(
�0 − m0

)
+ C1

=

M∑

i=1

�⊺

0
�−1

�̂i,�̂
2
i

�0 − 2�⊺

0
�−1

�̂i,�̂
2
i

�i + �⊺

0
�−1

�̂0
�0 − 2�⊺

0
�−1

�̂0
m0 + C2

= �⊺

0

(

�−1

�̂0
+

M∑

i=1

�−1

�̂i,�̂
2
i

)

�0 − 2�⊺

0

(

�−1

�̂0
m0 +

M∑

i=1

�−1

�̂i,�̂
2
i

�i

)

+ C2,
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where the constant terms are gathered into C1,C2 ∈ ℝ . Identifying terms in the quadratic 
form with the Gaussian likelihood, we get the desired result. 	�  ◻

The maximisation step depends on the assumptions on the generative model, result-
ing in two versions for the EM algorithm (the E step is common to both, the branching 
point is here).

M step: different hyper-parameters
Assuming each individual has its own set of hyper-parameters {�i, �2

i
} , the M step is 

given by the following procedure.

Proposition 2  Assume p(�0 ∣
{
�i
}
i
) = N

(
�0(�);m̂0(�), �̂

�
)
 computed in a previous E step. 

For a set of hyper-parameters � = {�0,
{
�i
}
i
,
{
�2
i

}
i
}, optimal values are given by

inducing M + 1 independent maximisation problems:

where

Proof  One simply has to distribute the conditional expectation in order to get the right like-
lihood to maximise, and then notice that the function can be written as a sum of M + 1 
independent (with respect to the hyper-parameters) terms. Moreover, by rearranging, one 
can observe that each independent term is the sum of a Gaussian likelihood and a correc-
tion trace term. See Sect. 8.2 for details. 	�  ◻

M step: common hyper-parameters
Alternatively, assuming all individuals share the same set of hyper-parameters 

{�, �2} , the M step is given by the following procedure.

Proposition 3  Assume p(�0 ∣
{
�i
}
i
) = N

(
�0(�);m̂0(�), �̂

�
)
computed in a previous E step. 

For a set of hyper-parameters � = {�0, �, �
2}, optimal values are given by

inducing two independent maximisation problems:

�̂ = argmax
�

��0∣{�i}i

[
p(
{
�i
}
i
,�0(�) ∣ �)

]
,

�̂0 = argmax
�0

L�
(
m̂0(�);m0(�),�

�
�0

)
,

(�̂i, �̂
2
i
) = argmax

�i,�
2
i

L�i (�i;m̂0(�),�
�i

�i,�
2
i

), ∀i,

L�(�;�,�) = logN(�;�,�) −
1

2
Tr
(
�̂��−1

)
.

�̂ = argmax
�

��0∣{�i}i

[
p(
{
�i
}
i
,�0(�) ∣ �)

]
,

�̂0 = argmax
�0

L�
(
m̂0(�);m0(�),�

�
�0

)
,

(�̂, �̂2) = argmax
�,�2

LM(�, �
2),
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where

Proof  We use the same strategy as for Proposition 2, see Sect. 8.2 for details. 	�  ◻

In both cases, explicit gradients associated with the likelihoods to maximise are available, 
facilitating the optimisation with gradient-based methods.

3.2 � Initialisation

To implement the EM algorithm described above, several constants must be (appropriately) 
initialised:

•	 m0(⋅) , the mean parameter from the hyper-prior distribution of the process �0(⋅) . A some-
what classical choice in GP is to set its value to a constant function, typically 0 in the 
absence of external knowledge. Notice that, in our multi-task framework, the influence of 
m0(⋅) in hyper-posterior computation decreases as M grows anyway (see Proposition 1).

•	 Initial values for kernel parameters �0 and 
{
�i
}
i
 . Those strongly depend on the chosen ker-

nel and its properties. We advise initiating �0 and 
{
�i
}
i
 with close values, as a too large 

difference might induce nearly singular covariance matrices and result in numerical insta-
bility (typical in GPs applications). In such pathological regime, the influence of a specific 
individual tends to overtake others in the calculus of �0 ’s hyper-posterior distribution.

•	 Initial values for the variance of the error terms 
{
�2
i

}
i
 . This choice mostly depends on the 

context and properties of the dataset. We suggest avoiding initial values with more than 
an order of magnitude different from the variability of data. In particular, a too high value 
might result in a model mostly capturing noise.

As a final note, let us stress that the EM algorithm depends on the initialisation and is only 
guaranteed to converge to local maxima of the likelihood function (McLachlan & Krishnan, 
2007). Several strategies have been considered in the literature to tackle this issue such as 
simulated annealing (Ueda & Nakano, 1998) or repeated short runs (Biernacki et al., 2003). In 
this work, we chose the latter option.

3.3 � Pseudocode

We wrap up this section with the pseudocode of the EM component of our complete algo-
rithm, which we call Magma (standing for Multi tAsk Gaussian processes with common 
MeAn). The corresponding code is available at https://​github.​com/​Arthu​rLeroy/​MAGMA. 

LM(�, �
2) =

M∑

i=1

L�i (�i;m̂0(�),�
�i

�,�2
).

https://github.com/ArthurLeroy/MAGMA
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Algorithm 1 Magma: EM component
Initialise m0 and Θ =

{
θ0, {θi}i ,

{
σ2
i

}
i

}
.

while not converged do
E step: Compute the hyper-posterior distribution

p(µ0 | {yi}i , Θ̂) = N (m̂0, K̂).

M step: Estimate hyper-parameter by maximising
Θ̂ = argmax

Θ
Eµ0|{yi}i

[
p({yi}i , µ0 | Θ)

]
.

end while
return Θ̂, m̂0, K̂.

3.4 � Discussion of EM algorithms and alternatives

Let us stress that even though we focus on prediction purpose in this paper, the output 
of the EM algorithm already provides results on related FDA problems. The generative 
model in Yang et al. (2016) describes a Bayesian framework that resembles ours to smooth 
multiple curves simultaneously. However, modelling variance structure with an Inverse-
Wishart process forces the use of an MCMC algorithm for inference or the introduction of 
a more tractable approximation in Yang et al. (2017). One can think of the learning through 
Magma and applying a single task GP regression on each individual as an empirical Bayes 
counterpart to their approach. Meanwhile, �0 ’s hyper-posterior distribution also provides 
the probabilistic estimation of a mean curve from a set of functional data. The closest 
method to our approach can be found in Shi et al. (2007) and the following book Shi & 
Choi (2011). The authors also work in the context of a multi-task GP model, and one can 
retrieve the idea of defining a mean function �0 to overcome the weaknesses of classic GPs 
in making predictions far from observed data. However, since their model uses B-splines to 
estimate this mean function, the method only works if all individuals share the same grid 
of observations, and does not account for uncertainty over �0.

4 � Prediction

Once the hyper-parameters of the model have been learned, we can focus on our main goal: 
prediction for new individuals at unobserved timestamps. Since �̂ is known and for the 
sake of concision, we omit conditioning on �̂ in the sequel. Note there are two cases for 
prediction (referred to as Type I and Type II in Shi & Cheng 2014, Section 3.2.1), depend-
ing on whether we observe some data or not for any new individual we wish to predict on. 
We denote by the index ∗ a new individual for whom we want to make a prediction, say 
at timestamps �p . If there are no available data for this individual, we have no ∗-specific 
information, and the prediction is merely given by p(�0(�

p) ∣
{
�i
}
i
) . This quantity may be 

considered as the ’generic’ (or Type II) prediction according to the trained model, and only 
informs us through the mean process. Computing p(�0(�

p) ∣
{
�i
}
i
) is also one of the steps 

leading to the prediction for a partially observed new individual (Type I). The latter being 
the most compelling case, we consider Type II prediction as a particular case of the full 
Type I procedure, described below.
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If we observe 
{
�∗, y∗(�∗)

}
 for the new individual, the multi-task GP prediction is 

obtained in our model by computing the posterior distribution p(y∗(�p) ∣ y∗(�∗),
{
�i
}
i
) . 

Note that the conditioning is taken over y∗(�∗) , as for any GP regression, but also on 
{
�i
}
i
 , 

which is specific to our multi-task setting. The procedure for computing this distribution 
requires to successively complete the following steps: 

1.	 choose a grid of prediction �p and define the pooled vector of timestamps �p∗,
2.	 compute the hyper-posterior distribution of �0 at �p∗ : p(�0(�

p
∗) ∣

{
�i
}
i
),

3.	 compute the multi-task prior distribution p(y∗(�
p
∗) ∣

{
�i
}
i
),

4.	 compute hyper-parameters �∗ associated with the new individual (optional),
5.	 compute the multi-task posterior distribution: p(y∗(�p) ∣ y∗(�∗),

{
�i
}
i
).

4.1 � Posterior inference on the mean process

As mentioned above, we observed a new individual at timestamps �∗ . The GP regression 
consists in arbitrarily choosing a vector �p of timestamps for which we aim at making pre-

dictions. Then, we define new notation for the pooled vector of timestamps �p∗ =

[
�p

�∗

]

 , 

which will serve as a working grid to define the prior and posterior distributions involved 
in the prediction process. One can note that, although not mandatory in theory, it is often a 
good idea to include the observed timestamps of training individuals, � , within �p∗ since they 
match locations that contain information for the mean process to ’help’ the prediction. In 
particular, if �p∗ = � , the computation of �0 ’s hyper-posterior distribution is not necessary 
since p(�0(�) ∣

{
�i
}
i
) has previously been obtained from the EM algorithm. However, in 

general, it is necessary to compute the hyper-posterior p(�0(�
p
∗) ∣

{
�i
}
i
) at the new times-

tamps. The idea remains similar to the E step aforementioned, and we obtain the following 
result.

Proposition 4  Let �p∗ be a vector of timestamps of size Ñ. The hyper-posterior distribution 
of �0 remains Gaussian:

 with:

•	 ��p
∗ =

�

�̃−1 +
M∑

i=1

�̃
−1

i

�−1

,

•	 �m0(�
p
∗) =

��p
∗

�

�̃−1m0

�
�
p
∗

�
+

M∑

i=1

�̃
−1

i
�̃i

�

,

where we used the shortening notation:

•	 �̃ = k�𝜃0

(
�
p
∗ , �

p
∗

)
 ( Ñ × Ñ matrix),

•	 �̃i =
(
�[t∈�i]

× yi(t)
)
t∈�

p
∗
 ( Ñ-size vector),

•	 �̃ i =
[
�[t,t�∈�i]

× 𝜓�𝜃i,�𝜎
2
i

(
t, t�

) ]

t,t�∈�
p
∗

 ( Ñ × Ñ matrix).

p
(
�0(�

p
∗
) ∣

{
�i
}
i

)
= N

(
�0(�

p
∗
);m̂0(�

p
∗
), �̂p

∗

)
,
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Proof  The sketch of the proof is similar to Proposition 1 in the E step. The only technical-
ity consists in dealing carefully with the dimensions of vectors and matrices involved, and 
whenever relevant, to define augmented versions of �i and � �̂i,�̂

2
i

 with 0 elements at unob-
served timestamps’ position for the i-th individual. Note that if we pick a vector �p∗ includ-
ing only some of the timestamps from �i , information coming from yi at the remaining 
timestamps is ignored. We defer details to Sect. 8.1. 	�  ◻

4.2 � Computing the multi‑task prior distribution

According to our generative model, given the mean process, any new individual ∗ is modelled 
as:

Therefore, for any finite-dimensional vector of timestamps, and in particular for �p∗ , 
p(y∗(�

p
∗) ∣ �0(�

p
∗)) is a multivariate Gaussian. Moreover, from this distribution and �0 ’s 

hyper-posterior, we can figure out the multi-task prior distribution over y∗(�
p
∗) , defined as 

below.

Proposition 5  For any set of timestamps �p∗, the multi-task prior distribution of y∗ is given 
by

Proof  To compute this prior, we need to integrate out the mean process �0 in 
p(y∗ ∣ �0,

{
�i
}
i
) , whereas the multi-task aspect remains through the conditioning over 

{
�i
}
i
 . 

We omit the writing of timestamps, by using the simplified notation �0 and y∗ instead of 
�0(�

p
∗) and y∗(�

p
∗) , respectively. We first use the assumption that {yi ∣ �0}i∈{1,…,M} ⟂⟂ y∗ ∣ �0 , 

i.e., the individuals are independent conditionally to �0 . Then, one can notice that the two 
distributions involved within the integral are Gaussian, which leads to the explicit Gaussian 
target distribution after integration.

This convolution of two Gaussians remains Gaussian (Bishop, 2006, Chapter 2.3.3). The 
mean parameter is then given by

y∗(⋅) ∣ �0(⋅) ∼ GP
(
�0(⋅),� �∗ ,�

2
∗
(⋅, ⋅)

)
.

(3)p(y∗(�
p
∗
) ∣

{
�i
}
i
) = N

(
y∗(�

p
∗
);m̂0(�

p
∗
), �̂p

∗
+ �

�
p
∗

�∗,�
2
∗

)
.

p(y∗ ∣
{
�i
}
i
) = ∫ p

(
y∗,�0 ∣

{
�i
}
i

)
d�0

= ∫ p
(
y∗ ∣ �0,

{
�i
}
i
)p(�0 ∣

{
�i
}
i

)
d�0

= ∫ p
(
y∗ ∣ �0)

)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

N

(

y∗;�0,�
�
p
∗

�∗ ,�
2
∗

)

p(�0 ∣
{
�i
}
i
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

N
(
�0;m̂0,�̂

p
∗

)

d�0.
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Following the same idea, the second-order moment is given by

hence

	�  ◻

Note that the process y∗(⋅) ∣
{
�i
}
i
 is not strictly a GP, although its finite-dimensional eval-

uation (3) remains Gaussian. The covariance structure cannot be expressed as a kernel that 
could be directly evaluated at any timestamps: the process is known as a degenerated GP. 
In practice however, this does not bear much consequence as any arbitrary vector of times-
tamps � can be chosen at first, and computing hyper-posterior p(�0(�) ∣

{
�i
}
i
) still yields to 

the Gaussian distribution p(y∗(�) ∣
{
�i
}
i
) as above. For the sake of simplicity, we now rename 

the covariance matrix of the multi-task prior distribution:

where the indices in the blocks of the matrix correspond to the associated timestamps �p 
and �∗.

�y∗∣{�i}i

[
y∗

]
= ∫ y∗ p

(
y∗ ∣

{
�i
}
i

)
dy∗

= ∫ y∗ ∫ p
(
y∗ ∣ �0

)
p(�0 ∣

{
�i
}
i
) d�0 dy∗

= ∫
(

∫ y∗p
(
y∗ ∣ �0

)
dy∗

)

p(�0 ∣
{
�i
}
i
) d�0

= ∫ �y∗∣�0

[
y∗

]
p(�0 ∣

{
�i
}
i
) d�0

= ��0∣{�i}i

[
�y∗∣�0

[
y∗

] ]

= ��0∣{�i}i

[
�0

]

= m̂0.

�y∗∣{�i}i

[
y2
∗

]
= ��0∣{�i}i

[
�y∗∣�0

[
y2
∗

] ]

= ��0∣{�i}i

[
�y∗∣�0

[
y∗

]
+ �y∗∣�0

[
y∗

]2 ]

= � �∗,�
2
∗
+ ��0∣{�i}i

[
�2
0

]

= � �∗,�
2
∗
+ ��0∣{�i}i

[
�0

]
+ ��0∣{�i}i

[
�0

]2

= � �∗,�
2
∗
+ �̂ + m̂2

0
,

�y∗∣{�i}i

[
y∗

]
= �y∗∣{�i}i

[
y2
∗

]
− �y∗∣{�i}i

[
y∗

]2

= � �∗,�
2
∗
+ �̂ + m̂2

0
− m̂2

0

= � �∗,�
2
∗
+ �̂.

�̂p
∗
+ �

�
p
∗

�∗ ,�
2
∗

= � p
∗
=

(
� pp � p∗

� ∗p � ∗∗

)

,
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4.3 � Learning the new hyper‑parameters

When we collect data points for a new individual, as in the single-task GPs setting, we 
would need to learn the hyper-parameters of its covariance kernel before making predic-
tions. A salient fact in our multi-task approach is that we consider this step being part of 
the prediction process, for two main reasons. First, the model is already trained for individ-
uals i = 1,… ,M , and this training is independent of the future individual ∗ or the choice 
of prediction timestamps. Since learning these new hyper-parameters requires knowledge 
of �(�p∗) and thus of the prediction timestamps, we cannot compute them beforehand. Sec-
ond, learning these hyper-parameters with the empirical Bayes approach only requires 
maximisation of a Gaussian likelihood which is negligible in computing time compared 
to the previous EM algorithm. As for single-task GP, we have the following estimates for 
hyper-parameters:

Note that this step is optional depending on the modelling assumption: in the common hyper-
parameters model (i.e. (�, �2) = (�i, �

2
i
),∀i ∈ I  ), any new individual will also share the same 

hyper-parameters and we already have �̂∗ = (�̂∗, �̂
2
∗
) = (�̂, �̂2) from the EM algorithm.

4.4 � Prediction

We can rewrite the multi-task prior distribution, by separating observed and prediction 
timestamps, as:

As usual, the conditional distribution remains Gaussian, and the multi-task posterior distri-
bution is given by:

where:

•	 �̂p

0
= m̂0(�

p) + � p∗�
−1
∗∗

(
y∗(�∗) − m̂0(�∗)

)
,

•	 �̂
p
= � pp − � p∗�

−1
∗∗
� ∗p.

Although this predictive distribution presents a formulation nicely analogous to stand-
ard GPs, let us emphasise on the terms m̂0(�

p
∗) and � p

∗
 , which embed crucial information 

from training individuals for the mean prediction to be more relevant even in far from the 
observed points y∗(�∗).

�̂∗ = argmax
�∗

p(y∗(�∗) ∣
{
�i
}
i
,�∗)

= argmax
�∗

N
(
y∗(�∗);m̂0(�∗),�

�∗

∗∗

)
.

p(y∗(�
p
∗
) ∣

{
�i
}
i
) = p(y∗(�

p), y∗(�∗) ∣
{
�i
}
i
)

= N
(
y∗(�

p
∗
);m̂0(�

p
∗
),� p

∗

)

= N

([
y∗(�

p)

y∗(�∗)

]

;

[
m̂0(�

p)

m̂0(�∗)

]

,

(
� pp � p∗

� ∗p � ∗∗

))

.

p(y∗(�
p) ∣ y∗(�∗),

{
�i
}
i
) = N

(
y∗(�

p);�̂p

0
, �̂

p
)
,



1834	 Machine Learning (2022) 111:1821–1849

1 3

5 � Complexity analysis for training and prediction

Computational complexity is of paramount importance in GPs as it quickly scales with 
large datasets. The classical cost to train a GP is O(N3) , and O(N2) for prediction (Ras-
mussen & Williams, 2006) where N is the number of data points (although there exist 
various sparse approximations, see Sect.  7 for references). Moreover, multi-task GP 
models lying on LMC approaches typically present a complexity of O(M3N3) in train-
ing, which can be diminished when using sparse approximations (Álvarez and Lawrence 
2011). As detailed below, our model reaches a reduction to O((M + 1)N3) for the train-
ing complexity in a similar context (common grid of timestamps for all individuals), 
without using any sparse approximation.

More specifically, since Magma uses information from M individuals, each of them 
providing Ni observations, these quantities determine the overall complexity of the algo-
rithm. If we recall that N is the number of distinct timestamps (i.e. N ≤ ∑M

i=1
Ni ), the 

training complexity is O
(
M × N3

i
+ N3

)
 (i.e. the complexity of each EM iteration). As 

usual with GPs, the cubic costs come from the inversion of the corresponding matri-
ces, and here, the constant is proportional to the number of iterations of the EM algo-
rithm. The dominating term in this expression depends on the values of M, relatively to 
N. For a large number of individuals with many common timestamps ( MNi ≳ N ), the 
first term dominates. For diverse timestamps among individuals ( MNi ≲ N ), the second 
term becomes the primary burden, as in any GP problem. During the prediction step, 
the re-computation of �0 ’s hyper-posterior implies the inversion of a Ñ × Ñ (dimen-
sion of �p∗ ) which has a O(Ñ3) complexity while the new hyper-parameters estimation’s 
cost is O(N3

∗
) . In practice, the most computationally-expensive steps can be performed 

in advance to allow for quick on-the-fly prediction when collecting new data. If we 
observe the training dataset once and pre-compute the hyper-posterior of �0 on a fine 
grid on which to predict later, the immediate computational cost for each new individual 
is identical to the one of the single-task GP regression.

6 � Experimental results

We evaluate our Magma algorithm on synthetic data and two real datasets. The classi-
cal GP regression on single tasks separately is used as the baseline alternative for pre-
dictions. While it is not expected to perform well on the dataset used, the comparison 
highlights the interest of multi-task approaches. To our knowledge, the only alternative 
to Magma is the GPFDA algorithm from Shi et al. (2007), Shi & Choi (2011), described 
in Sect. 3.4, and the associated R package GPFDA, which is applied during the experi-
ments. Throughout the section, the standard Exponentiated Quadratic kernel (see Eq. 
(1)) is used both for simulating the data and for modelling the covariance structures in 
the three algorithms. Hence, each kernel is associated with � = {v,�}, v,� ∈ ℝ

+ , a set 
of variance and length-scale hyper-parameters, respectively. Each simulated dataset has 
been drawn from the sampling scheme below: 

1.	 Draw a random working grid � ⊂ [ 0, 10 ] of N = 200 timestamps, and a number M of 
individuals.
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2.	 Define a prior mean function : m0(t) = at + b, ∀t ∈ � , where a ∈ [−2, 2 ] and b ∈ [ 0, 10 ] 
are drawn uniformly.

3.	 Draw hyper-parameters uniformly for �0 ’s kernel : �0 = {v0,�0} , where v0 ∈
[
1, exp(5)

]
 

and �0 ∈
[
1, exp(2)

]
.

4.	 Draw �0(�) ∼ N
(
m0(�),�

�
�0

)
.

5.	 ∀i ∈ I  , draw vi ∈
[
1, exp(5)

]
 , �i ∈

[
1, exp(2)

]
 , and �2

i
∈ [ 0, 1 ] uniformly.

6.	 ∀i ∈ I  , draw a subset �i ⊂ � of Ni = 30 timestamps uniformly, and draw 
�i ∼ N

(
�0(�i),�

�i

�i,�
2
i

)
.

This procedure provides a synthetic dataset 
{
�i, �i

}
i
 , and its associated mean process �0(�) . 

Those quantities are used to train the model, make predictions with each algorithm, and 
then compute errors in �0 estimation and forecasts. We recall that the Magma algorithm 
enables two different settings depending on the model’s assumption over hyper-parameters 
(HP), and we refer to them as Common HP and Different HP in the following. In order to 
test these two contexts, differentiated datasets have been generated, by drawing Common 
HP data or Different HP data for each individual at step 5. We previously presented the 
idea of the model used in GPFDA, and, although the algorithm has many features (in par-
ticular about the type and number of input variables), it is not yet usable when timestamps 
are different among individuals. Therefore, two frameworks are considered, Common grid 
and Uncommon grid, to take this specification into account. Thus, the comparison between 
the different methods can only be performed on data generated under the settings Common 
HP and Common grid, and the effect of those different settings on Magma is analysed sepa-
rately. Moreover, the initialisation for the prior mean function, m0(⋅) , is set to be constant, 
equal to 0 for each algorithm. Except in some experiments, where the influence of the num-
ber of individuals is analysed, the generic value is M = 20 . In the case of prediction on 
unobserved timestamps for a new individual, the first 20 data points are used as observa-
tions, and the remaining 10 are taken as test values. Optimisation of the hyper-parame-
ters is performed by likelihood maximisation, using the L-BFGS-B algorithm (Morales & 
Nocedal, 2011; Nocedal, 1980) in all methods. The convergence criterion for all algorithms 
is reached if the difference of log-likelihood between two iterations is lower than 10−2 . In 
general, the EM algorithm in Magma converges in a few iterations, typically fewer than 5 
with the Common HP setting, and rarely more than 15 even with the Different HP setting.

6.1 � Illustration on a simple example

To illustrate the multi-task approach of Magma, Fig.  2 displays a comparison between 
standard GP regression and Magma on a simple example, from a dataset simulated accord-
ing to the scheme above and using the Uncommon grid/Common HP setting. Given the 
observed data (in black), values on a thin grid of unobserved timestamps are predicted and 
compared, in particular, with the true test values (in red). As expected, the GP regression 
provides a good fit close to the data points and then dives rapidly to the prior 0 with increas-
ing uncertainty. Conversely, although the initialisation for the prior mean is 0 in Magma as 
well, the hyper-posterior distribution of �0 (dashed line) is estimated thanks to all individu-
als in the training dataset. This process acts as an informed prior helping GP prediction 
for the new individual, even far from its own observations. More precisely, 3 phases can 
be distinguished according to the level of information coming from the data: in the first 
one, close to the observed data ( t ∈ [ 1, 7 ] ), the two processes behave similarly, except for 
a slight increase in the variance for Magma, which is logical since the prediction also takes 
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uncertainty over �0 into account (see Eq. (3)); in the second one, on intervals of unobserved 
timestamps containing data points from the training dataset ( t ∈ [ 0, 1 ] ∪ [ 7, 10 ] ), the pre-
diction is guided by the information coming from other individuals through �0 . In this con-
text, the mean trajectory remains coherent and the uncertainty increases only slightly. In 
the third phase, where no observations are available, neither from the new individual nor 
from the training dataset ( t ∈ [ 10, 12 ] ), the prediction behaves as expected, with a slow 
drifting to the prior mean 0, with highly increasing variance. Overall, the multi-task frame-
work provides reliable probabilistic predictions on a wider range of timestamps, potentially 
outside of the usual scope of GPs.

6.2 � Performance comparison on simulated datasets

We confront the performance of Magma to alternatives in several situations and for differ-
ent datasets. In the first place, the classical GP regression (GP), GPFDA and Magma are 
compared through their performance in prediction and estimation of the true mean process 
�0 . In the prediction context, the performances are evaluated according to the following 
indicators:

•	 the mean squared error (MSE) which compares the predicted values to the true test val-
ues of the 10 last timestamps: 

•	 the CI95 coverage ( CIC95 ), i.e. the percentage of unobserved data points effectively 
lying within the 95% credible interval defined from the predictive posterior distribution 
p(y∗(�

p) ∣ y∗(�∗),
{
�i
}
i
) : 

1

10

30∑

k=21

(
ypred
∗

(tk
∗
) − ytrue

∗
(tk
∗
)
)2
,

100 ×
1

10

30∑

k=21

1{ytrue
∗

(tk
∗
)∈ CI95}

.

Fig. 2   Prediction curves (blue) of a new individual with associated 95% credible intervals (grey) for GP 
regression (left) and Magma (right). The dashed line represents the mean function m̂

0
 , from the hyper-pos-

terior p(�
0
∣
{
�i
}
i
) . Observed data points are in black, and testing data points are in red. The colourful 

backward points are the observations from the training dataset, each colour corresponding to a different 
individual (Color figure online)
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The CIC95 provides insights on the reliability of the predictive variance and should be as 
close to the value 95% as possible. Other values would indicate a tendency to underes-
timate or overestimate the uncertainty. Let us recall that GPFDA uses B-splines to esti-
mate the mean process and does not account for uncertainty, contrarily to a probabilistic 
framework as Magma. However, a measure of uncertainty based on an empirical variance 
estimated from training curves is proposed (see Shi & Cheng, 2014,  Section  3.2.1). In 
practice, this measure constantly overestimates the true variance, and their 95% empirical 
interval coverage is generally equal or close to 100%.

In the estimation context, the performances are evaluated thanks to another MSE, which 
compares the estimations to the true values of �0 at all timestamps:

Table 1 presents the results obtained over 100 datasets, where the models are trained on 
M = 20 individuals, each of them observed on N = 30 common timestamps. As expected, 
both multi-task methods lead to better results than GP. However, Magma outperforms 
GPFDA, both in the estimation of �0 and in predictive performance. In terms of error as 
well as in uncertainty quantification, Magma provides more accurate results, in particular 
with a CI95 coverage close to the 95% expected value. Each method presents a quite high 
standard deviation for MSE in prediction, which is due to some datasets with particularly 
difficult values to predict, although most of the cases lead to small errors. This behaviour is 
reasonably expected since such 10-timestamps-ahead forecasts might sometimes be tricky. 
It can also be noticed on Fig. 3 that Magma consistently provides lower errors as well as 

1

M

M∑

i=1

1

Ni

Ni∑

k=1

(
�pred

0
(tk
i
) − �true

0
(tk
i
)
)2

.

Table 1   Average MSE (standard 
deviation) and average CIC

95
 

(standard deviation) on 100 runs 
for GP, GPFDA and Magma 

⋆ : 99.6 (2.8), the measure of incertitude from the GPFDA package is 
not a genuine credible interval

Prediction Estimation �
0

MSE CIC
95

MSE CIC
95

Magma 18.7 (31.4) 93.8 (13.5) 1.3 (2) 94.3 (11.3)
GPFDA 31.8 (49.4) 90.4 (18.1) 2.4 (3.6) ⋆

GP 87.5 (151.9) 74.0 (32.7)

Fig. 3   MSE with respect to the number M of training individuals (boxplots are displayed from 100 runs in 
each case). Left prediction error on 10 testing points. Right estimation error of the true mean process �

0



1838	 Machine Learning (2022) 111:1821–1849

1 3

less pathological behaviour, as it may sometimes occur with the B-splines modelling used 
in GPFDA.

To highlight the effect of the number of individuals M on the performance, Fig.  3 
provides the same 100 runs trial as previously, for different values of M. The box-
plots exhibit, for each method, the behaviour of the prediction and estimation MSE as 
information is added in the training dataset. Let us mention the absence of discerni-
ble changes as soon as M > 200 . As expected, we notice on the right panel that add-
ing information from new individuals improves the estimation of �0 , leading to shal-
low errors for high values of M, in particular for Magma. Meanwhile, the left panel 
exhibits reasonably unchanged prediction performance with respect to the values of 
M, excepted for some random fluctuations. This property is expected for GP regres-
sion since no external information is used from the training dataset in this context. For 
both multi-tasks algorithms though, the estimation of �0 improves the prediction by one 
order of magnitude below the typical errors, even with only a few training individuals. 
Furthermore, since a new individual behaves independently through f∗ , it is natural for 
a 10-points-ahead forecast to present intrinsic variations, despite an adequate estimation 
of the shared mean process.

To illustrate the advantage of multi-task methods, even for M = 20 , we display on 
Fig. 4 the evolution of MSE according to the number of timestamps N that are assumed 
to be observed for the new individual on which we make predictions. These predic-
tions remain computed on the last 10 timestamps, although in this experiment, we only 
observe the first 5, 10, 15, or 20 timestamps, in order to change the volume of informa-
tion and the distance from training observations to targets. We observe on Fig. 4 that, 
as expected in a GP framework, the closer observations are to targets, the better the 
results. However, for multi-tasks approaches and in particular for Magma, the prediction 
remains consistently adequate even with few observations. Once more, sharing informa-
tion across individuals significantly helps the prediction, even for small values of M or 
few observed data.

Fig. 4   MSE prediction error on the 10 last testing points with respect to the increasing number N of 
observed timestamps, among the first 20 points (boxplots are displayed from 100 runs in each case)



1839Machine Learning (2022) 111:1821–1849	

1 3

6.3 � Magma’s specific settings

As we previously discussed, different settings are available for Magma according to the 
nature of data and the model hypotheses. First, the Common grid setting corresponds to 
cases where all individuals share the same timestamps, whereas Uncommon grid is used 
otherwise. Moreover, Magma enables to consider identical hyper-parameters for all indi-
viduals or specific ones, as previously discussed in Sect. 2.2. To evaluate the effect of the 
different settings, performances in prediction and �0 ’s estimation are evaluated in the fol-
lowing cases in Table 2:

•	 Common HP, when data are simulated with a common set of hyper-parameters for all 
individuals, and Proposition 3 is used for inference in Magma,

•	 Different HP, when data are simulated with its own set of hyper-parameters for each 
individual, and Proposition 2 is used for inference in Magma,

•	 Common HP on different HP data, when data are simulated with its own set of hyper-
parameters for each individual, and Proposition 3 is used for inference in Magma.

Note that the first line of the table (Common grid / Common HP) of Table  2 is identi-
cal to the corresponding results in Table 1, providing reference values, significantly bet-
ter than for other methods. The results obtained in Table 2 indicate that the Magma per-
formance is not significantly altered by the settings used or the nature of the simulated 
data. To confirm the robustness of the method, the setting Common HP was applied to 
data generated by drawing different values of hyper-parameters for each individual (Dif-
ferent HP data). In this case, performances in prediction and estimation of �0 are slightly 
deteriorated, although Magma still provides quite reliable forecasts. This experience also 
highlights a particularity of the Different HP setting: looking at the estimation of �0 per-
formance, we observe a significant decrease in the CI95 coverage, due to numerical instabil-
ity in some pathological cases. Numerical issues, in particular during matrix inversions, 
are classical problems in the GP literature and, because of the potentially large number 
of different hyper-parameters to train, the probability for at least one of them to lead to a 
nearly singular matrix increases. In this case, one individual might overwhelm others in 
the calculus of �0 ’s hyper-posterior (see Proposition 4), and thus lead to an underestimated 
posterior variance. This problem does not occur in the Common HP settings, since sharing 
the same hyper-parameters prevents the associated covariance matrices from running over 

Table 2   Average MSE (standard deviation) and average CIC
95

 (standard deviation) on 100 runs for the dif-
ferent settings of Magma 

Prediction Estimation of �
0

MSE CIC
95

MSE CIC
95

Common HP Common grid 18.7 (31.4) 93.8 (13.5) 1.3 (2) 94.3 (11.3)
Uncommon grid 19.2 (43) 94.6 (13.1) 2.9 (2.6) 93.6 (9.2)

Different HP Common grid 19.9 (54.7) 91.6 (17.8) 0.5 (0.4) 70.8 (24.3)
Uncommon grid 14.5 (22.4) 89.1 (17.9) 2.5 (4.5) 81.1 (15.9)

Common HP on dif-
ferent HP data

Common grid 21.7 (36) 91 (19.8) 1.5 (1.2) 91.1 (13)
Uncommon grid 18.1 (33) 92.5 (15.9) 3.2 (4.5) 93.4 (9.8)



1840	 Machine Learning (2022) 111:1821–1849

1 3

each other. Thus, except if one specifically wants to smooth multiple curves presenting 
really different behaviours, keeping Common HP as a default setting appears as a reason-
able choice. Let us notice that the estimation of �0 is slightly better for common than for 
uncommon grid since the estimation problem on the union of different timestamps is gen-
erally more difficult. However, this feature only depends on the nature of data.

6.4 � Running times comparisons

The counterpart of the more accurate and general results provided by Magma is a natural 
increase in running time. Table 3 exhibits the raw and relative training times for GPFDA 
and Magma (prediction times are negligible and comparable in both cases), on data coming 
from the simulation scheme with varying values of M on a Common grid of N = 30 times-
tamps. The algorithms were run under the 3.6.1 R version, on a laptop with a dual-core 
processor cadenced at 2.90GHz and an 8GB RAM. The reported computing times are in 
seconds, and for small to moderate datasets ( N ≃ 103 , M ≃ 104 ) the procedures ran in few 
minutes to few hours. The difference between the two algorithms is due to GPFDA model-
ling �0 as a deterministic function through B-splines smoothing, whereas Magma accounts 
for uncertainty. The ratio of computing times between the two methods tends to decrease 
as M increases, and stabilises around 2 for higher numbers of training individuals. This 
behaviour comes from the E step in Magma, which is incompressible and quite insensi-
tive to the value of M. Roughly speaking, one needs to pay twice the computing price of 
GPFDA for Magma to provide (significantly) more accurate predictions and uncertainty 
over �0 . Table 4 provides running times of Magma according to its different settings, with 
M = 20 . Because the complexity is linear in M in each case, the ratio in running times 
would remain roughly similar no matter the value of M. Prediction time appears negligi-
ble compared to training time, and generally takes less than one second to run. Besides, 
the Different HP setting increases the running time since in this context M maximisations 
(instead of one for Common HP) are required at each EM iteration. In this case, the predic-
tion also takes slightly longer because of the necessity to optimise hyper-parameters for the 
new individual. Although the nature of the grid of timestamps does not matter in itself, a 

Table 3   Average (standard 
deviation) training time (in s) 
for Magma and GPFDA on 100 
runs for different numbers M of 
individuals in the training dataset

The relative running time between Magma and GPFDA is provided on 
the line Ratio

M = 5 10 50 100

Magma 5.2 (2.7) 7.6 (3.2) 24.2 (11.1) 42.8 (10)
GPFDA 1 (0.3) 2.1 (0.6) 10.7 (2.4) 23.1 (5.3)
Ratio 5.2 3.6 2.3 1.9

Table 4   Average (standard 
deviation) training and prediction 
time (in s) on 100 runs for 
different settings of Magma 

Train Predict

Common HP Common grid 12.6 (3.5) 0.1 (0)
Uncommon grid 16.5 (11.4) 0.2 (0.1)

Different HP Common grid 42.6 (20.5) 0.6 (0.1)
Uncommon grid 40.2 (17) 0.6 (0.1)
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key limitation lies in the dimension N of the pooled set of timestamps, which tends to get 
bigger when individuals have different timestamps from one another.

6.5 � Application of Magma on swimmers’ progression curves

Data and problematic
We consider the problem of performance prediction in competition for french swim-

mers. The French Swimming Federation provided us with an anonymised dataset, compil-
ing the age and results of its members between 2000 and 2016. For each competitor, the 
race times are registered for competitions of 100m freestyle (50m swimming-pool). The 
database contains results from 1731 women and 7876 men, each of them compiling an 
average of 22.2 data points (min = 15, max = 61) and 12 data points (min = 5, max = 57), 
respectively. In the following, age of the ith swimmer is considered as the input variable 
(timestamp t) and the performance (in s) on a 100 m freestyle as the output ( yi(t) ). For 
reasons of confidentiality and property, the raw dataset cannot be published. The analy-
sis focuses on the youth period, from 10 to 20 years, where the progression is the most 
noticeable. In order to get relevant time series, we retained only individuals having a suffi-
cient number of data points ( Ni ≥ 5 ) on the considered time period. For a young swimmer, 
observed during its first years of competition, we aim at modelling its progression curve 
and make predictions on its future performance in the subsequent years. Since we consider 
a decision-making problem involving irregular time series, the GP probabilistic framework 
is a natural choice to work on. Thereby, assuming that each swimmer in the database is a 
realisation yi defined as previously, we expect Magma to provide multi-task predictions 
for a new young swimmer, that will benefit from information of other swimmers already 
observed at older ages. To study such modelling, and validate its efficiency in practice, we 
split the individuals into training and testing datasets with respective sizes:

•	 MF
train

= 1039 , for the female training set,

•	 MF
test

= 692 , for the female testing set,

•	 MM
train

= 4726 , for the male training set,
•	 MM

test
= 3150 , for the male testing set.

Inference on the hyper-parameters is performed thanks to the training dataset in both cases. 
Considering the different timestamps and the relative monotony of the progression curves, 
the settings Uncommon grid/Common HP has been used for Magma. The overall training 
lasted around 2 h with the same hardware configuration as for simulations. To compute 
MSE and the CI95 coverage, the data points of each individual in the testing set has been 
split into observed and testing timestamps. Since each individual has a different number of 
data points, the first 80% of timestamps are taken as observed, while the remaining 20% 
are considered as testing timestamps. Magma’s predictions are compared with the true val-
ues of yi at testing timestamps. As previously, both GP and Magma have been initialised 
with a constant 0 mean function. Initial values for hyper-parameters are also similar for all 
i, �ini

0
= �ini

i
= (exp(1), exp(1)) and �ini

i
= 0.4 . Those values are the default in Magma and 

remain adequate in the context of these datasets.
Results and interpretation The overall performance and comparison are summarised in 

Table 5.
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We observe that Magma still provides excellent results in this context, and naturally 
outperforms predictions provided by a standard GP regression. As the progression curves 
present relatively monotonic variations and thus avoid pathological behaviours that could 
occur with synthetic data, the MSE in prediction remains very low. The CI95 coverage 
sticks close to the 95% expected value for Magma, indicating an adequate quantification 
of uncertainty. To illustrate these results, an example is displayed on Fig. 5 for both men 
and women. For a randomly chosen testing individual, we plot its predicted progression 
curve (in blue), where its first 15 data points are used as observations (in black), while 
the remaining true data points (in red) are displayed for comparison purpose. As previ-
ously observed in the simulation study, the simple GP quickly drifts to the prior 0 mean, 
as soon as data lack. However, for both men and women, the Magma predictions remain 
close to the true data, which also lie within the 95% credible interval. Even for long term 
forecast, where the mean prediction curve tends to overlap the mean process (dashed line), 
the true data remain in our range of uncertainty, as the credible interval widens far from 
observations. For clarity, we displayed only a few individuals from the training dataset 

Table 5   Average MSE (standard 
deviation) and average CIC

95
 

(standard deviation) for 
prediction on french swimmer 
testing datasets

MSE CIC
95

Women Magma 3.8 (10.3) 95.3 (15.9)
GP 25.3 (97.6) 72.7 (37.1)

Men Magma 3.7 (5.3) 93.9 (15.3)
GP 22.1 (94.3) 78.2 (30.4)

Fig. 5   Prediction curves (blue) for a testing individual with associated 95% credible intervals (grey) for GP 
regression (left) and Magma (right), for both women (top) and men (bottom). The dashed lines represent the 
mean functions m̂

0
 , from the hyper-posterior p(�

0
∣
{
�i
}
i
) . Observed data points are in black, and testing 

data points are in red. The colourful backward points are observations from the training datasets, each col-
our corresponding to a different individual (Color figure online)
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(colourful points) in the background. The mean process (dashed line) seems to represent 
the main trend of progression among swimmers correctly, even though we cannot numeri-
cally compare �0 to any real-life analogous quantity. From a more sport-related perspec-
tive, we can note that both genders present similar patterns of progression. However, while 
performances are roughly similar in mean trend before the age of 14, they start to differen-
tiate afterwards and then converge to average times with approximatively a 5 s gap. Inter-
estingly, the difference between men and women in terms of world records in swimming 
competitions for the 100m freestyle is currently 4.8 s (46.91 versus 51.71). These results, 
obtained under reasonable hypotheses on several hundreds of swimmers, seem to indicate 
that Magma would give quite reliable predictions for a new young swimmer. Furthermore, 
the uncertainty provided through the predictive posterior distribution offers an adequate 
degree of caution in a decision-making process.

7 � Discussion

We have introduced a unified multi-task framework integrating a mean Gaussian process 
prior in the context of GP regression. While we believe that this process is an interest-
ing object in itself, it also allows individuals to borrow information from each other and 
provides more accurate predictions, even far from data points. Furthermore, our method 
accounts for uncertainty in the mean process and remains applicable no matter eventual 
irregular timestamps in the grid of observations. The proposed algorithm, Magma, also 
presents a reduced computational complexity compared to previous multi-task GPs frame-
works. Both on simulated and real-life datasets, we exhibited the efficiency of such an 
approach and studied some of its properties and possible settings. Magma outperforms the 
alternatives in estimation of the mean process as well as in prediction, and leads to a relia-
ble quantification of uncertainty. We also displayed evidence of its predictive efficiency for 
real-life problems and provided some insights on practical interpretations about the mean 
process.

Despite the extensive literature on these aspects of GPs, our model does not yet include 
sparse approximations. While these aspects remain beyond the scope of the present paper, 
we might aim at adapting existing approaches (Snelson & Ghahramani, 2006; Quiñonero-
Candela et al., 2007; Titsias, 2009) in our model to widen its applicability. Another pos-
sible avenue is an adaptation to the classification context, which is presented in Rasmussen 
and Williams (2006, Chapter 3). Besides, this work leaves the door open to improvement 
as we tackled here the problem of unidimensional regression: enabling either multidimen-
sional or mixed type of inputs as in Shi & Choi (2011) would be of interest. To conclude, 
the hypothesis of a unique underlying mean process might be considered too restrictive for 
some datasets, and enabling cluster-specific mean processes would be a relevant extension.

8 � Proofs

Note that the proof of Proposition  1 is a particular case of the proof below, where � = � 
exactly (where � is the set of timestamps the hyper-posterior is to be computed on). Moreover, 
in order to keep an analytical expression for �0 ’s hyper-posterior distribution, we discard the 
superfluous information contained in 

{
�i
}
i
 at timestamps on which the hyper-posterior is not 
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to be computed. Hence, the proof below states that the remaining data points are observed on 
subsets 

{
� i
}
i
 of �.

8.1 � Proof of Proposition 4

Let � be a finite vector of timestamps, and 
{
� i
}
i
 such as ∀i ∈ I, � i ⊂ � . We define conveni-

ent notation:

•	 ��
0
= �0(�),

•	 ��
0
= m0(�),

•	 �
� i
0
= �0(� i), ∀i ∈ I ,

•	 �
� i
i
= yi(� i), ∀i ∈ I ,

•	 � i = ��i,�
2
i
(� i, � i),∀i ∈ I ,

•	 � = k�0 (� , �).

Moreover, for a covariance matrix C, and u, v ∈ � , we note [C ]−1
uv

 the element of the inverse 
matrix at row associated with timestamp u, and column associated with timestamp v. We also 
ignore the conditionings over �̂ , � i and � to maintain simple expressions. By construction of 
the models, we have:

The term L1 = −(1∕2) log p(��
0
∣
{
�
� i
i

}
i
) associated with the hyper-posterior remains quad-

ratic and we may find the corresponding Gaussian parameters by identification:

where we entirely decomposed the vector-matrix products. We factorise the expression 
according to the common timestamps between �i and � . Since for all i, � i ⊂ � , let us intro-
duce a dummy indicator function 1� i

= 1{u,v∈� i}
 to write:

p(��
0
∣
{
�
� i
i

}
i
) ∝ p(

{
�
� i
i

}
i
∣ ��

0
)p(��

0
)

∝

{
M∏

i=1

p(�
� i
i
∣ �

� i
0
)

}

p(��
0
)

∝

{
M∏

i=1

N
(
�
� i
i
;�

� i
0
,� i)

)
}

N
(
��
0
;��

0
,�

)
.

L1 =

M∑

i=1

{(
�
� i
i
− �

� i
0

)⊺
�−1

i

(
�
� i
i
− �

� i
0

)
+ Ci

}
+
(
��
0
−��

0

)⊺
�−1

(
��
0
−��

0

)
+ C0

= ��
0

⊺
�−1��

0
+

M∑

i=1

�
� i
0

⊺
�−1

i
�
� i
0
− 2

(

��
0

⊺
�−1��

0
+

M∑

i=1

�
� i
0

⊺
�−1

i
�
� i
i

)

+ C

=
∑

u∈�

∑

v∈�

�0(u)[� ]−1
uv
�0(v) +

M∑

i=1

∑

u∈� i

∑

v∈� i

�0(u)
[
� i

]−1
uv
�0(v)

− 2
∑

u∈�

∑

v∈�

�0(u)[� ]−1
uv
m0(v) − 2

M∑

i=1

∑

u∈� i

∑

v∈� i

�0(u)
[
� i

]−1
uv
yi(v) + C,
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subsequently, we can gather the sums such as:

where the �i and � i are completed by zeros:

•	 �̃�
i
= 1� i

yi(�),

•	
[
�̃ i

]−1
uv

= 1� i

[
� i

]−1
uv
, ∀u, v ∈ �.

By identification of the quadratic form, we reach:

with,

•	 �� =

�

�−1 +
M∑

i=1

�̃
−1

i

�−1

,

•	 �m0(�) =
��

�

�−1��
0
+

M∑

i=1

�̃
−1

i
�̃�
i

�

.

	�  ◻

8.2 � Proof of Propositions 2 and 3

Since the central part of the proofs is similar for both propositions, we detail the calculus by 
denoting � = {�0,

{
�i
}
i
,
{
�2
i

}
i
} for generality, and dissociating the two cases only when neces-

sary. Before considering the maximisation, we notice that the joint density can be developed as:

M∑

i=1

∑

u∈� i

∑

v∈� i

A(u, v) =

M∑

i=1

∑

u∈�

∑

v∈�

1� i
A(u, v)

=
∑

u∈�

∑

v∈�

M∑

i=1

1� i
A(u, v),

L1 =
∑

u∈�

∑

v∈�

(
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uv
𝜇0(v) +

M∑
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�� i
𝜇0(u)

[
� i

]−1
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uv
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�� i
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)
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The expectation is taken over p(�0(�) ∣
{
�i
}
i
) though we write it � for simplicity. We have:

Lemma 1  Let X ∈ ℝ
N be a random Gaussian vector X ∼ N(m,�) , b ∈ ℝ

N , and � , a N × N 
covariance matrix. Then:

Proof  (Lemma 1) 

	�  ◻

As we note that X and b play symmetrical roles in the calculus of the conditional expec-
tation, we can apply the lemma regardless of the position of �0 in the M + 1 equalities 
involved. Applying Lemma 1 to our previous expression of f (�) , we obtain:

We recall that, at the M step, m̂0(�) is a known constant, computed at the previous E step. 
Thus, we identify here the characteristic expression of several Gaussian log-likelihoods 

p(
{
�i
}
i
,�0(�) ∣ �) = p(
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�i
}
i
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2
i
)
}
p(�0(�) ∣ �0)
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N(�i;�0(�),� �i,�

2
i
)
}
N(�0(�);m0(�),�

�
�0
).
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[
log p(
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}
i
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]
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1

2
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⊺��

�0

−1
(�0(�) − m0(�)) − log

|||
��

�0

−1|||

+

M∑

i=1

(�i − �0(�i))
⊺�

�i

�i,�
2
i

−1
(�i − �0(�i)) − log

||||
�

�i

�i,�
2
i

−1||||

]

+ C1.

E = �X

[
(X − b)⊺�−1(X − b)

]

= (m − b)⊺�−1(m − b) + Tr(��−1).
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= Tr(�−1�X(X − b)) + Tr(�−1(m − b)(m − b)⊺)

= (m − b)⊺�−1(m − b) + Tr
(
��−1

)
.

f (�) = −
1

2

[

(m̂0(�) − m0(�))
⊺��

�0

−1
(m̂0(�) − m0(�))

+

M∑

i=1

(�i − m̂0(�i))
⊺�

�i

�i,�
2
i

−1
(�i − m̂0(�i))

+ Tr
(
�̂���

�0

−1
)
+

M∑

i=1

Tr
(
�̂�i�

�i

�i,�
2
i

−1
)

− log
|||
��

�0

−1|||
−

M∑

i=1

log
||||
�

�i

�i,�
2
i

−1||||
+ C1

]

.



1847Machine Learning (2022) 111:1821–1849	

1 3

and associated correction trace terms. Moreover, each set of hyper-parameters is merely 
involved in independent terms of the whole function to maximise. Hence, the global maxi-
misation problem can be separated into several maximisations of sub-functions according 
to the hyper-parameters getting optimised. Regardless to additional assumptions, the hyper-
parameters �0 , controlling the covariance matrix of the mean process, appears in a function 
which is exactly a Gaussian log-likelihood, logN

(
m̂0(�),m0(�),�

�
�0

)
 , added to a corre-

sponding trace term, −1

2
Tr
(
�̂���

�0

−1
)
 . This function can be maximised independently 

from the other parameters, giving the first part of the results in Propositions 2 and 3.
Although the idea is analogous for the remaining hyper-parameters, we have to discrimi-

nate here regarding the assumption on the model. If each individual is supposed to have its 
own set 

{
�i, �i

}
 , which thus can be optimised independently from the observations and hyper-

parameters of other individuals, we identify a sum of M Gaussian log-likelihoods, 
logN

(
�i, m̂0(�i),�

�i

�i,�
2
i

)
 , and the corresponding trace terms, −1

2
Tr(�̂��

�i

�i,�
2
i

−1
) . This property 

results in M independent maximisation problems on the corresponding functions, proving 
Proposition 2. Conversely, if we assume that all individuals in the model shares their hyper-
parameters (i.e. 

{
�, �2

}
=
{
�i, �

2
i

}
,∀i ∈ I ), we can no longer divide the problem into M sub-

maximisations, and the whole sum on all individual should be optimised thanks to observa-
tions from all individuals. This case corresponds to the second part of Proposition 3. 	�  ◻
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