
Vol.:(0123456789)

Machine Learning (2022) 111:2489–2513
https://doi.org/10.1007/s10994-022-06186-9

1 3

Re‑thinking model robustness from stability: a new insight 
to defend adversarial examples

Shufei Zhang1,2,3 · Kaizhu Huang4 · Zenglin Xu5

Received: 8 July 2021 / Revised: 8 April 2022 / Accepted: 22 April 2022 /  
Published online: 14 June 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
We study the model robustness against adversarial examples, referred to as small perturbed 
input data that may however fool many state-of-the-art deep learning models. Unlike previ-
ous research, we establish a novel theory addressing the robustness issue from the perspec-
tive of stability of the loss function in the small neighborhood of natural examples. We 
propose to exploit an energy function to describe the total variation in a small neighbor-
hood and prove that reducing such energy guarantees the robustness against adversarial 
examples. We also show that the traditional training methods including adversarial training 
and virtual adversarial training tend to minimize the lower bound of our proposed energy 
function. Importantly, we prove that minimizing the energy function can obtain a better 
generalization bound than traditional adversarial training approaches. Through a series of 
experiments, we demonstrate the superiority of our model on different datasets for defend-
ing adversarial attacks. In particular, our proposed adversarial framework achieves the best 
performance compared with previous adversarial training methods on benchmark datasets 
CIFAR-10, CIFAR-100 and SVHN and they demonstrate much better robustness against 
adversarial examples than all the other comparison methods.

Keywords Model robustness · Adversarial examples · Adversarial training · Energy · 
Adversarial generalization

1 Introduction

Deep Neural Networks (DNN) have achieved great success in various tasks, such as speech 
recognition, image classification, and object detection (LeCun et al. 2015; He et al. 2017; 
Huang et al. 2017). However, recent research shows that certain small perturbations over 
the input samples, called adversarial examples, may fool many powerful deep learning 
models (Goodfellow et al. 2014). Adversarial examples have been shown to be ubiquitous 
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in different fields such as image recognition, natural language processing, image genera-
tion, and data mining (Fischer et al. 2017; Eykholt et al. 2018).

There have been many seminal works studying how to generate more invasive adver-
sarial examples (Goodfellow et al. 2014; Kurakin et al. 2016; Liu and Nocedal 1989; Lyu 
et al. 2015; Shaham et al. 2015; Madry et al. 2017).

Meanwhile, several defense methods are proposed to improve the adversarial robustness 
(Kos et al. 2018; Miyato et al. 2018, 2015; Papernot et al. 2016; Xu et al. 2017; Madry 
et al. 2017; Mao et al. 2019; Willetts et al. 2019; Pang et al. 2020; Zhang et al. 2020). Most 
of them are mainly based on adversarial training, i.e., in the manner of replacing natural 
examples with adversarial examples during the training process.

In parallel to studying how to defend adversarial examples, researchers also made great 
efforts in thinking about the theory and principles underlying the adversarial examples. 
In particular, Ma et  al. have shown that adversarial examples are not isolated points but 
a dense region of the input space (Ma et al. 2018). Fawzi et al. studied the model robust-
ness against adversarial examples by establishing a general upper bound (Fawzi et al. 2018, 
2016). Finlay et al. and Lyu et al. have demonstrated that FGSM and their extended general 
cases can be interpreted as a form of regularization (Finlay et al. 2018; Lyu et al. 2015). 
Similarly, Cisse et al. showed that the sensitivity to adversarial examples can be controlled 
by the Lipschitz constant of the network and proposed a new structure of network which is 
insensible to adversarial examples (Cisse et al. 2017). CLEVER score is proposed to meau-
sure the model robustness (Weng et al. 2018).

The above-mentioned seminal studies have got interesting and important results for try-
ing to understand adversarial examples. Although some theoretical robustness bounds have 
been proposed, most are practically difficult to be used or optimized for improving the per-
formance. Moreover, both previous adversarial training methods and theoretical robustness 
bounds ignore the robust generalization, an important factor affecting the performance of 
models on adversarial examples of unseen data. Namely, they fail to describe how well the 
robustness of adversarial training generalizes on unseen data (Stanforth et al. 2019; Car-
mon et al. 2019; Song et al. 2019; Wu et al. 2020).

Distinguished from these existing work, in this paper, we re-think the model robustness 
from the perspective of stability and establish a novel theoretical framework which is able to 
address the robustness issue mathematically and rigorously. We also analyze our framework 
from the perspective of robust generalization. In more details, inspired from the stability of the 
loss function in the small neighborhood of natural examples, we propose to exploit an energy 
function to describe the total variations within a small region, and we prove that reducing such 
energy guarantees the robustness against adversarial examples. We also prove that many tradi-
tional adversarial training methods (including both supervised and semi-supervised adversar-
ial training) are essentially equivalent to minimizing the lower bound of the proposed energy 
function. This may therefore gain a new insight of the limitations of these current methods, 
since minimization of the lower bound unnecessarily minimizes the energy. From the perspec-
tive of robust generalization, we have showed that our method obtains a better robust generali-
zation bound than traditional adversarial training methods. Furthermore, we propose a simple 
approach to approximate the energy function and design a more rational and practical method 
with the energy regularization which proves to achieve better robustness than previous meth-
ods. Finally, to verify the performance of the proposed method, we have conducted a series 
of experiments on several datasets with different adversarial attacks. Experimental results 
have shown that our proposed adversarial framework can achieve the best performance com-
pared with previous adversarial methods benchmarked on CIFAR-10, CIFAR-100 and SVHN. 
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Importantly, they demonstrate much better robustness against adversarial examples than all 
the other comparison methods.

2  Notations and backgrounds

We denote by Dtrain a training set containing N samples, namely Dtrain = {xi, yi|i = 1, ...,N} , 
where xi ∈ ℝ

I indicates an input sample (or natural sample) and yi ∈ ℝ
O denotes its corre-

sponding label (with I and O representing the dimension of the input space and the output 
space, respectively). We also define B(xi, �) as an I-dimensional small ball around each xi with 
the radius �.

Given a specific type of DNN, we let f (x, �) ∶ RI
→ RO denote its mapping function 

(implicitly or explicitly), L(x, y, �) be the loss function used by the DNN, and � be a set of 
parameters which is to be optimized over Dtrain for the DNN. For simplicity, L(x, y, �) could 
be written in short as L(x, �) or even L(x), so do some other similar notations. Moreover, we 
assume in this paper that the last layer of the DNN be a softmax layer, but it should be noted 
that other functions can also be used.

2.1  Adversarial training with the l
2
 norm constraint

The adversarial training method with the l2 norm constraint (AT) is a supervised method, 
which attempts to find the worst perturbed example in the neighborhood of a natural example 
to mislead the classification. Such perturbed examples are then augmented into the training set 
for training a better DNN. The objective of this adversarial training method can be written as:

where x indicates the perturbed version of a natural example x0 (with the label y0 ) within a 
small neighborhood B(x0, �) (which is defined by ‖x − x0‖2 ≤ �).

2.2  Virtual adversarial training

Different from the adversarial training method with the l2 norm constraint (AT), Virtual 
Adversarial Training (VAT) does not require the label information. It tends to find the worst 
perturbed example near a natural example so that the output of DNN f (x, �) can be altered. 
The corresponding objective is defined as:

where D(f (x0, �), f (x, �)) denotes the divergence between the outputs f (x0, �) and f (x, �) . 
For simplicity, D(f (x0, �), f (x, �)) is defined in this paper as the Euclidean distance between 
the outputs, i.e., ‖f (x0, �) − f (x, �)‖2 , but it is straightforward to extend the Euclidean dis-
tance to other divergence measures.

(1)min
�

max
x∈B(x0,�)

L(x, y0, �),

(2)min
�

max
x∈B(x0,�)

D(f (x0, �), f (x, �)),
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3  Main methodology

We first present a reasonable assumption.
Assumption 1: Given a sensible loss function L(x, y, �) ∶ RI

→ R for a specific learning 
task, we assume that, there exists a small threshold �th , such that those inputs x satisfying 
L(x, y, �) ≤ �th can be correctly classified.

Note that such an assumption generally holds for common loss functions such as the 
cross entropy and the square error. A detailed analysis on the assumption can be seen in the 
appendix of the supplementary materials. With the above notations and assumptions, the 
adversarial training problem can be described as follows.

Problem Formulation: Assume that a natural example x0 satisfies L(x0, y0, �) ≤ �1 
where 𝜎1 << 𝜎th , i.e., the example x0 can be classified correctly with a high confidence. An 
adversarial example xad is then defined as the worst perturbed sample within B(x0, �) , the 
small neighborhood of x0 , such that L(xad, y0, 𝜃) > 𝜎th , i.e., xad will be mis-classified. The 
objective of adversarial training for a specific x0 can be reformulated as

3.1  Robustness against adversarial examples

Before we interpret our robustness analysis against adversarial examples, we set out 
Lemma 1 as follows:

Lemma 1 Given a natural example x0 satisfying L(x0, y0, �) ≤ �1 (where 0 ≤ 𝜎1 << 𝜎th ), if 
∀x ∈ B(x0, �) , ∃�2 ∶ 0 ≤ �2 ≤ �th − �1 , it holds that

then, all the data points in B(x0, �) can be classified correctly.

The proof is provided in the appendix.
Lemma 1 states that, if the loss of data points nearby x0 is sufficiently close to that of x0 , 

then all these data points can be classified correctly, since the natural example x0 has been 
already classified correctly with a high confidence. In other words, whether the nearby 
points around x0 can be classified correctly is affected by the stability of the loss function 
L(x, y, �) in the region B(x0, �) . We also say that L(x, y, �) is robust in the region B(x0, �) , 
and thus there exist no adversarial examples in this region, since all the data in this region 
are classified into the same category.

Remark Previous research studies the adversarial examples mainly through considering 
whether the adversarial perturbation can guide the natural example to cross the classifi-
cation boundary in a less rigorous way. Moreover, it would be difficult to investigate the 
shape of the classification boundary when data lie in a high dimensional space. In com-
parison, we consider in this paper the robustness against adversarial examples from the 
perspective of the loss function stability, which would lead to strict analysis as follows.

min
�

max
x∈B(x0,�)

|L(x, y0, �) − L(x0, y0, �)|.

(3)|L(x, y0, �) − L(x0, y0, �)| ≤ �2 ,
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In order to describe the stability of L(x, y, �) in the neighborhood of x, we propose the 
following novel energy function as given in Definition 1.

Definition 1 Let L ∶ RI
→ R be a differential and integral function and B(x0, �) be a small 

neighborhood of x0 with radius � . Then, the energy of L(x) in this neighborhood is defined 
as:

where V denotes the volume.

This energy describes a metric measuring the stability of a function, i.e., how a func-
tion would change within a small region defined by B(x0, �).

More precisely, the integral of the l2 norm of the gradient of the loss with respect 
to the input x measures how the loss function changes at each point in B(x0, �) . Intui-
tively, if the variation on each point is not large, the loss function would not change dra-
matically in this neighborhood of each point. This means that the loss function would 
be more stable. Importantly, we will prove that minimizing such energy function can 
guarantee the robustness for adversarial examples in B(x0, �) . Before that, we provide 
Lemma 2.

Lemma 2 Let B(x0, �) ∈ ℝ
I be a small neighborhood of natural example x0 with label y0 , 

and x be an arbitrary point within B(x0, �) . If the value of energy EB(�) = ∫
B
‖∇xL(x, �)‖2dV  

decreases, then the number of examples classified correctly in B(x0, �) increases. When the 
energy goes to zero, the number of adversarial examples in B(x0, �) goes to zero.

Proof of Lemma 2 is provided in the appendix of the supplementary materials.
Lemma 2 shows that decreasing the energy function leads to increasing the number 

of points x such that |L(x) − L(x0)| ≤ �th in B(x0, �) . Namely, a more number of points in 
B(x0, �) would be correctly classified according to Lemma 1. When the energy function 
is small enough, there would be no adversarial examples gradually. Therefore, this novel 
energy function can be used to measure the robustness against adversarial examples in 
B(x0, �).

3.2  New insight to traditional adversarial methods

In this subsection, using our proposed stability measure, we provide interpretations as 
well as new insight to the previous traditional adversarial training methods including 
both supervised and semi-supervised version (Adversarial Training with l2 norm con-
straint and VAT). Moreover, we prove that these traditional adversarial training methods 
are just to minimize the lower bound of the proposed energy along the radius,

First, we set out Definition 2 to describe the notion of the energy function along the 
radius.

Definition 2 Let the spherical coordinate of x ∈ B(x0, �) be (r,�) where r ∈ [0, �] and 
� ∈ [−�,�]I−1 . Then, the energy along radius on � is defined by

(4)EB(�) = ∫B

||∇xL(x, �)||2dV ,
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The energy E� is defined in the spherical coordinate system and describes the total vari-
ation of the function L(r,�) along the radius at angle � . We present Lemma 3 for a further 
explanation.

Lemma 3 Let B(x0, �) ∈ ℝ
I be a small neighborhood of the natural example x0 with label 

y0 and xad ∈ B(x0, �) such that |L(xad) − L(x0)| ≥ |L(x) − L(x0)| for all x ∈ B(x0, �) . Sup-
pose that xad is on the boundary of B(x0, �1) (�1 ≤ �) and the spherical coordinate of point 
xad can be expressed by (�1,�1) where �1 ∈ [−�,�]I−1 . Then, we have

Proof of this lemma is provided in the appendix.
It is easy to reformulate the adversarial training method with l2 norm constraint (AT) as 

follows (Lyu et al. 2015):

Remark If we compare Eq.  (7) with Inequality  (6), it can be noted that this traditional 
adversarial training method with l2 norm constraint (AT) is equivalent to minimizing the 
lower bound of the energy E�(�1) . Only when the adversarial example is on the bound-
ary of B(x0, �) and the function L(r,�1) is monotonically increasing w.r.t r, the traditional 
adversarial training method can be equivalent to minimizing the energy E� itself.

Similarly, we can also prove VAT is equivalent to minimizing a lower bound of the 
energy along the radius at a certain angle � . Before the proof, we present Lemma  4 as 
follows.

Lemma 4 Let B(x0, �) ∈ ℝ
I be a small neighborhood of natural example x0 with label y0 

and xva ∈ B(x0, �) such that ‖f (xva) − f (x0)‖2 ≥ ‖f (x) − f (x0)‖2 for all x ∈ B(x0, �) . Sup-
pose that xva is on the boundary of B(x0, �1) (�1 ≤ �) and the spherical coordinate of point 
xva can be expressed by (�1,�2) where �2 ∈ [−�,�]I−1 . Then, we have

(Proof is provided in the supplementary material).

On the other hand, we can readily reformulate the VAT as (Miyato et al. 2018):

Remark If we compare Eq. (9) with Inequality (8), it can be noted that VAT is equivalent 
to minimizing the lower bound of energy E�(�2) . In implementing virtual adversarial train-
ing (VAT), there are two versions of the loss function: mean square error loss (MSE loss) 

(5)E�(�) = ∫
�

0

||∇xL(r,�)||2dr.

(6)�
�

0

||∇xL(r,�1)||2dr ≥ |L(xad) − L(x0)|.

(7)min
�

max
x∈B(x0,�)

|L(x, �) − L(x0, �)| = min
�

|L(xad, �) − L(x0, �)|.

(8)�
�

0

��∇xf (r,�2)��2dr ≥ ‖f (xva) − f (x0)‖2

(9)min
�

max
x∈B(x0,�)

‖f (x, �) − f (x0, �)‖2 = min
�

‖f (xva, �) − f (x0, �)‖2



2495Machine Learning (2022) 111:2489–2513 

1 3

and KL-divergence loss. We mainly consider the MSE loss in this paper, which facilitates 
the proof that the energy function can bound the stability of the loss function. When we 
consider the KL-divergence loss which contains uncertainty information, it may not guar-
antee (or at least it is difficult to prove) the theoretical bound for the energy function.

Similarly, only when the adversarial example is on the boundary of B(x0, �) and the func-
tion f (r,�2) monotonically increases, the VAT would be exactly equivalent to minimizing the 
energy E�(�2).

Now we start to introduce our proposed method and we first present Theorem 5.

Theorem 5 Let B(x0, �) ∈ ℝ
I be a small neighborhood of natural example x0 with label y0 

and x be an arbitrary point in B(x0, �) . If the value of the energy EB(�) = ∫
B
‖∇xL(x, �)‖2dV  

decreases, the value of the energy E�(�, �) = ∫ �

0
||∇xF(r,�, �)||2dr decreases almost eve-

rywhere in [−�,�]I−1 . When the energy EB(�) goes to zero, the energy E�(�, �) goes to zero 
almost everywhere in [−�,�]I−1.

Proof of this theorem is provided in the appendix.
In the above, for a measurable set E, we say that a property holds almost everywhere on 

E, or it holds for almost all x ∈ E , provided there is a subset E0 of E for which m(E0) = 0 
( m(E0) denotes the measure for E0 ) and the property holds for all x ∈ E − E0.

Remark In this paper, we mainly establish the energy function with �2-norm. When the 
energy function is established with �2-norm, the stability of the loss function can be 
bounded. However, with �∞-norm, we find that it would be difficult to bound such stabil-
ity. Therefore, it is theoretically more appealing and more direct to minimize the energy 
function with �2-norm for improving the stability of the loss function. Additionally, in the 
experimental part, we actually evaluate our method with �∞-norm attack. The results show 
that our method outperforms the baseline method on such attack. It means that our method 
can also work on �∞-norm attacks. The investigation about the energy function with �∞

-norm can be viewed as future work.

Theorem  5 states that decreasing the total energy EB can lead to a reduction of the 
energy along the radius E� . Therefore, we can reduce all of E� by penalizing the total 
energy EB . According to Lemma 1 and Theorem 5, it is natural to propose a new method:

Intuitively, optimizing the total variations of the function L(x, y, �) can help avoid the dra-
matic fluctuation of the loss function.

However, the optimization problem (10) is impractical due to the integration. For con-
venient optimization, we approximate the energy function with its lower and upper bound 
and reformulate the problem (10) as:

where the first term and the second term can be viewed as the lower and upper bound of 
energy function. Here we optimize the upper and lower bound of energy function rather 

(10)min
� ∫B

||∇xL(x, y, �)||2dV .

(11)min
�

[
max
x∈B

L(x, �) + �max
x∈B

||∇xL(x, y, �)||2
]
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than itself. � is a positive trade-off hyper-parameter. This method can be also extended to 
VAT:

Relevant proof and details can be seen in the appendix.

3.3  Robust generalization

In this section, we analyze the generalization for our proposed frame and prove our pro-
posed method can achieve a better generalization bound than the traditional adversarial 
training methods. We first introduce relevant notations and definitions. The �-neighbor-
hood of a training set is defined as Mt =

⋃
xi∈Dtrain

B(xi, �) and the whole set of natural 
examples M =

⋃
x∈D B(x, �) . �t and � are the probability density supported on an m-dimen-

sional manifolds Mt and M respectively. Then, the robust generalization can be defined 
as the difference between the expected loss over the training set and the whole data set: 
|�x∽�t

L(x) − �x∽�L(x)| . When the difference is small, it means that the model can perform 
similarly well on unseen data on the training set. We now provide the upper bound of 
robust generalization as Theorem 13.

Theorem  6 Suppose that infM 𝜌 > 0 , dim(M) = m and ‖∇x‖∇xL‖2‖2 ≤ K for x ∈ M . 
Then for any t > 0 and proper constants C1 and C2 , we have

with the probability at least 1 − 2t
−

m

m+2 n−(ct−1) , where x�
i
∈ Mt.

According to Theorem 13, the upper bound of the robust generalization is decided by 
maxx∈Mt

‖∇xL‖2,1 which is exactly minimized in our framework as seen in (11). In com-
parison, the other traditional adversarial training methods did not minimize such a term, 
leading that the associated generalization upper bound would be looser than our proposed 
framework.

3.4  Practical optimization algorithm

We design practical optimization algorithms for our proposed new framework, which basi-
cally extends the previous methods with the novel energy regularization. For convenience, we 
start with the problem  (11), while the problem  (12) can be solved in a similar way. In the 
problem  (11), the first term can be solved with the traditional adversarial training method. 
The second term can be divided into two problems: inner maximization problem and outer 
minimization problem. However, for the inner problem, since ‖∇xL(x, y, �)‖2 is a non-convex 
function, it is difficult to evaluate the maximizer of function ‖∇xL(x, y, �)‖2 . Following many 
similar approaches (Lyu et al. 2015), we relax it to the convex problem with the first order 
Taylor expansions:

(12)min
�

[
max
x∈B

D(f (xi, �), f (xi + �vat, �)) + �max
x∈B

||∇xf (x, �)||2
]

(13)�1
n

n�

i=1

L(x�
i
) − �

M

L�dVol(x)�) ≤ C1(max
x∈Mt

‖∇xL‖2 + C2K)(
tlog(n)

n
)

1

m+2

1 All the other terms in the right-hand side are constants.
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The problem (14) is now a convex problem w.r.t x and can be solved by Lagrangian multi-
plier method. The maximizer can be calculated as:

where . represents the normalized operator. The gradient of ‖∇xL(x0, y0, �)‖2 w.r.t x is dif-
ficult to compute. We can use the finite difference method to approximate it:

where � is a small value. In this paper, we set � = 10−6 . More details of derivation of (16) 
are provided in the appendix. After computing the maximizer xmax of inner problem, 
the outer problem can be solved by the gradient decent method. The whole algorithm of 
Adversarial Training with Energy Regularization we called in short ATER is shown in 
Algorithm 1. We also develop the VAT with Energy Regularization (in short VATER).

(14)max
x∈B(x0,�)

��∇xL(x0, y0, �)��2 + ∇x‖∇xL(x0, y0, �)‖T2 (x − x0).

(15)xmax = �∇x‖∇xL(x0, y0, �)‖2 + x0,

(16)

xmax =�∇x‖∇xL(x0, y0, �)‖2 + x0

=�H(x0)∇xL(x0) + x0

≈�
∇xL(x0 + �∇xL(x0)) − ∇xL(x0)

�
+ x0,
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4  Experiments

We evaluate the robustness of our proposed method Adversarial Training with Energy Reg-
ularization (ATER) on datasets CIFAR-10, CIFAR-100 and SVHN. We also extend the 
Virtual Adversarial Training (VAT) model with the proposed energy regularization termed 
as VATER in the setting of semi-supervised learning (SSL) to check further the generaliza-
tion. Specifically, taking the wide resnet (Zagoruyko and Komodakis 2016) as the base-
line model, we mainly conduct the experiment of ATER to examine the robustness, i.e., 
the accuracy on different adversarial attacks. We further apply large-covnet with the same 
setting as Miyato et al. (2018) to check how well the VATER performs in the semi-super-
vised setting on CIFAR10 and SVHN. We set the hyper parameter � in Eq. (11) (ATER), 
to 1.0 for both CIFAR-10 and CIFAR-100 and 10.0 for SVHN empirically, which were the 
best one chosen from {1000.0, 100.0, 10.0, 1.0, 0.1} . For the hyper parameter � in Eq. (12) 
(VATER), we set it 0.1 for both CIFAR-10 and MNIST chosen from {0.1, 0.2, 0.5, 0.7, 1.0} . 
For the training time, we generate the adversarial examples for training through PGD 
method with 20 iteration and attack radius is 8/255. The training epoch is 60 and the learn-
ing rate is 0.1 for CIFAR-10 and CIFAR-100 and 0.01 for SVHN. For the test time, we 
generate the adversarial examples through different attack methods including PGD, CW 
and FGSM with different attack iterations 10, 20, 40, 100. The attack radius is also 8/255.

4.1  Performance on adversarial examples

In this section, we compare our proposed ATER with the recent adversarial training 
methods on different datasets for defending adversarial attacks. Tables 1, 2 and 3 show 
the performance of different models on CIFAR-10, CIFAR-100 and SVHN respectively 
under different adversarial attacks including FGSM, PGD and CW. In both the tables, it 
is noted that except AT and our proposed ATER, all the other results were copied from 
the related work (Zhang et al. 2019; Song et al. 2019; Madry et al. 2017; Kannan et al. 
2018; Mao et al. 2019). Moreover, for the PGD and CW attacks, adversarial examples 
are generated with different iterations for fair comparisons, i.e., 10, 20, 40, 100 itera-
tions. We compare our proposed ATER with several recent competitive methods such as 
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AT, TLA, TRADES, and RLFATp . It can be observed that our proposed method ATER 
consistently achieves the best performance on these three datasets over all the other 
methods. This validates the necessities of applying the proposed energy regularization, 
which guarantees a better generalization as proved in the paper.

To further verify the robustness of ATER, we conduct transfer-based black-box 
attack experiments on CIFAR-10. Three different models are used for generating attacks 
including the Vanilla Training model, the Adversarial Training and our model. As dem-
onstrated by the results in Table  4, our proposed approach can achieve better perfor-
mance in all the cases.

Finally, taking CIFAR-10 as one illustrative example, we examine our proposed 
method on stronger attack, Auto-Attack (AA) in Table 5. We also report experimental 
results on large datasets, i.e. Imagenet and Tiny - Imagenet under PGD-LL attack (LL 
means attacking least likely class) in Table 6. As can be seen in these two tables, our 
proposed method AFTER outperforms the baseline method AT on both stronger attack 
and large datasets.

Table 2  Accuracy under different attacks on CIFAR-100

Methods CIFAR-100

Clean FGSM PGD20 PGD100 CW20 CW100

Original 79.0 10.0 0.0 0.0 0.0 0.0
AT (Madry et al. 2017) 59.9 28.5 22.6 22.3 23.2 23.0
TRADES (Song et al. 2019) 52.13 – 27.26 – 24.66 –
RLFAT-p (Song et al. 2019) 56.70 – 31.99 – 29.04 –
ATER 61.47 42.02 33.75 33.52 29.94 28.62

Table 3  Accuracy under different 
attacks on SVHN

Methods SVHN

Clean FGSM PGD20 PGD100 CW20 CW100

Original 97.2 53.0 0.3 0.1 0.3 0.1
AT 93.9 68.4 47.9 46.0 48.7 47.3
ALP (Kan-

nan et al. 
2018)

96.2 – – 46.9 – –

ATER 94.79 72.47 54.36 52.82 50.23 49.92

Table 4  Accuracy under black-box attack on CIFAR-10

Defense models Attacked models

Vanilla training Adversarial training Ours

FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20

AT 84.62 84.89 84.83 72.20 63.77 63.27 68.94 61.89 60.31
Ours 86.64 87.27 87.32 74.05 68.63 67.72 71.99 65.08 64.33
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4.2  Further analysis

We conduct some further analysis to validate the effectiveness of our proposed method 
in this section.

We first examine the performance of the proposed ATER on the adversarial exam-
ples with different budgets. Specifically, we generate in the test datasets of CIFAR-10 
10,000 adversarial examples according to PGD with 20 iterations. We increase the level 
of adversarial noises gradually from 4 to 20 in CIFAR-10 (with the step size as 4). We 
then test the performance of ATER and the traditional adversarial training (AT) on these 
adversarial examples. These results are plotted in Fig. 2. As clearly observed, the pro-
posed ATER shows much better robustness against adversarial examples. Particularly, 
when the adversarial noises are heavier, the proposed ATER still demonstrates clearly 
better performance, verifying their significant robustness.

Next, we show that our proposed ATER can indeed obtain a smaller energy com-
pared with baseline method AT and the original wide resnet. Here, we approximate the 
energy with its upper bound: the maximum gradient within the �-neighborhood of the 
training set maxx∈B(x0,�)

||∇xL(x, y, �)||2 . Specifically, we search the norm of the largest 
gradient within the 6 steps for 10 different batches of training data. Then we average the 
norm of gradient at the last step over 10 batches. These results are plotted in Fig. 3. It 
can be noted that our proposed ATER obtains a much lower maximum gradient, thereby 
leading to a stable model with a better generalization according to Theorem 13. We also 
plot the distribution for the L2-norm of the gradient of loss with respect to inputs on dif-
ferent datasets (CIFAR-10, CIFAR-100 and SVHN). As shown in Fig. 4, more gradients 
of our method distribute at very low value than the baseline method, indicating that our 
proposed method can lead to a better stability around more data points.

Finally, we conduct the sensitive analysis for hyper parameter � . Specifically, we 
plot the performance (robust accuracy) of the proposed method ATER on PGD20 attack 
with different � : {1000, 100, 10, 1.0, 0.1} in Fig. 1. As can be seen, our proposed method 

Table 5  The performance of 
different methods on CIFAR-10 
under Auto-Attack (AA)

Method CIFAR-10
AA

AT-Free (Shafahi et al. 2019) 41.47
ATES (Sitawarin et al. 2020) 50.72
TLA (Mao et al. 2019) 47.41
AT 44.04
ATER 53.82

Table 6  The performance of 
ATER on large datasets under 
PGD-LL attack

Defense models Tiny-imagenet Imagenet

Clean PGD-LL clean PGD-LL

AT 70.2 39.2 53.1 25.1
ALP (Kannan et al. 2018) 72.0 41.3 55.7 27.9
ATER 72.6 43.6 55.2 29.8
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ATER achieves the best performance when � = 1.0 . Except for � = 1000 , the proposed 
method ATER outperforms the baseline AT on all the other values of �.

Fig. 1  Performance of ATER 
under PGD20 attack on CIFAR-
10 with different �

Fig. 2  Performance on adver-
sarial examples of CIFAR-10 
with different attack budgets. 
Better viewed in color

Fig. 3  The norm of the maxi-
mum gradient within the B(x, �) 
of natural examples on CIFAR10
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4.3  Performance on semi‑supervised learning

We also conduct experiments on semi-supervised learning to further validate the proposed 
general energy regularization term. Specifically, we extend VAT to the VATER model in 
the semi-supervised setting. VAT basically takes an unsupervised adversarial training strat-
egy and can be readily used in SSL. It is noted that AT is a supervised learning method and 
hence is not implemented in this evaluation. Tables 7 and 8 demonstrate the results of dif-
ferent models on SVHN and CIFAR-10 in this scenario. As observed, on both the datasets, 
our model attains the best performance, which is significantly more accurate than VAT and 
all the other algorithms. This shows that the proposed method could truly lead to a better 
generalization especially than VAT in SSL.

5  Conclusion

In this paper, we investigate the model robustness against adversarial examples from 
the perspective of the function stability. We develop a novel energy function to describe 
the stability in the small neighborhood of natural examples and prove that reducing 
such energy can guarantee the robustness for adversarial examples. We also offer new 
insights to traditional adversarial methods (AT and VAT) showing that such traditional 

Table 7  Test performance on SVHN in semi-supervised learning

Method SVHN (1000 labeled)
Test error rate (%)

SWWAE (Zhao et al. 2015) 23.56
Skip generative model (Maaløe et al. 2016) 16.30
GAN with feature matching (Salimans et al. 2016) 8.11
Π model (Laine and Aila 2016) 5.43
RPT 8.41(±0.24)

VAT 5.77(±0.32)

VATER �.��(±�.��)

Table 8  Test performance on CIFAR-10 in semi-supervis‘ed learning

Method CIFAR-10 (4000 labeled)
Test error rate (%)

Ladder networks, Γ model (Rasmus et al. 2015) 20.40
CatGAN (Springenberg 2015) 19.58
GAN with feature matching (Salimans et al. 2016) 18.63
Π model (Laine and Aila 2016) 16.55
RPT 18.56(±0.29)

VAT 14.82(±0.38)

VATER ��.53(±0.23)
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methods merely decrease certain lower bounds of the energy function. We analyze the 
disadvantage of the traditional methods and propose accordingly more rational methods 
to minimize both the upper bound and lower bound of the energy function. We imple-
ment our methods on both supervised and semi-supervised tasks and achieve superior 
performance on benchmark datasets.

(a) CIFAR-10 (b) CIFAR-10 (ours)

(c) CIFAR-100 (d) CIFAR-100 (ours)

(e) SVHN (f) SVHN (ours)

Fig. 4  Distribution for the L2-norm of the gradient of loss with respect to inputs on CIFAR-10, CIFAR-100 
and SVHN (the first, second, and third columns respectively)
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Appendix

Analysis for Assumption 1

In this section, we prove that for common loss functions (e.g., cross entropy and square 
error) we can find a small constant �th such that if L(x, y, 𝜃) < 𝜎th , then the input x can 
be classified correctly. In this paper, we assume the last layer the softmax layer, then we 
have 

∑
i yi = 1 and yi ∈ [0, 1].

Cross entropy loss

The cross entropy loss is defined as Lce = −
∑

i lilog(yi) where l = {li}
O
i=1

 (O is the output 
dimension) is an one hot label vector for input x1 . We assume la = 1 and others are zeros 
which means x belongs to class a. Then, we can reformulate the cross entropy loss as 
Lce = −logya . If Lce(x1, l) < 𝜎th for all 0 < 𝜎th < −log0.5 , x1 can be classified correctly.

Proof 
then we have

Since 
∑

i yi = 1 and ya > e−𝜎th > 0.5 , x1 can be classified correctly.   ◻

Square error loss

The square error loss can be formulated as Lse =
∑

i(yi − li)
2 . Similarly, for the square 

error loss Lse , If Lse(x1, l) < 𝜎th for all 𝜎th < 0.25 , x1 can be classified correctly.

Proof 
Since la = 1 and others are zeros, then we have

Since 
∑

i yi = 1 and ya > 1 −
√
𝜎th > 0.5 , x1 can be classified correctly.   ◻

Proof for lemmas and theorem

In this section, we prove the lemmas and theorems in the main submission. For conveni-
ence, we first set out Theorem A.1 and Lemma A.2 which will be used in the proof.

Theorem A.1 Let B ∈ ℝ
n and f ∶ ℝ

n
→ ℝ and g ∶ ℝ

n
→ ℝ are integrable and continues 

functions, then there exists a constant c such that

(17)Lce < 𝜎th < −log0.5

(18)−logya < 𝜎th < −log0.5 ⇒ ya > e−𝜎th > 0.5

(19)
∑

i

(yi − li)
2 < 𝜎th

(20)
∑

i∕a

(yi)
2 + (ya − 1)2 < 𝜎th ⇒ (ya − 1)2 < 𝜎th < 0.25 ⇒ ya > 𝜎th > 0.5
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where V is the volume and ∫
B
g(x)dV ≠ 0.

Proof We can directly find constant c:

  ◻

Lemma A.2 Let us define g ∶ ℝ
m
→ ℝ by g(�) = ∫

B
f (x, �)dV  where f ∶ ℝ

I
→ ℝ is differ-

ential and integrable. Then, if g(�) decreases and goes to zero, f (x, �) decreases and goes 
to zero almost everywhere in B.

(Def. For a measurable set E, we say that a property holds almost everywhere on E, or 
it holds for almost all x ∈ E , provided there is a subset E0 of E for which m(E0) = 0 ( m(E0) 
denotes the measure for E0 ) and the property holds for all x ∈ E − E0).

Proof Let N0 = {x|f (x) ≥ n0} where n0 is a sufficiently small value.

When g(�) decreases and goes to zero, ∫
N0

f (x, �)dV  decreases and goes to zero. Then the 
measure of N0 ( m({x|f (x) ≥ n0}) ) decreases and goes to zero which means the measure of 
B − N0 (m({x|f (x) < n0} )) increases and goes to m(B). Therefore, f (x, �) decreases and 
goes to zero almost everywhere in B.   ◻

Proof for Lemma 1

Lemma 1 Given a natural example x0 satisfying L(x0, y0, �) ≤ �1 (where 0 ≤ 𝜎1 << 𝜎th ), if 
∀x ∈ B(x0, �) , ∃�2 ∶ 0 ≤ �2 ≤ �th − �1 , it holds that

then, all the data points in B(x0, �) can be classified correctly.

Proof In this paper, we have proved in the previous section that there exists a �th such that 
if L(x, y, �) ≤ �th , x can be classified correctly. Additionally, we assume that the natural 
examples can be classified correctly with a high confidence (L(x0, y0, 𝜃) ≤ 𝜎1 << 𝜎th) . 
Then, if L(x, y0, 𝜃) < L(x0, y0, 𝜃),

(21)∫B

f (x)g(x)dV = c∫B

g(x)dV

(22)
∫
B
f (x)g(x)dV

∫
B
g(x)dV

= c

(23)

g(�) =�B

f (x, �)dV

=�N0

f (x, �)dV + �B−N0

f (x, �)dV

≥�N0

f (x, �)dV

(24)|L(x, y0, �) − L(x0, y0, �)| ≤ �2 ,
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which means x can be classified correctly.
If L(x, y0, 𝜃) > L(x0, y0, 𝜃)

Therefore, if |L(x0, y0, �) − L(x0, y0, �)| ≤ �2 , x0 can be classified correctly.   ◻

Proof for Lemma 3 and Lemma 4

Here, we just prove Lemma 4 since Lemma 3 is a special case of Lemma 4.

Lemma 4 Let B(x0, �) ∈ ℝ
I be a small neighborhood of natural example x0 with label y0 

and xva ∈ B(x0, �) such that ‖f (xva) − f (x0)‖2 ≥ ‖f (x) − f (x0)‖2 for all x ∈ B(x0, �) . Sup-
pose that xva is on the boundary of B(x0, �1) (�1 ≤ �) and the spherical coordinate of point 
xva can be expressed by (�1,�2) where �2 ∈ [−�,�]I−1 . Then, we have

Proof 
where, �⃗d is the unit vector pointing from x0 to xva . In the same way, we can prove Lemma 
3.   ◻

Proof for Lemma 2

Lemma 2 Let B(x0, �) ∈ ℝ
I be a small neighborhood of natural example x0 with label y0 

and xar be arbitrary point in B(x0, �) . If the value of energy EB(�) = ∫
B
‖∇xL(x, �)‖2dV  

decreases, the number of examples classified correctly in B(x0, �) increases. When the 
energy goes to zero, the number of adversarial examples in B(x0, �) goes to zero.

Proof we reformulate the energy in spherical coordinate:

According to Theorem A.1, there exists a constant r1 such that

(25)L(x, y0, 𝜃) < 𝜎1 < 𝜎th

(26)
|L(x, y0, 𝜃) − L(x0, y0, 𝜃)| = L(x0, y0, 𝜃) − L(x0, y0, 𝜃) < 𝜎2 < 𝜎th − 𝜎1 ⇒ L(x0, y0, 𝜃) < L(x0, y0, 𝜃) + 𝜎2 < 𝜎th

(27)�
�

0

��∇xf (r,�2)��2dr ≥ ‖f (xva) − f (x0)‖2

(28)

�
𝜖

0

��∇xf (r,𝜙2)��2dr ≥�
𝜖1

0

��∇xf (r,𝜙2)��2dr

≥�
𝜖1

0

��∇xf (r,𝜙2) ⋅
�⃗d��2dr

≥���
𝜖1

0

∇xf (r,𝜙2) ⋅
�⃗ddr��2

=‖f (xva) − f (x0)‖2

(29)EB = ∫B

||∇xL(x)||2dV = ∫SI−1 ∫
�

0

||∇xL(r,�)||2rI−1drd�
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According to Lemma 3.4, we have

where �1 ≤ � and (�1,�) is the spherical coordinate of arbitrary point x. Since EB is 
the upper bound of ∫

SI−1
|L(�1,�) − L(x0)|d� , when EB decreases and goes to zero, 

∫
SI−1

|L(�1,�) − L(x0)|d� decreases and goes to zero. According to Lemma A.2, for almost 
all xar ∈ B , |L(xar) − L(x0)| decreases and goes to zero which means the number of adver-
sarial examples in B decreases and goes to zero (according to Lemma 1).   ◻

Proof for Theorem 5

Theorem  5 Let B(x0, �) ∈ ℝ
I be a small neighborhood of natural example x0 with label 

y0 . and xar be arbitrary point in B(x0, �) . If the value of energy EB(�) = ∫
B
‖∇xL(x, �)‖2dV  

decreases, the value of energy E�(�, �) = ∫ �

0
||∇xF(r,�, �)||2dr decreases almost every-

where in [−�,�]I−1 . When the energy EB(�) goes to zero, the energy E�(�, �) goes to zero 
almost everywhere in [−�,�]I−1.

Proof Similar to Lemma A.1, there exists a constant r1 such that

According to Lemma A.2, when EB(�) decreases and goes to zero, for almost all 
� ∈ [−�,�]I−1 , E� = ∫ �

0
||∇xF(r,�)||2dr deceases and goes to zero.   ◻

Proof for Theorem 6

Theorem  6 Suppose that infM 𝜌 > 0 , dim(M) = m and ‖∇x‖∇xL‖2‖2 ≤ K for x ∈ M . 
Then for any t > 0 and proper constants C1 and C2 , we have

 with probability at least 1 − 2t
−

m

m+2 n−(ct−1) , where x�
i
∈ Mt.

Proof Before proving the generalization bound, we first introduce the Bernstein’s 
inequality:

Bernstein’s inequality Let x1, x2, ..., xn be independent bounded random variables such 
that |xi| ≤ M with probability 1 and let �2 = �[(xi − [xi])

2] . Then for any 𝛼 > 0 , we have

(30)∫B

||∇xL(r,�)||2dV = r1 ∫SI−1 ∫
�

0

||∇xL(r,�)||2drd�

(31)r1 �SI−1 �
�

0

||∇xL(r,�)||2drd� ≥ r1 �SI−1
|L(�1,�) − L(x0)|d�

(32)∫B

||∇xL(r,�)||2dV = r1 ∫SI−1 ∫
�

0

||∇xL(r,�)||2drd� = r1 ∫SI−1
E�(�)d�

(33)�1
n

n�

i=1

L(x�
i
) − �

M

L�dVol(x)�) ≤ C1(max
x∈Mt

‖∇xL‖2 + C2K)(
tlog(n)

n
)

1

m+2
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Since ‖∇x‖∇xL‖2‖2 ≤ K for arbitrary x ∈ M , we have max
x∈M ‖∇

x
L‖2 ≤

max
x∈M

t

‖∇
x
L‖2 + C2K and maxx∈M �L(x)� ≤ C1(maxx∈Mt

‖∇xL‖2 + C2K) for proper 
constant C1 and C2.

We assume M = [0, 1]m and partition M into hyper cubes B1,B2, ...,BN with side length 
r > 0 and N = r−m . Let Sj be the number of x′

1
, x′

2
, ..., x′

n
 falling in Bj ( x′i is the perturbed 

example in B(xi, �) ). Then Sj is a Binomial random variable with parameters n and 
pj = ∫

Bj
�dx ≥ crm . According to Bernstein inequality, we have

for any j. For 0 < 𝛼 ≤ hm , we have

with probability at least 1 − 2r−mexp(−cnr−m�2).
For � = rm , we have

with probability at least 1 − 2r−mexp(−cnrm+2) . By selecting nrm+2 = tlog(n)

with probability at least 1 − 2t
−

m

m+2 n−(ct−1) .   ◻

(34)ℙ(|1
n

n∑

i=1

xi − 𝔼[xi]| > 𝛼) ≤ 2exp(−
n𝛼2

2𝜎2 + 4M𝛼∕3
)

(35)ℙ(|1
n
Sj − �Bj

𝜌dx| > 𝛼) ≤ 2exp(−cnh−m𝛼2)

1

n

n�

i=1

L(x�
i
) ≤ 1

n

N�

j=1

Sj max
Bj

L ≤
N�

j=1

(�Bj

�dx + �)max
Bj

L

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
According to (35)

≤
N�

j=1

max
Bj

L�Bj

�dx + C1(max
x∈Mt

‖∇xL‖2 + C2K)r
−m�

≤
N�

j=1

(min
Bj

L + C1(max
x∈Mt

‖∇xL‖2 + C2K)r)�Bj

�dx

+ C1(max
x∈Mt

‖∇xL‖2 + C2K)r
−m�

≤
N�

j=1
�Bj

L�dx + C1(max
x∈Mt

‖∇xL‖2 + C2K)r
−m(� + rm+1)

= �
M

L�dx + C1(max
x∈Mt

‖∇xL‖2 + C2K)(�h
−m + r)

(36)�1
n

n�

i=1

L(x�
i
) − �

M

L�dVol(x)� ≤ C1(max
x∈Mt

‖∇xL‖2 + C2K)r

(37)�1
n

n�

i=1

L(x�
i
) − �

M

L�dVol(x)� ≤ C1(max
x∈Mt

‖∇xL‖2 + C2K)(
tlog(n)

n
)

1

m+2
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Details of practical algorithm

In this paper, we minimize both the upper bound and lower bound of energy E� . The 
algorithm to minimize the lower bound is the same as the traditional adversarial train-
ing. Here, we only give the relevant proof and algorithm for the upper bound of E� and 
EB:

The upper bound for EB:

The upper bound for E�:

Since Vol(B) and � are constants, reducing maxx∈B ‖∇L(x)‖2 is equivalent to decreasing the 
upper bound of E� and EB.

The problem (13) in the main paper can be reduced to:

where, r = x − x0 and F = ‖∇xL(x0, y0, �)‖2 . We solve it with the Lagrangian multiplier 
method and we have

Then we make the first derivative with respect to r:

If we sum over two sides, we have

where p∗ is the dual of p. ( 1
p
+

1

p∗
= 1)

(38)EB = �B

��∇xL(x)��2dV ≤ �B

max
x∈B

‖∇L(x)‖2dV = max
x∈B

‖∇L(x)‖2 ⋅ Vol(B)

(39)

E� =�
�

0

��∇xL(r,�)��2dr

≤�
�

0

max
x∈B

‖∇L(x)‖2dr

=max
x∈B

‖∇L(x)‖2 ⋅ �

(40)max
‖r‖p=�

∇xF
Tr

∇xFr = �(‖r‖p − �)

(41)

∇xF = �
rp−1

p(
∑

i r
p

i
)
1−

1

p

∇xF =
�

p
(
r

�
)p−1

(∇xF)
p

p−1 = (
�

p
)

p

p−1 (
r

�
)p

�
(∇xF)

p

p−1 =
�

(
�

p
)

p

p−1 (
r

�
)p

‖∇xF‖
p∗

p∗
= (

�

p
)p

∗

∗ 1
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By combining (41) and (42), we have

In this paper, we set p to 2. Then we have

Therefore, the maximizer xmax can be calculated as:

∇x‖∇xL(x0, y0, �)‖2 can be calculated as:

Then, using the finite difference method, we have

where � is small value (� = 10−6) . Since 1

‖∇xL(x0)‖2
 is scalar, we have
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(42)(
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p
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r∗ = �sign(∇F)(
�∇F�

‖∇F‖p∗
)

1

p−1

r∗ = �(
∇F

‖∇F‖2
) = �∇x‖∇xL(x0, y0, �)‖2

xmax = r∗ + x0 = �∇x‖∇xL(x0, y0, �)‖2 + x0

∇x‖∇xL(x0)‖2 =[
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�x1
,
�‖∇xL(x0)‖22

�x2
, ...,
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�xI

] ⋅
1
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=
1
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[
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i=1

�L(x0)

�xi

�L(x0)

�xi�x1
,

I�

i=1
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�xi

�L(x0)

�xi�x2
,

...,

I�

i=1

�L(x0)

�xi

�L(x0)

�xi�xI
]

=
1
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⋅ H(x0)∇xL(x0)

1
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⋅
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